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Abstract

Background: Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions
(ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed
for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or
semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create
reliable information technology systems for enabling clinical pharmacogenomics.

Methods: We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to
meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic
knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically
assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines
and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between
pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test
our approach with a large collection of publicly available genetic profiles.

Results: Our methodology proved to be a novel and useful choice for representing, analyzing and using
pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with
707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical
decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing
treatment recommendations. Only a modest number of clinical decision support rules were triggered for a
collection of 943 public genetic profiles. We found significant performance differences across available OWL
reasoners.

Conclusions: The ontology-based framework we developed can be used to represent, organize and reason over
the growing wealth of pharmacogenomic knowledge, as well as to identify errors, inconsistencies and insufficient
definitions in source data sets or individual patient data. Our study highlights both advantages and potential
practical issues with such an ontology-based approach.
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Background
Every year, hundreds of thousands of patients experience
treatment failure or adverse drug reactions (ADRs).
Treatment response rates in 14 therapeutic areas have
varied from 25-80% with many drugs falling in the range
of 50-75% [1]. Approximately 2.4 out of every 1000 per-
sons in the US visit the emergency department every
year due to an ADR [2]. The efficacy and safety of ther-
apies in the “average patient” have been historically ob-
tained using randomized clinical trials where the variable
patient attributes are randomly distributed so as not to
confound outcome measurements. Recent advances in
genomics have enabled a much better understanding of
specific molecular contributions to variability in pheno-
typic response [3]. Much of this variability can be ex-
plained by genetic differences between patients, which can
strongly influence how medications are metabolized and
the degree to which they interact with biochemical targets
[4]–the focus of a discipline called pharmacogenomics
[5,6].
To make the use of pharmacogenomic biomarkers more

clinically effective, the potentially large and complex data
yielded by genotyping or sequencing need to be reduced
to more manageable, higher-level characteristics such as
alleles, haplotypes or phenotypes that can help to predict
drug response (Figure 1). Genetic characteristics and
Figure 1 Overview of types of information and inference in the
pharmacogenomics domain. Raw genetic patient data are at the
bottom and clinical recommendations are at the top of the hierarchy.
Through a series of logical inference steps, intermediate classifications
are generated based on raw data. Inference steps are visualized
as arrows.
higher-level classifications need to be clearly and unam-
biguously defined in order to avoid errors and inconsisten-
cies in downstream clinical applications. However, the
primary knowledge needed for clinical pharmacogenomics
is currently captured in either unstructured text or semi-
structured formalisms. This makes it difficult to integrate
data across relevant sources to enable automated data
quality assurance. The lack of formal semantics for the
data is a source of potential ambiguity that makes it diffi-
cult to create reliable information technology systems for
enabling clinical pharmacogenomics.
As alternatives to traditional data warehouses and

relational databases, semantic technologies have gained
broad acceptance over the past decade as key for ad-
dressing problems of biomedical knowledge represen-
tation, integration and reasoning [7-10]. In particular,
technologies based on the Resource Description
Framework (RDF) [11] and the Web Ontology Lan-
guage (OWL, OWL 2) [12] are especially promising as
a logic-based knowledge representation formalism to
construct, instantiate and reason with biomedical on-
tologies. OWL provides a set of standard profiles, each
with well-understood expressiveness/tractability trade-
offs [13].
Here we explore the use of ontologies, RDF/OWL and

automated reasoning to meet the following goals:

� Providing a simple yet rigorous formalism for
representing pharmacogenomic knowledge

� Finding errors and lacking definitions in
pharmacogenomic knowledge bases

� Automatically assigning alleles and phenotypes to
patients

� Matching patients to clinically appropriate
pharmacogenomic guidelines and clinical decision
support messages

� Facilitating the detection of inconsistencies and
overlaps between pharmacogenomic treatment
guidelines from different sources.

In particular, we have developed an OWL 2 ontology
that brings raw genetic markers and inferred treatment
recommendations within a single, coherent model. This
ontology contains a concise logical formalization of clin-
ical pharmacogenomic definitions and rules, forming a
knowledge base that can be used as a common platform
for different pharmacogenomic assays and decisions sup-
port systems. The ontology is used for automated rea-
soning to detect potential errors in pharmacogenomic
definitions, and to automatically infer clinical decision
support messages that match a patient’s individual gen-
etic profile. In the following sections, we describe our
proof-of-concept implementation of the Genomic Clin-
ical Decision Support (‘Genomic CDS’) ontology.
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Methods
All resources and scripts described in this section are
freely available on the web at https://code.google.com/p/
genomic-cds/.

Selection of relevant pharmacogenomic markers
We downloaded (June 2014) and compiled a non-
redundant list of 43 genes and 336 Single Nucleotide Poly-
morphisms (SNPs) relevant to clinical pharmacogenomics
and identified by dbSNP [14] identifiers by merging data
from: (1) the list of ‘very important pharmacogenes’ and
their associated SNPs made available by the Pharmacogen-
omics Knowledge Base (PharmGKB) [15]; (2) the Phar-
maADME core gene list [16]; and (3) markers
mentioned in FDA drug labels [17], excluding markers
of somatic, non-inherited mutations. The majority of
the markers consisted of SNPs, but the list also con-
tained a small number of other genetic polymorphisms
such as indels (segments of the DNA where nucleic
acids were inserted and/or deleted). For reasons of
simplicity, we will refer to the collection of markers
simply as ‘SNPs’ from here on.
SNPs of the following genes were included in the ontol-

ogy: ABCB1, ADRB1, BRCA1, CFTR, COMT, CYP1A2,
CYP2A6, CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A4,
CYP3A5, DPYD, DPYD-AS1, F5, G6PD, HLA-A, HLA-B,
HMGCR, IFNL4, LOC100286922, LOC101927831, MED
12L, MIR4761, NBR1, P2RY12, RP11-242D8.1, SLCO1B1,
SULT1A1, TPMT, UGT1A1, UGT1A10, UGT1A3, UGT
1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9,
VKORC1, ZMIZ1-AS1 and ZSCAN25. These genes are
pharmacogenes associated with the selected SNPs, as well
as–to a small extent–genes with other functions that over-
lap with the selected SNPs.
Ontology development
Top-level classes of the ontology were created manually
with the Protégé 4 ontology editor [18]. Lower-level clas-
ses were automatically created through scripts as de-
scribed below.
We used the dbSNP batch query interface to download

the dbSNP records for all of the 336 genetic markers.
The dbSNP entries were converted to OWL axioms. In-
formation on coverage of specific polymorphisms by dif-
ferent genetic testing panels was extracted from
manufacturer data sheets and added to the OWL de-
scriptions. Figure 2 exemplifies how these SNP data were
represented in the ontology. A key aspect of the repre-
sentation is that SNP variants are represented as sub-
classes of the SNP, and can be used in constructing
haplotype expressions with specific SNP variants.
Haplotype definitions were retrieved from the Pharma-

cogenomics Knowledge Base (PharmGKB) [15] and were
further curated manually to fit them into a uniform table
format. We created a PHP script to parse PharmGKB
haplotype/allele tables in order to create OWL axioms
representing the definitions in these tables. Since haplo-
types are defined by sets of SNP variants, we formalized
these as ‘necessary and sufficient’ conditions expressed
as equivalentClass axioms. We used qualified cardinality
restrictions to assert whether the haploytype consisted
of one or two alleles, for heterozygous and homozygous
scenarios respectively. We then used an OWL reasoner to
check the logical consistency of the ontology. The rea-
soner accomplished this by inferring the logical conse-
quences of the definitions, axioms, and facts that made up
the ontology and that were generated from the haplotype/
allele tables in PharmGKB. Example haplotype/allele infor-
mation is shown in Table 1 along with corresponding
OWL axioms in Figures 3 and 4. Figures 5 and 6 exem-
plify how these haplotypes/alleles are used for represent-
ing decision support rules or individual patient data.
Pharmacogenomic decision support rules and drug re-

sponse phenotype inference rules were curated from
clinical guidelines of the Clinical Pharmacogenetics Im-
plementation Consortium (CPIC) [19] and the Dutch
Pharmacogenomics Working Group [20], as well as drug
labels approved by the U.S. Food and Drug Administra-
tion (FDA). We curated 308 rules providing dosage rec-
ommendations covering 65 drugs and 22 rules for
inferring drug response phenotypes. Figure 5 shows an
OWL representation of a dosage recommendation for
the drug warfarin obtained from an FDA product label
(see the ‘CDS_message’ annotation).
The final Genomic CDS ontology was created by mer-

ging all of the OWL axioms generated in the process de-
scribed so far.
For reasoning with patient data, individual patients

and their genetic profiles were represented as OWL In-
dividuals as exemplified in Figure 6. We created services
for automatically creating and classifying/realising such pa-
tient representations based on three possible input formats:
23andMe files [21], Variant Call Format (VCF) files [22],
and two-dimensional barcodes representing pharmaco-
genomic data as Medicine Safety Codes [23]. We ob-
tained publicly available patient data in the form of
genetic 23andMe V3 profiles from openSNP.org [24],
manually altering some of the SNP data in order to
create a unique, virtual profile, and converting the SNP
data into OWL axioms describing the genetic profile
of a virtual patient.
Figures 2, 3, 4, 5 and 6 provide an example of the

major reasoning tasks necessary to infer matching CDS
recommendations from raw data with the ontology. The
reasoning process can be outlined as follows: Patient
data generated from a pharmacogenomic assay is con-
verted to OWL axioms (i.e., an OWL individual) and

https://code.google.com/p/genomic-cds/
https://code.google.com/p/genomic-cds/


Class: rs1057911
SubClassOf:  
  polymorphism
Annotations:  
  rsid   "rs1057911",
  relevant_for  CYP2C9,
  can_be_tested_with 23andMe_v2,
  can_be_tested_with 23andMe_v3,
  can_be_tested_with Affymetrix_DMET_chip,
  rdfs:seeAlso  <http://bio2rdf.org/dbsnp:rs1057911>,
  dbsnp_orientation_on_reference_genome "forward" 

Class: rs1057911_A 
SubClassOf: 
  rs1057911 

Class: rs1057911_T 
SubClassOf: 
  rs1057911 

DisjointClasses: rs1057911_A, rs1057911_T

Figure 2 Example of the representation of the “rs1057911” SNP and its alleles in the ontology. SNPs are represented as subclasses of
“polymorphism”. The “rsid” annotation indicates the dbSNP identifier. The “relevant_for” annotation links SNPs to associated genes. The
“can_be_tested_with” annotation associates genetic assays with the SNPs they test for. The “dbsnp_orientation_on_reference_genome” annotation
represents the orientation of the SNP provided by the dbSNP repository and is used to match the reference genome orientation when parsing the
results of a genomic test. The “rdfs:seeAlso” relation provides a Linked Data representation of the SNP provided by the Bio2RDF project. Alleles are
represented as sub-types of the SNP, differing by the specific genetic variation they instantiate.
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entered into the system (Figure 6). The patient data con-
tains information about some SNPs associated with the
CYP2C9 gene, which the reasoner can match with the
allele/haplotype definitions for this gene (Figures 4 and
5). The reasoner infers from the SNP pattern that the
patient is heterozygous for this gene, and that the pat-
terns matches a combination of CYP2C9*1 and
CYP2C9*3. The reasoner then matches the raw data
plus the newly inferred data with the clinical decision
support rules, finding a match with a rule for warfarin
dosing (Figure 5).In this case, the OWL Individual is
now associated with the OWL class of the rule and the
corresponding decision support message: “0.5-2 mg
warfarin per day should be considered as a starting
dose range for a patient with this genotype according
to the warfarin drug label”. This decision support mes-
sage would be combined withmessages generated for
other medications and then be displayed by the system
in order to guide the treatment of the patient.
OWL reasoner evaluation
The Genomic CDS ontology makes extensive use of
qualified cardinality restrictions greater than one (e.g.,
“human and has exactly 2 CYP2C19*1”) and therefore
does not fit into one of the restricted OWL 2 profiles
such as OWL 2 EL, QL or RL. We therefore focused on
the evaluation of reasoners supporting the computation-
ally challenging OWL 2 DL profile [13].
As a testing environment we used a machine with

Windows 7 Professional, Java version 1.6.0_29-b11 and
64 bit platform running on an Intel Core i5-2430 M and
4GB of memory. We developed a testing application
with OWLAPI 3.4.3 and the following OWL 2 reasoners:
TrOWL 1.3 [25], HermiT 1.3.8 [26], the Pellet 2.3.1 [27],
and Fact++ 1.6.2 [28].
In the evaluation, the system had to perform all major

functionalities of OWL reasoning in a single run: 1)
consistency checking to ensure that the ontology is consist-
ent (otherwise inferences could be invalid), 2) inferring the



Table 1 An excerpt of a translational allele/haplotype
table for CYP2C9 taken from PharmGKB

Haplotype rs1057910 rs1057911 rs1799853 rs2256871

CYP2C9*1 A A C A

CYP2C9*3 C A C A
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class hierarchy, 3) realizing the ontology, i.e., associat-
ing the patient–represented as an OWL individual–
with matching OWL classes and inferring properties.
Bulk-processing of publicly available genetic profiles
We tested the ontology-based reasoning with publicly
available human genotype datasets to evaluate its po-
tential for automated genome-based clinical decision
support. Human genotype datasets generated by the
23andMe and VCF assay–containing data on almost a
million polymorphisms per patient–were collected
from the openSNP repository, which collects genetic
test results that are in the public domain. In total, 935
genetic profiles were processed and inferred recom-
mendations were obtained.
To generate the recommendations for all genotype

files, we developed a custom application for automatic-
ally loading genetic profiles in sequence, populating our
ontology with each genetic profile, inferring alleles and
clinical decision support rules and finally calculating
population statistics.
Results and discussion
Our methodology proved to be a novel and useful choice
for representing, analyzing and using pharmacogenomic
data. The ontology files are contained in Additional file
1 and detailed statistics about reasoning results are con-
tained in Additional file 2. The final ontology repre-
sented 336 SNPs with 707 variants; 665 haplotypes
related to 43 genes; 22 rules related drug-response phe-
notypes; and 308 clinical decision support rules.
Class: 'human with CYP2C9*1' 
EquivalentTo:
  has some rs1057910_A and
  has some rs1057911_A and
  has some rs1799853_C and
  has some rs2256871_A
SubClassOf:
  has some CYP2C9*1 

C
E
  
  
  
  
S
  

Figure 3 A subset of OWL axioms defining a human with haplotypes
“EquivalentTo” expression indicates the necessary and sufficient conditions
expression provides the necessary conditions to identify a human with the
matching haplotypes from raw SNP data, which is one of the major use-ca
Analysis and improvement of allele definitions and
decision support rules
In generating the ontology from haplotype definition ta-
bles, we identified some sources of problems in the
PharmGKB tables we used which were caused by poor
haplotype definitions and which led to inconsistencies in
the ontology during early stages of ontology develop-
ment. A major problem was that several alleles were
underspecified, i.e., the SNPs listed for one haplotype
overlapped with all the SNPs of another haplotype, mak-
ing the haplotypes indistinguishable by the data in the
table alone. Another problem was that some of the SNP
entries used in the PharmGKB tables had been depre-
cated in the current release of dbSNP.
OWL reasoning helped identify some CDS rules with

overlapping target populations but differing treatment
recommendations. For example, the reasoner highlighted
an overlap in the patient populations targeted by two
treatment recommendations for azathioprine issued by
CPIC and the Dutch Pharmacogenomics Working
Group, which made one patient population a subset of
the other patient population (Table 2). This is not an
error in the data–such discrepancies between guidelines
from different groups are to be expected. Our system
can make such cases better manageable by inferring
overlaps and differences between guidelines and report-
ing different classifications/recommendations. In total,
57 out of the 330 phenotype of decision support rules in
the ontology were targeting equivalent patient popula-
tions or patient populations that were subgroups of
other patient populations (i.e., a patient meeting criteria
of one rule was a subclass of a patient meeting criteria
of another rule, potentially with conflicting clinical
recommendations).

Inferences made for publicly available genotypes
We took a cautious approach in defining ‘necessary and
sufficient’ conditions for assigning alleles. Specifically, we
tried to take SNPs of rare variants (i.e., with very low
lass: 'human with CYP2C9*3'
quivalentTo:
has some rs1057910_C and
has some rs1057911_A and
has some rs1799853_C and
has some rs2256871_A
ubClassOf:
has some CYP2C9*3

CYP2C9*1 and CYP2C9*3 based on alleles in Table 1. The
to identify a human related to such haplotypes and the “SubClassOf”
haplotypes. This representation is optimized for the inference of
ses of the ontology.



Class:  
  'human with homozygous CYP2C9*1' 
EquivalentTo:
  has exactly 2 rs1057910_A and
  has exactly 2 rs1057911_A and
  has exactly 2 rs1799853_C and
  has exactly 2 rs2256871_A
SubClassOf:
  has exactly 2 CYP2C9*1 

Class:  
  'human with homozygous CYP2C9*3' 
EquivalentTo:
  has exactly 2 rs1057910_C and
  has exactly 2 rs1057911_A and
  has exactly 2 rs1799853_C and
  has exactly 2 rs2256871_A
SubClassOf:
  has exactly 2 CYP2C9*3

Figure 4 The subset of OWL axioms defining a human with homozygous haplotypes CYP2C9*1 and CYP2C9*3 based on the allele
definitions in Table 1. In the “EquivalentTo” expression the OWL axioms indicate the requirement of two copies of every SNP allele to identify a
human with a homozygous haplotype, whereas in the “SubClassOf” expression the class is associated with two copies of the haplotype.
Consequently, an individual that meets the “EquivalentTo” conditions is also associated to the corresponding homozygous haplotype.
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minor allele frequency) into account in order to
minimize the likelihood of incorrectly inferring common
haplotypes. Some publicly available genetic profiles did
not include data on these SNPs so that haplotype infer-
ence rules were not triggered. This reduced the number
of inferences made over the collection of SNPs.
Because of the strict criteria we used, only a modest num-

ber of clinical decision support rules were triggered for the
collection of 943 public genetic profiles: An average of 188
SNPs in each genetic profile matched one of the polymor-
phisms in the ontology, and nearly 6 decision support rules
were, on average, triggered by each profile. Detailed data on
haplotype inferences are listed in Additional file 2.

Significant performance differences among OWL 2
reasoners
We evaluated the performance of a variety of OWL 2
DL reasoners to reason with the CDS ontology and data
Class: 'human triggering CDS rule 9' 
SubClassOf:
  human_triggering_CDS_rule 
Annotations: 
  relevant_for Warfarin, 
  CDS_message  "0.5-2 mg warfarin per day should b
   with this genotype according to the w
  source   "Coumadin Bristol Myers Squibb FD
  recommendation_importance "Important modificat
EquivalentTo: 
  human and
  (has some 'CYP2C9*1') and
  (has some 'CYP2C9*3') and
  (has exactly 2 rs9923231_T)

Figure 5 An excerpt of a CDS rule derived from the warfarin drug lab
initiation in patients having CYP2C9 alleles *1 and *3 and being homozygo
“relevant_for” annotation indicates the type of drug that this recommenda
description of the drug dosage recommendation. The “source” annotation
recommendation was available. The “recommendations_importance” is a m
standard treatment, a minor deviation from standard treatment, or an impo
of individual genetic profiles. We found significant per-
formance differences between TrOWL and other openly
available OWL2 DL reasoners (Table 3). TrOWL
returned results within a few seconds, while other rea-
soners failed to provide results within 3 hours.
TrOWL offers tractable support for OWL 2 by using

quality-guaranteed language transformations. In particu-
lar, TrOWL utilizes a syntactic approximation of OWL 2
DL in OWL 2 EL for TBox and ABox reasoning.
Through this syntactic approximation, TrOWL can have
vast performance advantages over other OWL 2 DL rea-
soners for certain ontologies [29]. Completeness of re-
sults may be a concern because of the approach taken
by TrOWL, though the system appears to provide
complete results for most ontologies [30]. TrOWL pro-
duced complete results when tested with smaller or sim-
plified versions of the Genomic CDS ontology (using the
HermiT reasoner as a comparison), but there is the
e considered as a starting dose range for a patient  
arfarin drug label.", 
A drug label", 

ion" 

el. This rule provides a specific warfarin dosage range for treatment
us for the ‘T’ variant of the SNP rs9923231 in the VKORC1 gene. The
tion is related to. The “CDS_message” annotation represents the textual
provides the name of the source repository where the drug dosage
anually curated annotation indicates whether a rule recommends
rtant/critical modification of treatment.



Individual: ‘John Doe’
Types:
  has exactly 2 rs12979860_T, 
  has exactly 2 rs9923231_T, 

# data on some SNPs on CYP2C9… 
  has some rs1057910_A and some rs1057910_A, 
  has exactly 2 rs1057911_A, 
  has exactly 2 rs1799853_C, 
  has exactly 2 rs2256871_A, 

# other information, e.g., direct mention of haplotypes… 
  has exactly 2 ‘CYP2D6*2’

Figure 6 An example of how pharmacogenomic findings about an individual patient - such as heterozygous and homozygous SNP
and allele variants-can be represented.
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possibility that some allele assignments did not occur as
expected. For instance, during the early stages of devel-
oping the CDS ontology, TrOWL did not report certain
classes as unsatisfiable that were correctly reported as
unsatisfiable by HermiT. We have shared our finding
with the TrOWL team and some of our feedback was
taken into account in the development of the reasoner
system. Recent versions of TrOWL are expected to pro-
duce complete inferences with our ontology while
retaining the performance advantage of TrOWL over
other reasoners (Yuan Ren, personal communication).
This makes TrOWL the preferred solution for reasoning
with the Genomic CDS ontology or similarly structured
ontologies.
Reasoning performance is frequently an issue with po-

tentially large and/or complex biological datasets. Ap-
proaches towards reducing the complexity of biomedical
ontologies have been proposed. For example, Hoehndorf
et al. presented a methodology for a lossy transformation
Table 2 Patients triggering rule 27 (issued by CPIC) are inferr
rule 35 (issued by the Dutch Pharmacogenomics working gro

ID Curated OWL 2 axiom

27 Has some TPMT*1 and has some (TPMT*2 or TPMT*3A or TPMT*3B
or TPMT*3C or TPMT*4)

35 Has some TPMT*1 and has some (TPMT*2 or TPMT*3 or TPMT*4 or
TPMT*5 or TPMT*6 or TPMT*7 or TPMT*8 or TPMT*9 or TPMT*10 or
TPMT*11 or TPMT*12 or TPMT*13 or TPMT*14 or TPMT*15 or TPMT*16
or TPMT*17 or TPMT*18)

This means that every patient who meets criteria for the recommendations given u
This inference is based on the highlighted statements in this table. The knowledge
the ontology.
of OWL ontologies so they adhere to the performance-
optimized OWL 2 EL profile [31].
Only a modest number of decision support rules were

triggered in our evaluation. This is because many of the
publicly available genetic profiles were lacking informa-
tion on SNPs which were necessary for calling certain al-
leles/haplotypes. Our work highlights a general issue of
rules used for specifying alleles/haplotypes, which could
be seen as a trade-off between precision and recall. In
this context, optimizing for precision means avoiding er-
roneously calling common alleles by including very rare
SNPs in the definitions. Unfortunatly, the SNPS might
not be present in the overwhelming majority of patients.
Such an approach also has the drawback that currently
available, array-based genetic test might not be able to
produce results covering all these SNPs. Optimizing for
recall, on the other hand, means accepting that the sys-
tem might not be able to provide recommendations spe-
cific to rare variants because only common genetic
ed by the reasoner to be a subclass of patients triggering
up, both rules concern the substance azathioprine)

Recommendation

If disease treatment normally starts at the “full dose”, consider starting
at 30-70% of target dose (e.g., 1–1.5 mg/kg/d), and titrate based on tol-
erance. Allow 2–4 weeks to reach steady state after each dose
adjustment.

Select alternative drug or reduce dose by 50%. Increase dose in
response of hematologic monitoring and efficacy.

nder rule 35 also meets the criteria for recommendations given under rule 27.
that TPMT*3A, *3B and *3C alleles are subclasses of TPMT*3 is captured in



Table 3 Time taken by different reasoners for classifying
and realising the demo ontology

Reasoner Median time required for classification

TrOWL 4.62 seconds (five runs: 4.71 s; 4.62 s; 4.57 s; 4.66 s; 4.58 s)

HermiT Did not terminate within 3 hours

Pellet Did not terminate within 3 hours

Fact++ Repeatedly crashed while loading ontology
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assays would be used. However, the system would likely
be able to infer alleles and phenotypes for a greater pro-
portion of patients.
We also found that there is a lack of clearly defined

phenotypes for many pharmacogenes. Grouping alleles/
haplotypes into clinically distinct, clearly defined and
widely accepted phenotypes would ease the use of gen-
etic biomarkers in clinical practice and clinical trials. We
found that drug response phenotypes were mentioned in
clinical guidelines, but the descriptions of these pheno-
types differed among guideline sources (e.g., a ‘CYP2C19
ultrarapid metabolizer phenotype’ was associated with dif-
ferent CYP2C19 alleles in guidelines from CPIC and the
Dutch Pharmacogenomics Working Group, respectively).

Related work
The Clinical Bioinformatics Ontology (CBO) contains
some information about pharmacogenetic variants [32],
but does not contain logical axioms for inference of al-
leles and decision support messages through OWL rea-
soning. It also has some ontological problems (e.g.,
class-subclass relations are not used in a consistent
manner, the true path rule is not observed), and it cur-
rently appears to be unsupported.
The SNP-Ontology [33] was among the first onto-

logical resources aimed at representing genetic variation
using the OWL 1 description logic. A variant was de-
fined in terms of the reference sequence, the reference
sequence type, the sequence position, and the observed
variation. The Suggested Ontology for Pharmacogenom-
ics (SO-PHARM) [34] included the SNP-Ontology along
with other ontologies in the Open Biomedical Ontology
family in order to provide formalized descriptions of pa-
tients pharmacogenomic profiles. These ontologies were
formalized in OWL 1 and are therefore unable to con-
veniently represent relevant knowledge captured in the
Genomic CDS ontology, because qualified cardinality re-
strictions were only introduced with OWL 2. Unfortu-
nately, as indicated by BioPortal records, the SNP-
Ontology and SO-PHARM have not been maintained
for several years.
GENO [35] is an ontological model of genotype infor-

mation that aims to support data integration across
model organism databases. The goal of GENO is to pro-
vide a basic set of classes and predicates sufficient to
represent the full range of genotype information using
OWL. However, the ontology is in an early stage of de-
velopment and currently does not represent important
pharmacogenomic variants. GENO cannot be used for
the kind of reasoning and decision support enabled by
the Genomic CDS ontology.
The Variation Ontology (VariO) [36] aims to provide a

framework for the description of effects, consequences
and mechanisms of variations. VariO is a position spe-
cific ontology that can be used to describe effects of var-
iations on DNA, RNA or protein level. VariO itself does
not describe actual variation on nucleotide/protein level
and does not contain any clinical information. We are
investigating possibilities for mapping the Genomic CDS
ontology to VariO to facilitate mapping to external gen-
omic databases. Finally, the freely accessible wiki SNPe-
dia [37] provides a light-weight formalism for the logical
definition of SNP combinations [38]. While being very
handy for simple use-cases, concise definitions can be-
come very long (e.g., when covering several different al-
leles by enumerating their tag SNPs), because the
formalism offers no means for defining intermediary
classifications (such as haplotypes as and intermediate
between raw SNPs and associated phenotypes). This
makes the definitions captured in SNPedia difficult to
maintain in light of new haplotype definitions and
phenotype inference rules.
The Genomic CDS ontology presented in this work

goes beyond the state-of-the-art by providing a coherent,
ontology-based framework that is optimized for imple-
menting real-world clinical decision support in pharma-
cogenomics, as well as a data extraction-transformation,
curation and consistency-checking workflow that allows
for sustainable long-term maintenance of the knowledge
base. We have demonstrated the implementation of our
ontology-based methodology in a web service for provid-
ing pharmacogenomic clinical decision support [39].

Limitations and future work
We are currently making progress in integrating Gen-
omic CDS and OWL reasoning into a clinical decision
support application, which offers clinical recommenda-
tions based on patient data.
We plan to broaden our collaboration with key organi-

zations in the field–such as PharmGKB, the Human
Cytochrome P450 (CYP) Allele Nomenclature Commit-
tee [40], CPIC or the Dutch Pharmacogenomics working
group–to work towards well-defined, formalized and
logically coherent representations of alleles, phenotypes
and criteria for decision support algorithms. We will also
evaluate if the ontology-based formalism we developed
could be used as a shared representation for knowledge
integration among these organizations.
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While the ontology is currently mapped to Bio2RDF
resources, it has not yet been mapped to other biomed-
ical ontologies or foundational ontologies. The current
release of the ontology does not offer means to model
the treatment regime of patients, e.g., which drugs an in-
dividual patient is actually being prescribed, what dos-
ages are prescribed or other clinical parameters. Instead,
the ontology can be used to generate matching pharma-
cogenomic treatment recommendations for all drugs in
the knowledge base, and further filtering or refinement
to create targeted clinical decision support messages
needs to be done in external applications. In future
work, we will explore the possibility of modelling these
additional aspects of pharmacotherapy in OWL by ex-
tending the ontology and/or linking to other ontologies
for this knowledge domain, such as those developed by
Grando et al. [41].
The design patterns we used for the Genomic CDS

ontology could potentially be applied to other, similar
reasoning problems in the area of genetics and personal-
ized medicine, with datasets that are far larger than in
the use-case presented here. We will investigate how our
methodology could scale to meet such demands.
While the framework described in this paper facilitates

data representation and reasoning, several barriers to the
clinical implementation of pharmacogenomic decision
support remain. Processes need to be defined and imple-
mented to make pharmacogenomic data available for
broad patient populations, and practical models for inte-
grating decision support into existing clinical workflows
need to be found. These barriers are difficult to tackle in
light of the heterogeneity of healthcare systems across
different regions. We are currently working on a system
that allows pharmacogenomic data to be captured in
two-dimensional barcodes and to be interpreted with
mobile devices [39]. Furthermore, we plan to work on
developing best practices for integrating pharmacoge-
nomic data into existing electronic health record
infrastructures.

Conclusions
We described a proof-of-concept semantic reasoning sys-
tem for pharmacogenomics knowledge representation fo-
cused on clinical decision support. It needs to be
emphasized that the goal of the work presented here was
to analyze if and how these technologies can be applied,
rather than attempting to unequivocally define the vari-
ants required for specifying alleles or phenotypes–a goal
that can only be accomplished through ongoing work in
the international pharmacogenomics research community.
The ontology-based framework we developed can be

used to represent, organize and reason over the growing
wealth of pharmacogenomic knowledge, as well as to
identify errors, inconsistencies and lacking definitions in
source data sets or individual patient data. It can be ap-
plied both in pre-clinical scenarios (e.g., as a reference
taxonomy for pharmacogenomic research), as well as
clinical applications (pharmacogenomic decision sup-
port, patient stratification in clinical trials). Since it le-
verages OWL 2 and RDF technologies, it can be easily
connected to a vast collection of biomedical information
resources, and used with a wide variety of tools.
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