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Abstract

Background: When studying the genetics of a human trait, we typically have to manage both genome-wide and
targeted genotype data. There can be overlap of both people and markers from different genotyping experiments;
the overlap can introduce several kinds of problems. Most times the overlapping genotypes are the same, but
sometimes they are different. Occasionally, the lab will return genotypes using a different allele labeling scheme (for
example 1/2 vs A/C). Sometimes, the genotype for a person/marker index is unreliable or missing. Further, over time
some markers are merged and bad samples are re-run under a different sample name. We need a consistent picture
of the subset of data we have chosen to work with even though there might possibly be conflicting measurements
from multiple data sources.

Results: We have developed the dbVOR database, which is designed to hold data efficiently for both genome-wide
and targeted experiments. The data are indexed for fast retrieval by person and marker. In addition, we store pedigree
and phenotype data for our subjects. The dbVOR database allows us to select subsets of the data by several different
criteria and to merge their results into a coherent and consistent whole. Data may be filtered by: family, person, trait
value, markers, chromosomes, and chromosome ranges. The results can be presented in columnar, Mega2, or PLINK
format.

Conclusions: dbVOR serves our needs well. It is freely available from https://watson.hgen.pitt.edu/register.
Documentation for dbVOR can be found at https://watson.hgen.pitt.edu/register/docs/dbvor.html.

Keywords: Association studies, Database, Genotypes, Genome-wide association studies, Linkage, Mega2, MySQL,
Phenotypes, PLINK, Python

Background
Genetic studies of complex human diseases typically
involve multiple iterations of genetic marker generation.
For example, a set of individuals may first be assayed with
a genome-wide chip that measures genotypes at hundreds
of thousands of markers. Then a subset of interesting
signals may be followed up by custom genotyping using
a different technology. If there are technical problems,
yet another round of custom genotyping using a third
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technology might be carried out on a subset of the sam-
ples. Managing and reconciling these multiple sources of
data, often with different sample IDs, allele labels, and
marker names, is best managed using a database system.
While several database systems have been developed

for managing genetic data[1-7], when we tried some of
these, we found that some relied on commercial database
systems that were so complicated that they required a
database administrator to routinely maintain and apply
regular security updates. Others did not scale well as the
numbers of markers genotyped per experiment rapidly
increased. Some were written with sophisticated web-
based interfaces, that, while elegant, were difficult to
extend and customize as needed. Therefore, we set out
to build our own database system, based on open-source
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MySQL, driven by command-line programs written in
Python. We named our database system “dbVOR”, after
Vör, the inquiring Norse goddess of wisdom from whom
nothing can be concealed.

Overview
We have created a series of programs and a database
called, dbVOR, to store, manage, and retrieve genetic
data. Figure 1 illustrates the overall operations of dbVOR.
The raw data flows into the database tables using one of
several programs. Finally, the genout program can be used
to filter and merge data to be output in one of several file
formats.
The rest of this document is organized as follows: in

the Implementation section, we first describe dbVOR’s
ancillary database tables used to store pedigree, trait,
and marker data. Then we show the tables used for
storing genotype data: one for targeted experiments and
the other set for genome-wide experiments. The key
difference between these is that for genome-wide data
we store multiple genotypes per record, in blocks. We
next discuss the programs that are used to enter data
into the aforementioned tables. A subsequent program
is presented that extracts data from the database tables.
The next few sections are intended to give a feel for
details of the implementation: configuration files, log files,
note storage, and database commit policy. The Exam-
ple section illustrates the format and use of the targeted
and genome-wide genotype tables. It also illustrates how

multiple conflicting genotypes for the same person and
marker coming from multiple or even the same experi-
ment get resolved. The Data statistics section show how
conflicting genotype information is summarized for user
review. The Results section compares the efficiency of
the genome-widemultiple genotypes per record represen-
tation to that of the simpler single genotype per record
representation. The performance is also illustrated in the
Discussion section via comparisons with existing systems.
Finally, the Appendix shows the full database schema.
Wemaintain the following typographic conventions: All

programs and subcommands are shown in a bold type-
face. The names of database tables are shown in bold
italic.

Implementation
Database tables
dbVOR stores information about the collected genetic
data in several tables. We will explain the important
aspects of each table. For completeness, the entire schema
is presented in the Appendix. This section describes the
auxiliary tables while the next section describes the tables
that store the genotype data.
The samples table stores plate, well, and miscellaneous

study-related information about a sample, relates the sam-
ple identifier to a subject, and specifies the person from
whom the sample was taken. If multiple samples exist for
the same person, a preferred sample may be indicated,
causing the other samples to be ignored.

Figure 1 dbVOR usage: raw data is loaded into database tables by one of several programs. The genout program accesses the database tables,
filters and merges the data and outputs genotypes in one of several common formats.
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The members table stores a pedigree and person name
for a subject; it also stores the parent identifiers and sex of
the subject (By design, all tables have a unique ID field for
connecting data from different tables together). An aux-
iliary table, member_aliases, provides alternate names
for members and supports multiple differently named
samples from the same person.
The traits table provides values for specified phenotypic

traits for each subject. Not all subjects need to have known
values for all traits. A glue table, traitmeta, links trait
name strings with trait IDs and contains a type (e.g. quan-
titative or qualitative) for each trait. The type is used to
validate the trait values, and to ensure proper formatting
on output.
Themarkers table associates a marker name string with

an ID. It is used to check the input marker names for typo-
graphical errors in that marker names appearing in other
contexts are verified against the names in the markers
table. There is also a marker_aliases table that provides
alternate names for markers to be used when marker
names change over time.
Themarker_info table contains the chromosome num-

ber and base pair position as well as the genetic positions
(male, female, and average) of each marker. Each record
is tagged with the build number from which the positions
were derived.
Occasionally allele data coming back from our collab-

orators will be labeled differently from our other data.
For example, a genotype might be designated as 1/2 when
another genotyping platform might designate the geno-
type as A/G. The allele_map table can specify a remap-
ping from one set of allele labels to another. Entries also
contain an experiment ID key and a marker ID key.
The individual tables described so far are relatively small

even for the larger data collections.
The genotypes table holds the genotype data for

member-marker pairs. In addition to a member key and
a marker key, each record contains a technology ID key
and an experiment ID key. These two IDs come from
the technologies table and the experiments table, respec-
tively, which map name strings to IDs. Technology is used
to label the technology used to generate the marker data
(e.g., Illumina or Affymetrix) while Experiment describes
a specific instance or batch of genotyping data generated
using a particular technology.
The genotypes table provides an effective way to man-

age small volumes of data, thousands of members with
several thousands markers, and gives adequate perfor-
mance onmoderately poweredmachines. But this strategy
is not effective for large-scale studies with hundreds of
thousands or millions of markers; this is illustrated in
the Example section. We have a novel data representation
for large numbers of markers. Rather than store a single
marker’s genotype information per record, we store all the

genotypes for a contiguous run of markers on a chromo-
some in the genotypeblocks table and use multiple blocks
for each chromosome; this is also illustrated in the Exam-
ple section. An auxiliary table, snpblocks, is necessary to
map a marker to the corresponding chromosome, block,
and offset. This strategy is designed to efficiently read
all the data on a chromosome or the data from ranges
of markers on a chromosome; this is usually how data
are read from the database. To be clear, the efficiency is
for writing and reading records for experiments involving
genome-wide large-scale data from the database; not for
storage efficiency.

Data entry programs
Data are entered into all but the genotype tables using the
command line program, dbvor. It is immediately followed
by a subcommand, for examplemarker_info. This option
loads the marker_info table. The list of subcommands is
indicated in Table 1.
To initially set up a project, one would first use

the dbvor subcommand createdb, which creates a data
schema in the database and loads the dbVOR table def-
initions into it. This subcommand also adds users to the
database and grants them the appropriate privileges to use
the data schema. There is a complimentary subcommand
to undo these actions.
After initializing the dbVOR tables, then one would

use the dbvor program to move data from flat files into
the database (Table 1). The subprograms inherit from
a hierarchy of Python classes that support the standard
operations of insert, update, compare and delete, all of
which work in a similar way across each utility. A typi-
cal utility, dbvormarker_info, stores map information for
collections of markers. The flat file containing the input
data is referenced from the configuration file, as described
in the ‘Configuration files’ section below. Additional infor-
mation in the configuration file indicates which column
contains the marker name, chromosome, base pair posi-
tion, average genetic position, female genetic position and
male genetic position. All columns except formarker name
are optional. The configuration file must also specify the
map build. Typing the command “dbvor marker_info
<configuration file>” will parse data files and test for cor-
rectness. Adding the commit flag will insert the data into
the database if there are no errors. Running the utility a
second time with the commit flag but with no change
to the underlying flat input file will make no changes to
the database. You can extend the flat file with new rows.
Now, redoing the commit operation will add just the new
entries to the database. Thus in the end, the database will
have the same information as the extended flat file. The
flat file data may be revised (corrected) from what was
originally in the database. Processing the revised flat file
with the compare flag will show those entries where the
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Table 1 Some of the programs that populate the database
tables

Program name Table Behavior

dbvor createdb all tables defined create a database, create a
user and load schema
definitions

dbvor newmarker markers define new markers

dbvor
missingmarkerinfo

markers,
marker_info

list markers without map
info for the named build

dbvor allelemap allele_map store genotype remapping
for a marker/experiment

dbvor marker_info marker_info store genetic and physical
position data for a specific
map build

dbvor markeralias marker_aliases store alternate names for
markers

dbvor gmimarker marker_info store marker map
information presented in
Genetic Map Interpolator
(GMI) format [8]

dbvor
gmimarkeralias

marker_aliases store marker aliasing data
presented in GMI format

dbvor sample samples store sample data and
associate it with the
corresponding members

dbvor trait traits, traitmeta store trait values for
members

dbvor member members store pedigree information

dbvor memberalias member_aliases store alternate names for
members

dbvor
create_experiment

experiments create entry in experiment
table associating ID with
experiment string

dbvor
set_experiment_date

experiments set date field of
specified experiment in
the experiment table

dbvor
delete_experiment

experiments delete all genotype data for
the specified experiment

dbvor set_active genotypes set the active flag, to turn
on/off specific data

flat file and database differ. The commit flag only adds
new information into the database; it will not change exist-
ing records. It will just print a warning. The replace flag
together with commit will copy any changed records and
new records into the database. For each changed record,
the program first removes the old record and then adds
a new record. For some usages, this may violate database
consistency checks in which case the update flag can be
used instead of replace. For example, it you wanted to
change the parents of a pedigree member whose database
identifiers had been used in other tables (say trait or
genotypes), database integrity checks would not let you
remove the member record from the database. But you

Table 2 Programs that add genotype data to the database

Programname Table Behavior

geno genotypes populate Genotypes table

genoi genotypeblocks,
snpblocks,
marker_info

populate Genotypeblocks,
snpblocks, andmarker_info
tables from Illumina data

genoa genotypeblocks,
snpblocks,
marker_info

populate Genotypeblocks,
snpblocks, andmarker_info
tables from Affymetrix data

genok genotypeblocks,
snpblocks,
marker_info,
members,
samples, traits

populate Genotypeblocks,
snpblocks, marker_info,
members, samples, and
traits tables from PLINK
binary format data

can update themember record. Finally, the delete flag will
remove all the records in the flat file from the database.
Similar utilities (Table 1) are available to add markers,

pedigrees, traits, aliases, etc. They all use the same set of
flags, which behave as described above.
The geno program (Table 2) enters data into the Geno-

types table. It accepts genotype data in several formats:
alleles in separate columns, allele pairs in a column, all
genotypes for a person on one line, etc. If errors are
detected, the data are rolled back out of the database. For
example, each marker name used by genomust already be
in the marker table, thus ensuring internal consistency of
marker information within the database. The main reason
the geno program is separate from the utilities accessed
through the dbvor program is that there are a number
of automated tests performed and statistics compiled as
the genotype data are entered into the database. In par-
ticular, a warning will be raised for person/markers that
are already in the database with a different genotype value
for a given marker name, technology, and experiment. We
do allow multiple genotype entries for the same member-
marker if they have different technologies/experiments.
Illumina genome-wide marker data are often contained

in many files, with one sample per file, complemented
with an additional file which maps the chip assay ids to
markers. (There are several ways to make the mapping
file, such as look up the specified chromosome/position
in a current build or do a BLAST look up of the speci-
fied flanking sequences). All these flat files contain simple
columnar data. The genoi program (Table 2) inserts Illu-
mina data by reading the marker mapping file and the
collection of sample files. The marker data are inserted
into the genotypeblocks table in the database and the rel-
evant columns from themarker mapping data are inserted
into themarker_info table as well as the snpblocks table.
Affymetrix data could, in principle, be represented the

same way as Illumina data with one sample per file, but
Affymetrix data are typically presented as a varying num-
ber of samples per file, along with a file of marker map
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information. The genoa program (Table 2) handles read-
ing this type of data.
PLINK [9] uses a handful of flat files to efficiently hold

genome-wide data. It is common to use PLINK binary for-
mat for processed genome-wide study data. One flat file,
defines the markers, another file defines the pedigrees,
and a final file in a compressed (binary) format defines
the genotypes for the markers and pedigrees. The flat
files contain simple columnar data. The genok program
(Table 2) inserts themarker info into themarker table, the
markerinfo table, as well as the snpblocks table. The pedi-
gree data go into the members table, samples table, and
traits table. Finally, the binary file is parsed to populate
the genotypeblocks table.
The dbVOR code modules for processing genome-wide

data consist of a base class that handles processing and
storing the genotype and marker data and a derived class
responsible for fetching the genotype data from the input
files. This structure makes it possible to extend the pro-
cessing to new input data formats with minimal revision
of dbVOR.

Data extraction
The genout program extracts genotype and phenotype
data from the database. The extracted datamay be format-
ted as simple columnar tables separated by tabs, commas
or white space. In addition, the data may be extracted
in Mega2 [10] format or most of the PLINK [9] formats
(including binary formats), facilitating further analysis.
The extracted data can be filtered by including specific

pedigrees and persons and/or excluding specific pedigrees
and persons. As the filtering criteria might remove peo-
ple needed to specify complete pedigree structures, the
pool of selected individuals may be increased to include all
members of any previously selected pedigree. Traits that
should appear in the output can be listed and the popula-
tion can be filtered by requiring members to have specific
values for specified traits.
Unreliable measurements can be removed from the out-

put. Markers of a given experiment may be filtered out
via a list in the configuration file (described below) used
by the extraction program, genout. In addition, ranges
of markers on a chromosome, possibly associated with
some particular individuals, can similarly be filtered out.
Alternatively, filtering decisions can be recorded in the
database by setting the ’active’ flag appropriately. This
mechanism allows the user to tag data already in the
database as not to be used.
Alternatively, a filter may be used to select a list of

desired markers. Or all the markers on one or more chro-
mosomes can be selected. In addition, sub-ranges of each
chromosome, indicated in base pairs or genetic distance,
can be requested. If any marker has no observations for all
the subjects selected, it can be dropped from the output.

Since the database contains experiment and technology
keys, the markers can be restricted to only those com-
ing from particular experiments and/or technologies. In
addition, the subjects can be restricted to those having
markers from a specific experiment and/or technology.

Configuration files
All the dbVOR programs are run from the command line.
Most input programs read one or more files of data and
load them into the appropriate database tables. Additional
configuration information is needed for these programs.
To avoid having numerous command line switches and
flags, a configuration file is usually used (supplementing
any parameters supplied on the command line). This tech-
nique makes it easy to repeat a previous run, as well as to
supply many parameters and lists among the arguments:
markers, persons, etc.

Log files
Error reports and status information are written into a
log file during each run. The log file incorporates the date
and time of the run to create a unique file name (The log
file name can be changed through the configuration file).
After a run, it can be useful to review the log file to inves-
tigate errors, find problems, and read complete reports.
Each log file is divided into several sections. The first few
lines of each section are displayed on the screen during
the program run to indicate to the user the kinds of activ-
ities and/or problems that are occurring. If the normal
program operation does not present enough status infor-
mation, one can add a verbose flag (and even a debug
flag) to write more details of the internal operations of the
program to the log file.

Note storage
Most dbVOR tables contain a time stamp to record when
each record was changed. But a time stamp is insufficient
for documenting what changed and why. Our preferred
way to keep notes is to record changes and their rea-
sons to a (text) "note file". We provide a notes table as
part of dbVOR that contains fields for notes and data as
well as keywords and comments for easy retrieval. Thus
the venerable “note file” and the related data can become
a permanent part of the database. We typically would
expect to store the log file associated with a commit of
data to the database; there is a flag that can be added to
any program to create a note in the database containing
the log file of a commit as well as user-supplied notes.

Computing resources
All the dbVOR programs are written in Python version
2.6. The database used is MySQL. In our customary usage,
both the database and the dbVOR programs run on the
same machine. Python and MySQL are available for many
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different platforms. Thus dbVOR should be very portable,
though we developed it on Macintoshes running OS X.
Version 1.11 of dbVOR is available in Additional file 1,
along with a companion program needed for full function-
ality: version 1.4 of the Genetic Map Interpolator (GMI)
[8] as Additional file 2; for updated versions of these,
please check the dbVOR home page (https://watson.hgen.
pitt.edu/register).
It should be possible to replace MySQL with a different

choice of database. dbVOR should be portable, because
its SQL commands are exclusively constructed in Python
- there are no stored procedures used in dbVOR. The SQL
Table definitions (Data Definition Language) would need
to be adjusted to the new database syntax and a Python
interface package to the database would also be required.
The SQL used for data manipulation should be simple
enough to be supported by most database engines.

Database commit/Rollback policy
We want clarify our use of the commit flag described ear-
lier; it is part of a protocol to ensure that no incorrect data
is stored into the database. Each program that prepares
data for insertion into the database checks many details,
but it does not actually put data in the database unless the
commit flag is given. Further, if any errors happen while
inserting the data when a commit was requested, all the
data are rolled back. One must then fix all errors that were
found and run the program again.

Example
Given the database design and programs described above,
we now will show, using a simple example, how geno-
types are pulled from the database. As a sample can be
genotyped more than once at a given marker, we illus-
trate dbVOR’s support for handling and resolving any
disagreements among the repeated genotypes.

Extracting genotypes
Our dbVOR database design has two major tables: the
genotypes table for a small number of markers and the
genotypeblocks table for genome-wide scale data. Each
row of the genotypeblocks table contains multiple geno-
types; the example portrayed in Figure 2 Part F has 500
genotypes per record. We now illustrate how genotypes
are fetched, both from the genotypes table and from the
genotypeblocks table. This is presented in Figure 2. The
tan lines show a request for a specific marker. Genotypes
for rs123401 (markers table, Figure 2 Part B line 1) are
selected from experiment ‘Exp D’ in the genotypes table
(Part D line 1) and experiment ‘Exp F’ in genotypeblocks
table (Part F, line 1). (To pull data from the genotype-
blocks table, we needed to look up rs123401’s block and
offset indices in the snpblocks table (Part E, line 1)). This
selection pulls 0/0 from Exp D in the genotypes table (Part

D line 1) and A/C from Exp F in genotypeblocks table
(Part F line 1), as summarized in Line 1 of Figure 3. Note
that the example tables in Figure 2 are simplifications and
in the full dbVOR system, the experiment is attached to
the row information.
Next, the yellow lines show a request for mark-

ers by chromosome range. Suppose we request mark-
ers on chromosome 1 between positions 10000000 and
20000000. The selected markers are shown in yellow in
themarker_info table (Figure 2 Part A lines 1 & 2) - these
represent markers rs123451 and rs123452 (marker table,
Part B lines 2 & 3). Retrieving genotypes for these mark-
ers from Exp F requires one select from genotypeblocks
table; genotypes for both markers are stored in the same
record (Part F line 2). But retrieving genotypes from Exp
D requires multiple selects from the genotypes table (Part
D, lines 2 & 3). This selection pulls 1/2 and A/C from the
genotypes table (Part D) and G/T and A/C from the geno-
typeblocks table (Part F), as summarized in Lines 2 and 3
of Figure 3.
Finally, for the green lines the marker name and position

have changed over time: rs456784 was on chromosome
2 when first imported into the snpblocks table (Figure 2
Part E, line n); now it is on chromosome 3 (marker_info
table, Part A line 3). Furthermore, rs456784 is now aliased
to rs34567 in the marker_alias table (Part C, line 1).
This marker was requested by either name or by asking
for chromosome 3 (in its entirety or by an appropriately
chosen range). A genotype at this marker is not available
in genotypes table (Part D line 1), but is G/T from the
genotypeblocks table (Part F, line n) of Figure 3.

Genotype conflicts
If data are fetched from more than one experiment, some
markers may have more than one measured genotype
for a given individual. It does not matter if the experi-
ments are all targeted or all genome-wide or if we have
some of each.Whenever there are multiple measurements
for the same person and marker, a conflict may arise.
Note also that a single experiment may have two or more
measurements for the same marker and person. Any con-
flicts must ultimately be resolved prior to outputting the
data for further analysis. If all the known measurements
concur with each other and the rest are unknown, the
common measured value is output. This is illustrated in
Figure 3 lines 1 and 3 (Creation of this table was explained
above, based on Figure 2). If the genotype measurements
conflict (Figure 3 line 2), we offer several mechanisms
to resolve the conflict. If some experiments are deemed
to be more trustworthy than others, a trust level can
be specified for the experiment or marker. Alternatively,
some poor quality experiments, though still stored in the
database, can be marked as “not to be used” under nor-
mal circumstances. If after applying the trust metric, there

https://watson.hgen.pitt.edu/register
https://watson.hgen.pitt.edu/register
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Figure 2 An example of the marker look up process. The tan lines show a request for a specific marker. Next, the yellow lines show a request for
markers by chromosome range. Finally, the green lines illustrate how the marker name and position can change. The 0/0 genotype in line 1 of Part
D represents the missing genotype. The [ ] brackets in Part F point out the 6th and 7th genotype on line 2 and 500th genotype on line n; the
brackets are not part of the genotype data.

Figure 3 Possible conflicts in genotypes, and their resolution, arising
from two experiments, Exp D and Exp F, covering the same subject
and marker. “0/0” represents an unknown genotype.

are still multiple conflicting genotypes for a single mem-
ber/marker, dbVOR will record the conflict in its log and
output a missing genotype into the output file. A similar
trust/ignore mechanism can be used to select which sam-
ple to use when a sample has been run on more than one
plate (and/or duplicated as a control).

Data statistics
As the data pass from the dbVOR database to the output
files, information is accumulated by the genout program
so that summary statistics can be produced. For exam-
ple, the allele and genotype frequencies for each marker
can be displayed. In addition, all the member/marker
measurements that show more than one measurement
are recorded for further analysis and to display potential
conflicts. However, for a large scale studies with thousands
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Table 3 Example agreement matrix between two
experiments, exp1 and exp2

exp1↓/exp2→ 0/0 1/1 1/2 2/2

0/0 2 1 1 0

1/1 19 194 1 0

1/2 58 2 549 0

2/2 53 0 0 534

The genotypes from the first experiment label the rows and those from the
second label the columns.

of people and millions of markers, statistical record keep-
ing can, in our experience, exhaust the resources of the
machine. Under these circumstances, we suggest that the
user gather statistics for one chromosome at a time, as
this is moremanageable. Alternatively, a flag is available to
request that no statistics be gathered by genout and that
one person’s worth of data be processed at a time, written
out, deallocated from memory, and so forth.
When statistics are requested, then for every marker

genotype that is measured by more than one experiment
for a given person, dbVOR shows a matrix indicating
the agreement of the experiment results for each experi-
ment pair. For example, consider the following agreement
matrix for a marker at two experiments: exp1 and exp2
(Table 3). From the first column, we observe that the sec-
ond experiment did not measure 130 people that were
successfully genotyped in the first experiment and in the
first rowwe find two people that were not typed in the first
experiment but were in the second experiment. We also
see that the two experiments mostly agree on the other
measurements except for three people: one person at [1/1,
1/2] meaning exp1’s genotype was 1/1 while exp2’s was
1/2 and two people at [1/2, 1/1]meaning exp1’s genotype
was 1/2 for two people while exp2’s was 1/1. We would
output a missing genotype 0/0 for these 3 cases.
In Table 4, the agreement matrix informs us that

these two experiments used different labeling schemes
for reporting the genotypes. The automatic mechanism
would see a conflict and would output a value of 0/0 for
all these data. If supported by the laboratory records, the
allele_map table can be used to resolve this difficulty by

Table 4 Example agreement matrix between two
experiments, exp3 and exp4

exp3↓/exp4→ 0/0 A/A A/C C/C

0/0 0 0 0 0

1/1 0 190 0 0

1/2 0 0 504 0

2/2 0 0 0 359

The genotypes from the first experiment label the rows and those from the
second label the columns.

remapping allele 1 toA, and allele 2 to C for the marker in
exp3.

Results
Here we discuss some timing data based on a real data set,
as well as compare dbVOR to other previously published
database software.

Performance
To measure performance, we used an Illumina
HumanExome-12v1 exome chip data set where 1,058
samples were genotyped at 247,519 markers by the Center
for Inherited Disease Research. These data were gener-
ated in accordance with the Declaration of Helsinki as
part of our Genetics of Age-related Macular Degenera-
tion study, with the approval of the UCLA and University
of Pittsburgh Institutional Review Boards. Our perfor-
mance measurements were performed on an iMac with
a 3.33 GHz Intel Core 2 Duo processor having 8 GB
memory. First, we used a small subset of our Illumina
exome chip data with 25,143 markers measured on 1,058
samples contained in 1,058 files. This is about 10% of the
available markers; these markers were chosen randomly
from the 247,519 markers available. Loading these data
into the Genotypeblocks table required 255 seconds
(most of this time was consumed in reading and parsing
the files.). The Genotypeblocks table has 66,654 blocks
(i.e. rows); 63 blocks per sample (times 1058 samples
equals 66,654). For each sample, chromosome 1 occupies
5 blocks, chromosomes 2, 6, and 11 each occupy 4 blocks,
chromosomes 3, 4, 5, 7, 9, 12, 16, 17, and 19 each occupy
3 blocks, chromosomes 8, 10, 14, 15, 20, 22, and 23 each
occupy 2 blocks and the remaining chromosomes (13,
18, 21, 24, and 26) each occupy just 1 block. All these
data were output into a single file similar to PLINK PED
format (using genout); and read into an empty Geno-
types table. The populated Genotypes table contained
26,591,772 records. (This number is a bit smaller than
25143 markers * 1058 samples because missing genotypes
are not stored in the database in this representation.)
These records are 399 times the records of the Genotype-
blocks table. Loading the data took 1,535 seconds. This is
six times slower but this number does not tell the whole
story. The time spent doing the database insert for the
Genotypeblocks table was 30 seconds while the time for
the Genotypes table was 1,284 seconds, a factor of 40
slower. In addition, as the Genotypes table is 399 times
larger, this slows down database operations such as select
and delete (As an example, using “delete” to remove all
the entries in the genotypes table [and doing the requi-
site database book keeping to allow rollback] took over
30 minutes).
Extracting data from the database was faster when

pulling from the Genotypeblocks table than from the
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Genotypes table. Fetching all the genotype data into
PLINK bed format using the Genotypeblocks table took
268 seconds while fetching from theGenotypes table took
685 seconds. Both these timings are for fetching the data
while keeping no statistics on the results.
The full Illumina exome chip data set has 247,519 mark-

ers for 1,058 samples. Loading this into the Genotype-
blocks table took 2,245 seconds (0.62 hours). If loading
theGenotypes table is 6 times slower, it would take 13,470
seconds (3.74 hours) to load the same data. Scaling the
load times shown earlier, we predict that the Genotype-
blocks load for a data set with 1,000 samples and 1,000,000
markers should take 2 hours and 40 minutes, while Geno-
types should take 16 hours (This comparison assumes that
the database performance scales linearly with the number
of records – which is not true). Extracting all the mark-
ers for 1,058 members from the Genotypeblocks table
into PLINK BED format took 3,305 sec, while extracting
just the markers from chromosome 1 (25,175 markers)
required 267 seconds.
We also timed dbVOR using the publicly-available Illu-

mina HapMap data (Gene Expression Omnibus accession
numbers GSE17205 (CEU), GSE17206 (CHB+JPT), and
GSE17207 (YRI)) containing 620,932 markers for 73, 75,
and 77 samples, respectively [11,12]. It took 132 seconds
to load the marker names and positions into the markers
table, marker_info table, and snpblocks table. After that,
it took 436 seconds to load the 73 CEU samples, 374 sec-
onds to load the 75 CHB+JPT samples, and 364 seconds
to load the YRI samples. All these load times should be
about the same because they read the snpblocks table and
then use it to create the genotype blocks for the about the
same number of samples. But the time to load the first of
the HapMap data sets (CEU) is 62 seconds longer than the
rest because, being first, it has to pull the snpblocks table
into the database server cache whereas when loading the
next two datasets the table is read from the server cache.

Scaling
Currently, each record in the Genotypeblocks table holds
exactly one 500 genotype block and some additional fields.
This appears optimal for the data we currently load into
dbVOR. We varied the number of genotypes per block
from 50 to 5,000 and evaluated the impact on perfor-
mance and space. The last block for each chromosome
is usually not completely full of genotypes, nonetheless
space is always reserved for a full block. The extra space is
wasted. Our Illumina exome chip data with 247,519 mark-
ers has a total of 1,379 samples (stored as one file per sam-
ple) but we had pedigree data for only 1,058 individuals.
We prefer to use all 1,379 samples for the following exper-
iments. If we scale the previous load time of 2,245 seconds
for 1,058 samples by 1379/1058, we would have predicted
a load time of 2,926 seconds; we measured 2,901 seconds.

Figure 4 shows that time to read the files and popu-
late the database as we vary the genotype block size is
relatively flat for more than 500 genotypes per block, but
exponentially worse for smaller block sizes. Most of the
load time comes from parsing the data file, not inserting
the data into the database.
Figure 5 shows a similar looking curve for the num-

ber of records in the Genotypeblocks table. Also, as the
number of genotypes per block rises, the larger blocks
are not filled up completely since more of the chromo-
somes will not have enough markers to need a complete
block. The unused space is wasted; at 5,000 genotypes per
block, the database is over 45 times larger than its minimal
size.

Discussion
A number of database systems for handling human genet-
ics data have been proposed, starting as early as 1988
when the “Human Genetics Database Management Sys-
tem” was developed; this database system handled not
only marker data on pedigrees, but also clinical and lab-
oratory data [1]. Before embarking on writing our own
database software, we explored other options. As a small
research group with limited funds, the capable Integrated
Genotyping System [3] was not an option for us because
we were not prepared to set up and maintain a Win-
dows server machine. However, we did have a Sun Solaris
machine, and so explored using GeneLink [2]. GeneLink
was originally developed using Sybase SQL server, but we
chose to get the Oracle version working, as we had a site
license for Oracle. While we got it working, we found that
keeping Oracle secure and updated was a major under-
taking, requiring the skills of an experienced database
system administrator. We failed at our attempts to extend
GeneLink to handle non-integer pedigree IDs - changing
the pedigree ID type in the database tables was simple, but
adjusting the sophisticated web interface to accommodate
this change was beyond our skill set. These experiences
led us to focus on creating a database system, modeled on
GeneLink, that used open source free components, was
easy to install and maintain, and has a simple interface,
enhancing the ability to subsequently modify it as needed.
In passing, we note that PLINK [9] is a formidable data

analysis tool and it provides at least asmuch filtering capa-
bilities as dbVOR. PLINK can do a variety of tasks - it can
recode allele labels, flip strands, update individual infor-
mation, zero out a set of genotypes, and merge sets of
genotypes. However, PLINK only supports flat files; it has
no database capabilities. Further, it cannot easily manage
collections of experiments to process. Merging data sets
with PLINK requires that both data sets use the same sets
of person IDs and allele labels, while dbVOR allows one to
resolve these issues via the use of appropriate aliases. And,
having been written primarily for data sets of unrelated
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Figure 4 Time to load the Genotypeblocks table with 247,519 markers for 1,379 samples as a function of number of genotypes in a block.

individuals, when working with family data it can be chal-
lenging with PLINK to avoid filtering out ungenotyped
individuals required to maintain family structures. While
our final merged and cleaned data sets are often analyzed
with PLINK, in our experience dbVOR greatly facilitates
the process of preparing a single PLINK-ready data set.
We have compared dbVOR to SNPpy, a recently devel-

oped database system [6,7]. Both SNPpy and dbVOR
are database systems that store and retrieve genotype
information from experiments. Both systems access their
database in Python and by a command line interface. They
both deal with the large amount of marker data in cur-
rent genome-wise studies, but in different ways. SNPpy
more heavily uses database features and uses C++ code
embedded in Python to improve database performance.
In addition, SNPpy can take advantage of multiple cores,
when available. However, SNPpy supports only one phe-
notype and no parental information. dbVOR is specifically
designed for linkage studies containing families, and so
stores parent data. It also stores marker genetic positions
(as well as base pair positions); in addition, it stores map
information for multiple builds. dbVOR stores all the data
as it was originally sourced from flat files, Illumina files,

or Affymetrix files. But it allows for later marker aliasing,
person name aliasing, and allele value remapping. It pro-
vides statistics to show patterns/anomalies in the data
without judging them as errors.
On data extraction, dbVOR allows poor data to be

marked and ignored. It resolves multiple measurements
of the same person/marker in an automated but cus-
tomizable way. dbVOR can filter subsets of the database
via simple lists and ranges and does not required the
construction of complicated SQL expressions (as is nec-
essary for SNPpy). Further, filtering can be constrained
to keep the family structures intact. dbVOR reports data
out in the less compact text-based PLINK formats like
SNPpy does, as well as in the compact binary PLINK
format. It also can output Mega2 files [10]. dbVOR’s
data representation is particularly efficient for fetching all
the markers from a given chromosome or chromosome
range.
Table 5 compares the Illumina HapMap loading times

with the corresponding times for SNPpy. Recall, these data
contain 620,932 markers and 73, 77 and 75 samples for
CEU, YRI, and CHB+JPT, respectively. We use an iMac
with a 3.33 GHz Intel Core 2 Duo processor having 8
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Figure 5 Number of records in the Genotypeblocks table and total space usage in bytes for alleles as a function of the number of genotypes per
block, as computed on an example data set of 1,379 samples typed at 247,519 markers.

Table 5 Performance comparison: average time (in
seconds) to insert all the Illumina HapMap data into the
database and generate a PLINK “ped” file using dbVOR
and SNPpy

Task Cold Database Hot Database

dbVOR SNPpy dbVOR SNPpy

load all HapMap data 1311 1053 1302 1038

select all 620,932 marker 1333 586 1317 478

genotypes; write to ped file

select chromosome 1 117 188 98 111

genotypes; write to ped file

select chromosome 1 genotypes 28 235 8 112

between bp 500,000 to 1,000,000;

write to ped file

The timings under Cold Database are for performing a task just after the
database server is started. The Hot Database timing are for repeating the task a
second (or third) time. The Cold numbers are averaged over three runs and the
Hot numbers are averaged over six runs.

GBmemory. The dbVOR configuration files used in these
comparisons are provided in Additional file 3; the pro-
cess for developing the timing data is described in detail in
Additional file 4. The dbVOR calculation is done with the
genotypes stored in the genome-wide block representa-
tion. The SNPpy calculation is done with genotypes stored
in the shard representation with multiprocessing activity
set to one processor (j = 1).
Regarding the average loading times seen in the first

line of Table 5, SNPpy is faster than dbVOR. Similarly,
when selecting and writing out all the genotypes, SNPpy
is much faster than dbVOR. However, when smaller
portions of the data are selected, dbVOR is faster than
SNPpy. The ‘cold’ timings indicate performance right after
the database has been started, while the ‘hot’ timings indi-
cate the effect of repeating a task that has previously been
carried out. Both systems show improvements in ‘hot’
mode when reading a chromosome or less; presumably
because data are cached in the server and so do not have
to be fetched from the database files
One might question why our database system contains

two different subsystems for storing genotypes: theGeno-
types table is used for storing small volumes of data, while
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the Genotypesblocks table approach is used for genome-
wide large-scale genotype data. One reason is histori-
cal: we developed the Genotypes table approach first for
targeted experiments. The other reason is that in our
experience, in a given research project, it is common to
start with genome-wide large-scale data and then follow-
up with much smaller scale targeted follow-up data. The
genome-wide representation is more efficient for read-
ing and writing large-scale genotype data; however, it is
less space efficient for targeted data (as storing small-scale
data in a large block structure would waste space). The
Genotypes table representation is just the opposite; it is
efficient where the genome-wide representation is not and
vice versa. The genome-wide representation for reading
and writing uses fewer database records. The database
must maintain indices, consistency constraints and atom-
icity of operations for each record. With fewer records,
there is less total time overhead.
Finally, it is important to note that efficiency is context

dependent: the genome-wide representation is inefficient
in the case when one is selecting a small number of mark-
ers, each in a separate block. Such a selection would, when
using the Genotypeblocks representation, require extrac-
tion and handling of a lot of unneeded marker data, as
each block containing a selected marker would need to be
pulled in its entirety from the database.

Conclusions
Our dbVOR database provides useful solutions to data
management problems commonly encountered during an
ongoing study of the genetics of a complex trait. In such
a study, oftentimes genome-wide data are first gener-
ated, and then later regions of interest are followed up
via targeted custom genotyping using a different tech-
nology. Differing technologies may return different allele
labels for a given marker. Genotyping experiments may
partially fail, and so need to be redone. Clinical data
may be presented with identifiers that differ from the
identifiers used in the laboratory. Accordingly, dbVOR
was designed to handle data from multiple sources with
possibly conflicting measurements as well as conflicting
codings when the underlying data are actually the same. It
was designed to process not only targeted experiments but
also genome-wide experiments and to merge their results
into a coherent whole. dbVOR allows you to select subsets
of the data by several different criteria and to output the
results in tabular, Mega2, or PLINK format.
We now enumerate some of the strengths of our dbVOR

database:

• dbVOR was designed to be easy to install, maintain,
and modify. It is purposely lean, requiring just two
software components (Python and MySQL), and it is
open source.

• Our dbVOR database handles both genome-wide
scale data, as well as targeted follow-up data of
limited scale. While the genome-wide data are stored
in a special way that maximizes efficiency, our
database is capable of merging the two types of data
together during export.

• dbVOR handles not only unrelated individuals, but
also handles family data. It can keep family structures
intact after filtering.

• Our database is capable of handling multiple different
phenotypes, both categorical and quantitative, and
provides summary statistics.

• dbVOR is designed to handle the reconciliation of
overlapping genotype data from different
experiments. In the process, it provides feedback to
the user in the form of agreement matrices, clearly
showing how many repeated genotypes agreed with
each other and how many did not.

• Our database can resolve multiple ID systems,
alternate marker names, and differing marker allele
labels.

• dbVOR retains all original data while providing the
ability to selectively turn off untrusted portions of the
data.

• Our database supports flexible and powerful filtering
during export. For example, specific pedigrees or
persons can be excluded or included, and markers
can be selected by name, chromosomal position, or
chromosomal range.

• dbVOR supports the storage of multiple builds of
map information, as well as supports genetic maps.

• Our database uses a command-line interface,
augmented with flexible configuration files.

• dbVOR has the ability to do a test run of requested
actions before committing such changes to the
database. This permits iterative improvement to the
choice of configuration options.

• dbVOR provides a system for storing and retrieving
notes. The data analyst can use these notes to
document data cleaning decisions and data
manipulation choices.

• dbVOR supports Illumina, Affymetrix, and flat file
input, largely by letting the user choose columns
from the input files. It also supports input in PLINK
binary ’bed’ format.

As with all software projects, dbVOR is a work in prog-
ress, and so there are a number of possible improvements
that could be made in the future. These include:

• dbVOR could be extended to use multiple cores in
parallel when available. Such an extension should
enable the speed up of some currently slow
operations.
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Figure 6 The dbVOR schema. The blue tables (projects, technologies, experiments, traitmeta, and builds) map a string name to a database identifier
and occasionally supply additional data. The yellow tables (members,member_aliases, and traits) contain pedigree and phenotype data. The red
tables (genotypes and genotypeblocks) contain the genotype data. Each record in genotypes contains the data for a member and single marker,
while a record in genotypeblocks contains a block of data for a member and several hundred contiguous markers. The green table (snpblocks)
provides an index into genotypeblocks, specifying where a particular marker is in a block of contiguous markers. The green tables (markers,
marker_aliases, andmarker_info) map a marker name to a database identifier and supply map position information. The allele_map table
optionally remaps the allele names for a specified experiment and marker to different values. The samples table stores information about samples,
the most important being the mapping from the sample identifier to the pedigree and person of the subject. The notes table provides a facility for
documenting decisions made as the data are cleaned and processed.
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Table 6 Definitions of the field-specific symbols used in
Figure 6

Symbol Meaning

Small key Primary key

Red diamond Foreign key

Filled diamond Not null

• It might be useful to add support for data constraint
checking, mainly for phenotype data.

• dbVOR could be extended to provide easy control of
database user privileges, permitting us to supplement
administrator roles with more limited reader and
specialized roles.

• Our database could be extended to store and manage
intensity data generated by genome-wide chips.

• While dbVOR can currently handle imputed
genotypes that have been called, it could be extended
to store and manage uncalled imputed genotypes
which are represented by a trio of posterior genotype
probabilities.

Availability
Current versions of our dbVOR and GMI programs are
attached as additional files. Updated stable releases will be
available, after a simple registration, at our software reg-
istration site https://watson.hgen.pitt.edu/register. Our
current working version of dbVOR can be found at
the dbVOR BitBucket repository: https://bitbucket.org/
dweeks/dbvor/, where no registration is required.

Availability and requirements
Project name: dbVOR
Project home page: https://watson.hgen.pitt.edu/register
Operating system(s): Platform independent
Programming language: Python 2.6.x, 2.7.x
Other requirements:MySQL, Python MySQL module
License: GNU GPL 3
Any restrictions to use by non-academics:None beyond
those in the GNU GPL 3 license

Appendix
Data schema
Figure 6 is an enhanced entity-relationship diagram illus-
trating the layout of dbVOR’s database tables, as drawn
by MySQL Workbench using Crow’s Foot Notation. Here
the boxes represent tables, the lines between the boxes
represent relationships between the tables, and cardinal-
ity and modality of these relationships is represented by
the shapes at the ends of the lines. However, the lines are
not useful in this static presentation. But if MySQLWork-
bench were interactively presenting this schema, hovering
over table fields and arrows would clearly highlight foreign

key dependencies. Each field is annotated by a key symbol
or diamond symbol whose meanings are defined in
Table 6.

Additional files

Additional file 1: Contains the entire dbVOR package, version 1.11.

Additional file 2: Contains the entire Genetic Map Interpolator (GMI)
package, version 1.4.

Additional file 3: Contains the configuration files and some data files
for dbVOR vs SNPpy performance comparisons.

Additional file 4: Contains additional documentation regarding the
details of howwe carried out the performance measurements.
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