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Abstract

Background: De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder
(ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the
gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using
additional non-genetic data will enhance the ability to identify ASD genes.

Methods: To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of
data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-
somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random
field in which the graph structure is determined by gene co-expression and it combines these interrelationships with
node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk.

Results: Using currently available genetic data and a specific developmental time period for gene co-expression,
DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments
making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes.
DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model.

Conclusions: Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by
leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal
arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other
brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders
to identify genes and subnetworks in those disorders.
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Background
That genetic variation affects the risk for autism spec-
trum disorders (ASDs) has been known for decades, yet
only recently has the complexity of its architecture come
into focus [1]. During the past few years a series of stud-
ies has been published, some analyzing copy number
variants [2,3], others rare sequence variants [4-9], and still
others common variants [10,11], whose data can only be
explained if many genes are involved in the risk for ASD.
Our recent work estimates this number to be about 1,000
[1,9,12], a remarkably high fraction of the known genes
in the genome. To date, analysis of 1,043 ASD trios has
identified a handful of the genes involved in the ASD
risk. Extrapolating from these data would require exome
analysis of tens of thousands of families to identify even
half of the risk genes, an infeasible short-term goal with
regard to sample collection and funding. Therefore there
is an urgent need to advance ASD gene discovery through
the integration of complementary biologically relevant
datasets.
The complexity of the ASD genetic architecture raises

challenges, but we anticipate there will be a discover-
able organization to these genes that will pave the way
for deep insights into genetics and neurobiology. Support
for this conjecture comes from recent analyses [13-15].
A recent paper [14] has laid the foundation for these
insights in two ways: by identifying brain gene expression
networks as meaningful for organization and interrela-
tionships of ASD genes; and by identifying the region and
developmental periods in which these genes tend to coa-
lesce to confer risk of ASD, specifically the mid-fetal pre-
frontal and motor-somatosensory neocortex (PFC-MSC).
We reasoned that if this region were a critical nexus for
the expression of ASD genes, it would be the perfect
place to hunt for novel ASD genes. Thus we take the
results from [14] further by integrating two key data sets,
BrainSpan gene expression [16] and results from analysis
of rare sequence variation [12], to identify genes and sub-
networks in the mid-fetal PFC-MSC that likely underlie
ASD risk.
To implicate genes in risk (predicted risk or rASD genes)

we have developed an algorithm named DAWN (for
Detecting AssociationWith Networks, Figure 1). Building
on the logic that ASD genes cluster within a co-expression
network [14,15], the algorithm identifies ‘hot spots’ within
this co-expression network at which multiple genes with
evidence of ASD association from the exome data clus-
ter together. For these hot spots DAWN uses the evidence
from neighboring genes to reinforce the ASD signal, while
in ‘cooler’ regions the absence of neighboring genes with
evidence of ASD association downgrades the signal. By
modeling these data, DAWN identified 127 rASD genes
(Table 1), many of which are novel. By analyzing inde-
pendently generated association data [17] for a subset

of these rASD genes we validated DAWN by demon-
strating its ability to delineate which genes will yield
new de novo mutations and which will not. Importantly
these results provide a framework for targeted resequenc-
ing of new samples to demonstrate involvement in ASD
risk definitively and for neurobiological assessment of
gene and subnetwork function. Moreover, this approach
could be applied to other gene expression data in rele-
vant tissues to identify additional subnetworks of ASD risk
genes.

Methods
Gene expression and co-expression
The data analyzed were produced as previously described
[16] and based on the same quality control and quan-
tile normalization. After total RNA was extracted from
tissue samples, gene expression was assessed using the
Affymetrix GeneChip Human Exon 1.0 ST Array platform
(Platform GPL5175), yielding high-quality comprehensive
data. The data were downloaded from the National Center
for Biotechnology Information Gene ExpressionOmnibus
(GEO accession number [GEO:GSE25219]). Expression
data from the core probe set were used in co-expression
analysis of most genes. For genes CHD8, FLG, FREM3,
FRG2C, LMTK3, THSD7A, UBN2 and ZNF594, however,
data from the extended probe set were utilized. We uti-
lized measurements from PFC-MSC, analyzing 14,651
unique transcripts [16]. To investigate mid-fetal develop-
ment we targeted post-conception weeks 10–24, which
covers time periods 3–6 as defined previously [16]. In
our analysis, we used two overlapping windows: peri-
ods 3–5 (post-conception weeks 10–19) and 4–6 (post-
conception weeks 13–24) with 10 and 14 brains available,
respectively.
Gene co-expression was measured by the Pearson cor-

relation r between pairs of genes. To obtain the co-
expression between a pair of genes X and Y, multiple
observations of the joint expression of X and Y are essen-
tial. These replicates were obtained in two ways, by mea-
surements of X and Y from different regions of the same
portion of the brain, and from the same region in different
brains. For periods 3–5 and 4–6 there were 107 and 140
replicates of expression per gene, respectively (Additional
file 1: Table S1).

Gene networks
Gene networks were inferred from the pairwise correla-
tion matrices using the software package Weighted Gene
Co-expression Network Analysis (WGCNA) [18,19]. A
similarity matrix was calculated from the absolute corre-
lation of gene expression (r) raised to a power. For each
pair of genes, a topological overlap measure was calcu-
lated based on the adjacency matrix. From the implied
dissimilarity between genes, average linkage hierarchical
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Figure 1 The DAWN algorithm. (A) Each node in the network represents a gene and each edge represents pairs of genes with strong
co-expression (absolute correlation r > 0.7). (B) Orange nodes indicate genes with strong genetic scores from the TADA test. (C) Hot spots (i.e.,
clusters of strong scores) are classified as nASD genes in the screening stage of the algorithm; cool spots (i.e. strong scores in isolation) are not.
(D) In the final cleaning step, the nASD list is further refined to reveal the rASD gene list. This step uses the TADA scores and features of the network
to compute the false discovery rate of each gene. FDR, false discovery rate; nASD, network autism spectrum disorder; rASD, risk autism spectrum
disorder; TADA, transmission and de novo association.

clustering was used to construct the dendrogram. Mod-
ules were chosen using dynamic cutting of the branches
of the resulting clustering tree. We set the minimum
module size to 30 genes and the minimum height for
merging modules at 0.15. Closely related modules can be
merged using the adjacency of eigengenes (i.e., the first
eigenvectors of the expression matrix for a module). To
capture salient features of the gene co-expression net-
work fully, modules were built independently for each
time span (3–5 and 4–6), and within each period of devel-
opment modules were chosen using two different choices
of the power parameter (1 and 6); see Additional file
2: Figure S1, Additional file 3: Table S2 and Additional
file 4: Table S3 for details. The first step of the DAWN
algorithm (Figure 1) involves evaluating these four repre-
sentations of the gene expression data. Multiple represen-
tations are necessary because a single partition of genes
into highly co-expressed modules fails to capture the full
neighborhood of all genes; using multiple sets of mod-
ules avoids missing signals from risk genes that are on the
boundary between twomodules. The goal here is for every

gene to have its nearest neighbors included in a common
module for at least one partition of the genes.
Within each module we clustered highly correlated

genes to create multi-gene nodes. For these analyses the
tree was cut at height |r| = 0.75 to yield the genes
in a multi-gene node. Once the complete set of nodes
was defined (both single-gene and multi-gene), a network
was constructed by connecting nodes that are correlated
at the next level of strength (|r| > 0.7). We chose a
threshold of r = 0.7 for the network because it is a
widely used threshold in the literature and it provided
the desired network density. Specifically, we found that
r = 0.6 produced a very dense network and r = 0.8
a very sparse network, each unsuitable for the proposed
analysis. Our motivation for pre-clustering highly corre-
lated genes as multi-gene nodes was to create a sparse
network that was not dominated by local subsets of highly
connected genes. By grouping these subsets of genes into
multi-gene nodes, the broader pattern of network connec-
tions becomes more apparent. Naturally to work within
the algorithm as a whole, the threshold for multi-gene
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Table 1 List of genes predicted to affect risk for ASD (rASD genes)

Range of FDR q-values∗

Number of dnLoF mutations 0-0.0025 0.0025-0.025 0.025-0.05

> 1
CUL3, DYRK1A,d GRIN2B,a,d

POGZ, SCN2A,a TBR1a,d

1

ADNP,d CBX4, CDC42BPB, ARID1B,d ATP1B1, BCL11A, RIMS1e

COL25A1, DIP2C, DDX3X, CSTF2T, FOXP1,b ITGA5,

LMTK3,MED13L, NFIA, L1CAM,c NCKAP1,MBD5,a

RAB2A, PHF2, RNF38, PCOLCE, SCP2, SHANK2,a

PPM1D, PRPF39, SETBP1, SPAST, SMARCC2, TCF3,

TROVE2, UBR3, ZMYM2 UNC80, VCP

0

BANK1, C1orf95, ELOVL1, AGK, ARSK, ATRN, BBS10,b ACTL6A, ANKS1B, ASB8,

FCAR, LMCD1, SMC3, BEND7, C2CD3, CD34, BAHCC1, C1orf43,

PRIM2, PTEN,c,d SERINC5, CHMP2B, CLDN11, CNOT1, CASD1, CDC42EP4, DUSP14,

SMAP1, TNC, CRY1, DCAF11, DHX29, HCFC2, HIST1H3D, LYSMD3,

ZNF175, ZNF33A DYNC1I2, EIF3G, F3, FBXL5, MARK4, NAV2, PAMR1,

GDPD4, GMNN, HIST1H4B, PCNX, PSMG2, RSU1,

KIAA1468, ITGB3BP,MAPK4, SMPD3, SPRY1, TNPO3,

MCM5,MAPT,MARCO, VASH1, ZNF410

METTL14,MRPS26,MRPL44,

MUDENG, NCOR1, NDUFB5,

NIF3L1, NR2F1, OR2AK2,

PCIF1, PDLIM1, RAD21,

RAD51AP1, RBBP9, REXO1,

RNF168, SCD, SLC22A15,

SMG7, SPAG17, STXBP1,c

TBL1XR1,d TSR1, ZFAND2A

*ASD genes are displayed by range of False Discovery Rate (FDR) q-value; the 3 columns correspond to genes significant with a genome-wide correction at levels
.0025, .025, and .05, respectively. Genes with FDR < .05, but validation score less than .90 were not included. agene with strong prior support for affecting risk for ASD;
bgene with modest prior support for affecting risk for ASD; csyndromic gene; dgene with a de novo loss-of-function mutation in the [17] study; eRIMS1 has one de novo
loss-of-function mutation, netscore = 107 (95th percentile), and FDR of .077 exceeding the cutoff.

clusters must be greater than 0.7. For r = 0.8 only a
small number of genes would be clustered, however, and
therefore .75 was chosen as a compromise between these
extremes.

Genetic data fromwhole-exome sequencing studies
Transmission and de novo association (TADA) scores
[12] (Additional file 5: Table S4) were calculated from
the following data: all reported de novo mutations from
932 ASD families consisting of trios of affected offspring
and two parents from four studies [4,6,8,9]; transmitted
rare variants from 641 of these families from two stud-
ies [4,9]; and case-control data from the ARRA Autism
Sequencing Consortium, consisting of 935 ASD subjects
and 870 controls [20]. In addition we included two de
novo loss-of-function (dnLoF) mutations obtained from
a set of 44 trios [5] and 56 trios [14]. For a complete
list of de novo variants utilized, see [14]. Each missense

mutation was classified into a category of damage to
the protein based on its predicted effect on the coding
sequence using PolyPhen2 [21]. Loss-of-function (LoF)
and ‘probably damaging’ missense variants were analyzed
by TADA, both of which showed enrichment in probands
for these data. In addition to finding strong statistical sup-
port for a few novel ASD risk genes [12], TADA found
significant enrichment of genes with small P values com-
pared with random expectation, indicating there are more
genes affecting risk for ASD yet to be discovered, even
from these genetic data.
The TADA P values were converted to Z-scores using

the standard normal probability integral:

Z = �−1(1 − P)

where � is the cumulative distribution function of stan-
dard normal distribution. Provided a gene is not associ-
ated with ASD, it follows without further assumption that
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the Z-score is standard normally distributed.When a gene
is a risk gene, the Z-score approximately follows a normal
distribution with mean μ > 0. A Z-score is associated
with each node. For multi-gene nodes this is the minimum
P value of all genes in the node.

The DAWN algorithm
From a statistical perspective, DAWN is based on the
‘screen and clean’ principle [22]: first screen the data to
find all potential signals (network ASD or nASD genes),
and then using more stringent criteria, clean the list so
that it includes only those signals that meet more tradi-
tional criteria for significance (rASD genes). This basic
strategy has been shown to increase power and yet control
error rates in a similar high-dimensional setting [22].

Screening stage
DAWN relies on a hidden Markov random field (HMRF)
to identify clusters of possible risk genes embedded in
the entire expression network (Figure 1, Additional file 6:
Figure S2 and Additional file 7: Text S1). The true state
of each node (rASD risk or not) is hidden, but the TADA
score associated with gene node can be observed. Clus-
ters of nodes with high TADA scores suggests that these
nodes are likely associated with risk. The HMRF network
algorithm works as follows: (1) genes are organized into
highly correlated modules based on gene expression using
WGCNA, (2) the adjacency matrix defines a network
including edges between genes with absolute correlation
exceeding a fixed threshold, (3) this model examines the
initial signals provided by the node Z-scores to determine
if high scores tend to be clustered in the network and
(4) the fitted model then infers the missing label for a
node, namely whether it is related to ASD risk or not. This
label is determined based on the Z-score of the node and
whether or not the node has many neighbors with large
Z-scores. By using a number of computational approxima-
tions, including the iterative conditional mode, the model
parameters can be estimated efficiently. Consequently we
can estimate the probability a node is associated with ASD
risk. For related literature, see [23,24]. We use a posterior
probability of 0.5 to identify nodes potentially associated
with risk and call the genes in these nodes network ASD
(nASD) genes.
As described earlier, tightly clustered genes are col-

lapsed into multi-gene nodes. The adjacency matrix
entries for these nodes are defined based on the average
linkage between nodes. Each multi-gene node is assigned
a node score defined by the minimum P value of all genes
within the cluster. Finally, the HMRF analysis follows as
for single gene nodes. In this way, the HMRF algorithm
can be applied to amuch smaller set of nodes with an adja-
cency matrix that is far less densely connected. Based on
results from simulations and data analysis, it appears that

the HMRF approach is more powerful at detecting clus-
ters of risk nodes whenmulti-gene nodes are incorporated
into the algorithm.

Cleaning stage
After running the HMRF model, the goal at this step is
to winnow the nASD list down to a smaller set of genes
that are highly likely to affect risk on the basis of the
genetic evidence using a false discovery rate (FDR) pro-
cedure [25]. We call these probable risk (rASD) genes. To
maximize power to discover rASD genes in subnetworks
dense for genes affecting risk, we use a stratified analy-
sis. Each large multi-gene node defines a stratum (more
than ten genes), and we fit a Gaussian mixture model to
the distribution of TADA Z-scores to estimate the frac-
tion of risk genes present in the multi-gene node [26]. The
larger this fraction is estimated to be, the larger the num-
ber of genes determined to be rASD genes. Thus this FDR
procedure garners power by exploiting the heterogeneity
inherent across multi-gene nodes and modules, while still
controlling the error rate. Then, for all remaining nASD
genes, which includes small multi-gene nodes, the distri-
bution of TADA test statistics is evaluated by fitting the
mixture model to the entire set of statistics (Additional
file 8: Figure S3). The model is described in detail in
Additional file 7: Text S1.
The DAWN analysis is performed for power 1 and

power 6 modules and for periods 3–5 and 4–6 PFC-MSC.
Thus there are four representations of the gene expression
network. To select a unique set of rASD genes we use the
minimum FDR across four representations.

Permutation experiments
To evaluate DAWN we performed two permutation
experiments. Each sought to illuminate DAWN’s perfor-
mance by diluting the signal for association in two ways:
(I) by separating small P values from risk genes and (II) by
moving risk genes from clusters of genes with small P val-
ues. All of the permutation experiments were performed
at the node level. Hence single gene nodes and multi-gene
nodes were treated interchangeably in what follows.

Experiment I: diluting signals
1. Randomly select a proportion l of nodes that have P

values less than or equal to 0.1. The proportion l is
set to be equal to 0.2, 0.4, 0.6, 0.8 or 1.

2. Randomly select the same number of nodes that have
P values greater than 0.1. Permute the P values of
selected nodes with the nodes selected in step 1.

3. Run the HMRF approach with the permuted data
and estimate the parameters of the model. Record
the number of genes identified that have at least one
dnLoF variant.

4. Repeat steps 1–3 20 times for each l.
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Experiment II: diluting the clustering of signals in the network
Replace Step 2 above with the following:

2. Randomly select the same number of nodes that have
P values greater than 0.1. Permute the selected nodes
(i.e., switch both the P value and the gene labels
associated with the pair of nodes). With increasing
dilution, this effectively removes the correlated
nature of the signal.

Network score
To summarize gene i’s position within the network, a
network score was calculated as:

Si =
∑

j �=i
|rij| × zj

in which both variables are given hard thresholds (0 if cor-
relation |rij| < 0.7 or if Z-score zj < 1.2). The Z-score is
obtained from the TADA P value.

Connectivity
To evaluate the connectivity of the rASD gene list we
performed a permutation test. All genes expressed in the
brain that fell within a module and had exome data were
identified: 10,223 genes matched these criteria including
all 127 rASD genes. The genes were sorted by mutabil-
ity (based on size and GC content). Random lists of 127
genes were sampled repeatedly, with the constraint that
they be approximately equal in mutability to the orig-
inal list. We compared the mean connectivity of each
list of 127 to the true rASD list to obtain a P value for
connectivity.

De novo probability model
We estimated the probability that a true ASD gene has
at least one dnLoF mutation in a sample of 2,500 trios
by extrapolating from available trios. In a sample of 1,043
trios, 143 de novo LoFmutations were observed, involving
130 unique genes, with 9 genes incurring multiple events
and 121 incurring single events [14]. Extrapolating this
process to 2,500 trios we expect about 342 de novo LoF
mutations, involving about 311 unique genes, with about
13 genes incurring multiple events and 298 incurring sin-
gle events. Based on previous analysis, we anticipate about
50% of the single-mutation genes and most of the multi-
mutation genes are true ASD genes [14]. Consequently,
we predict approximately 162 (or slightly fewer) true ASD
genes will have at least one de novo LoF mutation in a
sample involving 2,500 trios. Assuming there at least 1,000
true ASD genes [12], each ASD gene, a priori, has approx-
imately a 15–16% chance of having a dnLoF mutation in a
sample of 2,500 trios.

Protein-protein interactions
A literature-based protein-protein interaction (PPI) net-
work was constructed by combining interactions from the
following databases: BioGRID [27], HPRD [28], MINT
[29], IntAct [30], KEA [31], KEGG [32], SNAVI [33]
and MIPS [34]. Only interactions from publications that
reported ten or fewer interactions were retained. After
combining the binary interactions from these databases
by converting gene IDs to EntreZ Gene Symbols the
biggest connected component was used for further anal-
ysis. rASD genes were seeded in this network and Dijk-
stra’s shortest path algorithm [35] was used to extract
a subnetwork that connected the seed genes using a
path length of three (one intermediate and two links)
[36]. The natural clustering of the obtained subnetwork
was created using the organic layout of the graphic soft-
ware yEd [37]. The relative local clusters were manually
identified.

Functional enrichment analysis with Enrichr
Seed rASD genes from the identified clusters of the PPI
network, together with the intermediates from each clus-
ter, were fed into the online gene enrichment analysis tool
Enrichr [38]. Enrichr has 36 gene set libraries and per-
forms gene set enrichment analyses using Fisher’s exact
test (FET) with Benjamini Hochberg corrections [25]. We
focused our enrichment analysis on functional annotation
from gene set libraries created from the gene ontology
(GO) [39] biological process (BP) tree, the gene ontol-
ogy molecular function (MF) tree and the mouse genome
information (MGI) molecular phenotype (MP) browser
ontology tree [40]. Enrichr [38] and its accompanying
databases are online [41].

Results and discussion
Discovering network and risk genes using DAWN
To search for clusters of possible risk genes embedded in
the entire expression network, DAWN models the inter-
relationships amongst nodes of a network, in terms of risk
status, and combines such interrelationships with node-
specific genetic signals for association (Figure 1). As part
of this process, DAWN assigns nodes a posterior prob-
ability of being part of an ASD subnetwork. Genes are
defined as nASD genes if their posterior probability from
the hidden Markov analysis crosses the threshold of 0.5.
This results in 2,323 genes being classified as nASD genes
(Additional file 5: Table S4).
To illustrate the efficacy of DAWN for this step, we

computed the network score for each gene, which quan-
tifies the strength of the genetic signal from the neigh-
boring genes in the network. The distribution of these
scores demonstrates that nASD genes are indeed signifi-
cantly more connected to other genes potentially affecting
risk when compared to genes not in this set (Methods,
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Additional file 3: Table S2; and Additional file 8: Figure S3;
Wilcoxon rank test, P < 10−16).
Once genes are separated into the nASD and non-nASD

groups (the screening step of the screen-and-clean algo-
rithm), DAWN performed a further evaluation of the
genetic data with the goal of finding the subset of nASD
genes with compelling evidence for ASD risk (cleaning
step). The cleaning step has two levels, an FDR procedure
tailored to the network structure, the genetic score, and
an evaluation of sensitivity of the FDR results to network
structure. After performing the FDR procedure, 146 genes
have q ≤ 0.05 (Additional file 5: Table S4).
To examine the robustness of these predictions to net-

work structure, we performed a cross-validation experi-
ment in which we iteratively removed a fraction of the
genetic signals and re-evaluated the prediction of risk
genes. For each iteration, we randomly removed the
genetic signal from 10% of the rASD genes and then reran
the DAWN algorithm to determine which of the remain-
ing rASD genes were identified as predicted risk genes by
the algorithm. A ‘validation score’, specifically the frac-
tion of iterations for which the gene is included in the
updated list, showed that most of the rASD genes are
robust to the set of genetic signals present (Additional
file 5: Table S4), with 86% achieving a validation score of

90% or higher. However, for the other 14% of genes orig-
inally predicted to affect risk, the results depended on a
small number of neighboring genes and were sensitive to
their removal. These genes were excluded from the final
rASD list because their association was judged to be non-
robust, leaving 127 genes that were predicted to affect risk
(Table 1).
The rASD genes had striking co-expression (Figure 2),

significantly different from a random set of brain-
expressed genes with similar attributes (P < 0.000001;
Methods). On the other hand, the network scores for the
rASD list are not significantly greater than other nASD
genes (Additional file 8: Figure S3), implying that inclusion
in the rASD list requires a high network score coupled
with at least a moderate level of genetic evidence for
association (Additional file 9: Figure S4).

Evaluating howwell DAWNworks
To assess DAWN’s performance we focused on the num-
ber of genes identified by the algorithm that have at least
one dnLoF mutation in sequenced probands, since the
127 rASD genes are highly enriched for such mutations
(Table 1) and over 50% of such genes are independently
predicted to be ASD risk genes [9]. If DAWN were
using both the network (gene expression) and association

Gene with dnLoF

ITGA5

ADNP

PRPF39

DDX3X

MBD5

PHF2

MED13L

TCF3

GRIN2B

SHANK2

CDC42BPB

ARID1B

L1CAM

SMARCC2

POGZ

DIP2C SETBP1

LMTK3CUL3
ZMYM2

RAB2A

SPAST

DYRK1A

SCP2
PPM1D

VCP

UBR3 TROVE2

NCKAP1

CSTF2T

RIMS1

FOXP1

CBX4

BCL11A

RNF38

UNC80
TBR1

PCOLCE
ATP1B1

NFIA

COL25A1

SCN2A

Network Score

highlow

Gene without dnLoF

Figure 2 Network of risk ASD (rASD) genes. These genes met the false discovery rate threshold of .05. The intensity of the red reflects the
magnitude of the netscore based on TADA statistics from neighboring genes. Large nodes depict genes that have at least one dnLoFmutation. CUL3,
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(exome) results effectively, we would expect that diluting
either of these features would diminish its ability to detect
these dnLoF genes. To evaluate this question we con-
ducted two permutation experiments, either diluting the
association by separating likely risk genes from their small
P values or diluting the network by breaking up clusters
of genes with small P values and randomly distributing
them throughout the network (Methods). The degree of
dilution varied from 0% to 100%.
For both dilution experiments, we found that the per-

formance (i.e. the number of dnLoF genes identified)
decreased in almost direct proportion to the degree of
dilution (Additional file 10: Figure S5). This result demon-
strates that DAWN is sensitive to both the ASD associ-
ation signal (exome) and the location of a gene within
the network (gene co-expression) in its selection of rASD
genes (Figure 1, Additional file 6: Figure S2).
Conversely, DAWN does not require overwhelming

prior evidence of association to identify rASD genes. To
test this we considered six rASD genes that have multiple
dnLoFmutations leading to a very low prior P value calcu-
lated by TADA (Table 1). By downgrading these six genes
to single dnLoFmutations, the recalculated TADA P value
was increased by several orders of magnitude, as expected.
Yet, on rerunning DAWN with these higher P values, all
six of these genes were still predicted to affect risk, clearly
indicating that they were pulled into the rASD gene sets
based on the strength of their connections to neighboring
genes with evidence of ASD risk.
DAWN does require genes to be connected in the adja-

cency matrix. Yet expression modules can create artificial
boundaries that separate some gene clusters. For this
reason we used four different modular representations
of the gene expression network in DAWN. When genes
are selected as rASD genes, closer inspection reveals
that they typically share a module with most (or all) of
their top 20 nearest neighbors for all representations.
Some genes, however, appear as rASD genes for only
one representation and are often separated from several
of their nearest neighbors for the other representations.
The rASD gene SHANK2 provides a good example. In
periods 4–6 PFC-MSC, SHANK2 was in a module with
four other rASD genes for one representation of the net-
work data and was identified as an rASD gene; for the
other representation, however, it was in a module with
no other connecting rASD genes and was not detected.
For this reason we believe it is essential to use multi-
ple modular representations of the gene co-expression
network.

Validation of rASD genes
Analysis of resequencing experiment
On average half of all dnLoF mutations in ASD probands
correspond to true ASD genes [9], hence one way to

evaluate the rASD list is to compare it to a list of genes
with dnLoF mutations identified based on sequencing of
independent ASD families. Calculations based on empir-
ical de novo rates and a new set of 2,448 ASD trios show
the chance of seeing a dnLoFmutation in a particular ASD
gene is about 15%, although this varies depending on gene
size and relative risk. Consequently, most true ASD genes
will have no dnLoF mutations, even in this relatively large
study, and thus direct validation of individual genes in the
rASD list is infeasible. Nonetheless they can be evaluated
as a group for enrichment of dnLoF mutations in addi-
tional trios. Under this scenario a compelling experiment
has already been performed, namely targeted sequencing
of a sample of 2,448 trios with molecular inversion probe
sequencing (MIPS) of 44 carefully selected ASD candidate
genes (henceforth known as the MIPS experiment [17]).
Ten of these 44 candidate genes are also on the rASD list,
thus they can be evaluated to determine if they had an
unusually high number of dnLoF mutations in the MIPS
experiment.
In the MIPS experiment, eight genes incur at least

one additional dnLoF event and six of these are on the
rASD list (ADNP, ARID1B, DYRK1A, PTEN, TBL1XR
and TBR1), demonstrating significant enrichment (P =
0.0007). Of the two genes incurring additional dnLoF but
missing from the rASD list, CHD8 is an obvious ASD
gene [17], but its expression levels were derived from
a less reliable extended probe set, while the other ana-
lyzed genes were present on the core probe set of the
BrainSpan exon array data. CHD8’s expression is not
tightly correlated with that from other genes, hence it
is excluded from the nASD gene set. The other gene,
CTNNB1, is an nASD gene, but it has a TADA P value
of 0.36 a priori and hence DAWN does not predict it as
a risk gene. Of the four rASD genes that did not sus-
tain dnLoF mutations in this study, three are known ASD
genes (CUL3, FOXP1 and MBD5) and one is a syndromic
gene for which ASD is sometimes a comorbid outcome
(SETBP1).
In this experiment DAWN was able to distinguish the

genes that will accumulate new dnLoF mutations better
than any existing methods (Figure 3, Additional file 11:
Table S5). DAWN identified two rASD genes for which
no dnLoF mutations had previously been observed; in the
MIPS experiment new dnLoF mutations were identified
for both of these (100% success rate) compared with the 26
genes with no previous dnLoF mutation that were not on
the rASD gene list (4% success rate, FET P = .008, odds
ratio = ∞ ). DAWN also outperformed the other meth-
ods for genes with previous dnLoF mutations: new dnLoF
mutations were identified for four out of eight rASD genes
(50% success rate) compared with one out of eight that
were not on the rASD gene list (13% success rate, FET
P = 0.14, odds ratio 6.16).
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Figure 3 Analysis of MIPS validation experiment. (A) First 44
genes with prior de novomutations were sequenced for 2,448
additional trios. These genes were cross-classified by whether or not
they had a prior dnLoFmutation, and whether or not they were on the
DAWN rASD list (yes: red, no: blue). For each category, the percentage
of genes that had a dnLoF mutation in the new trios is depicted.
(B) For a given gene, the probability of observing a dnLoF mutation
in 2,500 probands varies. This probability is compared for four types of
genes: a randomly chosen gene and three classifications of the genes
from the MIPS experiment including: (i) all 44 genes, (ii) those 16
genes with a prior dnLoF mutation and (iii) those 10 genes on the
rASD list. dnLoF, de novo loss of function; rASD, risk autism spectrum
disorder.

From the results of the original experiment, we conclude
that many of the 44 genes selected for the MIPS exper-
iment are likely ASD genes because the rate of dnLoF
mutations is more than would be expected even if all 44
were true ASD genes. Still DAWN appears to do markedly
better (Figure 3B). We conjecture its better performance
is largely due to identifying ASD genes with higher rela-
tive risk, compared to the average ASD gene. Genes with
a larger relative risk are more likely to have dnLoF muta-
tions a priori [12], an expectation also supported by the
MIPS experiment.

Previously identified autism spectrum disorder genes and
probable risk genes
Of the rASD genes nominated (Table 1), six have been
implicated for ASD risk on the basis of multiple dnLoF
events in exome sequencing studies (CUL3, DYRK1A,
GRIN2B, POGZ, SCN2A and TBR1). Seven others have
been identified as ASD genes on the basis of pub-
lished research [42] (three syndromic: L1CAM, PTEN
and STXBP1; two with strong support from copy num-
ber and sequence studies: MBD5 and SHANK2; and
two with equivocal evidence: BBS10 and FOXP1). This
demonstrates significant enrichment (FET P < 10−6) for
nominal ASD genes in the rASD list.
Within the rASD set (Table 1) are 36 genes contain-

ing a single dnLoF mutation known from prior exome
sequencing studies [4-6,8,9,14], demonstrating significant
enrichment (FET P < 10−16) compared to the full list
of 116 such genes with quality expression data for the
mid-fetal PFC-MSC. Moreover three more rASD genes
were found to have a dnLoF mutation by the MIPS exper-
iment (TBL1XR1, ARID1B and ADNP). These results
are of note because of the expectation that roughly
50% of these genes are involved in risk [9] and DAWN
does a better than expected job at identifying these
50%.

Functional coherence
Next we reasoned that if the rASD list were meaning-
ful, it should be enriched for biologically meaningful,
ASD-relevant processes. We focused on PPI networks,
which are independent of the co-expression networks we
analyzed but have the expectation that interacting genes
will have correlated expression. In addition to forming a
highly significant network of interacting genes (Additional
file 12: Figure S6), the rASD genes in the PPI network
fall into several natural clusters (Figure 4). Clusters C1,
C2 and C4, accounting for a large proportion of the
genes, share related functional categories. Specifically,
these three clusters are involved in transcriptional regula-
tion (see the GO BP and GO MF categories in Additional
file 13: Figure S7). Cluster C2 is additionally enriched for
chromatin remodeling terms in GO BP, while cluster C4
is enriched for RNA polymerase II-related categories in
GO MF. Additionally Cluster C7 relates to regulation of
translation as seen in both GO BP and GO MF. Together
these results show that dysregulation of gene expression
and coordinated co-expression is a key risk factor for
ASD and they further suggest dysregulation has an effect
early in development. Dysregulation of coordinated gene
expression is consistent with a wide range of ASD studies
[43].
Among other processes, clusters C3, C5 and C6 map

onto neuronal migration and function, both thought to
be involved in ASD risk [45,46]. Cluster C3 is enriched
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Figure 4 Clustering by enrichment and protein-protein interaction (PPI). The rASD genes are seeded into the PPI network presented in [6],
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network was clustered using organic clustering methods implemented in yEd [44] rASD, risk autism spectrum disorder.

for GO BP categories involved in cell adhesion and cell
migration and for abnormalities in cell migration in MGI
MP. This cluster shows strong enrichment for the KEGG
category of focal adhesion (HSA04510). Cluster C5 is
enriched for GO MF categories around ligase activity,
including ubiquitin-protein ligase activity. This cluster
shows a similar enrichment in KEGG, for ubiquitin-
mediated proteolysis (HSA04120), previously implicated
in neuronal function and ASD risk [47]. Cluster C6 is
enriched for GO MF categories around protein scaffold-
ing and receptor signaling. This cluster is also associated
with several important MGI phenotypes, including lethal-
ity and abnormalities in neuronal morphology, synaptic
transmission and plasticity, and learning and memory.

Subnetworks
The set of nASD genes, and especially the rASD genes,
define subnetworks of co-expression, which can be used
to focus further neurobiological research (Additional

file 5: Table S4). We highlight four subnetworks for illus-
tration: one centered on PTEN (Figure 5A), which is a
syndromic gene in whichmutations are known to increase
ASD risk; one centered on FOXP1 (Figure 5B), encod-
ing forkhead box P1, for which there is some a priori
evidence for involvement in ASD risk [48]; one centered
on SPAST (Figure 5C), encoding spastin, which has no
known involvement in ASD risk; and one centered on
VRK1, encoding vaccinia related kinase 1, an nASD gene
that has a very high network score and which did not
pass the threshold for the rASD list (Additional file 14:
Figure S8).
Although PTEN is a known ASD gene, existing whole

exome sequencing data do not yet provide compelling evi-
dence for its involvement in risk (uncorrected TADA P =
0.0025, insignificant after accounting for testing genome-
wide). After DAWN analysis the FDR q = 0.0007, which
has been corrected for multiple testing and therefore rep-
resents much stronger evidence. The additional evidence
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for association comes from the tight co-expression of
PTEN with other genes likely involved in risk (Figure 5A).
While the complete neurobiological underpinnings of this
tightly connected network are not obvious, proteins aris-
ing from several of these genes are known to have a
common function, neurite extension. For example the
protein product of NCKAP1 plays a role in the protein
complex WAVE1, an actin scaffold protein complex that
regulates neurite outgrowth [49]. The protein product of
PTEN likely plays a role in neurite outgrowth by neg-
atively regulating PI3K signaling and affecting neuronal

polarization [50]. PTEN could also play a role through the
ubiquitin proteasome function [51]. An E3 ubiquitin lig-
ase, Nedd4, and PTEN play complementary roles: Nedd4
knockdown increases levels of PTEN and decreases axon
branching; the branching pattern can be recovered by
loss of PTEN expression. Cullin RING ligases also play a
role in arborization, with loss of the CUL3 protein prod-
uct increasing dendritic arborization [51]. Finally, SMAP1
encodes ARFGAP1, which in part functions to control
trafficking of GABA transporter-1, a protein enriched at
neurite extensions in certain neurons [52].
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FOXP1 is a transcriptional regulator when it het-
erodimerizes with FOXP2. Mutations in FOXP2 have
been shown to impair language development, specifi-
cally causing developmental apraxia of speech [53,54].
Until recently FOXP1 was not known to affect language
abilities or behavior, but recent reports [7,55,56] sug-
gest disruptions of the gene could cause cognitive dys-
function and ASD, sometimes with language impairment
[48]. The evidence, however, is not conclusive. On the
basis of the DAWN analyses, FOXP1 has q = 0.0083,
strong evidence it plays a role in risk, especially when
considered with other independent evidence (reviewed
in [48]). Notably it is connected directly and with sub-
stantial correlation (|r| > 0.7) to five genes with at least
one dnLoF event in ASD probands (Figure 5B), of which
two are known ASD risk genes, SCN2A and ANK2.
What role or roles these genes play to effect this coordi-
nated expression is not obvious from the neurobiological
literature.
Certain mutations in SPAST are known to cause heredi-

tary spastic paraplegia. In some cases, mutations in SPAST
(also known as SPG4) can affect cognitive function and
result in developmental delay syndromes [57], as well
as incompletely penetrant hereditary spastic paraplegia
later in life. Its subnetwork is notable (Figure 5C): SPAST
is directly connected with 12 genes having at least one
dnLoF mutation and three of those genes are known
ASD risk genes. The protein product, Spast, severs micro-
tubules and disruption of this function appears to generate
a risk for hereditary spastic paraplegia [58]. It also inter-
acts with protrudin to induce axonal neurite outgrowth
[59]. This function, together with its direct connections in
the network to other genes involved in neurite extension
(NCKAP1 and CUL3), suggest at least a portion of this
network could affect ASD risk through improper neurite
development. SPAST and its subnetwork deserve further
study for their role in the risk for ASD.
Finally, an interesting case is VRK1. Measured by the

network score, it is the gene most connected to rASD
genes (Additional file 14: Figure S8). VRK1 has diverse
functions, arguably most fundamental is regulation of cell
cycle. Moreover mutations in VRK1 have been implicated
in neuronal development andmaintenance, including cog-
nitive impairment [60]. There is essentially no genetic
evidence for its involvement in ASD (TADA P = 0.572).
Therefore, although it is an nASD gene with the highest
network score and intriguing neuronal functions, it does
not make the rASD list (q = 0.81).

Functional interpretation of subnetworks
When looking at the genes comprising the two subnet-
works given in Figures 5A,C, it is striking how many
genes play some role in the regulation of neurite exten-
sion and arborization. Indeed two other predicted risk

genes are known to affect this process at a basic level,
namelyCDC42EP4 andCDC42BPB, both interacting with
CDC42 (Figure 2), which plays a key role in neurite ini-
tiation [61,62]. These genes are not highly correlated in
the PFC-MSC, so they cannot occur in the same sub-
network, although they are known to serve the same
function.CDC42 activates theWAVE1 actin scaffold com-
plex, including NCKAP1 (Figure 5A,C), initiating neurite
outgrowth. Notably expression of CDC42BPB is highly
correlated with expression of NAV2, a gene known to
impact axonal outgrowth [63]. Being in a subnetwork cen-
tered on NAV2, its expression is highly correlated with
a substantial set of genes (Additional file 5: Table S4),
many of which have some role in neurite extension and
neuronal arborization, specifically ATRN, CDC42BPB,
L1CAM,MARK4, SHANK2,MAPT and STXBP1 [64-68],
although many play other roles in cellular maturation and
function.
From this enumeration it appears as if a large frac-

tion of predicted risk genes affect neurite extension and
neuronal arborization. On the other hand, it could be
that many genes play some role in this critical feature
of neuronal development and the number identified here
is no larger than we would expect by chance. We there-
fore formally evaluate the conjecture that the rASD list
is enriched with genes related to neurite outgrowth. For
this evaluation we turn to unbiased and independent data,
specifically functional annotation data fromGO.We focus
on the GO term for the ‘neuron projection development’
(GO:0031175), which is a biological process and also a
synonym for ‘neuron outgrowth’. The list annotated with
this term or one of its descendants in the GO hierar-
chy contains 737 unique genes, including 10 out of 127
rASD genes (BCL11A, FOXP1, ITGA5, L1CAM, MAPT,
PTEN, SPAST, STXBP1, TBR1 and TNC). Compared to
random sets of 127 brain-expressed genes, the rASD
list is significantly enriched (P = 0.032, based on 1,000
draws).
Next, it is reasonable to ask if the ten rASD genes

GO identified as functionally related to neurite outgrowth
are functionally interrelated to other rASD genes. To
address this question we identify rASD genes directly con-
nected via the PPI network with the ten GO-identified
rASD genes. Using the PPI network provided in [69], we
obtained a network of 26 rASD genes (Additional file
15: Table S6), which is significantly enriched (Figure 6A,
P = 0.002, based on 1,000 draws). Finally, when we exam-
ine the list of rASD genes separated in the PPI network
from genes annotated by neurite outgrowth by at most
one step, i.e., rASD genes that interact with a gene anno-
tated by neurite outgrowth, the resulting list includes 68
rASD genes (Additional file 15: Table S6) and is again
significantly enriched (Figure 6B, P = 0.001, based on
1,000 draws).
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A B

Figure 6 Predicted risk genes functionally related to neuron outgrowth. (A) Ten rASD genes are GO-identified for neuron outgrowth and 16
additional genes rASD genes are directly connected via the PPI network. (B) Note that 68 rASD genes are either GO-identified for neuron outgrowth
or separated in the PPI network from genes annotated by neurite outgrowth by at most one step. PPI, protein-protein interaction; rASD, risk autism
spectrum disorder.

DAWN’s limitations
Both genetic evidence and gene expression evidence are
required for a risk gene to be identified by DAWN. In the
screening stage, a gene can onlymake it onto the nASD list
if it is tightly correlated with multiple genes with moder-
ate genetic evidence for association. Thus a lone gene with
a small TADA P value cannot make it onto the nASD list.
Next in the cleaning stage the subset of the nASD genes
that have genetic evidence for association are upgraded to
the rASD list. This summary highlights two limitations of
DAWN: (i) a risk gene cannot be discovered if there is not
some genetic evidence for association and (ii) a risk gene
cannot be detected if it does not appear in a network of
other risk genes, based on the gene expression network
in use. Both of these conditions can fail for a number of
reasons, not all of them biologically interesting. For exam-
ple, the quality of sequencing data could be poor due to
low coverage, the power of the genetic test could be poor
due to insufficient sample size or the wrong gene expres-
sion data could be utilized, yielding an irrelevant network.
Other possible limitations to DAWN are biological. For
example it is possible that risk for ASD arises from dys-
functional neuronal circuitry that spans distinct regions
of the brain, such as from the hindbrain into deep layers
of the PFC [70]. Indeed, different genes could contribute
to a single circuit and be co-expressed at the circuit level,
but not in the same tissue. If this were the case, then co-

expression information in a specific tissue for these genes
is irrelevant and DAWN would fail to capture this aspect
of ASD risk.
For these and other reasons, DAWN cannot possibly

capture the bulk of ASD genes. Indeed, as noted in [14],
it is unreasonable to predict that the mid-fetal PFC-MSC
is the only nexus for ASD risk genes. Underscoring this
observation, strikingly absent from the rASD set are some
genes known to affect risk for ASD. For instance the
neurexins (NRXN1, NRXN2 and NRXN3) and neuroli-
gins (NLGN1, NLGN3 and NLGN4X) are either known to
affect risk or have been implicated in risk on the basis
of rare sequence mutations and copy number variants
(reviewed in [71]). These proteins pair across the synapse
to play a critical role in its development [72]. There could
be several reasons why these genes are not found in
the rASD list. They might not be captured effectively by
current exome sequencing methods, in which case the
genetic data cannot produce small P values. Indeed TADA
P values for all of these genes are unimpressive [12]. If
many genes underlie risk for ASD, as recent analyses sug-
gest, the power to detect a ‘genetic signal’ for association
is low for each particular gene without very large samples.
In addition, DAWN draws strength from the connected-
ness of genes on the basis of their co-expression. If genes
do not have a substantial network score, then they will not
be included in the rASD list. In this regard, only NLGN4X
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and NLGN1 rank highly for their network scores. Notably
the inter-correlations amongst neuroligin and neurexin
gene expression are not large in these data (Additional
file 16: Table S7), suggesting they have different roles in
the development of the mid-fetal PFC-MSC.
We believe it is impossible to identify all risk genes

in one analysis, regardless of the methods employed. To
enhance power, one could parse the literature for evi-
dence of a gene’s impact on risk and somehow include
that evidence in the DAWNanalysis. The downside to that
approach is that it will be difficult and somewhat subjec-
tive to score the evidence from studies that have different
experimental designs and results. Specifically, the way the
data are collected could affect the estimate of risk param-
eters for specific genes; for example, syndromic genes,
which affect multiple systems, could be over-represented
in the literature, potentially exaggerating their importance
for ASD risk.

Extensions to DAWN
On the other hand, there is unbiased information that is
not yet built into the algorithm, such as chromatin modifi-
cation, other features of gene regulation and other sources
of information regarding association with disease. We are
working on extensions of DAWN to accommodate these
kinds of data. There is also potentially biased but valu-
able information that should be evaluated for modeling.
For example, we noted that a significant number of risk
genes are involved in the regulation of neurite exten-
sion or arborization. While it would be challenging, this
kind of information would ideally be incorporated into an
algorithm such as DAWN.
An additional concern for any meta-analytic approach

like DAWN is data quality, both from gene expression
and genome sequencing. Poor quality assessment of gene
expression obscures the construction of gene networks. In
addition, unless whole-exome or whole-genome sequenc-
ing becomes very cost effective and highly representative
of genomic content, there will always be genes with poor
coverage from methods that target the entire exome or
genome.We have assumed themissing information is ran-
dom, with respect to risk for ASD, but it still reduces
the ability to predict risk genes. Interestingly alternative
methods that capture those missing exons would benefit
from analyses such as DAWN. The results from DAWN,
specifically the nASD genes and their network scores,
when combined with information about coverage of the
sequencing experiments, provides key information about
which genes should be targeted with alternative sequenc-
ing methods (e.g., [17]) because they are closely integrated
with genes that affect risk.
In the very near future, studies will refine the data rel-

evant to gene expression and to the genetics of ASD.
The genetic data are expected to change dramatically

during the next few years [1]. Thus, we expect the rASD
gene set and its associated subnetworks to be refined and
expanded with these new data. To speed the gene dis-
covery process, candidate gene validation studies can be
applied to large samples of trios using the results from
DAWN to guide in gene selection.

Synopsis of results
Using the DAWN algorithm to integrate gene co-
expression and genetic data, we identified over a hundred
genes with compelling evidence they affect risk for ASD
(Table 1). Our analyses also identified subnetworks of
genes likely to be involved in risk for ASD, and for the
majority of genes included there is no strong evidence
for risk from genetic results alone (Figures 2 and 4). Our
analyses build directly on the results from [14] because
we target the mid-fetal PFC-MSC, where a striking and
highly significant co-expression of genes is implicated in
ASD risk on the basis of de novo mutations. It is rea-
sonable to predict that such strong prior information is
essential for the success of methods such as DAWN. Simi-
larly, refined co-expression networks obtained from larger
samples and from RNAseq experiments should improve
the performance of DAWN, while expression data from
additional brain regions could yield additional findings
[14].
The results from DAWN also clarify the neurobiol-

ogy of ASD. A prominent theory for its etiology pro-
poses it is caused by aberrant connectivity of neuronal
circuits due to intrinsically abnormal synapses [73,74].
Indeed, the sheer number of ASD genes playing a
key role in synaptic development or function strongly
support this theory. In this regard, the subnetworks
around PTEN (Figure 5A), SPAST (Figure 5C) and NAV2
(Additional file 5: Table S4) are quite intriguing. Portions
of these networks play key roles in neuritic outgrowth,
arborization, guidance and terminal specification of both
axons and dendrites. Moreover, when we evaluate the
entire list of genes implicated in risk (Table 1), we find
highly significant enrichment of these genes for involve-
ment in neuron projection development. Recent support
for enrichment also comes from a bioinformatics anal-
ysis of common variants potentially affecting ASD risk
[75]. Proper circuits can only be achieved when synapses
function properly and when they exist in the appropri-
ate numbers, distributions and specificities [76]. In other
words, the wiring diagram is as important to neural cir-
cuit function as the quality of its connections. Thus a
hypothesis to explain these subnetworks is that they con-
verge on mediation of coordinated neurite development
and that risk for ASD arises from disorganized patterns
of arborization in addition to the often-described synap-
tic dysfunction [77]. This hypothesis is consistent with a
common feature of subjects with ASD, namely a slightly
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but stochastically larger brain than expected [78], consis-
tent with overgrowth and/or abnormal synaptic pruning.

Conclusions
DAWNoffers a general approach to gene discovery, which
can be applied to many complex disorders. The algorithm
leverages genetic and gene expression data effectively to
predict probable risk genes and subnetworks. Validation
studies demonstrate that DAWN is successful in predict-
ing the genes that will accumulate new dnLoF mutations
better than any existing methods, underscoring the high
likelihood that DAWN is finding true risk genes for ASD.
The set of risk genes reported here provides further sup-
port for the theory that neurite extension and neuronal
arborization play a key role in risk for ASD. Currently
DAWN’s findings are limited by the power of test statistics
derived from available samples with exome sequencing.
And yet this algorithm has already yielded a rich har-
vest of potential risk genes. Emerging ASD sequencing
data, based on larger sample sizes, will greatly improve
the quality of genetic information going into the algo-
rithm, which will further enhance the power of DAWN to
identify subnetworks of risk genes.

Additional files

Additional file 1: Table S1. Summary of all available gene expression
samples from [16].

Additional file 2: Figure S1. Network analysis of gene expression in the
frontal cortex (PFC-MSC) and distribution of risk ASD (rASD) genes within
modules for periods 3–5 and 4–6. (A) Dendrogram produced by
hierarchical clustering of gene co-expression in periods 4–6 using WGCNA.
Modules of co-expressed genes are delineated by color. In the second
depiction of the dendrogram, rASD genes are highlighted with a color
according to module membership; other genes are colored in gray. Counts
are number of rASD genes per module. Most rASD genes fall in tight
clusters within modules, and yet they fall in many distinct modules.
(B) As above, but for periods 3–5.

Additional file 3: Table S2. Sets of overlapping gene modules formulated
using four criteria: correlation at developmental periods 3–5 and 4–6, both
with modules created using powers 1 and 6 to define the adjacency matrix
in WGCNA. By varying the definition of adjacency slightly we capture more
of the features of the gene clusters. *Median (1st, 3rd quantile).

Additional file 4: Table S3. Number of modules in periods 3–5 and
periods 4–6 analysis. Ideally modules successfully split the genes into
clustered subsets with strong correlations within a module and weak
correlations across modules. Not surprisingly this is an imperfect process
and modules create some artificial boundaries that separate genes with
fairly strong levels of correlation. One method for module construction
involves choosing a power that produces a scale-free topology; however,
this choice yielded a large number of small modules that was unsuitable
for the planned analysis. We chose powers 1 and 6 to span a range of
plausible modules. Power 6 yielded smaller and more numerous modules
than power 1 for both time periods; moreover, many of the power 6
modules were quite small and not suitable for the planned network
analysis (Additional file 2: Figure S1). For power 6, many of these small
modules could be successfully merged together based on the eigengenes.
In contrast, power 1 produced larger modules and merging via eigengenes
led to one very large module that was also not suitable for the network
analysis (Additional file 2: Figure S1). To obtain a reasonable collection of
mid-sized modules we use the unmerged modules for power 1 and the

merged modules for power 6. Notably, this choice produced a similar
number of modules for each choice of power and many of these modules
were of similar size.

Additional file 5: Table S4. Statistics for all genes analyzed in periods 3–5
and 4–6. The summary tab is a summary of results over all four modular
representations (powers 1 and 6 for periods 3–5 and 4–6). For the rASD and
nASD columns, a gene was labeled ‘yes’ if it was identified in any of the
four module sets. min_FDR (network score) is the minimum (maximum)
value over all four module sets. In the annotation column, 0, 1 or 2
represents a gene with 0, 1, or at least 2 identified dnLoF mutations,
respectively. Tabs period4–6 and period3–5 provide similar information for
each separate time period. The rASD_p4-6 and rASD_p3-5 tabs provide
validation scores for rASD genes identified in the analysis of periods 4–6
and 3–5, respectively. The rASD_correlation tab gives the set of
neighboring genes for all rASD genes (i.e., rASD genes with |r| > .7).

Additional file 6: Figure S2. Identifying ASD genes and subnetworks by a
network analysis of gene expression and association statistics. (A) Gene
co-expression networks derive from pairwise correlations of gene
expression. After sorting genes into modules by using WGCNA, some
genes cluster into highly connected units, called supernodes, which are
identified by cutting the hierarchical tree at .75. (B) Each node is
represented by a Z-score derived from the TADA P value. Supernodes are
represented by the score associated with the minimum P value of all genes
in the node. An adjacency matrix connects nodes with absolute correlation
greater than .7. (C) A hidden Markov random field model is used to model
correlation of the Z-scores across the gene network. (D) The modeling
process yields subnetworks with evidence for involvement in risk for ASD,
and the entire set of genes involved in associated subnetworks are called
network ASD genes (nASD). On the left, red balls indicate nodes with
relatively large Z-scores, prior to network analysis. On the right, red balls
delineate nodes that are identified as nASD genes based on clustering of
signal. Unconnected nodes tend to turn blue and tightly connected nodes
turn red. The top module displays a tightly clustered signal; the bottom
one is unclustered, and no nASD genes are identified. (E) A small module
illustrates details. (F) To identify genes likely to affect risk for ASD (rASD), all
nASD genes are examined further based on their Z-scores. (G) For large
supernodes, risk genes are determined based on clustering of signal in the
Z-score within a supernode; for small supernodes and singleton nodes the
delineation is determined purely by Z-score.

Additional file 7: Text S1. Detailed description of the DAWN algorithm.

Additional file 8: Figure S3. Distribution of network scores across genes
from the frontal cortex. (A) Box plots of network scores for genes divided
into three categories: non-nASD genes, nASD genes (excluding rASD
genes) and rASD genes. Results are displayed for periods 4–6 (yellow) and
3–5 (orange). (B) Correlation of network scores by time period for the set of
nASD gene found in both time periods. The red dashed line is the diagonal
line y = x.

Additional file 9: Figure S4. Distribution of Z-scores based on TADA P
values for all nASD genes. Genes that are also rASD genes are colored in
red, and the remainder are colored dark cyan.

Additional file 10: Figure S5. Discovery rate of genes with de novo LoF
mutations as the signal becomes more diluted. Two dilution experiments
were performed: (A) weakening the P value signal and (B) weakening the
correlation structure. The number of de novo genes identified (#dnLoF) is
plotted in blue, as a function of the dilution of the signal, ranging from 0 to
100%, and the HMRF parameter c, which measures the strength of
clustering of signal in the networks, is plotted in orange. The standard error
of the estimates is indicated with error bars.

Additional file 11: Table S5. Summary of de novo variants identified for
44 selected genes for the MIPS experiment.

Additional file 12: Figure S6. PPI network of all rASD genes. The edge
information was obtained using DAPPLE [79].

Additional file 13: Figure S7. Enrichment analysis using genes from the
clusters shown in Figure 4 with the ChEA, Wikipathways, GO_biological
Process, MGI_Mouse Phenotype and Human Gene Atlas gene-set libraries.

Additional file 14: Figure S8. Subnetwork of rASD genes for VRK1. This
gene has the highest network score among all nASD genes, but this gene,
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which has no signal of association in its TADA score, was not identified as
an rASD gene.

Additional file 15: Table S6. The list of GO-identified rASD genes.

Additional file 16: Table S7. Correlations amongst neurexin and
neuroligin genes for periods 4–6 (top) and 3–5 (bottom).
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