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Abstract

Background: Copy number variants (CNVs) may play an important part in the development of common birth
defects such as oral clefts, and individual patients with multiple birth defects (including clefts) have been shown to
carry small and large chromosomal deletions. In this paper we investigate de novo deletions defined as DNA segments
missing in an oral cleft proband but present in both unaffected parents. We compare de novo deletion frequencies in
children of European ancestry with an isolated, non-syndromic oral cleft to frequencies in children of European
ancestry from randomly sampled trios.

Results: We identified a genome-wide significant 62 kilo base (kb) non-coding region on chromosome 7p14.1 where
de novo deletions occur more frequently among oral cleft cases than controls. We also observed wider de novo
deletions among cleft lip and palate (CLP) cases than seen among cleft palate (CP) and cleft lip (CL) cases.

Conclusions: This study presents a region where de novo deletions appear to be involved in the etiology of oral
clefts, although the underlying biological mechanisms are still unknown. Larger de novo deletions are more likely to
interfere with normal craniofacial development and may result in more severe clefts. Study protocol and sample DNA
source can severely affect estimates of de novo deletion frequencies. Follow-up studies are needed to further validate
these findings and to potentially identify additional structural variants underlying oral clefts.
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Background
Oral clefts are among the most common birth defects,
and include three anatomical defects: cleft lip (CL), cleft
lip and palate (CLP) and cleft palate (CP). Because there
are similarities in embryological and epidemiological evi-
dence [1,2], CL and CLP are often grouped together as
cleft lip with/without cleft palate (CL/P), although debate
remains about whether all three groups may have dis-
tinct etiologies [3,4]. Collectively, oral clefts represent the
most common type of craniofacial malformations [5] and
create a major public health burden for both affected chil-
dren and their families. The overall birth prevalence of
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oral clefts is estimated at 1 per 700 live births world-
wide, but there is dramatic variation across populations
and between racial and ethnic groups, in particular for
CL/P [2]. Oral clefts show strong familial aggregation, and
the recurrence risk among first degree relatives is approx-
imately 32 times greater than the general population risk
for CL/P, and approximately 56 times greater for CP [6].
Twin studies also suggest a major role for genes control-
ling risk of oral clefts with monozygotic twins showing
much higher concordance rates than dizygotic twins: 31%
versus 2% for CL/P, and 43% versus 7% for CP [7]. Normal
development of craniofacial features is a complex pro-
cess and disruption of any of numerous steps can lead to
development of oral clefts [8]. This etiologic complexity
is further supported by mounting evidence that multiple
genes or their regulatory genetic elements, in addition to
environmental influences, play a role in the etiology of
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oral clefts, although supporting evidence for relatively few
genes would be considered definitive [9-14].
Assessment of chromosomal anomalies such as

microdeletions and translocations have played an impor-
tant role in identifying genes and genomic regions under-
lying craniofacial disorders [15-23]. In particular, high
throughput technologies such as comparative genomic
hybridization (CGH) and single nucleotide polymor-
phism (SNP) arrays have gained popularity in identifying
chromosomal alterations [24,25]. Sivertsen et al. assessed
the prevalence of duplications and deletions in the 22q11
region (DiGeorge syndrome region) among Norwegian
offspring with CP, but did not detect any association [26].
Shi et al. used SNP genotyping, DNA sequencing, high-
resolution DNA microarray analysis, and long-range PCR
to characterize chromosomal deletions in 333 candidate
genes for orofacial clefting in 2,823 samples from 725
two and three generation families ascertained through a
proband with a CL/P [27]. These authors confirmed sev-
eral de novo deletions (defined as DNA segments missing
in an oral cleft proband but present in both parents in two
copies) in some of these candidate genes, in particular
SUMO1, TBX1, and TFAP2A, raising the possibility that
genes or regulatory elements contained within deleted
regions might play a role in the etiology of oral clefts.
Further, high rates of Mendelian inconsistencies were
observed in 11 different genes, suggesting the existence
of additional micro-deletions among oral cleft cases.
Family-based study designs as used by Shi et. al [27] are

a popular alternative to the more common population-
based designs (e.g. case-control studies) to assess asso-
ciations between copy number variants (CNVs) and a
disorder of interest [28-32], since investigating parents
and offspring simultaneously enables the researcher to
infer structural variants that occur de novo in the off-
spring (typically through a germline deletion). However,
while numerous methods for CNV delineation in indi-
vidual samples [33-38] or multiple independent sam-
ples [39-42] are available, only relatively few statistical
approaches for detecting de novo CNVs have been pro-
posed, and these are limited to offspring-parent trios.
PennCNV [43] is based on a hidden Markov model
(HMM), jointly modeling the unknown copy number
states in all three trio members. Maximum likelihood
methods are then employed to identify the most likely
copy number states in the father, mother and offspring,
which includes de novo deletions in the proband as
a special case. MinimumDistance [44] on the other
hand was specifically developed for detecting de novo
deletions in case-parent trios, since the computational
demands of the PennCNV joint HMM are substantial,
and false positive calls of de novo deletions remain a
concern even when the recommended quality control cor-
rections are employed [44]. MinimumDistance captures

differences in copy number estimates between the off-
spring and each parent at each locus before smoothing
and posterior calling are carried out (see Methods), which
greatly reduces technical and experimental sources of
noise such as genomic waves, probe effects and batch
effects [45,46], which are the major sources of false pos-
itive identifications in copy number analyses. Here, we
employ both MinimumDistance and PennCNV to esti-
mate and compare frequencies of de novo deletions in cleft
probands and unaffected children from trios of European
ancestry.

Results
We compared the frequencies of de novo deletions in
cleft probands and control children from trios. We iden-
tified de novo deletions in 467 cleft and 391 control trios,
and found a 62 kilo base (kb) non-coding region on
chromosome 7p14.1 where de novo deletions occurred
significantly more often among the cleft trios. Two dif-
ferent algorithms were employed to delineate de novo
deletions in the probands – MinimumDistance [44] and
PennCNV [43] – and yielded a total of 190 and 455 CNV
regions, respectively, where at least five de novo deletions
occurred in both sets of trios combined. A significantly
higher rate of de novo deletions in the cleft trios com-
pared to control trios was observed near the 38.3 MB
region on chromosome 7p14.1 (Figure 1; p = 4.3 × 10−2

and p = 1.1 × 10−3 respectively, corrected for multiple
comparisons). This exact genomic region has been previ-
ously identified as a region with high structural variation
(projects.tcag.ca/variation/), and deletions in
this area have been associated with developmental prob-
lems including craniofacial abnormalities [47-51].
The most significant association was observed in a

sub-region where MinimumDistance (PennCNV ) identi-
fied 10 (20) cleft cases with an apparent de novo dele-
tion, and none (one) among the control trios (Figure 2).
The 10 (20) case probands with de novo deletions in
this region included 6 (9) CL, 3 (6) CP, and 1 (5) CLP
cases. The nearest gene to this 7p14.1 region, about 20
kb upstream from the peak of this signal, is the T cell
receptor gamma alternate reading frame protein (TARP).
While this particular gene to our knowledge has not
been previously associated with craniofacial abnormal-
ities per se, copy number changes in T cell receptors
(including those on 7p14) have been strongly associated
with developmental problems [51]. For the 44 probes con-
tained in this segment of 7p14.1, the signal intensities
show a clear reduction among the 10 cases identified
by MinimumDistance, indicating hemizygous deletions.
These lower log R ratios were not observed in their
parents, indicating a normal DNA copy number state
(Figure 3). Sufficient DNA was available for three of the
cleft trios with an inferred hemizygous de novo deletion at
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Figure 1 The -log10 p-values (y-axis) derived from testing associations of inferred de novo deletions and oral clefts, shown by
chromosomal location (x-axis). Each point represents a de novo deletion CNV segment, delineated throughMinimumDistance [44] (lower half) or
PennCNV [43] (upper half). The dashed lines represent the genome-wide significance levels for a family-wise error rate of 5%, derived via
permutation tests. The striped vertical bands indicate the 22 autosomes interrogated.

this region. Quantitative real-time PCR confirmed a clear
copy number decrease in the child relative to his/her par-
ents (Additional file 1). While TARP is not a very strong
candidate for a causal gene per se, HOXA2 on 7p14.2 is
a functional candidate just over 1Mb away. A mutation
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Figure 2 The count of CNV components (y-axis) delineated via
MinimumDistance in the cleft lip/palate trios (green) and control
trios (yellow), as a function of genomic location (x-axis) near
7p14.1, plus the corresponding numbers delineated via
PennCNV in the cleft lip/palate trios (red) and control trios
(blue). Segments are defined as collections of probes where CNV
composition does not change in the combined trio sets. Short lines
thus represent small differences in width among de novo deletions.
The most significant association was observed in a sub-region where
MinimumDistance (PennCNV) identified 10 (20) cleft lip/palate
subjects with a de novo deletion, and none (one) in the control trios.
The nearest gene is the T cell receptor gamma alternate reading
frame protein TARP, about 20 kb away from the de novo deletions.

in HOXA2 causes microtia (deformity of the external
ear), hearing impairment and cleft palate (http://www.
omim.org/entry/604685). Though purely specula-
tive, it might be possible that a copy number variant
involving a distal enhancer might cause clefting similar to
the way an enhancer 1 Mb from SHH (sonic hedgehog)
produces preaxial polydactyly [52].
A second region of potential interest was identified by

PennCNV on chromosome 14, however, upon manual
inspection of signal intensities, this region appeared to be
a false positive result (see Additional file 1). An analy-
sis of de novo deletions called by both MinimumDistance
and PennCNV also yielded the chromome 7p14.1 locus as
the only significant finding among 90 CNV components
from 11 distinct loci that had at least 5 de novo deletions
called by both methods, with nine de novo deletions in
cleft trios compared to none in the controls (p = 0.032,
corrected for multiple comparisons). It is also notewor-
thy that among the oral cleft candidate genes examined by
Jugessur et al [11] and Shi et al [27], we only detected one
inherited deletion (in UGT1A7), and no de novo deletions
in these trios.
Another technique to infer or confirm de novo dele-

tions, based solely on genotypes, is to search for clusters
of Mendelian inconsistencies between genotypes of the
trio [27,53]. In our study however, the identified regions
on chromosome 7 were small and the corresponding
SNPs interrogated by these probes had low minor allele
frequency in our population, so no Mendelian inconsis-
tencies were observed among the trios with an inferred de
novo deletion in the proband.
Comparing the overall widths of MinimumDistance

and PennCNV inferred de novo deletions in cleft cases
and controls revealed that the estimated deletions were
substantially larger in cases than in controls. The

http://www.omim.org/entry/604685
http://www.omim.org/entry/604685
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Figure 3 The log R ratios (left) and B allele frequencies (right) near the identified 7p14.1 locus. The upper panels (containing the red dots)
represent the 10 oral cleft probands withMinimumDistance inferred de novo deletions at this locus, the lower panels (containing the blue dots)
show the data for the parents of these probands. For each subject (parent or proband), color was used for the markers within the inferred de novo
deletions (which differ in length between trios), gray dots were used for markers outside the deletions. The vertical gray bar indicates the segment
of markers that yielded the most significant association test. For visualization, slight horizontal jitter was applied for both plots, and vertical jitter was
applied for the B allele frequency plot.

median deletion width inferred from MinimumDistance
(PennCNV ) was 71.7 kb (61.3 kb) among controls and
102.7 kb (70.5 kb) among cases, corresponding to an
increase of 43% (15%) in median width of a deletion
among cases (Table 1). These observed differences in
widths were statistically significant (Kolmogorov-Smirnov
p-values of 1.2 × 10−4 and 2.9 × 10−3 respectively,
Wilcoxon rank-sum p-values of 1.0 × 10−4 and 5 × 10−2

respectively; see Methods). Compared to the controls,
the MinimumDistance inferred de novo deletions were
also larger when cleft types were considered individually,
increasing from CL (median 87.8 kb) to CP (95.2 kb) to
CLP (128.5 kb). For inferred de novo deletions identified
by PennCNV, we did not observe any trend of increas-
ing size by cleft type, as CP deletions (median 52.5 kb)
were smaller than apparent deletions in controls (Table 1).
However, this observation may reflect an excess number
of false positive (and mostly short) PennCNV identifica-
tions among controls, as discussed in more detail below.

Discussion
Even though all trios with at least one sample of poor data
quality were excluded (see Methods), the probe intensity
signal used to identify regions of copy number changes
was somewhat noisy, and substantially more variable
among control trios than in the oral cleft trios, resulting
in an inflated rate of called de novo deletions (i. e. likely
false positives) in the control group (Figure 4). This effect
was much more prominent in the set of de novo deletions
identified by PennCNV, consistent with a previous obser-
vation that MinimumDistance might be more robust to
false positive identifications (see Figure 2 in [44]). When
delineated via PennCNV, the control group had more
than a three-fold de novo deletion rate, and less than a
two-fold rate when de novo deletions were inferred with
MinimumDistance (Table 2). However, our statistical
procedure for inferring de novo deletions employed in
this study guards against spurious associations, and thus
type I error inflation, due to higher rates of false de novo

Table 1 Themedian width in kilo bases (kb) of de novo deletions, stratified by case status and cleft type for both
discoverymethods

Controls Clefts p CL p CP p CLP p

MD 71.7 102.7 1e-4 87.8 0.084 95.2 0.067 128.5 1e-5

PennCNV 61.3 70.5 0.051 81.1 0.006 52.5 0.923 85.7 0.041

MD: de novo deletions with coverage of at least ten markers inferred byMinimumDistance [44]; PennCNV : de novo deletions with coverage of at least ten markers
inferred by PennCNV [43]. CL: cleft lip; CP: cleft palate; CLP: cleft lip and palate. The p-values were derived using a one-sided Wilcoxon rank-sum test to assess a
potential increase in width of de novo deletions in the cleft offspring versus controls.
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Figure 4 The frequency of inferred de novo deletions per subject, inferred viaMinimumDistance (left) and PennCNV (right), shown
separately for oral cleft probands (red) and controls (blue). Subjects with five or more called de novo deletions were grouped together.

deletions called in the control trios, since we performed
a one-sided test with the alternative hypothesis that the
de novo deletion rate was larger among the cases than
controls. In contrast, a two-sided test would not protect
against this type I error inflation due to excessive false
positives among the controls (see Additional file 1). We
also note a one-sided hypothesis test would not guard
against type I error inflation if higher variability in the
control group would mask deletions. Thus, all significant
findings should be carefully inspected, and validated if
possible.
As DNA source is correlated with sample quality and

affects all CNV call rates, we assessed and found substan-
tial differences in proportions of DNA sources between
cases and controls. Around 36% of the control sam-
ples were collected either by buccal swab, mouthwash or
saliva, while only 17% of the cleft cases were extracted
this way (Table 3). Among samples passing quality con-
trol (see Methods for details), the rate of inferred de
novo deletions was much higher among samples where

DNAwas extracted from anything other than whole blood
(see Additional file 1). We conjecture that the increased
rate of called de novo deletions in the control group is
likely driven by the differences in the DNA sample collec-
tions, with MinimumDistance being more robust to this
artifact than PennCNV. Thus, for this particular study,
the MinimumDistance based statistics and comparisons
should be more reliable. We also note that false identi-
fications tend to involve very short segments of DNA,
based on fewer markers from the array. In short, false
positive identifications can skew the distribution of CNV
lengths, therefore we report the median deletion widths
here.

Conclusions
We identified a genome-wide significant 62 kb non-
coding region on chromosome 7p14.1 where de novo
deletions occurred more frequently in oral cleft cases than
control probands, adding to the evidence that structural
variants are involved in the etiology of oral clefts. This

Table 2 The total number of de novo deletions inferred (“count”) and the average number of inferred de novo deletions
per child (“average”), stratified by case status and cleft type for both discoverymethods

Controls Oral clefts CL CP CLP

MD 438 1.12 286 0.61 89 0.64 80 0.62 117 0.59

PennCNV 1,422 3.64 518 1.11 185 1.32 144 1.12 189 0.95

count average count average count average count average count average

MD: de novo deletions with coverage of at least ten markers inferred byMinimumDistance; PennCNV : de novo deletions with coverage of at least ten markers inferred
by PennCNV. CL: cleft lip; CP: cleft palate; CLP: cleft lip and palate. All differences between cleft and control counts are highly significant, assuming independence of
deletions (p < 10−6 for allMD comparisons, p < 10−40 for all PennCNV comparisons).
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Table 3 The total number (“count”) and relative
frequencies (“proportion”) of DNA source types among all
subjects, grouped by proband cleft/control status

Controls Oral clefts

blood 581 0.644 1139 0.828

buccal 64 0.071 125 0.091

mouthwash 50 0.055 21 0.015

saliva 207 0.229 90 0.065

count proportion count proportion

DNA source types differ significantly between cases and controls (p < 10−35).

region has been previously identified as a genomic region
containing high structural variation, and large deletions in
this region have been reported to result in developmen-
tal problems including craniofacial abnormalities [47-51].
Only 20 kb upstream from the signal peak lies the gene
coding for the T cell receptor gamma alternate reading
frame protein (TARP), adding to the existing literature
that T cell receptors can play a role in human develop-
ment. We also observed an overall increase in the width
of de novo deletions among oral cleft probands, with CLP
exhibiting wider de novo deletions than CL and CP cases.
Study protocol and sample DNA source affect estimated
frequencies of de novo deletions, and the problem of false
positive identifications remains a concern when examin-
ing the role of structural variants from genomic array data.

Methods
Samples
Case-parent trios were collected as part of an interna-
tional collaborative study in the GENEVA Consortium
[54]. These trios were ascertained through probands with
an isolated, non-syndromic oral cleft (either cleft lip, cleft
palate or cleft lip and palate) from 13 different recruitment
sites in the United States, Europe, Southeast and East Asia
[12]. Control trios were derived from small pedigrees col-
lected from rural Appalachia as part of a genome-wide
study of dental caries [55]. The DNA sources for cleft trio
samples included whole blood, buccal brush/swab, saliva,
mouthwash and dried blood spots, and varied by recruit-
ment site. DNA sources for control trios also included
whole blood, buccal brush/swab, saliva, and mouthwash.
All samples were hybridized to the Illumina Human610-
Quad Beadchip and typed at the Center for Inherited
Disease Research (CIDR) at Johns Hopkins Univer-
sity (http://www.cidr.jhmi.edu/). This research
project complies with the Helsinki Declaration and all
participating institutions provided their own institutional
review board (IRB) review and approval, in addition to
the review and approval of the Johns Hopkins School
of Public Health IRB for the collaborative analysis of
genome-wide marker data. Written informed consent was
obtained from parents of children ascertained through an

oral cleft, as well as their own consent or assent when the
proband could appropriately give such. To avoid potential
confounding due to ethnic differences (i.e. genetic back-
ground), we restricted our analysis to subjects of European
ancestry only.
Both MinimumDistance and PennCNV utilize the log

R ratios (LRRs) and B allele frequencies (BAFs) from the
Illumina Human610-Quad Beadchip probes to infer de
novo deletions. The LRR is a standardized estimate of
the probe intensity, quantifying the total number of allele
copies at each locus of interest. The BAF is a standardized
estimate for the proportion of the B allele’s contribution
to the total probe intensity, assessing the genotype at the
locus of interest. The BAF is standardized so homozy-
gous genotypes in copy neutral states (two allele copies)
have BAFs of approximately zero or one (for AA and
BB genotypes, respectively), and heterozygous AB geno-
types yield BAFs roughly equal to 0.5. Following pre-
viously established guidelines for quality control [43,44]
devised particularly to avoid excessive false positive iden-
tifications due to poor data quality, we excluded trios
for which any sample had whole genome amplified DNA
or a LRR median absolute deviation (MAD) above 0.3.
We also excluded trios with members flagged by CIDR’s
internal quality control pipeline. These data cleaning pro-
cedures yielded 467 oral cleft trios composed of 1,375
subjects, and 391 trios composed of 902 subjects as con-
trols. Aside from the CNV discovery via PennCNV, all
analyses were carried out in the statistical environment
R (http://cran.r-project.org/) using the pack-
ages DNACopy, GenomicRanges, GWASTools, IRanges,
MinimumDistance, all available as free software via the
Bioconductor project (http://www.bioconductor.
org/) [56].

Algorithms
The PennCNV algorithm for detection of de novo DNA
copy number aberrations is based on a hidden Markov
model (HMM), jointly modeling the (unknown) copy
number states in all three trio members. The state tran-
sition probabilities are based on the observed LRRs and
BAFs in the samples, and the population BAF. Maximum
likelihood methods are employed to identify the most
likely copy number states in the father, mother and off-
spring, and these are encoded as a three-digit numerical
code. A normal DNA copy number (two alleles) is des-
ignated as a 3, a hemizygous deletion (one allele copy) is
indicated as a 2, and a homozygous deletion (zero allele
copies) is indicated as a 1. Thus, de novo deletions in off-
spring with genotypic normal parents are encoded as trio
state ‘332’ (loss of one allele copy in the child) or ‘331’ (loss
of both alleles). PennCNV addresses genomic waves by
incorporating the population GC content at each marker
into the HMM.

http://www.cidr.jhmi.edu/
http://cran.r-project.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
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While the joint PennCNV HMM considers all pos-
sible copy number states including inherited deletions
(e.g. ‘322’ or ’232’), MinimumDistance was developed
specifically for detecting de novo copy number changes
since the computational demands of the joint PennCNV
HMM are substantial, and false positive identifications of
de novo deletions remain a concern even when the recom-
mended quality control procedures (including genomic
wave correction) are employed [44]. This approach, freely
available as a Bioconductor package (http://www.
bioconductor.org/), is based on the “minimum dis-
tance” statistic, capturing differences in copy number
estimates between the offspring and each parent at each
locus, making it robust to genomic waves by design.
In particular when the samples of the trio members
are hybridized on the same plate (which is the highly
recommended and commonly employed approach),
MinimumDistance is an effective approach for reducing
technical and experimental sources of noise which can
generate false positives in experimental data sets. Fol-
lowing genome-wide segmentation of these minimum
distances by circular binary segmentation [34,57] (an
extremely fast procedure), final inference regarding de
novo copy number events is based on a posterior calling
step on the inferred candidate regions.MinimumDistance
uses the same code for the trio copy number states as
PennCNV, where ‘332’ and ‘331’ represent de novo loss of
alleles in the child.

Inference
To test for association with oral cleft status, we com-
pared CNV components among cases and controls. Since
inferred deletions (required to span at least 10 probes on
the array for our analysis) typically only partially overlap
between trios, we used the IRanges package to delin-
eate the CNV components into sets of markers where no
change in copy number state occurred among any of the
cleft or control trios, defining homogeneous sets of CNV
states (see Additional file 1). For all CNV components
with a total of at least five observed de novo deletions
in the cleft and control trios combined, we performed
a one-sided Fisher’s exact test, where the alternative
hypothesis was a higher de novo deletion frequency in the
cleft probands. To correct for multiple comparisons while
simultaneously taking correlations between component
statistics into account, we performed a permutation test
by shuffling case and control status across all probands.
This procedure, based on over 100,000 permutations,
established the genome-wide significance level for a 5%
family-wise error rate at the nominal values of 2.60 and
2.83 for the –log10 p-values for MinimumDistance and
PennCNV, respectively. We also performed simulations
to compare the widths of de novo deletions in cleft
and control trios. More specifically, we simulated 10,000

quantile-quantile plots under the assumption that the
cleft and control samples came from the same distribu-
tion (see Additional file 1), and used a one sided two-
sample Kolmogorov-Smirnov test to assess a potential
increase in width of de novo deletions in the cleft off-
spring. Since non-parametric mean comparisons might
be less sensitive to subtle batch effects on deletion width,
we also carried out a one-sided Wilcoxon rank-sum test
on the observed deletion widths in the case and control
trios.

Additional file

Additional file 1: Supplementary material.
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