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OPTIMAL MAINTENANCE PLANNING IN NOVEL SETTINGS

Kai He, PhD

University of Pittsburgh, 2016

In this dissertation work, we focus on optimal planning of maintenance activities in several

novel settings.

First, we consider a maintenance optimization model for a system with periodic preven-

tive maintenance (PM), and periodic imperfect inspections to detect hidden failures. Our

stylized mathematical model is inspired by the increasingly popular remote monitoring prac-

tices. We describe, both analytically and numerically, important structural properties of the

model, and propose a simple approach to find a globally optimal solution.

In the second chapter, we investigate a maintenance planning scenario in which the imple-

mentation of PM is unpunctual. Under the assumption that the degree of the unpunctuality

follows a known probability distribution, we formulate cost-rate minimizing models to study

the impact of such deviations. We establish both analytical and numerical results for two

specific types of maintenance policies common in practice, namely age replacement with and

without minimal repair.

Finally, we focus on “maintaining” the health status of a patient with a chronic disease by

investigating an optimal medical treatment sequencing problem. We restrict our attention to

the two treatment case, and simultaneously balance three tradeoffs inherent to these treat-

ments, i.e., length of effectiveness delay, probability of effectiveness and cost/reward. We pro-

vide both theoretical conditions and numerical examples that indicate when, as a function of

the model parameters, it is optimal to initiate treatment with one treatment versus the other.

Keywords: Maintenance optimization, medical decision models, stochastic processes.
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1.0 INTRODUCTION

Proper functionality of a system depends not only on its components’ reliability but also

on its maintenance [28, 61]. There are two major types of maintenance activities - reactive

maintenance (RM) and preventive maintenance (PM) [61, 76]. If the maintenance activity is

to correct an existing failure, then it is referred to as RM. Performing RM alone can possibly

save money in short term, but it often ends up incurring more cost in the long run [69]. For

instance, consider a manufacturing company that relies on some highly automated equipment

to perform mass production. If maintenance activities only aim to correct failures when they

occur, then breakdown of the production line could cause substantial losses [88]. As a result,

a pure RM policy might not be optimal.

The importance of PM is ever increasing because of its imperative role in keeping good

condition of the system and reducing or avoiding possible failures [6]. For example, when

it comes to airline industry, any failure can possibly cause devastating consequences [65].

Other benefits of PM, such as decreasing equipment downtime and improving equipment

efficiency, are widely recognized [83] as well. Indeed, a good maintenance policy is usually a

mixture of both RM and PM activities [8].

Optimal maintenance planning remains a very active research domain [88]. In the past

several decades, a number of maintenance optimization models have been developed, see

review articles [22, 29, 32, 43, 58, 77, 87, 90]. Recently, research efforts have been extended

to more complex settings and multi-component or even multi-subsystem models [22, 62, 64].

There are many parallels between maintaining a degrading machine and “maintaining” a

degrading human body. Indeed, Dekker [25] observes in his maintenance optimization survey

that “maintaining” a human being involves concepts similar to those associated with main-

taining machines (e.g., lifetime distribution, disease screening corresponds to inspections,
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etc). In therapeutic optimization models, the patient’s health status is usually assumed to

be stochastically degrading. Optimal decisions about therapy initiation and switching are

made in order to maximize the patient’s quality adjusted life years (QALYs). Therefore, the

patient can be viewed as the system of interest to be maintained; prescribing or switching

a therapy for the patient is equivalent to a “maintenance” activity; and the outcome after

“maintenance” is that the patient’s disease level can change stochastically. A body of recent

research work focuses on “maintaining” the health status of patients with different diseases.

(See examples in [4, 5, 46, 47, 74, 78, 79, 81, 82].)

Motivated by the connections between maintenance optimization concepts and models

in medical decision making, this dissertation is focused on developing optimal maintenance

policies under several novel settings inspired by healthcare problems.

To be more specific, Chapter 2 is inspired by remote monitoring (i.e., telehealth) practices

that have become prevalent in recent years. We consider a maintenance scenario in which

imperfect periodic inspections (IPIs) occur at a chosen interval to detect hidden failures with

a certain probability less than one1. Both reactive maintenance (RM), performed when a

hidden failure is detected by an IPI, and PM, performed after a multiple of the IPI intervals,

renew the system. The objective is to determine the optimal frequency and quantity of IPIs

between PM actions such that the expected cost (which includes the costs of undetected fail-

ures, IPIs, PM and RM) per unit time is minimized over an infinite horizon. We analytically

establish conditions for the existence of a finite optimal IPI interval for a given quantity of

IPIs between PM actions, and discuss asymptotic behavior of the objective function. These

results are further exploited to describe convergence properties of a proposed approach for

finding a globally optimal solution. Also, for the special case of a Weibull time-to-failure

distribution, we derive conditions that guarantee uniqueness of a locally optimal solution for

a given quantity of IPIs between PM actions.

In Chapter 3, we tackle the maintenance planning scenario in which the implementation

of PM is unpunctual2. In traditional maintenance decision-making, maintenance planners

12015 IEEE. Reprinted, with permission, from He, K. , L. M. Maillart, O. A. Prokopyev, Scheduling
Preventive Maintenance as a Function of an Imperfect Inspection Interval. IEEE Transactions on Reliability,
Vol. 64/3 (2015), pp. 983-997.

2He, K., L. M. Maillart, O. A. Prokopyev. Optimal Planning of Unpunctual Preventive Maintenance.
IIE Transactions, to appear.
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assume that their prescribed PM policies will be implemented without error. In practice,

however, the individuals responsible for implementing such plans often deviate from the

intended PM policy resulting in unpunctual PM actions. In a healthcare context, doctors

usually recommend screening policies for disease prevention (e.g., American Cancer Society

suggests women with age 45 to 54 should get mammograms every year [1]), but patients may

not adhere to the prescribed schedule [56]. In either scenario, the punctuality or inadherence

to maintenance (screening) policy could potentially leave the degrading system at risk. We

formulate cost-rate minimizing models to investigate the impact of such deviations, assuming

that the actual PM time deviates from the scheduled PM time in a probabilistic manner. We

establish both analytical and numerical results for two specific types of maintenance policies

common in practice, namely age replacement with and without minimal repair.

Chapter 4 studies the best treatment sequence for a chronic disease by formulating a styl-

ized mathematical model with two treatment options. Our model simultaneously captures

three characteristics of these two available treatments, namely, length of effectiveness delay,

probability of effectiveness and cost/reward. Both numerical and analytical results are es-

tablished to illustrate how to balance the trade-offs inherent to these three characteristics. In

particular, we provide conditions under which a specific treatment should be prescribed first.
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2.0 SCHEDULING PREVENTIVE MAINTENANCE AS A FUNCTION OF

AN IMPERFECT INSPECTION INTERVAL

2.1 INTRODUCTION

Consider a system for which both imperfect periodic inspections and perfect preventive main-

tenance may be performed to detect so-called hidden or silent failures. Each failure incurs

some fixed, instantaneous, nonnegative cost ζ and positive cost
∫ τ

0
c3(u)du, where τ is the

length of time between the failure and its detection and c3(u) is the corresponding (possi-

bly, non-constant) cost rate associated with the failure. Preventive maintenance (PM) is

assumed to be perfect in that it detects existing failures with probability one and instanta-

neously renews the system by addressing any underlying problems. The imperfect periodic

inspections (IPIs) are less expensive, but less reliable in that they detect existing failures

with probability p ∈ (0, 1). We assume a fixed PM interval, within which some number of

IPIs (possibly, none) are equally spaced. That is, given a positive t > 0 and nonnegative

integer n, IPIs are performed at times t, 2t, . . ., nt, and planned PM occurs every (n + 1)t

units of time. Any time a failure is detected by an IPI, reactive maintenance (RM) is per-

formed and instantaneously renews the system. The costs of performing PM (or RM) and

an IPI are given by c1 and c2, respectively, where c1 > c2 > 0. The overall objective is to

select t and n, i.e., a policy (t, n), such that the long-run average cost rate (which combines

the costs associated with undetected failures, IPIs, PM and RM) is minimized.

Our analysis is inspired by various remote monitoring practices that have become preva-

lent in recent years [3]. One interesting example is the Care Coordination/Home Tele-

health (CCHT) program supported by the U.S. Veterans Health Administration (VHA),

which currently serves more than 30,000 mostly elderly patients [24]. The focus of the
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CCHT program is to provide chronic care services to veterans with various conditions, e.g.,

diabetes mellitus, congestive heart failure, hypertension, postraumatic stress disorder [2]. In

addition to regularly scheduled hospital visits, e.g., every 6 months, CCHT involves periodic

remote monitoring activities via telehealth technologies that transmit (e.g., over a phone

line or wirelessly) a patient’s health information such as vital signs (e.g., weight, oxygen,

blood pressure, pulse, blood glucose), and answers to a set of scripted questions about the

patient’s symptoms and health status.

The transmitted data are processed upon arrival to determine whether the patient has

developed a problem that may require action. If necessary, the nurse responsible for mon-

itoring the patient is alerted and determines the appropriate course of action (e.g., none,

schedule an in-office visit, advise the patient to go to the emergency room). In our styl-

ized model, each instance of a patient’s remote data collection corresponds to an IPI, each

scheduled checkup corresponds to PM and each unscheduled visit corresponds to RM. In

the CCHT context [59], a hidden failure corresponds to an asymptomatic change in the

patient’s condition (e.g., abnormal hemoglobin values, high blood pressure) that results in

some type of cumulative damage to the patient’s health while it remains undetected (e.g.,

narrowing and hardening of the arteries, thickening of the heart walls, accumulation of fluid

in the kidneys). The costs associated with these progressive conditions are often measured

in years of life lost. The renewal actions correspond to changes in patient care that address

the underlying problem (e.g., medication adjustment that stabilizes the patient’s hemoglobin

values or blood pressure) and effectively reset the time until the next hidden problem (e.g.,

episode of high blood pressure) develops, prompting another adjustment in therapy.

The maintenance optimization literature to which this chapter contributes is vast; see

surveys in [58, 70, 90] as well as references therein. Within the maintenance optimization

literature, determining a periodic inspection interval to detect hidden failures has received

much attention; the majority of this literature, however, assumes error-free inspections, see,

e.g., [12, 37, 44, 55, 66, 86, 89]. More specifically, for example, Bad́ıa and Berrade [12]

analyze the problem of optimally determining the inspection interval for a system subject

to imperfect repairs after a failure detection and perfect repairs after the nth detected fail-

5



ure. Taghipour and Banjevic [86] consider periodic inspection optimization models for a

multi-component system with a cost structure similar to ours.

Examples of papers that optimize the timing of imperfect inspections can be found

in [11, 14, 17, 68, 91, 92]. More specifically, Parmigiani [68] studies the problem of designing

inspection schedules for both perfect and imperfect, time-consuming inspections where im-

perfect inspections are less expensive, but may result in both false positive or false negative

outcomes. Bad́ıa and Berrade [11] consider a maintenance model for a system with two types

of failures, namely, hidden ones that are costly, and obvious ones, which are minor and can

be removed by a minimal repair. Periodic inspections detect hidden failures imperfectly and

the system is renewed either after the nth obvious minor failure, or after a hidden failure is

detected.

Most closely related to our work, Zequeira and Bérenguer [92] consider optimal inspec-

tion policies for a system subject to three types of inspections and three types of failures. The

inspection types include partial (which detect type I failures only), imperfect (which detect

only type II failures with some non-zero probability) and perfect (which detect all failures

with certainty). When our parameters ζ = η = 0 (i.e., the cost rate associated with unde-

tected failures is constant), our model reduces to a special case of the model in [92] (namely

that with no type I failures and no partial inspections). Bad́ıa and Berrade [13] consider the

same special case, but with false positives. Compared to these papers, we contribute by:

(i) establishing both a necessary condition and a sufficient condition for the existence of an

optimal solution under a more general, possibly nonlinear cost rate function associated

with undetected failures;

(ii) establishing that the sufficient condition in both [92] &[13] is also necessary under a

constant cost rate for the special case of [92] &[13] considered here;

(iii) establishing sufficient conditions for the uniqueness of a locally optimal solution for lim-

ited numbers of inspections;

(iv) developing a solution procedure to identify globally optimal solutions as opposed to the

locally optimal solutions obtained in [92] &[13] as well as accompanying theoretical results

regarding the asymptotic behavior of the objective function.
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More specifically with regard to (i), in addition to some fixed, instantaneous, nonnegative

failure cost ζ, we consider a penalty cost rate c3(u) associated with undetected failures of

the form

c3(u) = λ+ θ(u), (2.1)

where λ > 0 and θ(u) ≥ 0 represent the constant and variable components of the cost rate,

respectively. Furthermore, we assume that

A1: θ(0) = 0,
∫ +∞
0

θ(u)du =
∫ ∆

0
θ(u)du = η < +∞, where 0 ≤ ∆ < +∞ and θ(u) is

continuous.

In other words, λ is the long-run constant rate incurred if a hidden failure goes undetected,

and the term θ(u) captures any initial nonlinearities in the cost rate. That is, assumption

A1 implies that after ∆ units of time the cost rate of a hidden failure stabilizes at value

λ, i.e., θ(u) = 0 for u ≥ ∆. Assumptions similar to A1 can be found in various disease

progression models, see, e.g., [35] & [36]. Setting ζ = η = 0 (note that if η = 0 then θ(u) = 0

for u ≥ 0) yields a constant penalty cost rate as in [92] & [13], which is commonly used in

the majority of existing relevant literature (see, e.g., [13, 11, 12, 14, 17, 68, 86, 92]).

The remainder of the chapter is organized as follows. Section 2.2 presents our math-

ematical model and proposed solution procedure. In Section 2.3, some properties of the

cost function are illustrated with several insightful numerical examples; these properties are

formally considered in Section 2.4. In particular, we analytically establish conditions that

guarantee the existence of a finite optimal solution for a given value of n (i.e., number of IPIs

between PM), and discuss asymptotic properties of the objective function for large n and

t. These results are further exploited to derive convergence properties of the proposed solu-

tion approach. Moreover, for the case of a Weibull TTF distribution, we discuss conditions

that guarantee the existence of a unique optimal solution for a given value of n. Finally,

Section 2.5 concludes by summarizing the results. All proofs are included in the appendix.
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2.2 MODEL FORMULATION

Let the time until a hidden failure develops (following the most recent system renewal) be

given by the random variable X with cdf FX(x) and pdf fX(x). In the remainder of the

chapter we assume that

A2: lim
t→+∞

tfX(t) = 0;

A3: lim
t→+0

FX(t) = FX(0) = 0.

A4: The failure rate, i.e., fX(t)/(1− FX(t)), is strictly increasing over t > 0.

Assumption A2 guarantees that the expected time until a hidden failure develops, E[X], is

finite. Assumption A3 implies there are no instantaneous failures. Assumption A4 captures

the intuitive notion that the longer the time since the last PM (or RM), the more likely a

hidden failure is to develop.

As mentioned in Section 2.1, the objective is to determine an optimal policy (t∗, n∗)

such that the long-run average cost rate is minimized. Because PM and RM renew the

system, we take a renewal-reward approach ([72], p. 52) and refer to the time between

system renewals as a cycle. Note that depending on the problem parameters, n∗ may be

zero, i.e., it may be optimal to not perform IPIs at all. System downtime due to inspection

and maintenance (including IPIs, PM and RM) is assumed to be negligible.

To illustrate the overall problem dynamics, Figure 2.1 depicts three possible cycles:

(a) no hidden failure develops and the cycle ends after a planned PM,

(b) a hidden failure occurs when there are i IPIs remaining before the next planned PM,

but IPIs do not detect the failure, and

(c) a hidden failure occurs when there are i IPIs remaining before the next planned PM

and one of these remaining IPIs detects the failure after which RM is performed.

Let γi be the probability that following PM (or RM), a hidden failure occurs when i IPIs

remain prior to the next scheduled PM, i = 0, . . . , n, i.e.,

γi = FX ((n− i+ 1)t)− FX ((n− i)t) .

Furthermore, let Lik (respectively, Cik) denote the cycle time (respectively, cycle cost) if a

hidden failure occurs when i IPIs remain prior to the next scheduled PM and the hidden

8



Figure 2.1: Three possible cases: (a) a cycle ends after planned PM and no hidden failure

develops; (b) a cycle ends after planned PM because no IPIs detect an existing hidden failure;

(c) a cycle ends after one of the remaining IPIs (i.e., 0 ≤ k ≤ i− 1) detects a hidden failure

and RM is performed.
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failure is detected after k IPIs fail to detect it, i.e., on the (k+1)st IPI (k < i) or at the next

PM (k = i). Then for each case illustrated in Figure 2.1, the corresponding expected cycle

length and cost can be expressed as follows.

Case (a): No hidden failure occurs within the cycle; the cycle length and cycle cost are

(n+ 1)t and c1 + nc2, respectively.

Case (b): A hidden failure occurs when there are i IPIs remaining before the next planned

PM, but none of these IPIs detect the failure. In this case,

E[Lii] = (n+ 1)t,

and

E[Cii] = c1 + nc2 + ζ +

∫ (n−i+1)t

(n−i)t

(∫ (n+1)t−x

0

(λ+ θ(u))du
)fX(x)

γi
dx.

Case (c): A hidden failure occurs when there are i IPIs remaining before the next planned

PM and the (k + 1)st detects the failure after which RM is performed, where 0 ≤ k ≤ i− 1.

In this case,

E[Lik] = (n− i+ 1)t+ kt,

and

E[Cik] = c1 + c2 (n− i+ 1 + k) + ζ +

∫ (n−i+1)t

(n−i)t

(∫ (n−i+1)t−x+kt

0

(λ+ θ(u))du
)fX(x)

γi
dx.

Let L and C denote the cycle length and cost of an arbitrary cycle. Combining the terms

above with the corresponding probabilities yields

E[L] =
n∑

i=0

γit

(
n− i+ 1 +

i∑
j=1

(1− p)j

)
+ (n+ 1)tF̄X ((n+ 1)t) , (2.2)

E[C] = c2

[
n∑

i=0

γi

(
n− i+

i−1∑
j=0

(1− p)j

)
+ nF̄X((n+ 1)t)

]

+
n∑

i=0

γiE

[∫ Di

0

c3(u)du

]
+ ζ

n∑
i=0

γi + c1, (2.3)

10



where Di is the time until the hidden failure is detected given that (n−i)t < X < (n−i+1)t,

i.e.,

E

[∫ Di

0

c3(u)du

]
= λE[Di] +

∫ (n−i+1)t

(n−i)t

(
i∑

k=0

pik

∫ (n−i+1)t−x+kt

0

θ(u)du

)
fX(x)

γi
dx,

and

E[Di] =

∫ (n−i+1)t

(n−i)t

((n− i+ 1)t− x)
fX(x)

γi
dx+ t

i∑
j=1

(1− p)j,

where pik is the probability that a hidden failure is detected on the (k + 1)st IPI (k < i) or

at the next PM (k = i), i.e.,

pik =

(1− p)k · p, if k < i;

(1− p)i, if k = i.

Next, defining

M(t, n) =
n∑

i=1

FX(it)−
n∑

i=1

FX(it)(1− p)n−i+1 (2.4)

N(t, n) =
n∑

i=1

FX(it)−
n∑

i=1

FX(it)(1− p)n−i, (2.5)

Z(t, n) =
n∑

i=0

∫ (n−i+1)t

(n−i)t

(
i∑

k=0

pik ×
∫ (n−i+1)t−x+kt

0

θ(u)du

)
fX(x)dx, (2.6)

Equations (2.2) and (2.3) can be simplified as follows (detailed derivations are provided in

the appendix)

E[L] = (n+ 1)t− tM(t, n), (2.7)

E[C] = c1 + c2(n−N(t, n)) + λ

(∫ (n+1)t

0

FX(x)dx− tM(t, n)

)
+ ζFX((n+ 1)t) + Z(t, n). (2.8)

The intuition behind equations (2.7)-(2.8) is that the value of tM(t, n) can be interpreted as

the expected decrease in the length of a failure-free cycle (given by (n+1)t, which is the first

term in (2.7)) because of a hidden failure detection by an IPI. Similarly, N(t, n) corresponds

to the expected number of IPIs that are not performed during a cycle due to a hidden failure

detection by an IPI. Note that M(t, 0) = N(t, 0) = 0 because n = 0 corresponds to not
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performing any IPIs. Lastly, Z(t, n) represents the expected cumulative cost caused by the

non-constant component θ(u) of the penalty cost rate c3(u) given by (2.1).

Let Ω(t, n) = E[C]/E[L] be the cost rate incurred under policy (t, n). Then our main

optimization problem is formulated as

min
t,n

Ω(t, n) = min
t,n

{
E[C]

E[L]

∣∣∣ t > 0, n ∈ Z1
+

}
. (2.9)

We define (t∗, n∗) to be the global optimal solution of (2.9). Next, observe that for any fixed

n ∈ Z1
+, problem (2.9) reduces to a continuous optimization problem given by

[CPn] min
t

{Ω(t, n) | t > 0} , (2.10)

and let tn be the corresponding optimal solution of CPn, i.e.,

tn ∈ argmin
t>0

Ω(t, n).

Note that neither problem (2.9) nor problem (2.10) necessarily has a finite optimal solu-

tion (see additional discussion in Sections 2.3 and 2.4). For example, for a fixed n ∈ Z1
+ it is

possible that the function Ω(t, n) monotonically decreases in t and lim
t→+∞

Ω(t, n) = λ. That is,

performing inspections and maintenance at any frequency may result in a higher long-run av-

erage cost rate than doing nothing. We assume for this case that tn = +∞ and Ω(tn, n) = λ.

Summarizing the discussion in this section, we conclude that the main problem (2.9) can

be solved as a sequence of continuous optimization problems CPn with the final solution

given by:

n∗ ∈ argmin
n

Ω(tn, n) and t∗ = tn∗ . (2.11)

Therefore, if there exists a known finite upper bound n̄ ∈ Z1
+ for n∗, then (t∗, n∗) can be

obtained by:

(i) solving n̄ + 1 continuous optimization problems CPn given by (2.10) for each n ∈

{0, 1, . . . , n̄}, and

(ii) choosing a pair (tn, n) that returns the minimum objective function value.

Note that in [92], the authors focus on the identification of locally optimal solutions,

whereas our approach ensures global optimality as long as a finite n̄ exists and problems

CPn are solved to global optimality for each integer n ∈ [0, n̄]. For a detailed discussion on

obtaining such a bound n̄ ∈ Z1
+, see Section 2.4.
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2.3 MOTIVATING NUMERICAL EXAMPLES

In this section, we demonstrate that for any fixed n ∈ Z1
+ there are three possible cases for

CPn:

Case 1 : there exists a unique local and global optimum,

Case 2 : there are multiple local minima, and

Case 3 : there is no finite optimal solution.

Analytical conditions under which each of these cases holds are formally derived in Sec-

tion 2.4. For the examples demonstrated in this section, we let the random variable X follow

a Weibull distribution with shape and scale parameters α and β, respectively.

Case 1: unique local and global minimum. Define

θ1(u) =


u/200, if u ≤ 50;

0.25− (u− 50)/200, if 50 < u ≤ 100;

0, otherwise,

and consider the problem instance given by Table 2.1.

Figure 2.2 illustrates that when n = 4, there exists a unique optimal solution of CPn

and Ω(t, n) is quasiconvex. That is, if four IPIs are scheduled between two consecutive PMs,

then after each renewal, IPIs and PMs should be performed every 16.34 and 81.7 units of

time, respectively.

Due to the existence of a unique local minimum, a continuous optimization solver can

be applied to locate the optimal solution of (2.10).

Table 2.1: Parameter values for the Case 1 example.

α β E[X] c1 c2 λ p ζ θ(u)

2 100 88.62 10 1 1 0.8 5 θ1(u)
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Figure 2.2: Function Ω(t, 4) for the example in Case 1; t4 = 16.34 and Ω(t4, 4) = 0.2989.

Moreover, in this example, for every fixed n ∈ Z1
+ there exists a finite tn. Enumerating

all these solutions yields Figure 2.3, which makes it clear that the global optimal solution is

given by n∗ = 2, t∗ = 22.76 and Ω(t∗, n∗) = 0.2953.

However, it is also possible that CPn has a unique local and global minimum, but Ω(t, n)

is not quasiconvex. For example, let

θ2(u) =


u/20, if u ≤ 50;

2.5− (u− 50)/20, if 50 < u ≤ 100;

0, otherwise.

When compared to Figure 2.2, Figure 2.4 illustrates that if the portion of the penalty cost

attributable to either ζ or θ(u) is sufficiently large, then Ω(t, n) may not be quasiconvex. The

intuition behind this observation is that for larger values of t the penalty cost of an undetected

failure is dominated by the limiting behavior of lim
u→+∞

c3(u) = λ (recall Assumption A1).

However, there may exist a range of values of t for which either ζ or θ(u) makes a sufficiently

large contribution to the objective function value resulting in a local maximum of Ω(t, 4).

Regardless, for this numerical example, CPn still has a unique local and global minimum.
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Figure 2.3: Function Ω(tn, n) for the example in Case 1; n∗ = 2, t∗ = 22.76 and Ω(t∗, n∗) =

0.2953.

Figure 2.4: Potential impacts of ζ and θ(u) on Ω(t, 4); the quasiconvexity property is lost.
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Case 2: multiple local minima. Table 2.2 summarizes parameter values for the example

illustrating this case. Figure 2.5 depicts Ω(t, 4), which has multiple local minima. This type

of behavior arises in situations where the probability of detecting a hidden failure is sensitive

to the choice of t (see additional discussion in Section 2.4.2). Thus, here CPn is a more chal-

lenging optimization problem than the example considered in Case 1. In general, it requires

application of a global optimization method [39]. On the other hand, CPn has only one

variable, which substantially simplifies the solution procedure. For the example in Table 2.2,

enumerating Ω(tn, n) results in Figure 2.6 with n∗ = 5, t∗ = 12.54 and Ω(t∗, n∗) = 0.1665.

Therefore, the optimal maintenance policy is to schedule 5 IPIs between PMs with IPIs

performed every 12.54 units of time.

Table 2.2: Parameter values for the Case 2 example.

α β E[X] c1 c2 λ p ζ θ(u)

6 100 92.77 10 0.1 1 0.8 5 θ1(u)

Figure 2.5: Function Ω(t, 4) for the example in Case 2; t4 = 14.87 and Ω(t4, 4) = 0.1667.
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Figure 2.6: Function Ω(tn, n) for the example in Case 2; n∗ = 5, t∗ = 12.54 and Ω(t∗, n∗) =

0.1665.

Case 3: no finite optimal solution. As shown in Figure 2.7, under certain conditions

for a fixed n (see example parameter values in Table 2.3 and the formal result established

in Proposition 4 in Section 2.4), it is possible that the function Ω(t, n) is monotonically

decreasing in t, i.e., there is no finite optimal solution for CPn, i.e., tn = +∞. In this case,

no IPIs or PM should be performed as they are too costly and it is favorable to simply let

the system fail. The intuition behind the irregular shape of Ω(t, 4) for non-zero values of ζ

and θ(u) in Figure 2.7 is the same as that given for Figure 2.4.

Table 2.3: Parameter values for the Case 3 example.

α β E[X] c1 c2 λ p

2 100 88.62 10 1 0.1 0.8
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Figure 2.7: Function Ω(t, 4) is monotonically decreasing for the example in Case 3, i.e.,

t4 = +∞.

2.4 ANALYTICAL RESULTS

This section focuses on establishing theoretical results for optimization problems (2.10) and

(2.11). Our discussion is motivated by the illustrative examples provided in Section 2.3.

First, for a general distribution of the random variable X, i.e., the time until a hidden fail-

ure develops, or time-to-failure (TTF), we establish conditions on the problem parameters,

specifically, c1, c2, λ, ζ, η, p and E[X], that ensure the existence of a finite optimal solution

for CPn, n ∈ Z1
+. Furthermore, we provide some results on the existence of a finite bound

n̄ ∈ Z1
+ that guarantees the convergence of the solution procedure (presented in Section 2.2)

to global optimality. Finally, we discuss the intuition behind problem instances of (2.10)

with multiple local minima and derive some sufficient conditions for uniqueness of a locally

optimal solution under a Weibull TTF distribution.

2.4.1 General TTF Distribution

First, we consider the limiting behavior of Ω(t, n) for t → +∞ and any fixed n ∈ Z1
+.
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Proposition 1. For any fixed n ∈ Z1
+,

lim
t→+∞

Ω(t, n) = λ.

Proposition 1 is quite intuitive as it corresponds to the scenario in which no inspections,

and hence no maintenance, are performed. In this case, the objective function value converges

to λ because in this limit, a hidden failure eventually occurs and remains undetected. Next,

we focus on obtaining sufficient conditions for the existence of a finite optimal solution to

CPn. Initially, we consider the case without IPIs, i.e., n = 0.

Proposition 2. If c1+ ζ + η < λE[X], then problem CP0 has a finite optimal solution, i.e.,

there exists t0, such that 0 < t0 < +∞, and

t0 ∈ argmin
t>0

Ω(t, 0).

Moreover, if ζ = η = 0, then Ω(t, 0) is quasiconvex and t0 is unique.

The intuition behind Proposition 2 follows from the fact that if failures occur ideally,

i.e., such that they are detected by PM almost immediately, then the expected cost rate is

bounded above by (c1 + ζ + η)/E[X]. On the other hand, if no PMs are performed, then

after a hidden failure develops (recall that E[X] is finite under assumption A3) the cost rate

for sufficiently large values of t is equal to λ. Thus, if λ > (c1 + ζ + η)/E[X], then it is

beneficial to perform PMs.

Proposition 3 extends Proposition 2 to any n ∈ Z1
+. Unfortunately, the uniqueness of a

locally optimal solution is not guaranteed even if ζ = η = 0 in this general case. Furthermore,

the next result ensures only a sufficient condition.

Proposition 3. For any fixed n ∈ Z1
+, a sufficient condition for problem CPn to have a

finite optimal solution tn ∈ argmin
t>0

Ω(t, n) such that 0 < tn < +∞, is

c1 + c2

n∑
i=1

(1− p)n−i + ζ + η < λE[X]. (2.12)
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The intuition behind Proposition 3 is rather similar to that of Proposition 2. Specifically,

the term c2
∑n

i=1(1 − p)n−i represents an additional expected cost incurred by performing

IPIs (until they detect a hidden failure if one occurs). However, in contrast to the previous

result for ζ = η = 0, the function Ω(t, n) may have multiple local minima if n > 0. We

provide additional discussion on this issue in Section 2.4.2. Note that (2.12) can easily be

verified for the examples in Figures 2.2 and 2.5, for which the term on the left-hand side of

(2.12) is equal to 28.75 and 27.62, respectively, which are smaller than the values of λE[X]

equal to 88.62 and 92.77, respectively.

Next, Proposition 4 shows that a relaxed version of (2.12) can be used to derive a nec-

essary condition for the existence of a finite optimal solution.

Proposition 4. For any fixed n ∈ Z1
+, a necessary condition for problem CPn to have a

finite optimal solution tn ∈ argmin
t>0

Ω(t, n) such that 0 < tn < +∞, is

c1 + c2

n∑
i=1

(1− p)n−i < λE[X]. (2.13)

Note that for the example in Figure 2.7, c1 + c2
∑n

i=1(1− p)n−i = 11.25, while λE[X] =

8.86. Thus, (2.13) does not hold, and CPn does not have a finite optimal solution.

Note that in both [92] and [13], the authors establish a sufficient condition for the ex-

istence of a finite optimal solution, which reduces to (2.12) when assuming ζ = η = 0.

We not only extend their result to our more general penalty cost setting, but also prove in

Proposition 4 that (2.13) is a necessary condition. Thus, if (2.13) does not hold, then the

total cost of performing IPIs and PM is too costly, and one should simply let the system fail.

Moreover, if ζ = η = 0 then CPn has a finite optimal solution if and only if (2.13) holds, as

stated in Corollary 1.

Corollary 1. If ζ = η = 0, i.e., c3(u) = λ, then (2.13) is a necessary and sufficient condition

for problem CPn to have a finite optimal solution.

Furthermore, note that lim
n→+∞

∑n
i=1(1− p)n−i = 1/p. Thus, if

c1 +
c2
p

> λE[X], (2.14)
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then it is straightforward to show that there exists a finite n̄ ∈ Z1
+ (which is also easy to find,

e.g., using binary search) such that for all integers n > n̄ constraint (2.13) is not satisfied.

Therefore, to solve the overall optimization problem (2.9) it is enough to consider CPn only

for n ∈ {0, 1, . . . , n̄− 1, n̄}.

Figure 2.8: Comparison of Ω(tn, n), Ω̃(0), Ω̃(0.5) and Ω̃(1) for c1 = 10, c2 = 0.8, λ = 1,

ζ = 5, η = 0 and p = 0.8.

Next, consider the situation in which (2.12) holds for all n ∈ Z1
+, which is clearly the

case if

c1 +
c2
p
+ ζ + η ≤ λE[X],

which then implies that for any positive integer n, optimization problem CPn has a finite

optimal solution. This observation poses the question as to whether there exists a finite n̄

such that all subproblems CPn for n ≥ n̄ can be discarded, which ensures the finiteness
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of the procedure outlined in Section 2.2 for solving (2.11). To explore this issue, we study

asymptotic properties of Ω(t, n) as n → +∞ in Propositions 5 and 6.

First, we consider the simpler case of η = 0.

Proposition 5. If η = 0, then for any fixed t > 0,

lim
n→+∞

Ω(t, n) =
c1 + ζ − λE[X]

lim
n→+∞

E[L]
+

c2
t
+ λ. (2.15)

Estimation of the term lim
n→+∞

E[L] is difficult in the general case. However, observe that

for large enough n, the value of E[L] can be approximately lower- and upper-bounded by

E[X] +

(
1

p
− 1

)
t ≤ E[L] ≤ E[X] +

1

p
t, (2.16)

where the term 1
p
corresponds to the expected number of IPIs necessary for detecting a

failure after it occurs. The approximate lower (and upper) bound is obtained assuming that

a failure occurs immediately before (or after) an IPI.

Combining (2.15) and (2.16) we define

Ω̃(y) = min
t>0

 c1 + ζ − λE[X]

E[X] +
(

1
p
− y
)
t
+

c2
t
+ λ

 , (2.17)

so that Ω̃(1) and Ω̃(0) correspond to the lower and upper bounds in (2.16), respectively.

Figure 2.8 provides an illustrative comparison of Ω(tn, n) with Ω̃(0), Ω̃(0.5) and Ω̃(1) for

several examples of FX .

Unfortunately, it turns out to be difficult to establish any analytical relationship between

lim
n→+∞

Ω(tn, n) and Ω̃(y) in the general case. However, while setting y = 0 (or y = 1)

overestimates (or underestimates, respectively) the expected length of a cycle, a reasonable

choice could be y = 0.5. In fact, for all of our test instances, Ω̃(0.5) serves as a reasonably

good approximation for characterizing the limiting behavior of lim
n→+∞

Ω(tn, n) (see Figure 2.8

and Table 2.4).

Let ỹ be such that Ω̃(ỹ) = lim
n→+∞

Ω(tn, n). Then for any given ϵ > 0 there exists a finite

n̄ to satisfy ∣∣∣Ω(tn̄, n̄)− Ω̃(ỹ)
∣∣∣ ≤ ϵ.
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Table 2.4: Example for c1 = 10, c2 = 0.8, λ = 1, ζ = 5, η = 0, p = 0.8 and X ∼

Weibull(2, 104.7). The optimal solution corresponds to the row in bold, i.e., n∗ = 3 and

t∗ = 19.43.

n |Ω(tn, n)− Ω̃(0.5)| Ω(tn, n) tn

0 0.01397 0.28856 56.15

1 0.02332 0.27921 32.15

2 0.02653 0.27599 23.75

3 0.02724 0.27529 19.43

4 0.02662 0.27591 16.79

...
...

...
...

10 0.01439 0.28814 11.03

...
...

...
...

20 0.00043 0.30209 11.47

...
...

...
...

30 < 10−7 0.30253 11.91
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Table 2.5: Example for c1 = 10, c2 = 0.7, λ = 1, p = 0.8, ζ = 5, ∆ = 4, η = 2, θ(u) = θ3(u),

ñ = 75 and X ∼ Weibull(2, 100). The optimal solution corresponds to the row in bold, i.e.,

n∗ = 3 and t∗ = 18.20.

n |Ω(tn, n)− Ω̃(0.5)| Ω(tn, n) tn

0 0.01463 0.30663 53.70

1 0.02469 0.29657 30.51

2 0.02843 0.29282 22.38

3 0.02954 0.29171 18.20

4 0.02923 0.29203 15.63

...
...

...
...

10 0.01763 0.31998 9.95

...
...

...
...

20 0.00094 0.32032 9.90

...
...

...
...

30 < 10−6 0.32126 10.75
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Thus, it is enough to solve n̄ + 1 optimization problems CPn for n ∈ {0, 1, . . . , n̄} to guar-

antee that the obtained solution to (2.11) is at least ϵ-approximate. To illustrate the overall

solution procedure, consider the numerical example in Table 2.4 with ϵ = 10−7 under the

assumption that ỹ = 0.5. At n = 30, |Ω(tn, n)− Ω̃(0.5)| ≤ 10−7, hence the procedure termi-

nates at n̄ = 30 with n∗ = 3, t∗ = 19.43 and Ω(t∗, n∗) = 0.2753. In general, if |Ω̃(ỹ)−Ω(tn, n)|

does not appear to be converging for the selected value of ỹ, then one could simply generate

a finite sequence y1, . . . , yK , where y1 = 0 and yK = 1, such that |Ω̃(yk) − Ω̃(yk+1)| < ϵ for

k = 1, . . . , K − 1 and find n̄.

Next, we focus on the general case when η > 0. We first consider the convergence of

Z(t, n) for n → ∞ in Lemma 1.

Lemma 1. For any t > ∆, lim
n→+∞

Z(t, n) exists and is finite.

Proposition 6 can be viewed as a generalization of Proposition 5.

Proposition 6. For any t > ∆,

lim
n→+∞

Ω(t, n) =
c1 + ζ + lim

n→+∞
Z(t, n)− λE[X]

lim
n→+∞

E[L]
+

c2
t
+ λ. (2.18)

Proposition 6 suggests that if t > ∆, then one can use (2.18) to approximate the limiting

behavior of lim
n→+∞

Ω(t, n) as follows. Let

Ω̃(y) = min
t>0

c1 − λE[X] + ζ + Z̃(t)

E[X] +
(

1
p
− y
)
t

+
c2
t
+ λ

 , (2.19)

where

Z̃(t) = (1− p)η + p

∫ ∆

0

θ(u)
ñ∑

i=1

(
FX(it− u)− FX((i− 1)t)

)
du (2.20)
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is an approximation of lim
n→+∞

Z(t, n) for sufficiently large values of ñ ∈ Z1
+. Additional

derivation details can be found in the appendix. Finally, Table 2.5 provides a comparison of

Ω(tn, n) and Ω̃(0.5) using

θ3(u) =


u/2, if u ≤ 2;

1− (u− 2)/2, if 2 < u ≤ 4;

0, otherwise,

which demonstrates the applicability of our solution approach for problems with non-zero

values of ζ and η.

2.4.2 Weibull TTF Distribution

In this section, we assume that X follows a Weibull distribution and seek conditions that

guarantee the existence of a unique locally optimal solution for CPn (recall the example

in Figure 2.2), which simplifies the solution of CPn. Moreover, we show the presence of

multiple local minima implies that the system can be rather sensitive to the choice of t.

Special Case: n = 1 and ζ = η = 0. Observe that when n = 1 and ζ = η = 0, equa-

tions (2.4) and (2.5) reduce to M(t, n) = pFX(t) and N(t, n) = 0, respectively. Therefore,

our objective function simplifies to

Ω(t, 1) =
c1 + c2 − λ

∫ 2t

0
F̄X(x)dx

2t− tpFX(t)
+ λ, (2.21)

and Proposition 7 result follows.

Proposition 7. Let X follow a Weibull distribution with shape parameter α > 1 and

ζ = η = 0. If

c1 + c2 < λE[X], (2.22)

and

2− p− αp
1

e
> 0, (2.23)

then problem CP1 has a unique local minimum.
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Note that by Proposition 3, constraint (2.22) guarantees the existence of a finite optimal

solution for n = 1 and ζ = η = 0; furthermore, (2.23) describes a sufficient condition on

α and p to ensure that the solution is unique. The condition α > 1 is necessary to satisfy

Assumption A4.

Define α̂n,p to be the minimal value of α for fixed n and p, such that CPn has a unique

locally optimal solution (if such finite solution exists). Figure 2.9 presents an example that

demonstrates relationship between α̂1,p and p for n = 1 based on the sufficient condition

(2.23) from Proposition 7 and the results obtained through our computational observations.

Figure 2.9: Comparison of conditions for unique local optimality of CP1 established analyt-

ically and experimentally with β = 100, c2 = λ = 1, c1 = 10 and ζ = θ(u) ≡ 0.

To explain the intuition behind the analytical results and experimental observations,

consider the schematic in Figure 2.10. For the Weibull distribution, the shape parameter α

completely determines the coefficient of variation of X. For larger values of α, fX(x) becomes

less flat, i.e., a hidden failure develops with a very high probability within a small interval

of time. Therefore, scheduling an IPI around the mode of fX(x) substantially influences the

outcome of the optimization.
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Figure 2.10: The influence of the shape parameter, α, on fX(x).

To be more specific, Figure 2.11 demonstrates an instance of CP1 with multiple local

minima and maxima given by t(1) = 41, t(2) = 88 and t(3) = 110, where α = 10 and p = 0.8.

(Recall that γi is the probability that following a PM, a hidden failure occurs when i IPIs

remain prior to the next scheduled PM, i = 0, . . . , n.) As t increases from 0, Ω(t, 1) decreases

and reaches its first local minimum at t = t(1). The benefit of this policy is very intuitive as

it corresponds to scheduling PM close to the mode of fX(x), whereas policies corresponding

to smaller values of t require inspection and PM too early. For t = t(2) a hidden failure

occurs with high probability after the IPI (γ0 = 0.75), thus, the performed inspection is

essentially wasted. Therefore, the increased penalty cost makes policy t = t(2) inferior, and

this point defines a local maximum of function Ω(t, 1). For policy t = t(3) a hidden failure

develops before the IPI with probability close to 1 (γ1 = 0.92). Note that each IPI is rather

reliable (recall that p = 0.8). Thus, the failure (if it occurs) is detected with high probabil-

ity. As a result, the cost advantage of IPIs (recall that c2 < c1) and reduced penalty cost in

expectation makes this policy favorable, and Ω(t, 1) has a second local minimum at t = t(3).

Based on the discussion of the example illustrated in Figures 2.10–2.11, we conclude

that instances of CP1 with smaller values of α and p result in optimization problems with

unique local minimum. Moreover, for every fixed α, if p is small enough, then CP1 has a

unique local minimum. This inverse relationship between α and p is represented by sufficient

condition (2.23).
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General Case. For general case of n ≥ 2 as well as nonzero values of ζ and η, it turns out

to be rather difficult to establish a closed form condition for uniqueness of a locally optimal

solution to CPn. However, motivated by the intuition behind Proposition 7, we numerically

explore and illustrate the relationship between α̂n,p and p for n ≥ 2.

First, we focus on the simpler case of ζ = η = 0. Consider the example in Figure 2.12

for which β = 100, c1 = 10, c2 = λ = 1 and ζ = η = 0. Given p ∈ (0, 1) and n ∈ Z1
+, we

numerically identify α̂n,p such that problem CPn has a unique local and global minimizer.

For each value of n ≥ 2, the shape of the function α̂n,p is similar to that of α̂1,p. However, for

any fixed p, as n increases, α̂n,p decreases. The reason behind this behavior is that stationary

points of CPn are often located around t such that kt ∼ E[X], where k varies from 1 to n

(recall the intuition behind the example illustrated in Figure 2.11), which implies that for

larger values of n there are more opportunities for local optimality. Thus, conditions under

which a unique local minimum exists are more strict.

Another interesting experimental observation is that as n increases, α̂n,p seems to con-

verge to some finite value α̂p. We interpret this observation as follows. For a fixed value of

t and a large enough n, a hidden failure occurs with high probability. Also, as IPIs can be

regarded as Bernoulli trials, the expected number of IPIs to detect a hidden failure is 1/p,

which implies that most of the subsequent IPIs and PM are typically not performed. Thus,

for large enough n, as it can be observed from (2.15), solutions of CPn (and, subsequently

the uniqueness conditions for all n) should coincide.

Next, we present an example with nonzero values of ζ and η for which a similar rela-

tionship between α̂n,p and p can be observed. Let β = 100, c1 = 10, c2 = λ = 1, ζ = 5 and

θ = θ4(u) given by

θ4(u) =


u/10, if 0 < u ≤ 25;

2.5− (u− 25)/10, if 25 < u ≤ 50;

0, otherwise.

Figure 2.13 reports the same behavior as seen in Figure 2.12.
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Figure 2.11: Comparison of three policies for CP1 with multiple local minima.
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Figure 2.12: Relationship between α̂n,p and p for n ∈ {1, 2, 5, 20} obtained experimentally

for ζ = η = 0.

Figure 2.13: Relationship between α̂n,p and p for n ∈ {1, 2, 3} obtained experimentally when

ζ = 5 and θ(u) = θ4(u).
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2.5 CONCLUSION

In this chapter, we consider a maintenance optimization model for a system with periodic

preventive maintenance and periodic imperfect inspections to detect hidden failures. The

objective is to determine the optimal frequency and quantity of imperfect inspections between

PM such that the total expected cost rate is minimized over an infinite horizon. We describe,

both analytically and numerically, important structural properties of the model and propose

a simple approach for finding a globally optimal solution.
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3.0 OPTIMAL PLANNING OF UNPUNCTUAL PREVENTIVE

MAINTENANCE

3.1 INTRODUCTION

The success of a policy in any context depends not only on how well it is constructed, but also

on how well it is implemented. Moreover, in many settings, policy specification and policy

implementation are carried out by separate parties [45]. For example, in a supply chain

context, manufacturers set inventory replenishment schedules, but the suppliers’ deliveries

may not be on time. In a healthcare setting, doctors recommend screening policies to

detect early-stage cancers, but patients may not adhere to the schedule ([54, 56, 67, 85]).

In situations like these, upstream decision makers can benefit by adjusting their prescribed

policies in anticipation of downstream deviations (e.g., [56]). Indeed, as [10] state in their

study on the effects of personality on punctuality, “there are even cases when we adjust to

someone’s assumed (un)punctuality: for example, we make an appointment for 7 p.m. if we

want to meet that person at 8 p.m.”

To explore the gains (losses) associated with anticipating (or not anticipating) unpunc-

tual policy implementation, we focus on yet another setting, namely preventive maintenance

(PM) planning. More specifically, we consider a maintenance planner who prescribes a main-

tenance policy for a degrading system, but relies on a maintenance worker to implement the

policy. The maintenance worker, however, may be unpunctual, i.e., the maintenance activ-

ities may be performed earlier or later than intended. We focus on preventive maintenance

planning because of its well-established literature [22, 29, 32, 43, 58, 77, 87, 90], and its

practical importance. Indeed, maintenance spending is well-known to comprise a large por-
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tion of operating budgets for organizations with heavy machinery and significant equipment

investments [73].

Reasons behind unpunctual behavior have been well established in the psychology lit-

erature. Lau et al. [52] conduct a qualitative and quantitative review of possible factors

affecting counterproductive behaviors (CPBs), including lateness. Predictors of CPBs are

classified into four categories: personal, organizational, work and contextual. They find that

employees with low job satisfaction engage in more CPBs. There also exist a number of

studies that examine the influence of personality on behavioral indicators of punctuality.

Back et al. [10], for example, find that punctuality may be predicted by the Big Five per-

sonality factors (openness to experience, conscientiousness, extraversion, agreeableness, and

neuroticism); link conscientiousness to punctuality; and link agreeableness and neuroticism

to earliness. Koslowsky [50] also discusses the role of conscientiousness in lateness behavior.

Others (e.g., [30, 84]) investigate the relationship between task type and procrastination.

Lastly, additional examples of quantitative analysis of unpunctual behavior can be found in

the medical appointment literature (e.g., [20, 48]).

In a maintenance context, the mistiming of activities can be especially costly. In general,

delayed PM could result in a more deteriorated system, thereby increasing the likelihood of

failure. On the other hand, if PM is performed earlier than scheduled, the useful life of the

component is unnecessarily truncated. A more specific example is that of machine bearings,

which often “run hot” due to either too little grease because PM was performed late, or due

to overgreasing because PM was performed early ([9]); both of these situations can lead to

high operating temperatures, which shorten the bearings’ lifetime and incur additional costs.

The literature on imperfect maintenance (i.e., maintenance activities that result in an

outcome other than certain, as-good-as-new status) is vast (see early work [16] and survey

papers [71, 90]). In contrast to perfect repairs/replacements (i.e., those that render the

system as-good-as-new) and minimal repairs (i.e., those that render the system as-bad-as-

old), the outcome of imperfect maintenance lies somewhere between these two extremes

and may be stochastic. Here, we restrict our attention to perfect preventive maintenance

activities, but allow their implementation to be unpunctual.
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The class of maintenance optimization problems involving random replacement policies

([16, 21, 63, 93, 94]) is perhaps most closely related to our work. In random replacement sce-

narios, as in ours, the times at which PM is performed are random. However, the literature on

random replacement policies assumes that these times are stochastic because opportunities

for performing PM arise randomly due to the variable work cycle of the system, and determine

the optimal parameter values of the distribution that governs the time between replacements.

In contrast, we assume that the potential unpunctuality of the maintenance worker is what

causes the actual PM times to deviate from the intended times in a stochastic way, and de-

termine the optimal planned PM time in anticipation of this unpunctuality. That said, our

formulation can be viewed as a random replacement problem, but with a different motivation.

However, the particular random replacement problem on which we focus has not been

explored previously. For this novel case, we provide in-depth analysis of the impact of

unpunctual behavior on maintenance planning. In particular, we obtain insights as to how

the maintenance planner should optimally prescribe PM in anticipation of the maintenance

worker’s unpunctual behavior, characterized by a given distribution. We also provide bounds

on the percent increase in the cost-rate caused by (i) the possibility of unpunctual PM versus

certain, punctual PM and (ii) ignoring the possibility of unpunctual PM when it is, in fact,

possible.

Lastly, we note that an alternative to the anticipatory planning approach examined here

might be the use of incentives, which has proven to be a popular tool in behavioral interven-

tions. A review article by Bucklin and Dickinson [18] summarizes studies that examine the

relationship between monetary incentives and employee performance. For example, Hermann

et al. [38] study the effects of incentives on improving workers’ punctuality in a manufactur-

ing company, and conclude that a small daily bonus is effective in changing workers’ chronic

tardiness. However, opponents of incentive-based tools worry that extrinsic incentives may

“crowd out” intrinsic motivations that are important to producing the desired behavior [34],

and hence once the incentives are removed, the eroded intrinsic motivation may result in

even poorer performance. We leave such considerations for future work.

The remainder of the chapter is organized as follows. In Section 3.2, we formally state

the problem and present a general mathematical framework that can be used in determining
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any type of anticipatory cost-rate-minimizing maintenance policy. Section 3.3 focuses on

age replacement with minimal repair, including the special case of Weibull time to failure;

Section 3.4 focuses on classic age replacement without minimal repair. Section 3.5 compares

the performance of these two maintenance strategies in the presence of unpunctual PM. In

Section 3.6, we summarize our findings.

3.2 MODEL FORMULATION

Consider a failure-prone system, for which the time to failure is denoted by the continu-

ous random variable X, with known c.d.f. FX(x), p.d.f. fX(x) and mean µX . Failures are

assumed to be self-announcing and require immediate corrective maintenance (e.g., reac-

tive replacement or minimal repair). Let hX(t) be the corresponding hazard rate function,

i.e., hX(t) = fX(t)/F̄X(t), where F̄X(t) is the survival function. We impose the following

assumptions on hX(t):

A1: hX(0) = 0;

A2: hX(t) is strictly increasing to +∞.

Assumption A1 implies that there are no instantaneous failures at the time of renewal.

Assumption A2 assumes a strictly increasing hazard rate function hX(t). Both of these

assumptions are commonly used in the maintenance and reliability literature [19, 60].

Consider a maintenance policy π(θ) that determines when to preventively replace the

system based on a vector of parameters θ (e.g., time, age, usage, or deterioration level).

However, possibly unpunctual behavior of the maintenance worker leads to unpunctual PM

actions. Let the continuous random variable Y with known c.d.f. FY (y) and p.d.f. fY (y) be

the deviation between the actual time of implementation and that prescribed by π(θ).

The overall objective of the maintenance planner is to minimize the long-run cost-rate

by identifying an optimal policy π∗(θ) that anticipates the unpunctual PM implementation.

Because we assume that PM outcomes are perfect, i.e., PM returns the system to as-good-as-

new, we take a renewal-reward approach and formulate the long-run average cost-rate as the

ratio of the expected renewal cycle cost to the expected renewal cycle length. More specifi-

36



cally, let Cπ(θ) (respectively, Lπ(θ)) be the cycle cost (respectively, cycle length) associated

with policy π(θ) and

Ωπ(θ) =
EX,Y [C

π(θ)]

EX,Y [Lπ(θ)]

be the corresponding long-run cost rate. The main decision-making problem for the main-

tenance planner is then

min
θ

Ωπ(θ). (3.1)

In this chapter, we focus on the case in which θ is a scalar, T , corresponding to an

age threshold. Thus, the maintenance policy π(T ) is an age replacement policy. We drop

dependence on T for notational convenience, and in a slight abuse of notation, let π ∈ {A,B},

where “A” denotes age replacement policy with minimal repair (Section 3.3) and “B” denotes

an age replacement policy without minimal repair (Section 3.4).

Correspondingly, the actual PM implementation time is at age T + Y . If Y < 0, then

PM is performed earlier than scheduled, and vice versa if Y > 0. We impose the following

assumptions on Y :

A3: Y has support [a, b], where −∞ < a ≤ b < ∞;

A4: Y is independent of X and T .

Assumption A3 implies that scheduled PM is never delayed indefinitely, which is reason-

able for most practical settings. Assumption A4 states that the unpunctual behavior of the

maintenance worker is not affected by either the time to failure distribution or the scheduled

PM time. The independence of Y and X is intuitive, as the failure time of the system in the

absence of any interventions depends only on its characteristics. To justify the assumption

that Y and T are independent, we note that in practice for sufficiently large values of T (e.g.,

one year) the maintenance worker may not be tasked with performing the maintenance until

nearer the scheduled PM time (e.g, several weeks or a month ahead of time). Consequently,

the dependence of Y on T can be ignored.

Let µY and σ2
Y be the mean and variance of Y , respectively. Because Y can assume

negative values, our formulation requires the feasible set of T to be {T | T > max{−a, 0}}.

Let C̃π(T ) (respectively, L̃π(T )) be the cycle cost (respectively, cycle length) under punctual
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implementation (i.e., Y ≡ 0) and Ω̃π(T ) be the corresponding long-run cost-rate. Then

optimization problem (3.1) becomes the well studied classic model (see [16]):

min
T>0

Ω̃π(T ) =
EX [C̃

π(T )]

EX [L̃π(T )]
. (3.2)

Let T ∗ and T̃ ∗ be the optimal solutions to the optimization problems given by equations (3.1)

and (3.2), respectively. In [16], an intuitive fact is established that when the timing of PM

is uncertain, the long-run cost-rate is greater than it would be under deterministically timed

PM. Theorem 1 restates this result in the context of our problem.

Theorem 1. If under policy π ∈ {A,B} both T ∗ and T̃ ∗ exist and are unique, then

Ωπ(T ∗) ≥ Ω̃π(T̃ ∗). (3.3)

Next, we analyze the impact of unpunctual maintenance under policies A and B in Sec-

tions 3.3 and 3.4, respectively. The theoretical results in these sections can be divided into

two broad categories. First (Propositions 9, 10, 11 and 12 as well as Theorems 2 and 3),

we establish results on the relative magnitudes of T ∗ and T̃ ∗, which can help maintenance

planners understand how the optimal PM schedule is influenced by maintenance workers’

unpunctual behavior. Second (Theorems 1, 4, 5, 6 and 7), we examine how unpunctual

implementation affects the long-run average cost rate. These results include bounds on the

percent increase in the long-run average cost-rate caused by unpunctual PM, which can be

particularly useful when fully characterizing the distribution of Y is challenging.

3.3 AGE REPLACEMENT WITH MINIMAL REPAIR

In this section, we consider a maintenance planner who prescribes an age replacement policy

with minimal repair, i.e., π = A. That is, perfect PM is scheduled to be performed after

the system has been operating for a total of T units of time regardless of any failures;

failures that occur before age T are minimally repaired (see Figure 3.1). (As mentioned in

Section 3.2, if the maintenance worker is punctual, then the PM actions under policy π = A
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would be performed periodically; such a policy is referred to in the maintenance literature as

periodic replacement with minimal repair. However, because in our setting the maintenance

worker is unpunctual, PM actions are not necessarily periodic, hence we label this section

age replacement with minimal repair so as not to abuse the term “periodic.”)

Let cp and cm denote the PM cost and the minimal repair cost, respectively.

Figure 3.1: Possible cycle dynamics under age replacement policy with minimal repair for

different ranges of Y : (i) a ≤ b ≤ 0, i.e., the unpunctual PM actions are never performed later

than scheduled; (ii) a < 0 < b, the unpunctual PM actions may be performed either earlier

or later than scheduled; (iii) 0 ≤ a ≤ b, the unpunctual PM actions are never performed

earlier than scheduled.

When PM is always performed on time,

EX [L̃
A(T )] = T, and EX [C̃

A(T )] = cm

∫ T

0

hX(x)dx+ cp,

and problem (3.2) reduces to finding T̃ ∗ that is optimal for

min
T>0

Ω̃A(T ) =
cm
∫ T

0
hX(x)dx+ cp

T
, (3.4)
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where
∫ T

0
hX(x)dx represents the total expected number of failures (equivalently, minimal

repairs) during a renewal cycle [16]. Note that cm
∫ T

0
hX(x)dx/T and cp/T represent the

long-run minimal repair cost-rate and long-run PM cost-rate, respectively. On the other

hand, if the timing of PM is unpunctual, then renewal occurs every T + Y units of time and

the expected cycle length and the corresponding expected cycle cost are given by

EX,Y [L
A(T )] = T + µY and EX,Y [C

A(T )] =

∫ b

a

(
cm

∫ T+y

0

hX(x)dx+ cp

)
dFY (y),

respectively. Therefore, problem (3.1) corresponds to finding T ∗ that is optimal for

min
T>0

ΩA(T ) =

∫ b

a

(
cm
∫ T+y

0
hX(x)dx+ cp

)
dFY (y)

T + µY

, (3.5)

where
∫ b

a

(
cm
∫ T+y

0
hX(x)dx

)
dFY (y)/(T + µY ) and cp/(T + µY ) represent the long-run min-

imal repair cost-rate and long-run PM cost-rate, respectively.

In Section 3.3.1, we establish analytical conditions on the distribution of Y that char-

acterize the relationship between T ∗ and T̃ ∗ for general time to failure distributions. We

also provide bounds on the percent increase in the cost-rate caused by (i) the possibility of

unpunctual PM versus certain, punctual PM and (ii) ignoring the possibility of unpunctual

PM when it is, in fact, possible.

3.3.1 General Results

By setting the first derivative of the objective function in (3.4) equal to zero and letting

k1 = cp/cm > 1, i.e., letting minimal repair be less expensive than PM, the optimal solution

T̃ ∗ to (3.4) satisfies

hX(T̃
∗)T̃ ∗ −

∫ T̃ ∗

0

hX(x)dx = k1. (3.6)

Similarly, for problem (3.5), the optimal solution T ∗ satisfies

(T ∗ + µY )

∫ b

a

hX(T
∗ + y)fY (y)dy −

∫ b

a

∫ T ∗+y

0

hX(x)fY (y)dxdy = k1. (3.7)
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The uniqueness of T̃ ∗ follows directly fromA1 andA2. Furthermore, Ω̃A(T̃ ∗) = cmhX(T̃
∗) [16].

Analogously, Proposition 8 establishes a sufficient condition for the existence of a unique op-

timal solution T ∗ to problem (3.5), i.e., problem (3.1) for π ∈ A. To facilitate the statement

of Proposition 8 and the results that follow, we define the functions

m̃(T ) = hX(T )T −
∫ T

0

hX(x)dx and (3.8)

m(T ) = (T + µY )

∫ b

a

hX(T + y)fY (y)dy −
∫ b

a

∫ T+y

0

hX(x)fY (y)dxdy, (3.9)

which can be interpreted as follows. For (3.8), consider two consecutive cycles over time

intervals [0, T ] and [T, 2T ]. The subtrahend in (3.8) represents the expected number of fail-

ures for a new system over T units of time. If the system is not replaced at time T , then

the expected minimal repair cost for the system during [T, 2T ] is at least cmhX(T )T (the

minuend in (3.8) times cm) by A2. However, if the system is preventively replaced at time

T , then the corresponding cost (including replacement and minimal repair) during [T, 2T ] is

cp + cm
∫ T

0
hX(x)dx. When the costs of these two possible scenarios are equal during [0, 2T ],

i.e., m̃(T̃ ∗) = k1 and equation (3.6) holds, the objective function (3.4) achieves its global min-

imum. Equation (3.9) can be interpreted similarly for the unpunctual implementation case.

Proposition 8. If

lim
T→+max{−a,0}

m(T ) < k1, (3.10)

then ΩA(T ) is quasi-convex and there exists a unique solution T ∗ to (3.7), and

ΩA(T ∗) = cm

∫ b

a

hX(T
∗ + y)fY (y)dy.

Otherwise,

inf ΩA(T ) = lim
T→+max{−a,0}

ΩA(T ).
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The key idea behind Proposition 8 is as follows. Based on the interpretation of (3.9),

if (3.10) does not hold, then for any choice of T , the expected cost during [0, 2T ] for the

scenario without replacement at time T is larger than that of the scenario with replacement

at time T , i.e., (3.7) can never be achieved. Note that the ratio of cp and cm must be rel-

atively large for (3.10) to hold, which implies that the minimal repair cost should be small

compared to the PM cost. We assume that condition (3.10) holds throughout the remainder

of Section 3.3.

Next, Proposition 9, Theorems 2 and 3 establish how unpunctual policy implementation

can affect the optimal solution. More specifically, we consider the relative values of T̃ ∗ and

T ∗ under different conditions on the distribution of the time to failure, X, and the deviation

from the scheduled PM time, Y . First, Proposition 9 shows that when µY is zero and the rate

of increase in the hazard rate decreases over time, the maintenance planner should schedule

PM later than he would under a punctual implementation scenario.

Proposition 9. If µY = 0 and hX(t) is concave, then T ∗ ≥ T̃ ∗.

Note that a Weibull distribution with shape parameter between 1 and 2 has a concave

hazard function that satisfies both A1 and A2. For shape parameter values greater than or

equal to 2, however, hX(t) is convex. Theorems 2 and 3 address the general case of convex

hazard, which applies to the majority of commonly used time to failure distributions.

Theorem 2. If 0 ≤ a < b, hX(t) is convex and

lim
T→+0

m(T ) ≥ 0, (3.11)

then 0 < T ∗ < T̃ ∗.

Corollary 2. If 0 ≤ a < b, hX(t) is convex, and µY ≥ b
2
, then T ∗ < T̃ ∗.

Both Theorem 2 and Corollary 2 imply that if the maintenance worker never performs

PM earlier than intended, then the maintenance planner should schedule PM earlier than he

would under a punctual implementation scenario; surprisingly, however, both results depend

on the distribution of the delay time, Y (Corollary 2 requiring a stronger condition than that

in Theorem 2). More specifically, they require that the mean delay time µY be relatively

large. The following numerical example illustrates that if this condition is violated, then it

42



may in fact be optimal to shift the PM time later (i.e., T ∗ > T̃ ∗) even when the worker is

never early (i.e., Y ≥ 0).

Example 1. Consider the problem instance given in Table 3.1. Assume X follows a

Weibull distribution with shape and scale parameter α and β, respectively, and let Y follow

a Gamma(κ, ϕ) distribution, truncated on the range [a, b] with corresponding shape and

scale parameters κ and ϕ, respectively. Note that condition (3.11) does not hold for this

example, as lim
T→+0

m(T ) = −18.45. Figure 3.2 depicts the functions Ω̃A(T ) and ΩA(T ) for

which the corresponding optimal solutions are T̃ ∗ = 1.26, Ω̃A(T̃ ∗) = 4.76, and T ∗ = 1.41,

ΩA(T ∗) = 26.82, see Figure 3.2(a).

Table 3.1: Parameter values for the counter-intuitive Example 1.

α β µX cm cp κ ϕ a b µY σY

3 1 0.89 1 4 0.1 100 0 10 0.87 1.93

To explain this counterintuitive behavior, consider the fact that Y ∼ Gamma(0.1, 100),

truncated on the range [0, 10]. The variance of Y , σ2
Y = 3.72, is much larger than the mean

µY , indicating that the delay has considerable variation. The large variation of Y results in

the majority of the cost-rate being attributable to minimal repairs. In particular, under the

optimal solution T ∗ = 1.41, the long-run minimal repair cost-rate is 25.07 compared to the

long-run PM cost-rate of 1.75; please see Figure 3.2(b), where the cost-rate functions in (a)

are further decomposed into their PM and minimal repair components. Furthermore, the

minimal repair cost-rate function for the unpunctual case decreases first ( lim
T→+0

m(T ) < 0),

and achieves its minimum at 1.28 > T̃ ∗; please see the red dashed line and red arrow in

Figure 3.2(b). Therefore, it is optimal to prescribe PM at an age greater than T̃ ∗.

Next, Theorem 3 shows that in the opposite case (i.e., when the worker is never late),

the relative values of the age replacement times are intuitively ordered, i.e., the adjusted PM

age is greater than the non-adjusted PM age, regardless of the distribution of Y . Unlike the

counter-intuitive result in Example 1, when the maintenance worker never implements PM
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later than intended, the minimal repairs do not dominate the objective function regardless

of the distribution of Y ; thus, T ∗ is never smaller than T̃ ∗.

Theorem 3. If a < b ≤ 0, hX(t) is convex, and (i) m̃(−a) ≥ k1, then T̃ ∗ ≤ −a < T ∗; (ii)

m̃(−a) < k1, then −a < T̃ ∗ < T ∗.

Theorems 4 and 5 examine how the unpunctual implementation of PM affects the long-

run cost-rate. More specifically, these theorems establish bounds on the percent increase in

long-run cost-rate under unpunctual implementation.

Theorem 4. If T̃ ∗ is a unique solution to (3.6), and T̃ ∗ − µY is feasible to problem (3.5),

then

1 ≤ ΩA(T ∗)

Ω̃A(T̃ ∗)
≤ UA1

Y (T̃ ∗) ≤ UA1(T̃ ∗). (3.12)

where

UA1
Y (T̃ ∗) =

cm
∫ b

a

∫ T̃ ∗−µY +y

0
hX(x)fY (y)dxdy + cp

cmhX(T̃ ∗)T̃ ∗
, and

UA1(T̃ ∗) =
cmM(T̃ ∗ − µY ) + cp

cmhX(T̃ ∗)T̃ ∗
, where

M(T ) =

∫ T+b

T+a
hX(x)dx

b− a
(µY − a) +

∫ T+a

0

hX(x)dx.

Theorem 4 provides upper bounds on the ratio of the optimal long-run cost-rates for

problems (3.4) and (3.5). This ratio measures the percent increase in the cost-rate caused

by the possibility of unpunctual PM versus certain, punctual PM.

We use a subscript Y in UA1
Y (T̃ ∗) to emphasize the fact that this bound depends on the

functional form of the distribution of Y , whereas UA1(T̃ ∗) depends only on its mean. Thus,

UA1(T̃ ∗) can be computed with minimal knowledge of Y (only a, b and µY are required).

Table 3.2 provides a numerical illustration of the bounds’ performance. For this particular

example, the presence of unpunctual PM with a fully specified distribution of Y could cost

the maintenance planner upwards of 12.4% (see column II). With only µY specified, this

bound is as large as of 39.1% (see column III).
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Figure 3.2: (a) Cost-rate functions under punctual and unpunctual PM actions for Example

1, T̃ ∗ = 1.26, Ω̃A(T̃ ∗) = 4.76, and T ∗ = 1.41, ΩA(T ∗) = 26.82; (b) cost-rate functions in

(a) are further decomposed into PM and minimal repair components (under the optimal

solution T ∗ = 1.41, the long-run minimal repair cost-rate is 25.07 compared to the long-run

PM cost-rate of 1.75), the minimal repair cost-rate function for the unpunctual case achieves

its minimum at 1.28 > T̃ ∗ = 1.26. Please see the corresponding discussion in Example 1.
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Theorem 5 provides both lower and upper bounds for the ratio of the long-run cost-rates

obtained by scheduling PM at T̃ ∗ and T ∗ under unpunctual implementation. These bounds

assess the loss associated with ignoring the possibility of unpunctual PM.

Theorem 5. If T̃ ∗ is a unique solution to (3.6), and T̃ ∗ − µY is feasible to problem (3.5),

then

LA2
Y (T̃ ∗) ≤ ΩA(T̃ ∗)

ΩA(T ∗)
≤ UA2

Y (T̃ ∗) ≤ UA2(T̃ ∗), (3.13)

where

LA2
Y (T̃ ∗) = max

{
cm
∫ b

a

∫ T̃ ∗+y

0
hX(x)fY (y)dxdy + cp

cm
∫ b

a

∫ T̃ ∗−µY +y

0
hX(x)fY (y)dxdy + cp

· T̃ ∗

T̃ ∗ + µY

, 1

}
, and

UA2
Y (T̃ ∗) =

cm
∫ b

a

∫ T̃ ∗+y

0
hX(x)fY (y)dxdy + cp

cmhX(T̃ ∗)(T̃ ∗ + µY )
, and

UA2(T̃ ∗) =
cmM(T̃ ∗) + cp

cmhX(T̃ ∗)(T̃ ∗ + µY )
.

As in Theorem 4, the subscript Y in UA2
Y (T̃ ∗) and LA2

Y (T̃ ∗) denotes these values’ de-

pendency on the full distribution of Y . Table 3.2 also provides a numerical illustration of

the bounds’ performance. It is not surprising that the upper bounds in Theorem 5 are

greater than those in Theorem 4 given that the former values compare suboptimal behavior

to optimal behavior whereas the latter considers optimal behavior is both cases. However,

this ordering may not always hold. The value of UA2(T̃ ∗) can be useful in assessing how

important it is to fully characterize the function fY (e.g., via analysis of maintenance log

data) and solve for T ∗; if this bound is “close enough” to one, then it may not be worth the

effort.

If the maintenance planner acknowledges the possibility of unpunctual maintenance, then

three options exist: (i) ignore the maintenance worker’s unpunctual behavior and prescribe

PM at T̃ ∗ (recall that T̃ ∗ is an optimal solution when the implementation is punctual), which

is obviously suboptimal in the unpunctual case; (ii) solve optimization problem (3.5), which

involves full characterization of the distribution of Y ; (iii) adopt a heuristic solution, e.g.,

T̃ ∗ − µY , which requires only knowledge of µY .
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For the instances included in Table 3.2, T̃ ∗−µY provides a reasonable estimate of T ∗ (see

the reported ratio ΩA(T̃ ∗ − µY )/Ω
A(T ∗) in column VIII). However, as we illustrate in the

following example, this heuristic may not always perform well, especially if the mean µY is

small and the variance σ2
Y is sufficiently large.

-25 -20 -10 10 20 30

0.005

0.010

0.015

0.020

0.025

Figure 3.3: The probability density function of Y in Example 2.

Example 2. Figure 3.3 depicts the p.d.f. of Y , which is a mixture of three normal

distributions (N(−25, 102), N(0, 102) and N(30, 102) with weights 4, 3 and 5) truncated

on [−25, 30], for which µY = 2.86 and σY = 17.06. If X ∼ Weibull(4, 12) with location

parameter 80, cm = 1 and cp = 50, then T ∗ = 77.83 and T̃ ∗ = 94.19. For this example, using

the heuristic solution T̃ ∗ − µY results in ΩA(T̃ ∗ − µY )/Ω
A(T ∗) = 1.21, i.e., a 21% increase

in the long-run cost-rate.

3.3.2 Results for X ∼ Weibull(α, β)

In this section, we consider several special cases of the optimization problem given by equa-

tion (3.5) for which we can derive closed form solutions to (3.7). In particular, we assume

a Weibull time to failure distribution, which is widely used to characterize survival data in
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reliability engineering due to its simplicity and versatility ([23]). For X ∼ Weibull(α, β),

hX(t) =
α
βα t

α−1, and the unique solution to (3.6) (i.e., the optimal solution to problem (3.4))

is given by [16] to be

T̃ ∗ =

(
k1

α− 1

) 1
α

β. (3.14)

If condition (3.10) in Proposition 8 holds, then the optimality criterion (3.7) for problem (3.5)

reduces to ∫ b

a

(
α(T ∗ + y)α−1(T ∗ + µY )− (T ∗ + y)α

)
fY (y)dy = k1β

α. (3.15)

Furthermore, for the case when the maintenance worker never implements PM earlier

than intended, Proposition 10 provides an equivalent condition to (3.11).

Proposition 10. If X ∼ Weibull(α, β), α ≥ 2, 0 ≤ a < b, and

(α− 1)
µYE[Y

α−1]

σY σY α−1

≥ ρY,Y α−1 , (3.16)

where ρY,Y α−1 is the correlation coefficient of random variables Y and Y α−1, then condi-

tion (3.11) holds. In particular, if α = 2, then (3.16) reduces to

σ2
Y

µ2
Y

≤ 1.

Note that ρY,Y α−1 is bounded above by 1. As a result, condition (3.16) is more likely

to hold for large values of µY and small values of σY , i.e., the mean PM delay should be

sufficiently large and the probability distribution of the delay should have small variability,

which is consistent with the insights generated by Corollary 2 and Example 1. For example,

inequality (3.16) holds if Y is uniformly distributed and a ≥ 0. If α = 2, (3.16) requires that

the distribution of Y have a small coefficient of variation. This observation also matches the

intuition of Example 1, where large variation of Y may result in counter-intuitive solutions.

Next, Proposition 11 establishes a closed form solution T ∗ when X ∼ Weibull(2, β).
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Table 3.2: Numerical example of the bounds in Theorems 4 and 5 for X ∼ Weibull (α, β) and Y ∼ Uniform (a, b) with µY = a+b
2
,

cm = 1, cp = 16.

I II III IV V VI VII VIII

α β a b µY T̃ ∗ T ∗ T̃ ∗ − µY
ΩA(T ∗)

Ω̃A(T̃ ∗)
UA1
Y (T̃ ∗) UA1(T̃ ∗) ΩA(T̃ ∗)

ΩA(T ∗)
LA2
Y (T̃ ∗) UA2

Y (T̃ ∗) UA2(T̃ ∗) ΩA(T̃ ∗−µY )
ΩA(T ∗)

5 10 0 5 2.5 13.20 10.54 10.70 1.02391 1.02419 1.07308 1.08119 1.08089 1.10703 1.17578 1.00028

6 10 0 5 2.5 12.14 9.39 9.64 1.03514 1.03625 1.11054 1.13916 1.13794 1.17919 1.30750 1.00107

5 10 -4 0 -2 13.20 15.09 15.20 1.01531 1.01542 1.04648 1.04174 1.04162 1.05768 1.08015 1.00011

6 10 -4 0 -2 12.14 13.98 14.14 1.02253 1.02299 1.06971 1.05517 1.05470 1.07895 1.10654 1.00045

5 10 -4 5 0.5 13.20 12.20 12.70 1.07735 1.08024 1.24614 1.01091 1.00820 1.08910 1.26697 1.00268

6 10 -4 5 0.5 12.14 10.87 11.64 1.11286 1.12402 1.39118 1.02749 1.01729 1.14345 1.44164 1.01003



Table 3.3: Numerical example of the bounds in Theorems 6 and 7 for X ∼ Weibull (α, β) and Y ∼ Uniform (a, b) with µY = a+b
2
,

cr = 6, cp = 1.

I II III IV V VI VII VIII IX

α β a b µY T̃ ∗ T ∗ T̃ ∗ − µY
ΩB(T ∗)

Ω̃B(T̃ ∗)
UB1
Y (T̃ ∗) UB1(T̃ ∗) ÛB1(T̃ ∗) ΩB(T̃ ∗)

ΩB(T ∗)
LB2
Y (T̃ ∗) UB2

Y (T̃ ∗) UB2(T̃ ∗) ÛB2(T̃ ∗)

3 20 0 4 2 9.32 7.36 7.32 1.01415 1.01417 1.24299 1.04252 1.03405 1.03403 1.04868 1.30085 1.07318

4 20 0 4 2 10.18 8.15 8.18 1.01824 1.01825 1.24622 1.05481 1.05051 1.05050 1.06967 1.36274 1.10782

3 20 -5 0 -2.5 9.32 11.88 11.82 1.02205 1.02209 1.31810 1.06633 1.08599 1.08595 1.10994 1.35674 1.15925

4 20 -5 0 -2.5 10.18 12.63 12.68 1.02846 1.02849 1.32846 1.08560 1.09096 1.09093 1.12201 1.32000 1.16947

3 20 -2 5 1.5 9.32 7.94 7.82 1.04292 1.04307 1.48633 1.12946 1.01645 1.01630 1.06008 1.52879 1.13787

4 20 -2 5 1.5 10.18 8.59 8.68 1.05556 1.05567 1.52064 1.16748 1.02964 1.02953 1.08685 1.63380 1.20231



Proposition 11. If X ∼ Weibull(2, β), then the optimal solution to problem (3.5) is

T ∗ =

(
k1β

2 + σ2
Y

) 1
2

− µY .

Moreover, if µY = 0, then

T ∗ =

(
k1β

2 + σ2
Y

) 1
2

> T̃ ∗ = k
1
2
1 β.

Observe that Proposition 11 does not depend on the distributional form of Y . The intu-

ition behind Proposition 11 is that when α = 2, the failure rate hX(t) increases linearly in

t, i.e., more slowly than when α > 2. Therefore, if the maintenance planner prescribes PM

at an appropriately greater age, then the increase in the expected minimal repair cost-rate

is smaller than the decrease in the PM cost-rate, which results in a lower total long-run

cost-rate. Moreover, if µY = 0, then the difference between T ∗ and T̃ ∗ depends only on the

variance σ2
Y .

Lastly, Proposition 12 characterizes the relationship between T ∗ and T̃ ∗ when fY (y) is

symmetric w.r.t. y = 0 and α attains an integer value larger than 2.

Proposition 12. If X ∼ Weibull (α, β), α ∈ Z+, α > 2, and fY (y) is symmetric w.r.t.

y = 0, then

T ∗ ≤ T̃ ∗ =
( k1
α− 1

) 1
α
β.

Moreover, if α = 3, then

T ∗ = T̃ ∗ =
(k1
2

) 1
3
β. (3.17)
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Proposition 12 shows that if the hazard rate increases quickly (i.e., α > 2), then a

conservative PM schedule is preferred, i.e., it is optimal to prescribe PM at an age that is

earlier than that for the punctual implementation case. Interestingly, the result in (3.17)

establishes that the optimal solutions for both unpunctual and punctual implementation

coincide under a symmetric fY (y) and α = 3.

When the p.d.f. of Y is not symmetric about y = 0, it is difficult to characterize the

relationship between T ∗ and T̃ ∗ in general. Example 3 illustrates the type of results that

can be established for specific asymmetrical p.d.f.s of Y .

Example 3. If X ∼ Weibull(3, β), Y ∼ Triangular(a, c, b) with lower limit a, upper limit

b and mode c and µY = 0, then (3.15) reduces to

2(T ∗)3 + 2(a+ b+ c)(T ∗)2 +
2

3
(a+ b+ c)2T ∗ + z = k1β

3,

where z = (a+b+c)3

15
+ (a+b+c)(a2+b2+c2)

30
− a3+b3+c3

30
. If c > 0 and a+b < 0, then T ∗ < T̃ ∗ = (k1

2
)
1
3β;

furthermore, if c < 0 and a+b > 0, then T ∗ > T̃ ∗ = (k1
2
)
1
3β. That is, when the mean deviation

µY = a+b+c
3

= 0 and the distribution of Y is right-skewed, then it is optimal to schedule

PM earlier, i.e., T ∗ < T̃ ∗. In contrast, when the distribution is left-skewed, the opposite

holds. (Note that for a = −b and c = 0 (i.e., if fY (y) is symmetric about y = 0), then

T ∗ = T̃ ∗ = (k1
2
)
1
3β, which is consistent with Proposition 12.)

3.4 AGE REPLACEMENT WITHOUT MINIMAL REPAIR

In this section, we consider a maintenance planner who prescribes an age replacement policy

without minimal repair, i.e., π = B. That is, perfect PM is scheduled to be performed

when the system attains a specified age T , or reactively repaired (also perfectly) at failure,

whichever occurs first. (As mentioned in Section 3.2, such policies may be more simply

referred to as age replacement policies. Our naming convention is motivated by the need to

differentiate this class of policies from those in Section 3.3; please see the discussion at the

beginning of Section 3.3.)
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Let cp and cr denote the PM cost and the reactive repair cost, respectively. If PM is

always performed on time, then

EX [C̃
B(T )] = cr

∫ T

0

fX(x)dx+ cp

∫ ∞

T

fX(x)dx, and EX [L̃
B(T )] =

∫ T

0

xfX(x)dx+ T

∫ ∞

T

fX(x)dx,

and problem (3.2) reduces to finding T̃ ∗ that is optimal for

min
T>0

Ω̃B(T ) =
crFX(T ) + cpF̄X(T )∫ T

0
F̄X(x)dx

(3.18)

(see [16] and [33]). On the other hand, if the timing of PM is unpunctual, then the expected

cycle length and the corresponding expected cycle cost are given by

EX,Y [C
B(T )] =

∫ b

a

(
cr

∫ T+y

0

fX(x)dx+ cp

∫ ∞

T+y

fX(x)dx

)
dFY (y), and

EX,Y [L
B(T )] =

∫ b

a

(∫ T+y

0

xfX(x)dx+ (T + y)

∫ ∞

T+y

fX(x)dx

)
dFY (y),

respectively, and problem (3.1) corresponds to finding T ∗ that is optimal for

min
T>0

ΩB(T ) =

∫ b

a

(
crFX(T + y) + cpF̄X(T + y)

)
dFY (y)∫ b

a

∫ T+y

0
F̄X(x)dxdFY (y)

. (3.19)

Similar to the derivations in Section 3.3, by setting the first derivative of the objective

function in (3.18) equal to zero and letting k2 = cr/cp > 1, i.e., letting the reactive repair be

more expensive than PM, the optimal solution T̃ ∗ to (3.18) satisfies

hX(T̃
∗)G(T̃ ∗)− FX(T̃

∗) = 1/(k2 − 1), (3.20)

whereG(T ) =
∫ T

0
F̄X(x)dx. Analogously, for problem (3.19), the optimal solution T ∗ satisfies

H(T ∗)G(T ∗)−FX(T
∗) = 1/(k2 − 1), (3.21)

where

G(T ) =
∫ b

a

∫ T+y

0

F̄X(x)dxdFY (y), FX(t) =

∫ b

a

FX(T + y)dFY (y),

and

H(T ) =

∫ b

a
fX(T + y)dFY (y)∫ b

a
F̄X(T + y)dFY (y)

.
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The uniqueness of T̃ ∗ follows directly fromA2. Furthermore, Ω̃B(T̃ ∗) = cr(1−1/k2)hX(T̃
∗) ([16]

and [33]). Proposition 13 establishes conditions on the denominator of H and the function

n(T ) ≡ H(T )G(T )−FX(T ),

that ensure the existence of a unique optimal solution to problem (3.19).

Proposition 13. If 1/
∫ b

a
F̄X(T + y)dFY (y) is strictly logarithmically convex, and

lim
T→+max{−a,0}

n(T ) < 1/(k2 − 1), (3.22)

then there exists a unique solution T ∗ to (3.21), and the minimal long-run cost-rate is

ΩB(T ∗) = cr(1− 1/k2)H(T ∗).

Note that many natural forms of the distributions of X and Y satisfy the first condition

in Proposition 13. For example, it is easy to verify that if X ∼ Weibull(2,β) and Y ∼

Uniform (0, b), where b > 0, then 1/
∫ b

a
F̄X(T + y)dFY (y) is strictly logarithmically convex.

In the absence of minimal repair, it is more difficult to characterize how unpunctual

policy implementation affects the optimal solution. However, using approaches similar to

those in Theorems 4 and 5 we can bound the percent increase in the cost-rate caused by (i)

the possibility of unpunctual PM (Theorem 6) and (ii) ignoring the possibility of unpunctual

PM when it is, in fact, possible (Theorem 7).

Theorem 6. If T̃ ∗ is a unique solution to (3.20), and T̃ ∗ − µY is a feasible solution to

problem (3.19), then

1 ≤ ΩB(T ∗)

Ω̃B(T̃ ∗)
≤ UB1

Y (T̃ ∗) ≤ UB1(T̃ ∗). (3.23)

where

UB1
Y (T̃ ∗) =

ΩB(T̃ ∗ − µY )

cr(1− 1/k2)hX(T̃ ∗)
, and

UB1(T̃ ∗) =
cr + (cp − cr)F̄X(T̃

∗ − µY + b)

cr(1− 1/k2)hX(T̃ ∗)N(T̃ ∗ − µY )
, where

N(T ) =

∫ T+b

T+a
F̄X(x)dx

b− a
(µY − a) +

∫ T+a

0

F̄X(x)dx.
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Moreover, if X ∼ Weibull (α, β), and

T̃ ∗ − µY + b < t0 =

(
α− 1

α

) 1
α

β, (3.24)

then UB1(T̃ ∗) becomes

ÛB1(T̃ ∗) =
cr + (cp − cr)N̂(T̃ ∗ − µY )

cr(1− 1/k2)hX(T̃ ∗)N(T̃ ∗ − µY )
, where

N̂(T ) =
F̄X(T + b)− F̄X(T + a)

b− a
(µY − a) + F̄X(T + a).

Theorem 6 provides upper bounds on the ratio of the optimal long-run cost-rates for

problems (3.18) and (3.19). As before, the subscript Y in UB1
Y (T̃ ∗) is included to emphasize

the fact that this bound depends on the functional form of the distribution of Y, whereas

UB1(T̃ ∗) requires minimal knowledge of Y (only a, b and µY are needed). In addition, note

that ÛB1(T̃ ∗) is a tighter bound than UB1(T̃ ∗) if (3.24) holds.

Table 3.3 provides a numerical illustration of the performance of the bounds established

in Theorem 6. For this particular example, the presence of unpunctual PM with a fully

specified distribution of Y could cost the maintenance planner upwards of 5.6% (see column

II). With only µY specified, the bound UB1(T̃ ∗) is rather loose (see column III). However,

because (3.24) holds for each problem instance in the table, the tighter bound ÛB1(T̃ ∗) also

applies (see column IV).

Theorem 7 provides both lower and upper bounds for the ratio of the long-run cost-rates

obtained by scheduling PM at T̃ ∗ and T ∗ under unpunctual implementation. These bounds

assess the loss associated with ignoring the possibility of unpunctual PM.

Theorem 7. If T̃ ∗ is the unique solution to (3.20), and T̃ ∗−µY is feasible to problem (3.19),

then

LB2
Y (T̃ ∗) ≤ ΩB(T̃ ∗)

ΩB(T ∗)
≤ UB2

Y (T̃ ∗) ≤ UB2(T̃ ∗) (3.25)

where

LB2
Y (T̃ ∗) = max

{
ΩB(T̃ ∗)

ΩB(T̃ ∗ − µY )
, 1

}
, and
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UB2
Y (T̃ ∗) =

cr + (cp − cr)
∫ b

a
F̄X(T̃

∗ + y)fY (y)dy

cr(1− 1/k2)hX(T̃ ∗)
∫ b

a

∫ T̃ ∗+y

0
F̄X(x)fY (y)dxdy

, and

UB2(T̃ ∗) =
cr + (cp − cr)F̄X(T̃

∗ + b)

cr(1− 1/k2)hX(T̃ ∗)N(T̃ ∗)
.

Moreover, if X ∼ Weibull (α, β), and

T̃ ∗ + b < t0 =

(
α− 1

α

) 1
α

β, (3.26)

then UB2(T̃ ∗) becomes

ÛB2(T̃ ∗) =
cr + (cp − cr)N̂(T̃ ∗)

cr(1− 1/k2)hX(T̃ ∗)N(T̃ ∗)
.

As in Theorem 6, the subscript Y in UB2
Y (T̃ ∗) and LB2

Y (T̃ ∗) denotes dependency on the

full distribution of Y and ÛB2(T̃ ∗) provides a tighter bound than UB2(T̃ ∗) if (3.26) holds.

Table 3.3 also provides a numerical illustration of the performance of the bounds established

in Theorem 7. It is not surprising that the upper bounds in Theorem 7 are greater than

those in Theorem 6, given that the former values compare suboptimal behavior to optimal

behavior whereas the latter considers optimal behavior in both cases; however, this ordering

may not always hold.

Comparing columns T̃ ∗−µY and T ∗ in Table 3.3, the heuristic solution T̃ ∗−µY appears

to provide reasonably good estimate of T ∗. However, similar to Example 2 for π = A, we

can generate examples under π = B such that the heuristic solution performs poorly.
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3.5 IMPLICATIONS FOR POLICY COMPARISONS

For a system that is preventively maintained based on its age, Sections 3.3 and 3.4 establish

properties of optimal policies that anticipate the possibility of unpunctual PM implementa-

tion. The difference between the maintenance policies in these two sections is in the type of

repair performed at failure. For less complex (e.g., single-unit) systems, repair at failure can

be regarded as an overhaul, thus an age replacement policy without minimal repair (Sec-

tion 3.4) is often adopted. For complex systems, such as computers and televisions, after

repairing a failed component (e.g., a single tube), the system is as likely to breakdown as it

was before repair because the other components are also deteriorating ([15]); hence, an age

replacement policy with minimal repair (Section 3.3) is usually adopted. In this section, we

compare these two types of maintenance polices, and explore how the optimal maintenance

planning under each policy responds to the possibility of unpunctual PM implementation.

For age replacement without minimal repair, i.e., π = B, the complexity of equa-

tion (3.21) makes it difficult to infer the relationship between T ∗ and T̃ ∗ analytically. There-

fore, we numerically explore three cases:

Case (i) PM is never implemented late,

Case (ii) PM may be implemented early or late, and

Case (iii) PM is never implemented early.

For each case, we compute the long-run cost-rate function for π = B, and compare it to that

for π = A; see Figure 3.4. The problem instances considered are summarized in Table 3.4;

the corresponding optimal solutions are in Table 3.5. We assume X ∼ Weibull(α, β), Y ∼

Uniform(a, b) and that, although Policies A and B have different cost structures, k1 = k2.

Note that the conditions in Propositions 8 and 13 hold for all of these problem instances,

and therefore a unique optimal solution exists under each maintenance policy. Similarly, it is

straightforward to verify that Theorem 1 holds for all problem instances (see Table 3.5 and

Figure 3.4) and that Theorems 2 and 3 are illustrated by Cases (iii) and (i), respectively.

More specifically, Cases (i) and (iii) result in m̃(−a) = 0.0048 < k1 = 6 and lim
T→+0

m(T ) =

0.0005 > 0, respectively.
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Table 3.4: Parameter values for Cases (i)-(iii) in Figure 3.4.

Case α β µX cp cr cm a b µY σY

(i) 4 50 45.32 1 6 1/6 -10 0 -5 8.33

(ii) 4 50 45.32 1 2 1/2 -20 20 0 11.55

(iii) 4 50 45.32 1 6 1/6 0 10 5 8.33

Table 3.5: Optimal solutions for Cases (i)-(iii) in Figure 3.4.

π = A π = B

Case T ∗ T̃ ∗ ΩA(T ∗) Ω̃A(T̃ ∗) T ∗ T̃ ∗ ΩB(T ∗) Ω̃B(T̃ ∗)

(i) 64.39 59.46 0.0225 0.0224 30.37 25.45 0.0537 0.0527

(ii) 43.76 45.18 0.0324 0.0295 42.65 38.31 0.0390 0.0360

(iii) 54.39 59.46 0.0225 0.0224 20.37 25.45 0.0537 0.0527

In Cases (i) and (iii) in Figure 3.4 the adjustment of the scheduled PM age is in the same

direction under both policies, i.e., the adjusted PM age is greater than the non-adjusted PM

age if the maintenance worker never implements PM later than intended, and vice versa if

the maintenance worker never implements PM earlier than intended. However, as seen in

Case (ii) when PM may be performed early or late, the adjustments of the PM age are in

opposing directions under Policies A and B.

Recalling (3.5) and (3.19), the denominator in the latter objective function requires the

fully specified distribution of Y , which makes it more difficult to bound. A natural conjecture

might be that the upper bounds for age replacement without minimal repair are not as tight

as those for age replacement with minimal repair when the distribution of Y is not fully

specified (recall Theorems 4 and 5 in Section 3.3 and Theorems 6 and 7 in Section 3.4). This

conjecture is supported by the numerical results in Tables 3.2 and 3.3 (see columns III and
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VIII in Table 3.3 vs. columns III and VII in Table 3.2). Hence, these results suggest that

the distribution information of Y is more important for age replacement without minimal

repair if the maintenance planner is seeking a satisfactory estimate of the long-run cost-rate.

Next, as originally presented in [15], we provide an example comparison of the two

policy types by fixing the common cost term cp = 1 and separating the (cm, cr) plane

into two regions (Figure 3.5). Under punctual PM and X ∼ Weibull(4, 10), an optimal

age replacement policy without (with) minimal repair achieves a lower long-run cost-rate if

(cm, cr) falls below (above) the solid curve in Figure 3.5. (The shaded region corresponds to

the cost combinations that satisfy the assumptions that cr > cp and cm < cp.) We add two

additional curves to perform the same comparison under unpunctual PM implementation

assuming Y ∼ Uniform(−1, 4). The dashed line (labeled ΩA(T ∗) vs. ΩB(T ∗)) represents the

boundary between the two policies under the optimally adjusted PM time. The dash-dot

line (labeled ΩA(T̃ ∗) vs. ΩB(T̃ ∗)) delineates the boundary between the two policies when the

maintenance planner ignores the possibility of unpunctual implementation; doing so causes

the region of cost combinations when minimal repair is preferred to shrink as compared to

when scheduling optimally under unpunctual PM implementation. However, because the

dashed curves depend on the distributions of both X and Y , the relative order may be

reversed in other instances.

For this particular example and all other examples we examined, the age replacement

policy without minimal repair is more robust to unpunctual PM (i.e., both the dashed line

and the dash-dot line lie above the solid line). The intuition behind this observation is that

under such a policy (in contrast to a policy with minimal repair) not every cycle ends with

unpunctual PM because renewal after failure may occur before the preventive replacement

age. We are, however, unable to prove this result for the general case.
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Policies A and B.
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3.6 CONCLUSION

In this chapter, we study how the possibly unpunctual behavior of a maintenance worker

affects a maintenance planner’s decision-making by formulating cost-rate minimization age

replacement models. Both analytical and numerical results are provided on how the main-

tenance planner should adjust the maintenance policy in anticipation of unpunctual PM

actions. Furthermore, we compare age replacement policies with and without minimal re-

pair, and explore how the optimal maintenance planning under each policy responds to the

possibility of unpunctual PM implementation. We also establish bounds on the percent in-

crease in the long-run cost-rate which are useful in assessing how important it is to fully

characterize the probability density function of the unpunctual behavior.
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4.0 OPTIMAL SEQUENCING OF TWO MEDICAL TREATMENTS

4.1 INTRODUCTION

This chapter is inspired by current treatment practices for chronic diseases (e.g., rheuma-

toid arthritis (RA)). For many of these diseases, it is difficult for physicians to navigate the

treatment process because the multitude of available treatments from which to choose can

be unique in terms of potential effectiveness, length of effectiveness delay (treatment-specific

time before revealing its effectiveness), price, etc. [31, 41] For example, a less expensive

treatment may take longer to reveal its effectiveness; if the patient finds it is ineffective and

must switch treatments, then the disease may have progressed to a more advanced level. In

contrast, a more expensive treatment may take less time to reveal its effectiveness and have

a greater chance of being effective, but a greater potential for side effects. Therefore, a key

issue in managing many chronic diseases is to identify an optimal sequence of treatments

that balances the multiple trade-offs inherent to the different treatment options.

In this chapter, we propose a stylized model inspired by this problem and restrict our

focus to the special case of two treatments. More specifically, we aim to balance three

treatment-specific trade-offs: probability of effectiveness, length of effectiveness delay, and

reward/cost. The decision maker is the healthcare provider, whose overall objective is to

identify which treatment to prescribe first, such that the total expected QALYs gained by

the patient are maximized.

More formally, consider a patient with a chronic disease that has several observable levels

of severity. In the absence of an effective treatment, the disease progresses stochastically to

more advanced levels in which the quality of life for the patient is lower. Each of the two

treatment options that we consider has a known probability of effectiveness, a known delay
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period before the treatment reveals whether or not it is effective, and a known cost per

unit time. The treatment cost includes both price and side effects, measured in QALYs. If a

treatment reveals itself to be effective at the end of its delay period, then the patient remains

on the treatment indefinitely and receives a terminal reward that depends on patient age

and treatment type. If both treatments have been attempted and found to be ineffective,

then the patient is placed on palliative care and receives an associated terminal reward.

In Chapter 1 of this dissertation, we draw a parallel between maintaining degrading

equipment and degrading human body. Scheduling “maintenance actions” is equivalent to

prescribing possible treatments. A proper maintenance action can bring the equipment from

a more deteriorated state to a less deteriorated state, which is equivalent in our setting to

an effective treatment that moves patient to a healthier state. However, in most traditional

maintenance optimization models [22, 29, 32, 43, 58, 77, 87, 90], the supply of spare parts

for maintenance/replacement is usually assumed to be infinite. As a result, the maintenance

activities can be scheduled periodically or performed whenever necessary. Our model con-

siders a limited number (two) of available treatments, and once a treatment is attempted

and found to be ineffective, it cannot be used again.

There exists research work similar to our setting in terms of the limited number of

maintenance actions [27, 42, 51, 80]. For example, Icten et al. [42] develop an Markov decision

process (MDP) model to adaptively schedule a fixed number of identical replacements of a

vital component. Failure of the component is assumed to cause the system’s breakdown,

and the objective is to maximize the total expected lifetime of the system. However, the

replacements considered in [42] are assumed to be identical, which is not the case in our

setting. Shechter et al. [80] focus on the optimal sequencing of nonidentical components

to maximize the expected system survival time. They use stochastic orderings to compare

components’ general lifetime distribution, and find a counterexample that the strongest

ordering does not guarantee the optimal sequencing. The objective for their model is to

extend the system’s survival time as much as possible, while we aim to maximize the total

expected QALYs a patient can gain from a particular treatment sequence.

Furthermore, there exist therapeutic optimization studies that consider the optimal time

to initiate treatment for different diseases (see examples in [26, 53, 57, 79, 82].) Generally
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speaking, most of these works either consider only a single treatment or a predetermined

sequence of treatments. We, in contrast, assume treatments for the patient start as soon

as the patient is symptomatic, so the time to initiate therapy is predetermined. Shechter

et al. [79] develop an MDP modeling framework with application to HIV therapy switching

problem. They assume a finite number of therapies, and consider the trade-offs between the

decrease in viral level by taking HIV therapy and the increase in viral resistance over time.

The available therapies, however, are assumed to be identical. Thus, there is no balancing

between different treatment-specific characteristics as in our problem.

In terms of determining optimal treatment pathways, there is a large body of health

economics literature focused on the application of three approaches: decision trees, simula-

tion and Markov models. For example, Aloia and Fahy [7] conduct an analysis of optimal

treatment combinations for patients with colorectal cancer and resectable liver metastases.

They consider all possible treatment combinations in a simulation model and predict the

optimal treatment pathway based on the estimated 5-year survival rate. Another example

is Kobelt et al. [49] who perform a cost-effectiveness study of an early biologic treatment

for RA by considering both dose reduction and treatment switches. They apply a Markov

model with five states and analyze the model with simulation. Generally speaking, such

studies focus on careful calibration of model parameters and computations in order to eval-

uate important health economics decisions. They, however, deliver little analytical results

or structural properties of the problem.

The main contribution of our work is to provide theoretical analysis for the optimal

two treatment sequencing problem. To the best of our knowledge, there are no analytical

studies that consider balancing the trade-offs between three treatment-specific characteris-

tics (probability of effectiveness, length of delay and reward/cost) simultaneously. We first

provide theoretical conditions that indicate when, as a function of the model parameters,

it is optimal to initiate treatment with one treatment versus the other. Then, we illustrate

those results by insightful numerical examples.

The remainder of this chapter is organized as follows. Section 4.2 formulates our discrete

time mathematical model. In Section 4.3. we establish our analytical results. Numerical

examples are provided in Section 4.4.
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4.2 MODEL FORMULATION

Before formally stating our mathematical model, we first introduce the following notation.

t0 age of the patient when he/she starts treatment;

∆ set of ordered disease levels, ∆ = {0, 1, 2, . . . , D} with ‘0’ denoting the disease-free

stage and ‘D’ the most severe stage; δ ∈ ∆ represents the current disease level;

δt0 disease level of the patient when he/she starts treatment;

Θ set of all possible treatments excluding palliative care, Θ = {A,B};

θP palliative care (patient is placed on palliative care indefinitely if both treatments

have been exhausted and proven ineffective);

dθ the length of delay after which treatment θ reveals whether it is effective or not,

θ ∈ Θ; we assume dθ is integer;

ρθ probability that treatment θ reveals itself to be effective after the delay period dθ,

θ ∈ Θ;

P (δ′|δ) probability that patient transitions from disease level δ to level δ′ at the beginning

of each unit time during the delay period of any treatment;

qθ(δ) net QALYs gained per unit time by the patient during the delay period of

treatment θ, given that the disease level is δ;

Qθ
E(t) net QALYs gained if the patient continues an effective treatment θ indefinitely

from age t;

QθP (δ, t) net QALYs gained if the patient continues palliative care θP indefinitely from age

t with disease level δ.

Remark 1. The definitions of net QALYs in qθ(δ), Qθ
E(t) and QθP (δ, t) implicitly consider

the QALYs loss due to disease level as well as the cost of taking treatment θ. The treatment

cost includes both the economic price of θ and the side effects for being on θ.

We introduce the following assumptions, which are essential for our mathematical model:

A1: The effectiveness of a treatment θ ∈ Θ can only be revealed after a treatment-specific

time dθ; during the delay period dθ, the treatment is assumed to be ineffective, and the

disease level of the patient transitions at the beginning of each unit time.
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A2: Each treatment reveals itself to be effective at the end of its delay period with probability

ρθ. If it is effective, then the disease level of the patient moves to δ = 0 and the patient

continues with treatment θ indefinitely, getting an age-dependent lump sum QALYs that

also depend on the treatment type. Furthermore, Qθ
E(t) is nonincreasing in patient age t,

θ ∈ {A,B}.

A3: qθ(δ) is nonincreasing in disease level δ ∈ ∆; furthermore, net QALYs gained per unit

time when the patient is on an effective treatment θ indefinitely is not smaller than that

during delay period, i.e.,

Qθ
E(t)−Qθ

E(t+ 1) ≥ max
δ,a∈Θ

qa(δ), for any t ∈ [t0, t0 + dA + dB] and θ.

A4: Transition matrix P is totally positive of order 2 (TP2) and upper triangular, hence

‘D’ is an absorbing state. This assumption implies that the j-step transition matrix P (j)

(j ∈ Z+) is IFR (Increasing Failure Rate).

A5: QθP

E (δ, t) is nonincreasing in δ for any t, i.e., if the patient starts the palliative care in a

more severe disease level, then the expected QALYs he/she gains are lower. We also assume

QθP

E (δ, t) is nonincreasing in t for any δ.

The problem dynamics are illustrated in Figure 4.1. If the patient starts treatment θ at

disease level δ, then the QALYs gained during the delay period are denoted as

r(θ, δ) =
dθ∑
j=1

D∑
δ′=1

P (j)(δ′|δ)qθ(δ′). (4.1)

Given a treatment sequence ⟨AB⟩, let f
⟨AB⟩
1 (δt0) be the total QALYs gained if the first

treatment A reveals itself to be effective, i.e.,

f
⟨AB⟩
1 (δt0) = r(A, δt0) +QA

E(t0 + dA). (4.2)

Similarly, the total QALYs gained if the first treatment A fails but the second treatment B

reveals itself to be effective are given by

f
⟨AB⟩
2 (δt0) = r(A, δt0) +

D∑
δ=1

P (dA)(δ|δt0) · r(B, δ) +QB
E(t0 + dA + dB), (4.3)
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Figure 4.1: Problem dynamics with two treatments available
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and the total QALYs gained if both treatments fail are given by

f
⟨AB⟩
3 (δt0) = r(A, δt0) +

D∑
δ=1

P (dA)(δ|δt0) · r(B, δ) +
D∑
δ=1

P (dA+dB)(δ|δt0)QθP (δ, t0 + dA + dB).

(4.4)

To identify which treatment to prescribe first in order to maximize the total QALYs gained

by the patient, we need to solve the following optimization problem

V (δt0) = max

ρAf
⟨AB⟩
1 (δt0) + (1− ρA)ρBf

⟨AB⟩
2 (δt0) + (1− ρA)(1− ρB)f

⟨AB⟩
3 (δt0),

ρBf
⟨BA⟩
1 (δt0) + (1− ρB)ρAf

⟨BA⟩
2 (δt0) + (1− ρA)(1− ρB)f

⟨BA⟩
3 (δt0).

(4.5)

4.3 ANALYTICAL RESULTS

In this section, we establish analytical conditions under which a particular treatment should

be prescribed first. Lemma 2 and Theorem 8 provide intuitive results in terms of the mono-

tonicity property of the reward function r(θ, δ) and value function V (δ) over disease level δ.

Lemma 2. r(θ, δ) is nonincreasing in δ for any θ ∈ Θ.

Lemma 2 states that the net QALYs gained during the delay period are a nonincreasing

function of disease level δ. The proof of Lemma 2 is straightforward based on AssumptionA3.

Theorem 8. V (δ) is nonincreasing in δ.

Theorem 8 states that for patients starting with a more severe disease level, the total

expected QALYs gained are lower. Next, Lemma 3-5 are technical results necessary for

proving Theorem 9-11.

Lemma 3. If dA ≤ dB, qA(δ) ≥ qB(δ) for all δ ∈ ∆, and QA
E(t) ≥ QB

E(t) for all t, then

f
⟨AB⟩
1 (δt0) ≥ f

⟨BA⟩
1 (δt0) ≥ f

⟨AB⟩
2 (δt0). (4.6)
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Lemma 3 considers the scenario when treatment A works at least as fast and is at most

as costly as treatment B. We can order the value functions in three cases, (a) treatment

sequence ⟨AB⟩ is prescribed and treatment A is effective; (b) sequence ⟨BA⟩ is prescribed

and treatment B is effective; and (c) treatment sequence ⟨AB⟩ is prescribed, treatment A is

ineffective while treatment B is effective. Lemma 3 suggests that the QALYs gained in case

(a) are the highest, while and the QALYs gained in case (c) are lowest.

Lemma 4. If dA ≤ dB, qA(δ) ≥ qB(δ) for all δ ∈ ∆, and QA
E(t) ≥ QB

E(t) for all t, and

qA(δ)− qB(δ) is nonincreasing in δ, then

r(A, δt0) +
D∑
δ=1

P (dA)(δ|δt0) · r(B, δ) ≥ r(B, δt0) +
D∑
δ=1

P (dB)(δ|δt0) · r(A, δ). (4.7)

Lemma 4 considers the case when treatment A works at least as fast and is at most as

costly as treatment B, and the cost advantage of A over B is nonincreasing in the disease

level. If treatment sequence ⟨AB⟩ is prescribed, then the total expected QALYs gained

during the delay periods are higher than those gained by prescribing sequence ⟨BA⟩ instead.

Remark 2. To justify the requirement that qA(δ)− qB(δ) is nonincreasing in δ in Lemma 4,

consider the following example. Let qθ(δ) be given as

qθ(δ) = q − s(δ)− cθ(δ),

i.e., the QALYs gained per unit time depend on the maximal QALYs that can be gained,

subtract the QALYs loss s(δ) due to being in disease level δ, and the cost of taking treatment

cθ(δ). If cA(δ) ≤ cB(δ), ∀δ, and cB(δ)− cA(δ) is nonincreasing in δ (the cost advantage of A

over B is nonincreasing in disease level), then qA(δ) − qB(δ) is nonincreasing in δ. We can

construct counterexamples for which if qA(δ) − qB(δ) is not nonincreasing in δ, then (4.7)

does not hold.

Lemma 5. If dA ≤ dB, qA(δ) ≥ qB(δ) for all δ ∈ ∆, and QA
E(t) ≥ QB

E(t) for all t, and

qA(δ)− qB(δ) is nonincreasing in δ, then

f
⟨AB⟩
1 (δt0) ≥ f

⟨BA⟩
2 (δt0). (4.8)
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Lemma 5 considers the case when treatment A works at least as fast and is at most as

costly as treatment B, and the cost advantage of A over B is nonincreasing in the disease level.

Then, we compare the following two scenarios, (i) sequence ⟨AB⟩ is prescribed, treatment

A turns out to be effective; and (ii) sequence ⟨BA⟩ is prescribed, treatment B turns out to

be ineffective, while A is effective. The total expected QALYs gained by the patient in the

latter scenario are no larger than the former one.

Theorem 9. If dA ≤ dB, ρA ≥ ρB, qA(δ) ≥ qB(δ) for all δ ∈ ∆, QA
E(t) ≥ QB

E(t), Q
A
E(t) −

QA
E(t + k) ≥ QB

E(t) − QB
E(t + k) for all t and k > 0, and qA(δ) − qB(δ) is nonincreasing in

δ, then it is optimal to prescribe treatment A first.

Theorem 9 establishes the intuitive fact that if one of the two treatments dominates the

other, i.e., it works faster, it has higher probability of effectiveness and it costs less, then it

is optimal to prescribe this dominating treatment first under some mild assumptions on the

terminal reward Qθ
E(t), θ ∈ {A,B}.

However, it is usually rather difficult to decide which treatment to prescribe first, because

neither of the treatments may be superior in all three characteristics we examine. Recall

the motivating example in Section 4.1, where a less expensive treatment needs more time

to reveal its effectiveness. In contrast, a fast-working and more effective treatment can be

very costly. Next, Theorems 10 and 11 consider the interesting questions that if treatment

A is not dominating, i.e., at least one of its three characteristics are inferior than that of

treatment B, under which condition should we prefer prescribing sequence ⟨AB⟩.

Theorem 10. Given dA ≤ dB, qA(δ) ≥ qB(δ) for all δ ∈ ∆, and QA
E(t) ≥ QB

E(t) , Q
A
E(t)−

QA
E(t + k) ≥ QB

E(t) − QB
E(t + k) for all t and k > 0, and qA(δ) − qB(δ) is nonincreasing in

δ, if

ρA ≥ ρ̄ =
ρB · (f ⟨BA⟩

1 (δt0)− f
⟨AB⟩
2 (δt0))

f
⟨AB⟩
1 (δt0)− ρBf

⟨AB⟩
2 (δt0)− (1− ρB)f

⟨BA⟩
2 (δt0)

, (4.9)

then it is optimal to prescribe treatment A first.

Theorem 10 considers the case when treatment A works at least as fast and is at most

as costly as treatment B, and the cost advantage of A over B is nonincreasing in the disease

level. The obtained results state that even if A has a lower probability of effectiveness, then
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it is still possible to have treatment A to be the optimal treatment to prescribe first as long

as (4.9) holds, where ρ̄ serves as a lower bound for ρA.

Theorem 11. Given dA ≤ dB, ρA ≥ ρB, if qA(δ) = µqB(δ) for all δ ∈ ∆, and QA
E(t) =

µQB
E(t) for all t, a necessary and sufficient condition for A to be the first treatment to

prescribe is

µ ≥ µ∗,

where

µ∗ =

ρBQB
E(t0 + dB)− (1− ρA)ρBQB

E(t1) + r(B, δt0)− (1− ρA)
D∑
δ=1

P (dA)(δ|δt0) · r(B, δ)

ρAQB
E(t0 + dA) +

dA∑
j=1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′)− (1− ρB)

(
ρAQB

E(t1) +
dA+dB∑
j=dB+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′)
) ,

(4.10)

and t1 = t0 + dA + dB.

Theorem 11 considers the case when treatment A is at least as effective and works at

least as fast as treatment B. If A has a higher cost (or equivalently, a lower reward), then

it is still possible to have treatment A to be the optimal treatment to be prescribed first as

long as (4.10) holds. Note that the assumption QA
E(t) = µQB

E(t) holds if the terminal reward

is a linear function of the remaining life time, and the QALYs gained per unit time when on

treatment A are µ times that of B.

The remaining measure not examined so far is the length of effectiveness delay. Because it

affects the reward gained during delay periods, the terminal reward as well as the distribution

of diseases level after the delay period, it is somewhat challenging to establish a closed form

result as in Theorems 10 and 11. To address this difficulty, we first show there exists at

most one d̄A, such that we prefer sequence ⟨AB⟩ if dA ≤ d̄A, and prefer sequence ⟨BA⟩

otherwise in Lemma 6. We then provide a numerical example in Section 4.4 (see Example

3) to illustrate when our choice of the first treatment changes as a function of treatments’

lengths of delay.
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Lemma 6. Given ρA ≥ ρB, qA(δ) ≥ qB(δ) for all δ ∈ ∆, QA
E(t) ≥ QB

E(t), and QA
E(t) −

QA
E(t+ k) ≥ QB

E(t)−QB
E(t+ k) for all t and k > 0, if

ρB
(
QB

E(t)−QB
E(t+ 1)

)
≥ max

δ
qA(δ), for all t ∈ [t0, t0 + dA + dB] and (4.11)

QA
E(t)−QA

E(t+ 1) ≥ QA
E(t+ k)−QA

E(t+ k + 1), for all t and k > 0, (4.12)

then there exists at most one d̄A ∈ Z+, such that if dA ≤ d̄A, then it is optimal to prescribe

treatment A first; if dA > d̄A, then it is optimal to prescribe treatment B first.

Condition (4.11) is slightly stronger than A3, and (4.12) implies that if treatment A is

effective one unit of time earlier, then the additional QALYs gain are larger for younger

patients than elder ones, which is a reasonable assumption.

4.4 NUMERICAL EXAMPLES

In this section, we provide three numerical examples that illustrate when, as a function of the

model parameters, it is optimal to initiate treatment with one treatment versus the other.

Recall that the three treatment-specific measures we examine are, probability of effectiveness,

length of delay and reward/cost. In each of the examples below, we assume treatment A

has dominating advantages in two out of these characteristics, and observe how the total

expected QALYs gained for treatment sequences ⟨AB⟩ and ⟨BA⟩ change as a function of the

remaining characteristic. We use the following transition matrix P in all three examples:
0.9 0.08 0.02

0.0 0.8 0.2

0.0 0.0 1.0

 (4.13)

We also set t0 = 400, D = {1, 2, 3}, δt0 = 1.

Example 1. In this example, we assume treatment A dominates treatment B in terms of

the length of delay, and reward/cost (see model parameters in Table 4.1 and functions (4.2)-

(4.4) in Table 4.2). We fix ρB to be 0.9, and increase ρA from 0.02 to 1. Figure 4.2 depicts

the total expected QALYs gained by the patient if on treatment sequence ⟨AB⟩ or ⟨BA⟩
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as a function of ρA. To explain the linear relationship between the expected QALYs and

ρA, recall that in (4.5), V (δt0) is a linear function of ρA if all other parameters are fixed.

Observe that as ρA increases, the expected QALYs gained for both sequences increase as

well. If ρA ≤ 0.68, then prescribing sequence ⟨BA⟩ results in higher expected QALYs gain.

This is intuitive because the lower probability of effectiveness for treatment A outweighs

its advantages in the length of delay and reward/cost. The value functions intersect at

ρA = 0.68. If ρA > 0.68, then sequence ⟨AB⟩ is preferred, and the difference in QALYs

between the two sequences increases as ρA becomes larger.

Recall that in Theorem 10, we establish a sufficient condition (4.9) under which it is

optimal to prescribe treatment A first. Given the model parameters in this example, the

lower bound for ρA is ρ̄ = 0.69. It suggests that as long as ρA ≥ 0.69, treatment sequence

⟨AB⟩ is preferred, which is consistent with our numerical observations.

Table 4.1: Parameters for Example 1 in Figure 4.2

Parameter θ = A θ = B

ρθ (0,1) 0.9

dθ 15 16

Qθ
E(t)

50

1+ t2

4002

50

20.01(1+ t2

4002
)

qθ(·) [0.03,0.01,0.01] [0.02,0.01,0.01]

QθP (δ, t) 200
δ
√
t

Example 2. In this example, we assume treatment A dominates treatment B in terms

of probability of effectiveness, and length of delay (see model parameters in Table 4.3). We

assume qA(δ) = µqB(δ) for all δ ∈ ∆, and QA
E(t) = µQB

E(t) for all t. Figure 4.3 depicts the

total expected QALYs gained by the patient if on treatment sequence ⟨AB⟩ or ⟨BA⟩ as a

function of µ. The linear relationship between the expected QALYs and µ can be observed

from (4.5) given all other parameters fixed. If µ ≤ 0.874, then prescribing sequence ⟨BA⟩
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Table 4.2: Results for Example 1 in Figure 4.2

Function X = AB X = BA

f
⟨X⟩
1 24.37 24.17

f
⟨X⟩
2 23.53 23.55

f
⟨X⟩
3 3.97 3.91

( )

Figure 4.2: Preference of treatment sequence vs. ρA. Thus, if ρA ≤ 0.68, then sequence

⟨BA⟩ is preferred. Similarly, if ρA > 0.68, then sequence ⟨AB⟩ is preferred. The sufficient

condition provided in Theorem 10 is labelled as ρ̄ = 0.69.
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results in a larger expected QALYs gain. The reason is that the higher cost for treatment

A outweighs its advantages in the length of delay and the probability of effectiveness. The

value functions intersect at µ = 0.874. If µ > 0.874, then sequence ⟨AB⟩ is preferred, and

the difference in QALYs between the two sequences increases as µ becomes larger.

Recall that in Theorem 11, we derive a necessary and sufficient condition under which

it is optimal to prescribe treatment A first. Given model parameters in this example, the

value obtained by (4.10) is µ∗ = 0.874, which coincides with our numerical observation.

Table 4.3: Parameters for Example 2 in Figure 4.3

Parameter θ = A θ = B

ρθ 0.9 0.3

dθ 4 6

Qθ
E(t) µ ∈ (0, 1.2] 2500

1+ t6

2006

qθ(·) µ ∈ (0, 1.2] [0.2,0.1,0.1]

QθP (δ, t) 1000

δ(1+ t6

2006
)

Example 3. In this example, we assume treatment A dominates treatment B in terms of

probability of effectiveness, and reward/cost (see model parameters in Table 4.4). We fix dB

to be 5, and increase dA from 1 to 40. Figure 4.4 depicts the total expected QALYs gained

by the patient if on treatment sequence ⟨AB⟩ or ⟨BA⟩ as a function of dA. Observe that

both value functions are non-linear functions of dA, which is different from Examples 1 and 2.

As dA increases, the expected QALYs gained for both sequences decrease. If dA ≤ 28, then

prescribing sequence ⟨AB⟩ results in a larger expected QALYs gain. The value functions

intersect after dA = 28. If dA > 28, then sequence ⟨BA⟩ is preferred to ⟨AB⟩. This is

intuitive because the longer length of delay for treatment A outweighs its advantages in

the reward/cost and the probability of effectiveness. In this example, d̄A = 28, which is

consistent with Lemma 6.
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( )

Figure 4.3: Preference of treatment sequence vs. µ. Thus, if µ ≤ 0.874, then sequence ⟨BA⟩

is preferred. Similarly, if µ > 0.874, then sequence ⟨AB⟩ is preferred. The necessary and

sufficient condition provided in Theorem 11 coincides µ∗ = 0.874.

Table 4.4: Parameters for Example 3 in Figure 4.4

Parameter θ = A θ = B

ρθ 0.8 0.7

dθ {1,. . . ,40} 5

Qθ
E(t)

1000

1+ t6

2006

1000√
2(1+ t6

2006
)

qθ(·) [0.02,0.01,0.01] [0.01,0.01,0.01]

QθP (δ, t) 200
δt
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( )

Figure 4.4: Preference of treatment sequence vs. dA. Thus, if dA ≤ 28, then sequence ⟨AB⟩

is preferred. If dA > 28, then sequence ⟨BA⟩ is preferred.
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5.0 CONCLUDING REMARKS AND FUTURE WORK

In this dissertation, we address three problems concerning optimal planning of maintenance

activities in different scenarios, motivated by current healthcare practices. We formulate

three maintenance optimization models, and each considers a novel setting which has not

been examined before in the literature.

Chapter 2 is inspired by various remote monitoring applications that have become preva-

lent in recent years. We develop a stylized model, in which the patients’ data collected

remotely corresponds to an imperfect inspection, each scheduled check up for the patient

corresponds to a PM action and each unscheduled visit corresponds to RM. We focus on de-

termining the optimal frequency and quantity of imperfect inspections between PM actions

so that the total expected cost rate incurred for the patient is minimized over an infinite

horizon. One direction for future research would be to investigate modeling extensions that

incorporate various practical considerations (e.g., resource constraints, imperfect mainte-

nance outcome, and adverse events) and more complex types of cost functions arising in

these real-life situations.

Chapter 3 studies optimal maintenance scheduling in anticipation of possible unpunctual

PM actions. We are motivated by a healthcare problem in which patients may not adhere to

the prescribed screening to detect early stage cancer (e.g., American Cancer Society suggests

women with age 45 to 54 should get mammograms every year [1], but women’s compliance

with mammography guidelines is low [56]). The consideration of unpunctuality is novel,

as in majority of the maintenance optimization literature, PM actions are assumed to be

always timely. We provide a thorough analysis of the optimal adjustment of prescribed PM

actions for age replacement policies. Future work could first extend the current model to

more complex systems and other types of maintenance policies. More general models could

79



also consider dependence between the scheduled PM interval and the unpunctual behavior

of the maintenance worker; for example, scheduling a longer PM interval could increase the

likelihood and/or magnitude of deviation from the prescribed PM time.

Finally, in Chapter 4 we are motivated by the current practice for treating chronic dis-

eases. We aim to determine the optimal sequence of two treatments and develop a stylized

model. Our model considers multiple trade-offs of three treatment-specific characteristics.

Future research could focus on more treatment choices, along with the development of more

sophisticated sequential decision-making models that relax some of our assumptions.
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APPENDIX

PROOFS

A.1 PROOFS FOR CHAPTER 2

Derivation of (2.7) and (2.8). First, we derive the following four equalities:

n∑
i=1

γi = FX(nt)− FX((n− 1)t) + FX((n− 1)t)

− FX((n− 2)t) + · · ·+ FX(t)− FX(0)

= FX(nt); (A.1.1)

n∑
i=1

i · γi = FX(nt)− FX((n− 1)t) + 2FX((n− 1)t)

− 2FX((n− 2)t) + · · ·+ nFX(t)− nFX(0)

=
n∑

i=1

FX(it); (A.1.2)

n∑
i=1

γi

i∑
j=1

(1− p)j =

(
FX(nt)− FX((n− 1)t)

)
1∑

j=1

(1− p)j

+

(
FX((n− 1)t)− FX((n− 2)t)

)
2∑

j=1

(1− p)j

+ . . . +

(
FX(t)− FX(0)

)
n∑

j=1

(1− p)j
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=
n∑

i=1

FX(it)(1− p)n−i+1; (A.1.3)

γ0 + F̄X((n+ 1)t) = FX((n+ 1)t)− FX(nt) + F̄X((n+ 1)t)

= 1− FX(nt). (A.1.4)

Using (A.1.1)-(A.1.4) to replace the corresponding terms in E[L], we obtain that:

E[L] = t

(
(n+ 1)

n∑
i=1

γi −
n∑

i=1

i · γi +
n∑

i=1

γi

i∑
j=1

(1− p)j

)
+ (n+ 1)t

(
γ0 + F̄X((n+ 1)t)

)

= t

(
(n+ 1)FX(nt)−

n∑
i=1

FX(it) +
n∑

i=1

FX(it)(1− p)n−i+1

)
+ (n+ 1)t

(
1− FX(nt)

)

= (n+ 1)t− t

(
n∑

i=1

FX(it)−
n∑

i=1

FX(it)(1− p)n−i+1

)
,

which completes derivation of (2.7).

Next, we need the following two equalities:

n∑
i=0

∫ (n−i+1)t

(n−i)t

(n− i+ 1)tfX(x)dx =

t

n∑
i=0

(n− i+ 1)

(
FX((n− i+ 1)t)− FX((n− i)t)

)

= t

(
(n+ 1)FX((n+ 1)t)− (n+ 1)FX(nt)

+ nFX(nt)− nFX((n− 1)t) + · · ·+ FX(t)− FX(0)

)

= (n+ 1)tFX((n+ 1)t)− t

n∑
i=1

FX(it), (A.1.5)

and

n∑
i=0

∫ (n−i+1)t

(n−i)t

xfX(x)dx =

∫ (n+1)t

0

xfX(x)dx

= (n+ 1)tFX((n+ 1)t)−
∫ (n+1)t

0

FX(x)dx. (A.1.6)
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Based on (A.1.5) and (A.1.6), we derive the following equality:

n∑
i=0

∫ (n−i+1)t

(n−i)t

(
(n− i+ 1)t− x

)
fX(x)dx

= −t

n∑
i=1

FX(it) +

∫ (n+1)t

0

FX(x)dx. (A.1.7)

Finally, using (A.1.1)-(A.1.7) to replace the corresponding terms in E[C], we obtain that:

E[C] = c1 + c2

[
n

n∑
i=1

γi −
n∑

i=1

i · γi +
n∑

i=1

γi

i−1∑
j=0

(1− p)j + n

(
γ0 + F̄X((n+ 1)t)

)]

+λ
n∑

i=0

(∫ (n−i+1)t

(n−i)t

((n− i+ 1)t− x)fX(x)dx+ γit
i∑

j=1

(1− p)j

)
+ ζ

n∑
i=0

γi

+
n∑

i=0

∫ (n−i+1)t

(n−i)t

(
i∑

k=0

pik ×
∫ (n−i+1)t−x+kt

0

θ(u)du

)
fX(x)dx

= c1 + c2

[
nFX(nt)−

n∑
i=1

FX(it) +
n∑

i=1

FX(it)(1− p)n−i + n(1− FX(nt))

]

+λ

(
− t

n∑
i=1

FX(it) +

∫ (n+1)t

0

FX(x)dx+ t
n∑

i=1

FX(it)(1− p)n−i+1

)
+ ζFX((n+ 1)t)

+
n∑

i=0

γiE

[∫ Di

0

θ(u)du

]

= c1 + c2

(
n−

(
n∑

i=1

FX(it)−
n∑

i=1

FX(it)(1− p)n−i

))

+λ

(∫ (n+1)t

0

FX(x)dx− t

(
n∑

i=1

FX(it)−
n∑

i=1

FX(it)(1− p)n−i+1

))
+ ζFX((n+ 1)t)

+
n∑

i=0

γiE

[∫ Di

0

θ(u)du

]
,

where

pik =

(1− p)k · p, if k < i;

(1− p)i · 1, if k = i.

and

E

[∫ Di

0

θ(u)du

]
=

∫ (n−i+1)t

(n−i)t

(
i∑

k=0

pik ×
∫ (n−i+1)t−x+kt

0

θ(u)du

)
fX(x)

γi
dx,
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and

E[Di] =

∫ (n−i+1)t

(n−i)t

((n− i+ 1)t− x)
fX(x)

γi
dx+ t

i∑
j=1

(1− p)j.

which completes derivation of (2.8).

Proof of Proposition 1. From lim
t→+∞

F (it) = 1, ∀i = 1, 2, ..., n, it follows that

lim
t→+∞

N(t, n) = n−
n∑

i=1

(1− p)n−i, (A.1.8)

lim
t→+∞

M(t, n) = n−
n∑

i=1

(1− p)n−i+1. (A.1.9)

Next to show that

lim
t→+∞

Z(t, n) = η, (A.1.10)

we consider two cases.

Case 1 (i < n):

For t → +∞, γi → 0. If k = 0, then

lim
t→+∞

∫ (n−i+1)t

(n−i)t

pik

∫ (n−i+1)t−x+kt

0

θ(u)fX(x)dudx

≤ lim
t→+∞

∫ (n−i+1)t

(n−i)t

pi0

∫ t

0

θ(u)fX(x)dudx ≤ pi0ηγi = 0.

If 0 < k ≤ i, then

lim
t→+∞

∫ (n−i+1)t

(n−i)t

pik

∫ (n−i+1)t−x+kt

0

θ(u)fX(x)dudx = pikηγi = 0.

Thus, we conclude that

lim
t→+∞

n−1∑
i=0

∫ (n−i+1)t

(n−i)t

(
i∑

k=0

pik ×
∫ (n−i+1)t−x+kt

0

θ(u)du

)
fX(x)dx = 0. (A.1.11)
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Case 2 (i = n):

For t → +∞, γn → 1, i.e., the probability that a hidden failure occurs within the first IPI

interval is 1. If k = 0, then

lim
t→+∞

∫ (n−i+1)t

(n−i)t

pik

∫ (n−i+1)t−x+kt

0

θ(u)fX(x)dudx

= lim
t→+∞

∫ t

0

pn0

∫ t−x

0

fX(x)θ(u)dudx

= lim
t→+∞

∫ t

0

pn0

∫ t−u

0

fX(x)θ(u)dxdu

= lim
t→+∞

[ ∫ ∆

0

pn0FX(t− u)θ(u)du+

∫ t

∆

pn0FX(t− u)θ(u)du
]
.

From Assumption A1,

lim
t→+∞

∫ ∆

0

pn0FX(t− u)θ(u)du = pn0η, (A.1.12)

and

lim
t→+∞

∫ t

∆

pn0FX(t− u)θ(u)du ≤ lim
t→+∞

∫ t

∆

pn0θ(u)du = 0. (A.1.13)

If 0 < k ≤ n, then

lim
t→+∞

∫ (n−i+1)t

(n−i)t

pik

∫ (n−i+1)t−x+kt

0

θ(u)fX(x)dudx

= lim
t→+∞

∫ t

0

pnk

∫ (k+1)t−x

0

θ(u)fX(x)dudx

= pnkηγn = pnkη. (A.1.14)

From (A.1.12)-(A.1.14), we obtain

lim
t→+∞

∫ t

0

n∑
k=0

pnk

∫ (k+1)t−x

0

θ(u)fX(x)dudx = η. (A.1.15)

Combining the results of (A.1.11) and (A.1.15), we obtain (A.1.10). Hence, for large enough

t, we have

E[L] ≈

(
1 +

n∑
i=1

(1− p)n−i+1

)
t, (A.1.16)
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E[C] ≈ c1 + c2

n∑
i=1

(1− p)n−i − λ

∫ (n+1)t

0

F̄X(x)dx

+λ

(
1 +

n∑
i=1

(1− p)n−i+1

)
t+ ζ + η. (A.1.17)

The result follows from the fact that lim
t→+∞

∫ t

0
F̄X(x)dx = E[X] < +∞, ζ < +∞ and η < +∞.

Proof of Proposition 2. From (A.1.16) and (A.1.17) in the proof of Proposition 1, we

know that for sufficiently large t,

Ω(t, 0) ≈
c1 − λ

∫ t

0
F̄X(x)dx+ λt+ ζ + η

t

= λ+
c1 − λE[X] + ζ + η

t
. (A.1.18)

When c1 + ζ + η < λE[X], the function Ω(t, 0) is increasing for sufficiently large values of

t and converges to λ by Proposition 1. Note also that lim
t→+0

Ω(t, 0) = +∞. Therefore, CP0

has a finite optimal solution by the continuity property of Ω(t, 0) for t > 0.

Next, we show that if ζ = η = 0 and c1 < λE[X], then Ω(t, 0) is quasiconvex. Observe

that

∂Ω(t, 0)

∂t
=

−c1 + λ

(
FX(t)t−

∫ t

0
FX(x)dx

)
t2

=
−c1 + λ

∫ t

0
xfX(x)dx

t2
.

Define

g(t) =
−c1 + λ

∫ t

0
xfX(x)dx

t2
.

Then

lim
t→+0

g(t) = −∞ and lim
t→+∞

g(t) = 0.

Consider the numerator of g(t) and define

h(t) = −c1 + λ

∫ t

0

xfX(x)dx.
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Observe that h(t) is monotonically increasing, h(0) < 0 and

lim
t→+∞

∫ t

0

xfX(x)dx = E[X].

If c1 < λE[X], then

lim
t→+∞

h(t) = −c1 + λE[X] > 0.

Therefore, as h(t) is a continuous function, then there exists τ , such that h(τ) = 0 and

g(τ) = 0. Moreover, if t ∈ (τ,+∞), then g(t) > 0; if t ∈ (0, τ), then g(t) < 0. These

observations imply the result.

Proof of Proposition 3. From (A.1.16) and (A.1.17) in the proof of Proposition 1, we

know that for sufficiently large t,

Ω(t, n) ≈ λ+
c1 + c2

∑n
i=1(1− p)n−i − λE[X] + ζ + η

(1 +
∑n

i=1(1− p)n−i+1) t
.

When c1+c2
∑n

i=1(1−p)n−i+ζ+η < λE[X], the function Ω(t, n) is increasing for sufficiently

large t. Thus, the result can be shown using arguments similar to those used in the proof of

Proposition 2.

Proof of Proposition 4. To show necessity of (2.13), observe from (2.8) that if (2.13)

does not hold, then

E[C] ≥ c1 + c2

(
n−N(t, n)

)
− λ

∫ (n+1)t

0

F̄X(x)dx+ λ

(
(n+ 1)t− tM(t, n)

)
(A.1.19)

>

(
c1 + c2

n∑
i=1

(1− p)n−i − λE[X]

)
+ λ

(
(n+ 1)t− tM(t, n)

)
(A.1.20)

≥ λ

(
(n+ 1)t− tM(t, n)

)
= λE[L].
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Where (A.1.19) is true because ζ and θ(u) are both non-negative, and (A.1.20) holds due

to the fact that N(t, n) < n−
∑n

i=1(1−p)n−i and
∫ (n+1)t

0
F̄X(x)dx <

∫ +∞
0

F̄X(x)dx = E[X] by

Assumption A4. Note that E[L] > 0. Then the necessary result follows from Proposition 1.

Proof of Corollary 1. The results follows directly from Propositions 3 and 4.

Proof of Proposition 5. Observe from (2.8) that E[C] can be re-written as follows:

E[C] = c1 + c2(n−N(t, n)) + ζFX((n+ 1)t)

+ λ

(
(n+ 1)t−

∫ (n+1)t

0

F̄X(x)dx− tM(t, n)

)

= c1 + c2(n−N(t, n))− λ

∫ (n+1)t

0

F̄X(x)dx+ λE[L] + ζFX((n+ 1)t),

which implies that Ω(t, n) is given by:

Ω(t, n) = λ+ c2
n−N(t, n)

E[L]
+

c1 − λ
∫ (n+1)t

0
F̄X(x)dx+ ζFX((n+ 1)t)

E[L]
. (A.1.21)

Consider the second term in (A.1.21). Using (2.7) we obtain:

c2
n−N(t, n)

E[L]
= c2

n−N(t, n)

(n+ 1)t− tM(t, n)
. (A.1.22)

Because t is fixed, then nt → +∞ as n → +∞. Thus, FX(nt) → 1. Then M(t, n), given by

(2.4), can be approximated for large enough n as follows:

M(t, n) ≈
Ñ∑
i=1

FX(it) + (n− Ñ)

−
Ñ∑
i=1

FX(it)(1− p)n−i+1 −
n∑

i=Ñ+1

(1− p)n−i+1

≈
Ñ∑
i=1

FX(it) + (n− Ñ)− 1− p

p
, (A.1.23)
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where Ñ is a large enough constant. Similarly, we derive that:

N(t, n) ≈
Ñ∑
i=1

FX(it) + (n− Ñ)− 1

p
. (A.1.24)

After substituting (A.1.23)-(A.1.24) into (A.1.22) we conclude that if n → +∞, then

c2
n−N(t, n)

E[L]
→ c2

t
. (A.1.25)

Finally, the required result follows from (A.1.21) using (A.1.25) and the fact that
∫ (n+1)t

0
F̄X(x)dx →

E[X] as n → +∞.

Proof of Lemma 1. Note that (2.6) can be re-written as:

Z(t, n) =
n∑

i=0

i∑
k=0

pik

×
∫ (n−i+1)t

(n−i)t

∫ (n−i+1)t−x+kt

0

θ(u)fX(x)dudx.

Given t > ∆ and using Assumption A1, we have

n∑
i=0

i∑
k=1

pik

∫ (n−i+1)t

(n−i)t

∫ (n−i+1)t−x+kt

0

θ(u)fX(x)dudx

=
n∑

i=0

i∑
k=1

pik

∫ (n−i+1)t

(n−i)t

∫ ∆

0

θ(u)fX(x)dudx

=
n∑

i=0

i∑
k=1

pikη

∫ (n−i+1)t

(n−i)t

fX(x)dx

=
n∑

i=0

i∑
k=1

pikηγi = (1− p)η. (A.1.26)

If k = 0 and t > ∆, then

n∑
i=0

pik

∫ (n−i+1)t

(n−i)t

∫ (n−i+1)t−x+kt

0

θ(u)fX(x)dudx

=p

n∑
i=0

∫ (n−i+1)t

(n−i)t

∫ (n−i+1)t−x

0

θ(u)fX(x)dudx
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=p
n∑

i=0

∫ t

0

θ(u)

∫ (n−i+1)t−u

(n−i)t

fX(x)dxdu

=p
n+1∑
i=1

∫ t

0

θ(u)

(
FX(it− u)− FX((i− 1)t)

)
du (A.1.27)

Note that ∫ t

0

θ(u)

(
FX(it− u)− FX((i− 1)t)

)
du

<

∫ t

0

θ(u)

(
FX(it)− FX((i− 1)t)

)
du

= η

(
FX(it)− FX((i− 1)t)

)
,

and

lim
n→+∞

n∑
i=1

η

(
FX(it)− FX((i− 1)t)

)
= η. (A.1.28)

Therefore, by (A.1.27)-(A.1.28) we have that

lim
n→+∞

p

n+1∑
i=1

∫ t

0

θ(u)
(
FX(it− u)− FX((i− 1)t)

)
du

also exists and is finite. Finally, the required result follows from (A.1.26).

Proof of Proposition 6. The result follows directly from Lemma 1 using the arguments

similar to those used in the proof of Proposition 5.

Derivation of (2.20). Equality (2.20) follows from (A.1.26) and (A.1.27) derived in the

proof of Lemma 1.

Proof of Proposition 7. For n = 1 function Ω(t, n) simplifies to

Ω(t, 1) =
c1 + c2 + λ

(
−
∫ 2t

0
F̄X(x)dx+ 2t− tpFX(t)

)
2t− tpFX(t)
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=
c1 + c2 − λ

∫ 2t

0
F̄X(x)dx

2t− tpFX(t)
+ λ,

and its first derivative is given by:

∂Ω(t, 1)

∂t
=

−2λF̄X(2t)(2t− tpFX(t))

(2t− tpFX(t))2
(A.1.29)

−
(c1 + c2 − λ

∫ 2t

0
F̄X(x)dx)

(2t− tpFX(t))2
×

(
2− pFX(t)− tpfX(t)

)
.

Denote the numerator part of ∂Ω(t, 1)/∂t by Γ(1)(t) (note that both terms in (A.1.29) have

the same denominator). Then it is easy to show lim
t→+0

Γ(1)(t) < 0. Moreover, lim
t→+∞

Γ(1)(t) =

−(c1 + c2 − λE(x))(2− p) > 0 by (2.22). Thus, it is enough to show that Γ(1)(t) = 0 has a

unique solution for t ∈ (0 +∞).

Recall that for the Weibull distribution given the shape and scale parameters α and β,

respectively, we have:

f ′
X(t) = α(α− 1)

tα−2

βα
e−( t

β
)α − (α

tα−1

βα
)2e−( t

β
)α . (A.1.30)

Consider the term 2− pFX(t)− tpfX(t) in (A.1.29). Specifically,

2− pFX(t)− tpfX(t) ≥ 2− p− αp
( t
β
)α

e(
t
β
)α

≥ 2− p− αp
1

e
> 0, (A.1.31)

which follows from (2.23) and the observation that function (t/β)α/e(t/β)
α
achieves its max-

imum for (t/β)α = 1.

Next, Γ(1)(t) can be re-written as:

Γ(1)(t)

= (2− pFX(t)− tpfX(t))

([
−2F̄X(2t)(2t− tpFX(t))

2− pFX(t)− tpfX(t)

+

∫ 2t

0

F̄X(x)dx

]
λ− (c1 + c2)

)
.

Define

Γ(2)(t) =

∫ 2t

0

F̄X(x)dx− 2F̄X(2t)(2t− tpFX(t))

2− pFX(t)− tpfX(t)

91



From (A.1.31) we conclude that Γ(1)(t) = 0 has a unique solution if Γ(2)(t) is increasing, i.e.,

its first derivative is positive for t > 0.

Let D(t) = 2t − tpFX(t). Then D′(t) = 2 − pFX(t) − tpfX(t) and D′′(t) = −2pfX(t) −

tpf ′
X(t). Taking the first derivative of Γ(2)(t), we obtain:

(
Γ(2)(t)

)′
= 2F̄X(2t) +

2F̄X(2t)D(t)D′′(t)

(D′(t))2

−−4fX(2t)D(t) + 2F̄X(2t)D
′(t)

D′(t)

=
4fX(2t)D(t)D′(t) + 2F̄X(2t)D(t)D′′(t)

(D′(t))2
.

Note that D(t) > 0 for t > 0. Thus, it is sufficient to show that the following term:

Λ(1)(t) = 4fX(2t)D
′(t) + 2F̄X(2t)D

′′(t)

= 4fX(2t)(2− pFX(t)− tpfX(t))

+ 2F̄X(2t)(−2pfX(t)− tpf ′
X(t)), (A.1.32)

is strictly positive.

Substituting (A.1.30) into (A.1.32) we obtain:

Λ(1)(t) = 2αe−( 2t
β
)α · t

α−1

βα
·

(
2α+1 − 2αp+ e−( t

β
)α ×

(
2αp− 2αpα

tα

βα
− p− αp+ pα

tα

βα

))
.

Then

Λ(2)(t) = 2α+1 − 2αp+ e−( t
β
)α ×

(
2αp− 2αpα

tα

βα
− p− αp+ pα

tα

βα

)

= 2α+1 − 2αp+
2αp− p− pα

e(
t
β
)α

− (2α − 1)αp
( t
β
)α

e(
t
β
)α

≥ 2α+1 − 2αp− (2α − 1)αp
1

e
, (A.1.33)

≥ 2α(2− p)− (2α − 1)(2− p)

= 2− p > 0,
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where (A.1.33) holds because 2α−1−α ≥ 0 for α ≥ 1 and the fact that function (t/β)α/e(t/β)
α

obtains its maximum for (t/β)α = 1. The last inequality follows from (2.23). Therefore,

Λ(1)(t) > 0 and the result follows.

A.2 PROOFS FOR CHAPTER 3

Proof of Proposition 8. We follow the same argument as in [16] (see Page 97). First,

observe that m(T ) is continuous on [0,+∞). Let {Ti} be an infinite sequence such that

max{0,−µY } < T1 < T2 < · · · , with hX(Ti−1) < hX(Ti) for i = 2, 3, . . . , and limi→+∞ hX(Ti) =

+∞. Such a sequence exists because hX(t) is strictly increasing and unbounded byA2. Then

it is true that

m(Ti) = (Ti + µY )

∫ b

a

hX(Ti + y)fY (y)dy −
∫ b

a

∫ Ti+y

0

hX(x)dxfY (y)dy

≥ (T1 + µY )

∫ b

a

hX(Ti + y)fY (y)dy −
∫ b

a

∫ T1+y

0

hX(x)dxfY (y)dy → +∞,

because
∫ Ti+y

T1+y
hX(x)dx ≤ (Ti − T1)hX(Ti + y) by A2. Thus, m(T ) is unbounded as T ap-

proaches +∞. It is straightforward to verify that m(T ) is increasing in T , since the first

derivative of m(T ) is

m′(T ) = (T + µY )

∫ b

a

h′
X(T + y)fY (y)dy +

∫ b

a

hX(T + y)fY (y)dy −
∫ b

a

d

dT

∫ T+y

0

hX(x)fY (y)dxdy

= (T + µY )

∫ b

a

h′
X(T + y)fY (y)dy +

∫ b

a

hX(T + y)fY (y)dy −
∫ b

a

hX(T + y)fY (y)dy

= (T + µY )

∫ b

a

h′
X(T + y)fY (y)dy > 0, (A.2.1)

and the first derivative of the hazard rate function h′
X(x) > 0 by A2. The uniqueness of the

solution to (3.7) is guaranteed when the limiting value of lim
T→max{−a,0}

m(T ) is less than k1.

Otherwise, inf ΩA(T ) = limT→+max{−a,0}Ω
A(T ).
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Given the unique solution T ∗ to (3.7), rearranging terms yields

cm

∫ b

a

hX(T
∗ + y)fY (y)dy =

cm
∫ b

a

∫ T ∗+y

0
hX(x)fY (y)dxdy + cp

T ∗ + µY

.

It can be easily seen that ΩA(T ∗) = cm
∫ b

a
hX(T

∗ + y)fY (y)dy.

Proof of Proposition 9. Based on Jensen’s Inequality, we know that if µY = 0, then∫ b

a

∫ T+y

0

hX(x)dxfY (y)dy ≥
∫ T+µY

0

hX(x)dx =

∫ T

0

hX(x)dx.

Again, applying Jensen’s Inequality, the concavity of hX(t) implies∫ b

a

hX(T + y)fY (y)dy ≤ hX(T + µY ) = hX(T ).

Therefore m(T ) ≤ m̃(T ) by definitions (3.8) and (3.9) for any T that is feasible for both

m(T ) and m̃(T ). The result follows directly.

Proof of Theorem 2. First, recall that m̃(T ) and m(T ) are increasing. From (3.6)-(3.9),

if we can show that for all T , m(T ) > m̃(T ), then T ∗ < T̃ ∗. The first derivatives of m(T )

and m̃(T ) are given by

m′(T ) = (T + µY )

∫ b

a

h′
X(T + y)fY (y)dy and m̃′(T ) = h′

X(T )T,

respectively. If 0 ≤ a < b, then µY > 0, with hX(t) convex which implies

m′(T ) = (T + µY )

∫ b

a

h′
X(T + y)fY (y)dy > T

∫ b

a

h′
X(T )fY (y)dy = h′

X(T )T = m̃′(T ).

Thus, m(T ) is increasing faster than m̃(T ), and both problems have the same feasible region.

Next, we compare the limiting values of lim
T→+0

m(T ) and lim
T→+0

m̃(T ). ByA1, lim
T→+0

m̃(T ) =

0. Hence, by (3.11), lim
T→+0

m(T ) ≥ lim
T→+0

m̃(T ).
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Coupled with the fact that m′(T ) > m̃′(T ), we conclude that m(T ) > m̃(T ) for all T > 0,

which implies T ∗ < T̃ ∗.

Proof of Corollary 2. Note that (3.11) implies

µY

∫ b

a

hX(y)fY (y)dy −
∫ b

a

∫ y

0

hX(x)fY (y)dxdy =

∫ b

a

(
µY hX(y)−

∫ y

0

hX(x)dx

)
fY (y)dy ≥ 0,

(A.2.2)

and a sufficient condition for (A.2.2) is

µY hX(y)−
∫ y

0

hX(x)dx ≥ 0, for any y ∈ [a, b]. (A.2.3)

By A1 and the assumption that hX(x) is convex, it is obvious that∫ y

0

hX(x)dx ≤ 1

2
hX(y)y, ∀ y ≥ 0.

If µY ≥ b
2
, then µY ≥ y

2
for any y ∈ [a, b], and therefore (A.2.3) holds. The result follows

directly.

Proof of Theorem 3. First, we prove lim
T→−a

m(T ) < m̃(−a). Note that

lim
T→−a

m(T ) = (−a+ µY )

∫ b

a

hX(−a+ y)fY (y)dy −
∫ b

a

∫ −a+y

0

hX(x)fY (y)dxdy, (A.2.4)

and

m̃(−a) =hX(−a)(−a)−
∫ −a

0

hX(x)dx

=(−a+ µY )hX(−a)−
(∫ −a

0

hX(x)dx+ hX(−a)µY

)
. (A.2.5)

Observe that hX(−a) >
∫ b

a
hX(−a + y)fY (y)dy for a < b ≤ 0. Thus, comparing (A.2.4)

and (A.2.5), if we can show that∫ −a

0

hX(x)dx+ hX(−a)µY ≤
∫ b

a

∫ −a+y

0

hX(x)fY (y)dxdy, (A.2.6)
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then the result follows directly. Recall that
∫ T

0
hX(x)dx is convex ( d2

dT 2

∫ T

0
hX(x)dx =

h′
X(T ) > 0 by A2), hence, based on Jensen’s Inequality,∫ b

a

∫ −a+y

0

hX(x)dxfY (y)dy ≥
∫ −a+µY

0

hX(x)dx

=

∫ −a

0

hX(x)dx−
∫ −a

−a+µY

hX(x)dx. (A.2.7)

Clearly,

−
∫ −a

−a+µY

hX(x)dx ≥ −hX(−a)(−µY ) = hX(−a)µY . (A.2.8)

Inequality (A.2.8) is by A2 and the fact that hX(x) is convex. Thus, (A.2.7) and (A.2.8)

imply (A.2.6), and we have lim
T→−a

m(T ) ≤ m̃(−a).

The remainder of the proof is similar to that of Theorem 2. Specifically, using (A.2.1)

we have

m′(T ) = (T + µY )

∫ b

a

h′
X(T + y)fY (y)dy <

∫ b

a

h′
X(T )TfY (y)dy = h′

X(T )T = m̃′(T ),

where the inequality follows by the negativity of a and b. Thus, m(T ) is increasing slower

than m̃(T ). As a < b ≤ 0, we have T > max{−a, 0}, and there are two possible cases:

(i) if m̃(−a) ≥ k1, then T̃ ∗ ≤ −a, which implies that T̃ ∗ < T ∗.

(ii) if m̃(−a) < k1, then both T̃ ∗ and T ∗ are greater than −a. We already know that

lim
T→−a

m(T ) < m̃(−a). From m′(T ) < m̃′(T ), we conclude that m(T ) < m̃(T ) for any given

T > −a, and T ∗ > T̃ ∗ follows directly.

Lemma 7. (Edmundson-Madansky inequality ([40])) Let Y ∈ [a, b] have a c.d.f. FY (y) and

finite mean µY . Suppose ϕ is a bounded convex function of y ∈ [a, b]. An upper bound for

E[ϕ(Y )] is

E[ϕ(Y )] ≤ ϕ(b)− ϕ(a)

b− a
(µY − a) + ϕ(a).
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Proof of Theorem 4. The first inequality in (3.12) is by Theorem 1. To prove the

second equality, recall that Ω̃A(T̃ ∗) = cmhX(T̃
∗) ([16]). If T̃ ∗−µY is feasible to optimization

problem (3.1), then it is obvious that ΩA(T ∗) ≤ ΩA(T̃ ∗ − µY ). Therefore, using (3.5) we

have the second inequality

ΩA(T ∗)

Ω̃A(T̃ ∗)
≤

cm
∫ b

a

∫ T̃ ∗−µY +y

0
hX(x)fY (y)dxdy + cp

cmhX(T̃ ∗)T̃ ∗
.

To obtain the third inequality, we apply the Edmundson-Madansky upper bound for the

convex function ϕ(y) =
∫ T+y

0
hX(x)dx (Lemma 7). The result follows directly.

Proof of Theorem 5. The first inequality in (3.13) follows from the fact that ΩA(T ∗) ≤

ΩA(T̃ ∗−µY ) if T̃
∗−µY is feasible to optimization problem (3.1). The second equality is based

on Theorem 1 and Ω̃A(T̃ ∗) = cmhX(T̃
∗). The third inequality is obtained by applying the

Edmundson-Madansky upper bound for the convex function ϕ(y) =
∫ T+y

0
hX(x)dx (Lemma 7).

The result follows directly.

Proof of Proposition 10. If α ≥ 2,multiply both sides of (3.16) by the standard deviation

of Y and Y α−1 (denoted by σY and σY α−1 , respectively), we have

(α− 1)µYE[Y
α−1] ≥ Cov(Y, Y α−1), (A.2.9)

where Cov(Y, Y α−1) is the covariance of random variables Y and Y α−1. If we add µYE[Y
α−1]

to both sides of (A.2.9), we have

αµYE[Y
α−1] ≥ E[Y α], (A.2.10)

which is equivalent to (3.11) if X ∼ Weibull(α, β).

Proof of Proposition 11. By setting α = 2 in equation (3.15), we obtain∫ b

a

(
2(T ∗ + y)(T ∗ + µY )− (T ∗ + y)2

)
fY (y)dy = k1β

2. (A.2.11)
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The terms of (A.2.11) can be expanded as follows∫ b

a

(
2(T ∗ + y)(T ∗ + µY )− (T ∗ + y)2

)
fY (y)dy = T ∗2 + 2µY T

∗ −
∫ b

a

(y2 − 2µY y)fY (y)dy

= (T ∗ + µY )
2 −

∫ b

a

(y − µY )
2fY (y)dy

= (T ∗ + µY )
2 − σ2

Y = k1β
2. (A.2.12)

The results follows from (A.2.12).

Proof of Proposition 12. Because fY (y) is symmetric w.r.t. y = 0, µY = 0. Expanding

the terms on the left hand side of (3.15), we have

∫ b

a

(
α(T ∗ + y)α−1T ∗ − (T ∗ + y)α

)
fY (y)dy

=
∫ b

a

(
αT ∗

(
(T ∗)α−1 +

∑α−1
i=1

(
α−1
i

)
yi(T ∗)α−1−i

)

−

(
(T ∗)α +

∑α−1
i=1

(
α
i

)
yi(T ∗)α−i + yα

))
fY (y)dy

= (α− 1)(T ∗)α +Q(T ) +W (T )−
∫ b

a
yαfY (y)dy,

where

Q(T ) =

⌈α−1
2

⌉∑
k=1

(
α

(
α− 1

2k − 1

)
−
(

α

2k − 1

))
(T ∗)α−(2k−1)

∫ b

a

y2k−1fY (y)dy

W (T ) =

⌊α−1
2

⌋∑
k=1

(
α

(
α− 1

2k

)
−
(
α

2k

))
(T ∗)α−(2k)

∫ b

a

y2kfY (y)dy.

The term Q(T ) can be discarded as it is equal to 0 by the symmetry of fY (y) w.r.t. y = 0.

Note that W (T ) ≥ 0, because α
(
α−1
p

)
−
(
α
p

)
≥ 0 ∀p ∈ Z+. In the two cases to be discussed

next, we show that W (T )−
∫ b

a
yαfY (y)dy ≥ 0.

Case 1: α is odd. We have
∫ b

a
yαfY (y)dy = 0.
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Case 2: α is even. The symmetry of fY (y) w.r.t. y = 0 also implies that b = −a > 0. Thus,

T ∗ > −a = b. Then the following inequalities hold:

(T ∗)α−(2k)

∫ b

a

y2kfY (y)dy ≥ (b)α−(2k)

∫ b

a

y2kfY (y)dy

≥
∫ b

a

|y|α−(2k) · |y|2kfY (y)dy =

∫ b

a

yαfY (y)dy.

Thus, for both cases, we have W (T ) −
∫ b

a
yαfY (y)dy ≥ 0. From (3.15), we obtain T ∗ ≤

( k1
α−1

)
1
αβ = T̃ ∗.

Proof of Proposition 13. First, we show n(T ) is monotone increasing if 1/
∫ b

a
F̄X(T +

y)dFY (y) is logarithmically convex. Taking the first derivative of n(T ), we have

n′(T ) = H′(T )G(T ) +H(T )G ′(T )−F ′
X(T )

= H′(T )G(T ) +H(T )

∫ b

a

F̄X(T + y)dFY (y)−
∫ b

a

fX(T + y)dFY (y)

= H′(T )G(T ) +
∫ b

a
fX(T + y)dFY (y)∫ b

a
F̄X(T + y)dFY (y)

∫ b

a

F̄X(T + y)dFY (y)−
∫ b

a

fX(T + y)dFY (y)

= H′(T )G(T ) +
∫ b

a

fX(T + y)dFY (y)−
∫ b

a

fX(T + y)dFY (y)

= H′(T )G(T ).

Clearly, G(T ) > 0 for any finite T by A2. Thus, if H′(T ) is positive, then n(T ) is strictly

increasing.

Note that if 1/
∫ b

a
F̄X(T + y)dFY (y) is strictly logarithmically convex, then

d2

dT 2

(
− log

∫ b

a

F̄X(T + y)dFY (y)

)
=

d

dT

(
−
∫ b

a
−fX(T + y)dFY (y)∫ b

a
F̄X(T + y)dFY (y)

)
= H′(T ) > 0.

Therefore, H′(T ) is positive, and n(T ) is strictly increasing. Next, it is easy to verify that

lim
T→+∞

H(T ) =
fX(T )

F̄X(T )
= hX(T ) → +∞,

lim
T→+∞

G(T ) = µX , and lim
T→+∞

FX(T ) = 1.
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If (3.22) holds, and n(T ) is strictly increasing with limT→+∞ n(T ) → +∞, then there exists

a unique solution to (3.21). Rearranging the terms of (3.21) yields

H(T ∗) =
FX(T

∗) + 1/(k2 − 1)

G(T ∗)
,

in which case

cr(1−1/k2)H(T ∗) =
(cr − cp)FX(T

∗) + cp
G(T ∗)

=

∫ b

a

(
crFX(T

∗ + y) + cpF̄X(T
∗ + y)

)
dFY (y)∫ b

a

∫ T ∗+y

0
F̄X(x)dxdFY (y)

= ΩB(T ∗).

Proof of Theorem 6. The first inequality in (3.23) follows from Theorem 1. To prove the

second equality, first recall that Ω̃B(T̃ ∗) = cr(1 − 1/k2)hX(T̃
∗) ([16]). If T̃ ∗ − µY is feasible

to optimization problem (3.1), then ΩB(T ∗) ≤ ΩB(T̃ ∗ − µY ). Therefore,

ΩB(T ∗)

Ω̃B(T̃ ∗)
≤ ΩB(T̃ ∗ − µY )

cr(1− 1/k2)hX(T̃ ∗)
.

To obtain the third inequality, first apply the Edmundson-Madansky upper bound for the

convex function ϕ(y) = −
∫ T̃ ∗−µY +y

0
F̄X(x)dx (Lemma 7), i.e.,

−
∫ b

a

∫ T̃ ∗−µY +y

0

F̄X(x)dxdFY (y) ≤ −N(T̃ ∗ − µY ) < 0,

where

N(T ) =

∫ T+b

T+a
F̄X(x)dx

b− a
(µY − a) +

∫ T+a

0

F̄X(x)dx.

Therefore,

ΩB(T ∗)

Ω̃B(T̃ ∗)
≤

cr + (cp − cr)
∫ b

a
F̄X(T̃

∗ − µY + y)dFY (y)

cr(1− 1/k2)hX(T̃ ∗)
∫ b

a

∫ T̃ ∗−µY +y

0
F̄X(x)dxdFY (y)

≤
cr + (cp − cr)

∫ b

a
F̄X(T̃

∗ − µY + y)dFY (y)

cr(1− 1/k2)hX(T̃ ∗)N(T̃ ∗ − µY )
.
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Observe that if cp − cr < 0, then a lower bound on
∫ b

a
F̄X(T̃

∗ − µY + y)fY (y)dy provides

an upper bound on (cp − cr)
∫ b

a
F̄X(T̃

∗ − µY + y)fY (y)dy. Note that F̄X(x) is monotone

decreasing, thus, ∫ b

a

F̄X(T̃
∗ − µY + y)fY (y)dy ≥ F̄X(T̃

∗ − µY + b), (A.2.13)

which completes the proof of the third equality.

However, the bound by applying (A.2.13) is loose in general. We can improve it by

exploiting the local concavity of F̄X(T̃
∗ − µY + y) w.r.t. y ∈ [a, b]. If X ∼ Weibull (α, β),

then

F̄X(t) = e−( t
β
)α ,

F̄ ′
X(t) = −fX(t) = −αtα−1

βα
e−( t

β
)α , and

F̄ ′′
X(t) = −f ′

X(t) = −αtα−2

βα
e−( t

β
)α(α− 1− αtα

βα
).

For t0 = (α−1
α

)
1
αβ, F̄ ′′

X(t
0) = 0, then F̄ ′′

X(t) ≤ 0 if t ≤ t0, and F̄ ′′
X(t) ≥ 0 if t ≥ t0, i.e.,

F̄X(t) is concave for t ∈ (0, t0] and convex in [t0,∞). Therefore, if T̃ ∗ − µY + b ≤ t0, then

F̄X(T̃
∗−µY + y) is concave w.r.t. y ∈ [a, b]. We can apply the Edmundson-Madansky upper

bound for the convex function ϕ(y) = −F̄X(T̃
∗ − µY + y), see Lemma 7,∫ b

a

F̄X(T̃
∗ − µY + y)fY (y)dy ≥ N̂(T̃ ∗ − µY ), where

N̂(T ) =
F̄X(T + b)− F̄X(T + a)

b− a
(µY − a) + F̄X(T + a).

The result follows directly.

Proof of Theorem 7. The first inequality in (3.25) follows from the fact that ΩB(T ∗) ≤

ΩB(T̃ ∗ − µY ) if T̃ ∗ − µY is feasible to the main optimization problem (3.1). The second

equality is based on Theorem 1 and Ω̃B(T̃ ∗) = cmhX(T̃
∗). The third inequality is ob-

tained by applying the Edmundson-Madansky upper bound for the convex function ϕ(y) =

−
∫ T+y

0
F̄X(x)dx (Lemma 7) together with the fact that F̄X(x) is monotone decreasing. To

improve the upper bound UB1(T̃ ∗), a similar approach can be used as in proof of Theorem 6.
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A.3 PROOFS FOR CHAPTER 4

First, we introduce an important result for some of the proofs in this chapter.

Lemma 8. (Puterman 1994) Let {xj}, {x′
j} be real-valued non-negative sequences satisfying

∞∑
j=k

xj ≥
∞∑
j=k

x′
j (A.3.1)

for all k, with equality holding in (A.3.1) for k = 0. Suppose vj+1 ≥ vj for j = 0, 1, . . . , then

∞∑
j=0

vjxj ≥
∞∑
j=0

vjx
′
j, (A.3.2)

where limits in (A.3.2) exist but may be infinite.

Proof of Lemma 2. Assume δ1 ≥ δ2. By Assumption A4, we have

D∑
δ′=k

P (d)(δ′|δ1) ≥
D∑

δ′=k

P (d)(δ′|δ2)

for all k ∈ ∆ and d ∈ Z+. Recall that by Assumption A3, qθ(δ) is nonincreasing in δ. Then,

by Lemma 8, it follows that

D∑
δ′=1

P (j)(δ′|δ1)(−qθ(δ′)) ≥
D∑

δ′=1

P (j)(δ′|δ2)(−qθ(δ′)), ∀j ∈ {1, 2, . . . , dθ}.

Therefore, r(θ, δ1) ≤ r(θ, δ2).

Proof of Theorem 8. Without loss of generality, assume that the optimal sequence to

prescribe is ⟨AB⟩. By Lemma 2, f
⟨AB⟩
1 (δ) is nonincreasing in δ.

Applying Lemma 8 and mimicking the proof of Lemma 2, we can also prove that f
⟨AB⟩
2 (δ)

is nonincreasing in δ. Similarly, we can show that f
⟨AB⟩
3 (δ) is nonincreasing in δ by exploiting

Assumption A5.
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Since V (δ) is a linear combination of f
⟨AB⟩
1 (δ), f

⟨AB⟩
2 (δ) and f

⟨AB⟩
3 (δ) with nonnegative

coefficients, the nonincreasing property of V (δ) in δ follows.

Proof of Lemma 3. First, we prove

f
⟨AB⟩
1 (δt0) ≥ f

⟨BA⟩
1 (δt0).

Based on Assumption A3 and the fact that qA(δ) ≥ qB(δ) for all δ ∈ ∆, and QA
E(t) ≥ QB

E(t)

for all t, we observe

QA
E(t0 + dA)−QA

E(t0 + dB) ≥ max
δ

qA(δ) · (dB − dA) ≥ max
δ

qB(δ) · (dB − dA). (A.3.3)

As dB ≥ dA and qA(δ) ≥ qB(δ) for all δ ∈ ∆, from (4.1) we have

r(B, δt0) =
dB∑
j=1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′) (A.3.4)

=
dA∑
j=1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′) +
dB∑

j=dA+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′)

≤
dA∑
j=1

D∑
δ′=1

P (j)(δ′|δt0)qA(δ′) + max
δ

qB(δ) ·
dB∑

j=dA+1

D∑
δ′=1

P (j)(δ′|δt0)

=
dA∑
j=1

D∑
δ′=1

P (j)(δ′|δt0)qA(δ′) + max
δ

qB(δ) · (dB − dA)

≤r(A, δt0) +QA
E(t0 + dA)−QA

E(t0 + dB), (A.3.5)

where the last inequality follows from (A.3.3). As QA
E(t0 + dB) ≥ QB

E(t0 + dB), then (A.3.5)

implies that

r(A, δ0) +QA
E(t0 + dA) =r(A, δ0) +QA

E(t0 + dA)−QA
E(t0 + dB) +QA

E(t0 + dB)

≥r(B, δt0) +QB
E(t0 + dB).

Next, we show

f
⟨BA⟩
1 (δt0) ≥ f

⟨AB⟩
2 (δt0).
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From Lemma 2 and A4, we observe that

r(B, δt0) ≥
D∑
δ=1

P (dA)(δ|δt0) · r(B, δ). (A.3.6)

Furthermore, we have

QB
E(t0 + dB)−QB

E(t0 + dA + dB)− r(A, δt0)

≥max
δ

qA(δ) · dA − r(A, δt0) ≥ 0, (A.3.7)

where the second inequality is by A3. Therefore,

f
⟨BA⟩
1 (δt0)− f

⟨AB⟩
2 (δt0)

=

(
r(B, δt0)−

D∑
δ=1

P (dA)(δ|δt0) · r(B, δ)

)
+

(
QB

E(t0 + dB)−QB
E(t0 + dA + dB)− r(A, δt0)

)
≥ 0,

which completes the proof.

Proof of Lemma 4. Define

L(u) =
dA∑
j=1

D∑
δ′=1

P (j)(δ′|δt0)qA(δ′) +
D∑

δ′=1

P (dA)(δ′|δt0)
u∑

j=1

D∑
δ′′=1

P (j)(δ′′|δ′)qB(δ′′). (A.3.8)

Similarly, define

R(u) =
u∑

j=1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′) +
D∑

δ′=1

P (u)(δ′|δt0)
dA∑
j=1

D∑
δ′′=1

P (j)(δ′′|δ′)qA(δ′′). (A.3.9)

For any k, j ∈ Z+ and δ′′ ∈ ∆, we have (e.g., see [75])

D∑
δ′=1

P (k)(δ′|δt0)P (j)(δ′′|δ′) = P (k+j)(δ′′|δt0),

which implies that

D∑
δ′=1

P (dA)(δ′|δt0)
u∑

j=1

D∑
δ′′=1

P (j)(δ′′|δ′)qB(δ′′) =
dA+u∑

j=dA+1

D∑
δ=1

P (j)(δ|δt0)qB(δ),
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and

D∑
δ′=1

P (u)(δ′|δt0)
dA∑
j=1

D∑
δ′′=1

P (j)(δ′′|δ′)qA(δ′′) =
dA+u∑
j=u+1

D∑
δ=1

P (j)(δ|δt0)qA(δ),

Therefore,

L(dA)−R(dA) =
dA∑
j=1

D∑
δ=1

P (j)(δ|δt0)(qA(δ)− qB(δ))−
dA+dA∑
j=dA+1

D∑
δ=1

P (j)(δ|δt0)(qA(δ)− qB(δ)) ≥ 0,

(A.3.10)

where the inequality holds by Assumption A4. Because both dA and dB are integers, and

dB ≥ dA, we can now increase u from dA to dB and check if a similar inequality still holds

as in (A.3.10). If u = dA + 1, then the increase in (A.3.8) is

L(dA + 1)− L(dA) =
D∑
δ=1

dA+dA+1∑
j=dA+1

P (j)(δ|δt0)qB(δ)−
D∑
δ=1

dA+dA∑
j=dA+1

P (j)(δ|δt0)qB(δ)

=
D∑
δ=1

P (dA+dA+1)(δ|δt0)qB(δ),

and the increase in (A.3.9) is

R(dA + 1)−R(dA)

=
D∑
δ=1

P (dA+1)(δ|δt0)qB(δ) +
dA+dA+1∑
j=dA+2

D∑
δ=1

P (j)(δ|δt0)qA(δ)−
dA+dA∑
j=dA+1

D∑
δ=1

P (j)(δ|δt0)qA(δ)

=
D∑
δ=1

P (dA+1)(δ|δt0)qB(δ) +
D∑
δ=1

P (dA+dA+1)(δ|δt0)qA(δ)−
D∑
δ=1

P (dA+1)(δ|δt0)qA(δ).

Then by Lemma 8

L(dA + 1)− L(dA)−
(
R(dA + 1)−R(dA)

)
=

D∑
δ=1

P (dA+dA+1)(δ|δt0)(qB(δ)− qA(δ))−
D∑
δ=1

P (dA+1)(δ|δt0)(qB(δ)− qA(δ)) ≥ 0. (A.3.11)
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Therefore, we have

L(dA + 1)−R(dA + 1)

=

(
L(dA + 1)− L(dA) + L(dA)

)
−
(
R(dA + 1)−R(dA) +R(dA)

)
=

(
L(dA + 1)− L(dA)−R(dA + 1) +R(dA)

)
+

(
L(dA)−R(dA)

)
≥ 0.

The last inequality is by (A.3.10) and (A.3.11). It implies that increasing one unit of u in

both (A.3.8) and (A.3.9) does not change the inequality in (A.3.10). We can apply the same

approach to u until it reaches dB, and the same result holds.

Proof of Lemma 5. By taking the difference between the left-hand and right-hand sides

of (4.8), we have

r(A, δt0) +QA
E(t0 + dA)−

(
r(B, δt0) +

D∑
δ=1

P (dB)(δ|δt0) · r(A, δ) +QA
E(t0 + dA + dB)

)

=

(
r(A, δt0)−

D∑
δ=1

P (dB)(δ|δt0) · r(A, δ)
)
+

(
QA

E(t0 + dA)−QA
E(t0 + dA + dB)− r(B, δt0)

)
.

(A.3.12)

Observe that r(A, δt0) ≥
∑D

δ=1 P
(dB)(δ|δt0) · r(A, δ), because P is upper triangular by As-

sumption A4. In addition, by Assumption A3

QA
E(t0 + dA)−QA

E(t0 + dA + dB) ≥ max
δ

qA(δ)dB ≥ max
δ

qB(δ)dB ≥ r(B, δt0).

Therefore, (A.3.12) is nonnegative, which completes the proof.

Before proving Theorem 9, we first show the following technical result.

Lemma 9. If X +x ≥ Y + y, X ≥ Y ≥ y, 0 < ρB ≤ ρA ≤ 1, and ρ = ρA + ρB − ρAρB, then

ρBY + (ρ− ρB)y ≤ ρAX + (ρ− ρA)x. (A.3.13)
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Proof. From Y ≥ y and ρA ≥ ρB, we have

(ρA − ρB)Y ≥ (ρA − ρB)y,

which can be re-written as

ρBY + (ρ− ρB)y ≤ ρAY + (ρ− ρA)y,

Next, we show that

ρAY + (ρ− ρA)y ≤ ρAX + (ρ− ρA)x, (A.3.14)

by considering the following two cases:

Case 1: x ≥ y This case is trivial because X ≥ Y and x ≥ y.

Case 2: x ≤ y In this case, we have

ρA(X − Y ) ≥ ρA(y − x) ≥ (ρ− ρA)(y − x). (A.3.15)

The first inequality in (A.3.15) holds because X + x ≥ Y + y and ρA is positive. The second

inequality in (A.3.15) holds because ρ − ρA = ρB − ρAρB = ρB(1 − ρA) ≤ ρB ≤ ρA. Note

(A.3.15) is equivalent to (A.3.14), which completes the proof of Lemma 9.

Proof of Theorem 9. First, from Assumption A3 and similar to (A.3.3) we observe that

r(A, δt0) +

(
QB

E(t0 + dA)−QB
E(t0 + dB)

)
≥r(A, δt0) + max

δ
qB(δ)(dB − dA)

≥
dA∑
j=1

D∑
δ′=1

P (j)(δ′|δ)qB(δ′) + max
δ

qB(δ)(dB − dA)

≥r(B, δt0). (A.3.16)

Next, we want to show that

r(A, δt0) +QA
E(t0 + dA) +QB

E(t0 + dA + dB) ≥ r(B, δt0) +QB
E(t0 + dB) +QA

E(t0 + dA + dB).

(A.3.17)
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Note that

r(A, δt0) +QA
E(t0 + dA)−QA

E(t0 + dA + dB)

=r(A, δt0) +

(
QA

E(t0 + dA)−QA
E(t0 + dA + dB)

)
+

(
QB

E(t0 + dB)−QB
E(t0 + dA + dB)

)
−
(
QB

E(t0 + dB)−QB
E(t0 + dA + dB)

)
≥r(A, δt0) +

(
QB

E(t0 + dA)−QB
E(t0 + dA + dB)

)
+

(
QB

E(t0 + dB)−QB
E(t0 + dA + dB)

)
−
(
QB

E(t0 + dB)−QB
E(t0 + dA + dB)

)
=r(A, δt0) +

(
QB

E(t0 + dA)−QB
E(t0 + dB)

)
+

(
QB

E(t0 + dB)−QB
E(t0 + dA + dB)

)
≥r(B, δt0) +QB

E(t0 + dB)−QB
E(t0 + dA + dB), (A.3.18)

where the first inequality holds by the assumption that QA
E(t)−QA

E(t+k) ≥ QB
E(t)−QB

E(t+k)

for all t, k, and the second inequality holds by (A.3.16). Next, define

X =f
⟨AB⟩
1 (δt0) and x = f

⟨AB⟩
2 (δt0),

Y =max

(
f
⟨BA⟩
1 (δt0), f

⟨BA⟩
2 (δt0)

)
and y = min

(
f
⟨BA⟩
1 (δt0), f

⟨BA⟩
2 (δt0)

)
. (A.3.19)

We can verify that X ≥ x andX ≥ Y ≥ y by Lemmas 3-4. Next, we show thatX+x ≥ Y +y

based on definitions in A.3.19.

X + x− (Y + y)

=r(A, δt0) +QA
E(t0 + dA) + r(A, δt0) +

D∑
δ=1

P (dA)(δ|δt0) · r(B, δ) +QB
E(t0 + dA + dB)

−
(
r(B, δt0) +QB

E(t0 + dB) + r(B, δt0) +
D∑
δ=1

P (dB)(δ|δt0) · r(A, δ) +QA
E(t0 + dA + dB)

)
=

(
r(A, δt0) +QA

E(t0 + dA) +QB
E(t0 + dA + dB)− r(B, δt0)−QB

E(t0 + dB)−QA
E(t0 + dA + dB)

)
+

(
r(A, δt0) +

D∑
δ=1

P (dA)(δ|δt0) · r(B, δ)− r(B, δt0)−
D∑
δ=1

P (dB)(δ|δt0) · r(A, δ)
)

≥ 0,

where the last inequality is by (A.3.18) and Lemma 4. Therefore, we have

ρAf
⟨AB⟩
1 (δt0) + (1− ρA)ρBf

⟨AB⟩
2 (δt0) ≥ ρBf

⟨BA⟩
1 (δt0) + (1− ρB)ρAf

⟨BA⟩
2 (δt0).
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From Lemma 4, we have

f
⟨AB⟩
3 (δt0) =r(A, δt0) +

D∑
δ=1

P (dA)(δ|δt0) · r(B, δ) +
D∑
δ=1

P (dA+dB)(δ|δt0)QθP (δ, t0 + dA + dB)

≥r(B, δt0) +
D∑
δ=1

P (dB)(δ|δt0) · r(A, δ) +
D∑
δ=1

P (dA+dB)(δ|δt0)QθP (δ, t0 + dA + dB)

=f
⟨BA⟩
3 (δt0).

Based on (4.5), we know it is optimal to try treatment A first.

Proof of Theorem 10. Given dA ≤ dB, qA(δ) ≥ qB(δ) for all δ ∈ ∆, and QA
E(t) ≥ QB

E(t)

for all t, and qA(δ)− qB(δ) is nonincreasing in δ. In proof of Theorem 9, we observe

f
⟨AB⟩
3 (δt0) ≥ f

⟨BA⟩
3 (δt0).

Therefore, from (4.5), we observe that a sufficient condition under which it is optimal to

prescribe treatment A first is

ρAf
⟨AB⟩
1 (δt0) + (1− ρA)ρBf

⟨AB⟩
2 (δt0) ≥ ρBf

⟨BA⟩
1 (δt0) + (1− ρB)ρAf

⟨BA⟩
2 (δt0),

which can be re-written as

ρA ≥ ρ̄ =
ρB · (f ⟨BA⟩

1 (δt0)− f
⟨AB⟩
2 (δt0))

f
⟨AB⟩
1 (δt0)− ρBf

⟨AB⟩
2 (δt0)− (1− ρB)f

⟨BA⟩
2 (δt0)

. (A.3.20)

Now, let us verify that ρ̄ ≤ ρB (otherwise this result is equivalent to Theorem 9). The

difference between f
⟨BA⟩
1 (δt0)− f

⟨AB⟩
2 (δt0) and f

⟨AB⟩
1 (δt0)− ρBf

⟨AB⟩
2 (δt0)− (1− ρB)f

⟨BA⟩
2 (δt0)

in (A.3.20) is

f
⟨BA⟩
1 (δt0) + (1− ρB)f

⟨BA⟩
2 (δt0)−

(
f
⟨AB⟩
1 (δt0) + (1− ρB)f

⟨AB⟩
2 (δt0)

)
(A.3.21)

By the proof of Theorem 9, we have

f
⟨BA⟩
1 (δt0) + f

⟨BA⟩
2 (δt0) ≤ f

⟨AB⟩
1 (δt0) + f

⟨AB⟩
2 (δt0),

109



and by multiplying the both sides by (1− ρB), we have

(1− ρB)(f
⟨BA⟩
1 (δt0) + f

⟨BA⟩
2 (δt0)) ≤ (1− ρB)(f

⟨AB⟩
1 (δt0) + f

⟨AB⟩
2 (δt0)). (A.3.22)

From Lemma 3, we have

f
⟨BA⟩
1 (δt0) ≤ f

⟨AB⟩
1 (δt0). (A.3.23)

Multiplying (A.3.23) by ρB and adding to (A.3.22), we have

f
⟨BA⟩
1 (δt0) + (1− ρB)f

⟨BA⟩
2 (δt0) ≤ f

⟨AB⟩
1 (δt0) + (1− ρB)f

⟨AB⟩
2 (δt0),

which implies that ρ̄ ≤ ρB · 1 = ρB. This completes the proof.

Proof of Theorem 11. The necessary and sufficient condition to prefer treatment sequence

⟨AB⟩ rather than ⟨BA⟩ is given by

ρAQA
E(t0 + dA) + (1− ρA)ρBQB

E(t0 + dA + dB) + r(A, δt0) + (1− ρA)
D∑

δ′=1

P (dA)(δ′|δt0)r(B, δ′)

≥ ρBQB
E(t0 + dB) + (1− ρB)ρAQA

E(t0 + dA + dB) + r(B, δt0) + (1− ρB)
D∑

δ′=1

P (dB)(δ′|δt0)r(A, δ′).

(A.3.24)

Since qA(δ) = µqB(δ) for all δ ∈ ∆, and QA
E(t) = µQB

E(t) for all t, we can rearrange the

terms in (A.3.24), and have

µ ≥
ρBQB

E(t0 + dB)− (1− ρA)ρBQB
E(t1) + r(B, δt0)− (1− ρA)

D∑
δ=1

P (dA)(δ|δt0) · r(B, δ)

ρAQB
E(t0 + dA) +

dA∑
j=1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′)− (1− ρB)

(
ρAQB

E(t1) +
dA+dB∑
j=dB+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′)
) ,

(A.3.25)

where t1 = t0 + dA + dB.
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Next, we show that µ ≤ 1 (otherwise, this result is equivalent to Theorem 9). First, we

can verify that both numerator and denominator in (A.3.25) are positive. First define

g1 = ρAQ
B
E(t0 + dA)− ρBQ

B
E(t0 + dB)− (ρA − ρB)QB

E(t0 + dA + dB),

g2 = −ρA
dA+dB∑
j=dA+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′) + ρB
dA+dB∑
j=dB+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′).

We can see g1+ g2 is the difference between the denominator and numerator of (A.3.25). To

prove g1 + g2 ≥ 0, note first

QB
E(t0 + dA)−QB

E(t0 + dB) ≥ max
δ

qB(δ)(dB − dA) ≥
dB∑

j=dA+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′), (A.3.26)

QB
E(t0 + dB)−QB

E(t0 + dA + dB) ≥ max
δ

qB(δ)dA ≥
dA+dB∑
j=dB+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′). (A.3.27)

By rearranging terms, we have

g1 =ρAQ
B
E(t0 + dA)− ρBQ

B
E(t0 + dB)− (ρA − ρB)QB

E(t0 + dA + dB)

=ρA

(
QB

E(t0 + dA)−QB
E(t0 + dB)

)
+ (ρA − ρB)

(
QB

E(t0 + dB)−QB
E(t0 + dA + dB)

)
.

We also have

g2 =− ρA
dB∑

j=dA+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′)− (ρA − ρB)
dA+dB∑
j=dB+1

D∑
δ′=1

P (j)(δ′|δt0)qB(δ′).

From (A.3.26) and (A.3.27), we can verify that g1 + g2 ≥ 0. Therefore, µ ≤ 1.

Proof of Lemma 6. Define W ⟨AB⟩(dA) and W ⟨BA⟩(dA) as the value function if taking

treatment sequence ⟨AB⟩ and ⟨BA⟩, respectively. We first show both value functions are

nonincreasing in dA. Note that

W ⟨AB⟩(dA)

=r(A, δt0) + ρAQA
E(t0 + dA) + (1− ρA)

D∑
δ=1

P (dA)(δ|δt0) · r(B, δ)
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+ (1− ρA)ρBQB
E(t0 + dA + dB) + (1− ρA)(1− ρB)

D∑
δ=1

P (dA+dB)(δ|δt0) ·QθP (δ, t0 + dA + dB)

=
dA∑
j=1

D∑
δ=1

P (j)(δ|δt0)qA(δ) + ρAQA
E(t0 + dA) + (1− ρA)

dA+dB∑
j=dA+1

D∑
δ=1

P (j)(δ|δt0)qB(δ)

+ (1− ρA)ρBQB
E(t0 + dA + dB) + (1− ρA)(1− ρB)

D∑
δ=1

P (dA+dB)(δ|δt0) ·QθP (δ, t0 + dA + dB).

Hence,

W ⟨AB⟩(dA)−W ⟨AB⟩(dA + 1)

=−
D∑
δ=1

P (dA+1)(δ|δt0)qA(δ) + ρA
(
QA

E(t0 + dA)−QA
E(t0 + dA + 1)

)

+ (1− ρA)

( D∑
δ=1

P (dA+1)(δ|δt0)qB(δ)−
D∑
δ=1

P (dA+dB+1)(δ|δt0)qB(δ)
)

+ (1− ρA)ρB
(
QB

E(t0 + dA + dB)−QB
E(t0 + dA + dB + 1)

)
+ (1− ρA)(1− ρB)

D∑
δ=1

P (dA+dB)(δ|δt0) ·QθP (δ, t0 + dA + dB)−
D∑
δ=1

P (dA+dB+1)(δ|δt0) ·QθP (δ, t0 + dA + dB + 1).

Because ρA ≥ ρB and QA
E(t)−QA

E(t+ k) ≥ QB
E(t)−QB

E(t+ k), we have

ρA
(
QA

E(t0 + dA)−QA
E(t0 + dA + 1)

)
≥ ρB

(
QB

E(t0 + dA)−QB
E(t0 + dA + 1)

)
. (A.3.28)

From (4.11), A3 and (A.3.28), we can show that

−
D∑
δ=1

P (dA+1)(δ|δt0)qA(δ) + ρA
(
QA

E(t0 + dA)−QA
E(t0 + dA + 1)

)
≥ 0. (A.3.29)

From A3-A4 and Lemma 8, we have

D∑
δ=1

P (dA+1)(δ|δt0)qB(δ)−
D∑
δ=1

P (dA+dB+1)(δ|δt0)qB(δ) ≥ 0. (A.3.30)

Based on A2, we have QB
E(t0 + dA + dB)−QB

E(t0 + dA + dB + 1) ≥ 0. Furthermore, A4-A5

and Lemma 8 imply that

D∑
δ=1

P (dA+dB)(δ|δt0) ·QθP (δ, t0 + dA + dB)−
D∑
δ=1

P (dA+dB+1)(δ|δt0) ·QθP (δ, t0 + dA + dB + 1) ≥ 0.

(A.3.31)
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We conclude that W ⟨AB⟩(dA)−W ⟨AB⟩(dA + 1) is nonnegative from (A.3.29)-(A.3.31). Simi-

larly, for treatment sequence ⟨BA⟩,

W ⟨BA⟩(dA)

=r(B, δt0) + ρBQB
E(t0 + dB) + (1− ρB)

D∑
δ=1

P (dB)(δ|δt0) · r(A, δ)

+ (1− ρB)ρAQA
E(t0 + dA + dB) + (1− ρA)(1− ρB)

D∑
δ=1

P (dA+dB)(δ|δt0) ·QθP (δ, t0 + dA + dB)

=
dB∑
j=1

D∑
δ=1

P (j)(δ|δt0)qB(δ) + ρBQB
E(t0 + dB) + (1− ρB)

dA+dB∑
j=dB+1

D∑
δ=1

P (j)(δ|δt0)qA(δ)

+ (1− ρB)ρAQA
E(t0 + dA + dB) + (1− ρA)(1− ρB)

D∑
δ=1

P (dA+dB)(δ|δt0) ·QθP (δ, t0 + dA + dB).

Therefore,

W ⟨BA⟩(dA)−W ⟨BA⟩(dA + 1)

=− (1− ρB)
D∑
δ=1

P (dA+dB+1)(δ|δt0)qB(δ)

+ (1− ρB)ρA
(
QA

E(t0 + dA + dB)−QA
E(t0 + dA + dB + 1)

)
+ (1− ρA)(1− ρB)

D∑
δ=1

P (dA+dB)(δ|δt0) ·QθP (δ, t0 + dA + dB)−
D∑
δ=1

P (dA+dB+1)(δ|δt0) ·QθP (δ, t0 + dA + dB + 1).

Similar to the way as we show (A.3.29), we have

−
D∑
δ=1

P (dA+dB+1)(δ|δt0)qB(δ) + ρA
(
QA

E(t0 + dA + dB)−QA
E(t0 + dA + dB + 1)

)
≥ 0,

(A.3.32)

because qA(δ) ≥ qB(δ) for any δ. Based on (A.3.31), we conclude that W ⟨BA⟩(dA) −

W ⟨BA⟩(dA + 1) is also nonnegative. Therefore, both value functions are nonincreasing in

dA. Next, we prove that for any dA,

W ⟨AB⟩(dA)−W ⟨AB⟩(dA + 1) ≥ W ⟨BA⟩(dA)−W ⟨BA⟩(dA + 1).
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Note that

W ⟨AB⟩(dA)−W ⟨AB⟩(dA + 1)−
(
W ⟨BA⟩(dA)−W ⟨BA⟩(dA + 1)

)
=−

D∑
δ=1

P (dA+1)(δ|δt0)qA(δ) + ρA
(
QA

E(t0 + dA)−QA
E(t0 + dA + 1)

)

+ (1− ρA)

( D∑
δ=1

P (dA+1)(δ|δt0)qB(δ)−
D∑
δ=1

P (dA+dB+1)(δ|δt0)qB(δ)
)

+ (1− ρA)ρB
(
QB

E(t0 + dA + dB)−QB
E(t0 + dA + dB + 1)

)
+ (1− ρB)

D∑
δ=1

P (dA+dB+1)(δ|δt0)qB(δ)

− (1− ρB)ρA
(
QA

E(t0 + dA + dB)−QA
E(t0 + dA + dB + 1)

)
≥−

D∑
δ=1

P (dA+1)(δ|δt0)qA(δ) + ρA
(
QA

E(t0 + dA)−QA
E(t0 + dA + 1)

)
+ (1− ρA)ρB

(
QB

E(t0 + dA + dB)−QB
E(t0 + dA + dB + 1)

)
− (1− ρB)ρA

(
QA

E(t0 + dA + dB)−QA
E(t0 + dA + dB + 1)

)
≥−

D∑
δ=1

P (dA+1)(δ|δt0)qA(δ) + ρAρB
(
QA

E(t0 + dA + dB)−QA
E(t0 + dA + dB + 1)

)
+ (1− ρA)ρB

(
QB

E(t0 + dA + dB)−QB
E(t0 + dA + dB + 1)

)
≥−

D∑
δ=1

P (dA+1)(δ|δt0)qA(δ) + ρB
(
QB

E(t0 + dA + dB)−QB
E(t0 + dA + dB + 1)

)
≥ 0.

The first inequality follows by (A.3.30) and the nonnegativity of qB(δ). The second inequality

is based on (4.12). The third inequality is due to our assumption QA
E(t) − QA

E(t + k) ≥

QB
E(t)−QB

E(t+ k) for all t and k > 0 as well as A3. Finally, the last inequality is by (4.11).

As a result, if dA increases by one unit, then the decrease in value function W ⟨AB⟩(dA)

is no smaller than that in W ⟨BA⟩(dA). Recall Theorem 9 shows that W ⟨AB⟩(1) ≥ W ⟨BA⟩(1).

Therefore, there exists at most one d̄A, such that we prefer sequence ⟨AB⟩ if dA ≤ d̄A, and

prefer sequence ⟨BA⟩ otherwise.
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