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CHALLENGES IN RANDOM GRAPH MODELS WITH DEGREE

HETEROGENEITY: EXISTENCE, ENUMERATION AND ASYMPTOTICS

OF THE SPECTRAL RADIUS

David E. Burstein, PhD

University of Pittsburgh, 2016

In order to understand how the network structure impacts the underlying dynamics, we seek

an assortment of methods for e�ciently constructing graphs of interest that resemble their

empirically observed counterparts. Since many real world networks obey degree heterogene-

ity, where di↵erent nodes have varying numbers of connections, we consider some challenges

in constructing random graphs that emulate the property. Initially we focus on the Uniform

Model, where we would like to uniformly sample from all graphs that realize a given bi-degree

sequence. We provide easy to implement, su�cient criteria to guarantee that a bi-degree

sequence corresponds to a graph. Consequently, we construct novel results regarding asymp-

totics of the number of graphs that realize a given degree sequence, where knowledge of the

aforementioned enumeration result will assist us in constructing realizations from the Uni-

form Model. Finally, we consider another random directed graph model that exhibits degree

heterogeneity, the Chung-Lu random graph model and prove concentration results regarding

the dominating eigenvalue of the corresponding adjacency matrix. We extend our analysis

to a more generalized model that allows for intricate community structure and demonstrate

the impact of the community structure in networks with Kuramoto and SIS epidemiological

dynamics.

Keywords: degree sequence, directed graph, Chung-Lu, random graphs, contingency table,

digraph.

vi



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 SUFFICIENT CONDITIONS FOR GRAPHICALITY . . . . . . . . . . 11

2.1 Exploiting Concavity to Construct Novel Su�cient Conditions . . . . . . . . 12

2.2 Refining Our Su�cient Conditions with the Minimum Degree . . . . . . . . 17

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.0 ASYMPTOTIC ENUMERATION OF GRAPHS WITH

PRESCRIBED DEGREE SEQUENCES . . . . . . . . . . . . . . . . . . . 27

3.1 Counting Graphs with Partitioning . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Counting Graphs with Degree Preserving Switches . . . . . . . . . . . . . . 38

3.3 Asymptotic Enumeration to Arbitrary Orders of Accuracy . . . . . . . . . . 42

3.4 Some Examples Illustrating the Main Result . . . . . . . . . . . . . . . . . . 53

3.5 Verifying the Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Enumerating Graphs with Greater Dependence on the Degree Sequence . . 77

3.7 Some Extensions and Corollaries . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7.1 Maximum of the Degree Sequence . . . . . . . . . . . . . . . . . . . . 84

3.7.2 Graphs without Loops and Undirected Graphs . . . . . . . . . . . . . 85

3.7.2.1 Directed Graphs without Loops . . . . . . . . . . . . . . . . . 85

3.7.2.2 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7.3 Computing Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.0 CONCENTRATION RESULTS REGARDING THE SPECTRAL RA-

DIUS FOR RANDOM DIRECTED CHUNG-LU GRAPHS . . . . . . . 90

vii



4.1 Spectral Concentration Bounds, a·b
S ! 1 . . . . . . . . . . . . . . . . . . . 94

4.2 Concentration Bounds when pmax ! 0 . . . . . . . . . . . . . . . . . . . . . 109

4.3 Partitioned Chung-Lu Model . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

viii



LIST OF FIGURES

3.2.1 A Degree Preserving Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 A Sample Path Illustrating an Example of a Repeating Node Block. . . . . . 98

4.1.2 Speed of the Convergence of ⇢(A) to a·b
S in the Chung-Lu Random Graph

Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1 Restriction on Repeating Edge Blocks for pmax ! 0. . . . . . . . . . . . . . 122

4.3.1 Numerical Evidence for ⇢(P). . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3.2 Distribution of Stopping Times in the SIS Model for Networks with Commu-

nity Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.3.3 Distribution of the Synchrony Parameter in the Kuramoto Model with Noise. 143

ix



1.0 INTRODUCTION

Starting in 2006, medical professionals witnessed a dramatic increase in tuberculosis through-

out a community in British Columbia. In order to better understand how the pathogen

spread, Gardy et al. [40], used a social network analysis questionairre to identify connec-

tions between individuals in the epidemiological network. The resulting set of connections,

or edges, between people (nodes), formed a graph corresponding to the network. While

empirical data provides much insight as to how tubercuolosis could spread throughout a

particular network, empirical data alone does not give us the capability to generalize results

concerning the spread of a pathogen to other networks. Instead as applied mathematicians,

we want to construct a ’random graph model’, where for some choice of parameters, we

attain a family of graphs similar to our empirical data and prove that the dynamics (the

spread of the pathogen) are essentially the same for all graphs in the collection.

Unsurprisingly, the utility of random graph models extends far beyond epidemiological

networks. For example in biological neural networks, pathological amounts of synchronous

spiking could be indicative of schizophrenia, Parkinson’s or Alzheimer’s disease [80]. Conse-

quently using random graph models, we would like to identify families of graphs that promote

or abate the likelihood of pathological synchrony. Analogously in ecological networks, where

we model populations of species with a system of Lotke-Volterra di↵erential equations, we

seek families of graphs that promote or diminish the likelihood of a mass extinction event

[74].

We can extend the discussion to genetic networks. Mathematically, we often model

genes with boolean dynamics (having an ’on’ state or an ’o↵’ state where the state of a

gene depends on the states of its ’neighbors’). From a dynamical systems perspective, we

want to identify network structures (families of graphs) that are resilient to changes in initial
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conditions, as many researchers hypothesize that dynamical instability in genetic networks

could play a fundamental role in the occurence of cancer [67].

In addition to biological networks, we can consider computer networks, in particular in-

ternet routing networks. In the autonomous system internet routing network, autonomous

systems receive path announcements through other nodes in the network. Subsequently,

autonomous systems send messages to other autonomous systems by selecting an announced

path of intermediary autonomous systems to relay the message. Perhaps surprisingly, an au-

tonomous system can announce false paths in order to incentivize other nodes in the network

to send messages through the dishonest autonomous system. Even though an autonomous

system could announce any false path, to avoid detection, an autonomous system may only

consider announcements consisting of a small subset of such paths. Hence, we would want

to employ random graph models to identify families of graphs that discourage dishonest

behavior [17].

In all of the aforementioned applications, we can define a dynamical process on the graph

where the state of the node x depends on the states of the neighbors of x, the nodes that

share an edge with x. Furthermore for many dynamical processes, a node x may receive

input from a group of nodes, while the state of node x could conceivably a↵ect an entirely

di↵erent collection of nodes. Naturally, for such a problem we could describe our network

as a directed graph where an incoming edge identifies a node that influences x0s dynamical

state and an outgoing edge identifies the nodes that x can directly influence. Prior research

has demonstrated that the bi-degree sequence, a list containing the number of incoming and

outgoing edges of each node, can have a signicant impact on the dynamics of the network

[64, 71, 39, 72, 63]. Since in real world networks the number of connections from a given node

can vary considerably throughout the network, we seek a random graph model that exhibits

this property. This serves as motivation for the Uniform Model, where our input consists of

the bi-degree sequence and our output is a randomly constructed graph that satisfies that

list. Rigorously, we define the Uniform Model as follows.

Random Graph Model 1 (Uniform Model). Consider the set of all distinct graphs that

realize a given bi-degree sequence, d = (a,b) 2 ZN⇥2, a list of the number of incoming

and outgoing edges for each of the N nodes in the graph. Denote this set of graphs by G.
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We define the Uniform Model such that for each graph in the set G, we randomly choose

a graph in G, where the probability we select G
1

equals the probability we select G
2

for any

G
1

, G
2

2 G .

Now to generate an assortment of interesting graphs with the Uniform Model we only

require a bi-degree sequence. In practice to assess the impact of the degree sequence on the

dynamics of the network, we would like to randomly generate many bi-degree sequences and

perform numerical simulations on the graphs constructed from the Uniform Model. To this

end, suppose we want to randomly construct a bi-degree sequence d = (a,b) 2 ZN⇥2 where

the entries of a and b are bounded above by M , below by m and fix the sum of the entries

in a and b to be S. Then in the spirit of [53], we can randomly sample from all bi-degree

sequences that satisfy these properties by first considering an (arbitrary) initial bi-degree

sequence that satisfies these constraints; for simplicity, we can choose a degree sequence

where all the entries in a and b are close to the average entry S
N . Then, we choose a random

pair of entries in a; we add 1 to the first number in the pair and subtract 1 from the second

number in the pair provided that we do not violate the a↵ormentioned presupposed bounds

on the degree sequence. If implementing this change would violate our constraints, we do

not change the values in the randomly chosen pair. Repeating this step a predetermined

number of times for both a and b allows us to construct non-trivial degree sequences that

satisfies the desired constraints.

Unfortunately, not all bi-degree sequences actually correspond to a graph and we would

like to implement a method that would enable us to construct degree sequences that do

correspond to a graph; we call such degree sequences graphic. This leads us to the following

problem.

Problem 1. Suppose we randomly constructed a degree sequence d = (a,b) 2 ZN⇥2 where

the entries of a and b are bounded above by M , below by m and fix the sum of the entries in

a and b to be S. Is this randomly constructed degree sequence d graphic? Alternatively, are

we guaranteed existence of a graph for all degree sequences that satisfy these constraints?

At this juncture, we would like to emphasize that even though we motivated Problem 1

by considering a particular method for randomly generating bi-degree sequences (randomly
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adding and subtracting 1 from the entries in the bi-degree sequence), Problem 1 is in fact

relevant to a diverse array of techniques for randomly constructing these bi-degree sequences.

More succinctly, we would like to guarantee that our output will yield a graphic bi-degree

when utilizing a particular method for randomly constructing bi-degree sequences. For a

specific choice of d we could partially answer Problem 1 by appealing to a classic result, the

Gale-Ryser Theorem, which provides criteria guaranteeing the existence of a solution. We

explicitly state the Gale-Ryser Theorem below.

Theorem 1. (Gale-Ryser/Fulkerson [38, 75, 37, 24],[3]) Consider a bidegree sequence d =

(a,b) where the ai are nonincreasing. d is graphic with loops (where we allow a node to have

an edge that connects to itself) if and only if

nX

i=1

ai =
nX

i=1

bi (1.1)

and for all j 2 [1..N � 1],
nX

i=1

min(bi, j) �
jX

i=1

ai.

Similarly, d is graphic if and only if (1.1) holds and 8j 2 {1, 2, ..., N � 1},

jX

i=1

min(bi, j � 1) +
nX

i=j+1

min(bi, j) �
jX

i=1

ai.

Foremost, we stress that while the Gale-Ryser Theorem provides a useful check for graph-

icality for a given degree sequence, in its current form, we cannot easily (or e�ciently) adapt

the Gale-Ryser Theorem to solve Problem 1 where we seek a guarantee that our output will

always yield a graphic degree sequence. As a side node, more recent ammendations of the

Gale-Ryser/Fulkerson Theorem do exist and can be found, for example, in Berger [10] and

Miller [57]. Miller capitalizes on the discrete “concavity” in j of the functions on the left and

right hand sides of the Gale-Ryser inequalities to derive the stronger result. Analogously, we

will also exploit the “concavity” in the inequalities to answer Problem 1, which will enable

us to construct flexible conditions for easily verifying that our output will always yield a

graphic degree sequence.
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The results of several past works [82, 2, 19] address a similar problem by providing

su�cient conditions for graphicality in terms of the maximum and minimum values in a

bidegree sequence, where bxc is defined as the integer floor of x.

Theorem 2. (Zverovich and Zverovich, Alon et al., and Cairns et al.) Consider a bidegree

sequence d = (a,b) 2 N(N,2)
0

where a = b, m = mind and M = maxd. If
j
(m+M)

4

2

k
 mN ,

then d is graphic with loops.

Theorem 2 is helpful in the sense that it provides a simple criterion for determining

whether there exists a graph corresponding to a given bidegree sequence. Unfortunately,

there are in fact bidegree sequences (where
P

ai =
P

bi) that do not satisfy the conditions

and are still graphic, including of course graphic sequences with a 6= b.

By incorporating an additional quantity, the total number of incoming and outgoing

edges of the nodes in a graph, in Chapter 2 we will prove a generalization of Theorem 2,

which will provide more flexible criteria for guaranteeing existence even when a = b and

provide a quick solution to Problem 1.

Historically speaking, Theorem 2 was relevant to the problem of showing that the likeli-

hood that a degree sequence for an undirected graph can produce a graph vanishes asN ! 1

(and an analogous result holds with respect to directed graphs for a bidegree sequence that

have equal in- and out-degree sums and is otherwise unconstrained). The constraint on the

maximum of the bidegree sequence in the above theorem suggested that the probability of

graphicality would approach zero in this limit, since excessive growth ofM (e.g., proportional

to N) with increasing N would violate the graphicality condition [33, 5, 6, 62]. Ultimately, a

result from Pittel [66] provides a proof of this asymptotic result. In general, identifying fam-

ilies of graphic degree sequences is a nontrivial problem and constructing improved su�cient

conditions for graphicality can help ease this di�culty.

We would like to emphasize that we truly have multiple motivations for pursing novel

su�cient conditions for graphicality. Firstly, even for a fixed bidegree sequence d, deter-

mining whether d is indeed graphic from the N inequalities in Theorem 1 is conceptually

cumbersome. Inspection of a given degree sequence provides little intuition as to whether it

is possible to construct a graph that realizes that degree sequence. Additionally, verifying
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the N inequalities in Theorem 1 directly can also be computationally ine�cient. While linear

time algorithms exist for verifying the conditions in the Gale-Ryser Theorem [43, 50, 34],

if we knew the maximum and minimum of our degree sequence, we would like to invoke a

criteria similar to Theorem 2 to have an O(1) check for graphicality as opposed to an O(N)

check. Consequently, we aim to strengthen Theorem 2 as we often want to sample many

di↵erent bidegree sequences and hence using a linear time check would be ine�cient. For

example, generating a large graph using the methods adopted by Kim et al. [49] requires

taking a node from the graph and identifying all wirings of its outward edges that can lead

to a digraph without multi-edges. To do so, one must check graphicality of the residual

bidegree sequence many times; avoiding this step by utilizing the conditions formulated in

Chapter 2 that ensure graphicality could help speed up the run time of the code.

After exploring the intricacies of identifying degree sequences that correspond to graphs,

to construct such graphs, we seek a method for deriving expressions regarding the probability

that two nodes share an edge under the Uniform Model. We claim (and argue shortly) that

providing a solution to the following problem will assist us immensely in this regard.

Problem 2. Given a degree sequence d = (a,b), how many di↵erent graphs realize this

degree sequence? Equivalently, how many 0 � 1 binary matrices have rows sums given by a

and column sums given by b?

Before proceeding, it is mathematically convenient to represent a (directed) graph as a

0� 1 binary matrix where the ijth entry is 1 if there is an edge from node j to node i and

0 otherwise. In this context, we can frame the problem of counting the number of di↵erent

graphs that correspond to a degree sequence as the number of 0 � 1 binary matrices with

prescribed row and column sums. To demonstrate the connection between counting the

number of graphs that realize a given degree sequence and the probability that two nodes

share an edge, we present the following example.

Example 1. Consider 0� 1 binary matrices that have row sums (2, 2, 1) and column sums

(2, 1, 2).
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2 1 2

A
11

A
12

A
13

2

A
21

A
22

A
23

2

A
31

A
32

A
33

1

What percentage of such matrices have A
31

= 1?

To answer this question, let’s rewrite the above matrix substituting the value A
31

= 1.

2 1 2

A
11

A
12

A
13

2

A
21

A
22

A
23

2

1 A
32

A
33

1

Notice that the last row sum must equal 1 so that forces A
32

= A
33

= 0. In addition, we

have the constraint that A
11

+ A
21

+ 1 = 2. Hence, we want to count the number of 0 � 1

binary matrices of the form,

1 1 2

A
11

A
12

A
13

2

A
21

A
22

A
23

2

Consequently, under the Uniform Model the likelihood that A
31

= 1 (there is an edge

from node 1 going to node 3) is precisely the number of 0� 1 binary matrices with row sums

(1, 1, 2) and column sums (2, 2) divided by the number of 0�1 binary matrices with row sums

(2, 1, 2) and column sums (2, 2, 1).

In Chapter 3 we provide an asymptotic solution to the counting problem, Problem 2, by

exploiting the intuition that for sparse networks, two fixed nodes should not have common

neighbors with high probability. Such an approach ultimately yields a recursion that we

can manipulate to asymptotically estimate the number of graphs that realize a given degree

sequence that satisfies certain sparsity constraints.

As hinted in Example 1, counting the number of graphs that realize a given degree

sequence is an important step for uniformly generating 0� 1 matrices (contingency tables)

with fixed row and column sums. While the methods proposed for (almost) uniformly
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generating graphs are quite diverse, many (if not most) of the methods proposed previosly

can be classified into two categories, Markov Chain Monte Carlo (MCMC) methods and

Sequential Importance Sampling (SIS).

The traditional MCMC method involves swapping edges many times to generate an ap-

proximately uniformly random sample. The main drawback of this method is that there is an

unknown mixing time. Naturally, by knowing precise asymptotics for the number of graphs

with a prescribed degree sequence, we can deduce asymptotic probabilities for the likelihood

two nodes share an edge. Consequently, we could use these asymptotic probabilities as a

criteria to empirically help us determine the mixing time. There are quite a few interesting

technical issues for implementing this method and we refer the reader to the literature for

details [59, 46, 45, 12, 41, 78]. We also mention that for nicely behaved degree sequences,

there are MCMC methods that have provable bounds for almost uniformly sampling graphs

with a prescribed degree sequence, but they are also computationally expensive [13].

Alternatively, SIS methods sample the number of graphs with a prescribed degree se-

quence in a biased way. A large sample of graphs is taken from a biased distribution and a

Law of Large Numbers argument is used to construct a new (approximately) uniform dis-

tribution based on the output of the biased sampling procedure [16, 25, 32]. The biggest

drawback of SIS is that we often do not know how large a sample of graphs we need from

our biased distribution to reliably construct the approximately uniform distribution. Indeed,

past work has shown that certain constraints on degree sequences may be required to ensure

the computational e�ciency of SIS methods [8, 15]; without such constraints, an exponen-

tially large sample size may be required to attain meaningful estimates for approximating

the uniform distribution [14]. Statistical arguments show that to increase the speed of con-

vergence, we want an initial biased distribution that is quite close to the uniform distribution

[4, 15]. Incorporating asymptotically accurate graph enumeration formulas in constructing

a biased distribution could conceivably improve the performance of such methods.

Historically, the derivation of asymptotic formulas for the number of 0�1 binary matrices

with fixed row and column sums has a rich history spanning at least as far back as 1958

with Read [70]. Progress in this area has been made by restricting to matrices that are

sparse [9], in the sense that row and column sums grow at most as a fractional power of the

8



norm of the matrix or by restricting to matrices that are dense but have limited variation

among the row and column sums [7, 20]. As mentioned earlier, we focus on the sparse case.

In this setting, McKay [54] developed a formula to count such matrices that is valid in an

asymptotic sense in the limit as the number of edges S becomes arbitrarily large, assuming

that the maximum row sum or column sum grows as o(S
1
4 ). More recently, Greenhill et al.

[42] generalized McKay’s formula, obtaining a result that holds if the maximum row sum

or column sum is o(S
1
3 ). Since many real world networks can consist of many thousands of

nodes, commonly with connectivities of up to 10 %, we aim to count matrices with row and

column sums, corresponding to in- and out-degrees, that exceed O(S
1
3 ). Furthermore, since

we are asymptotically guaranteed graphicality provided that the maximum degree (row sum

or column sum) is bounded by
p
S, as demonstrated by our graphicality results in Chapter 2,

we expect that we can extend the asymptotic enumeration results of McKay and Greenhill

to allow for the maximum degree to reach O(S
1
2�⌧ ) for any ⌧ > 0. As such we dedicate

Chapter 3 to this endeavor.

In order to accurately model real world networks we want to prove results pertaining to a

diverse assortment of random graph models, not just the Uniform Model. Consequently, we

consider another random graph model that also exhibits ’degree heterogeneity’, the Chung-

Lu random graph model [27, 28].

Random Graph Model 2 (Chung-Lu). Consider an (expected) bi-degree sequence, d =

(a,b) 2 ZN⇥2, for each of the N nodes in the graph, where maxi ai maxj bj  S =
P

i ai =
P

i bi Then with independent probability pij we construct an edge from node j to node i,

where pij =
b
j

a
i

S

We dedicate Chapter 4 to ascertain how the parameters (the expected degree sequence)

of Chung-Lu random graphs can impact certain features in our network. Prior literature has

demonstrated how the spectral radius can impact the dynamics in epidemiological, neuronal

and genetic networks [64, 39, 67, 80, 35, 63]. Furthermore, while many results regarding

the spectral radius pertaining to realizations of undirected graphs exist [29, 30, 52, 21, 60,

65, 51], very few (if any) rigorous results have been proven in context to the distribution

of the spectral radii for random directed graphs. Consequently, we prove a conjecture from
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Restrepo, Ott and Hunt [73] regarding the limiting distribution for the spectral radii of

these adjacency matrices for realizations of the directed Chung-Lu random graph model.

Rigorously, under the assumptions that maxi,j pij ! 0 or a·b
S ! 1, we show that almost

surely the dominating eigenvalue of a random adjacency matrix realization ⇢(A) ! a·b
S .

Subsequently, we study the spectral radius of graph realizations from a more general

random graph model, which we call the Partitioned Chung-Lu random graph model

[22, 48, 81, 79]. In the Partitioned Chung-Lu random graph model for each node x, we

define a function G(x) to identify x0s corresponding group. We then model the likelihood a

node x has an outgoing connection to node y as an independent Bernoulli random variable

with probability b
x

(G(y))a
y

(G(x))
S(G(x),G(y)) where bx(G(y)) is the expected number of outgoing edges of

node x when the receiving node belongs to group G(y), ay(G(x)) is the expected number of

incoming edges of node y where the outgoing edge comes from a node in group G(x) and

S(G(x), G(y)) is the expected number of edges that start from a node in group G(x) and end

in the group G(y). We emphasize that analogous to the Chung-Lu random graph model, for

all choices of nodes x and y, bx(G(y)), ay(G(x)) and S(G(x), G(y)) are parameters for the

Partitioned Chung-Lu random graph model.

Remarkably, even though the generality of the Partitioned Chung-Lu random graph

model allows for the generation for networks with exceptionally intricate community struc-

ture, the assumption that the edge probabilities in each partition emulates the behavior of

a Chung-Lu random graphs enables us to carry over the analysis to this significantly more

general case. More specifically, in the case that we partition our adjacency matrix with m

submatrices on each row and m submatrices on each column, we argue that asymptotically

the dominating eigenvalue of realizations from the directed Partitioned Chung-Lu random

graph model equals the dominating eigenvalue of an m2⇥m2 entry-wise non-negative matrix

(which we explicitly state in Chapter 4). To derive this result, consider the first row in our

partitioned adjacency matrix. We first ’average’ the interaction of the first partitioned row

on each of the m partitioned columns and record each of these m entries in our reduced

matrix. We then repeat this process for each partitioned row, resulting in an m2⇥m2 entry-

wise non-negative matrix. In the limit, we expect these ’averages’ to exemplify the structure

of the network partitions remarkably well and hence we will attain convergence.
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2.0 SUFFICIENT CONDITIONS FOR GRAPHICALITY

Generating random graphs with various properties is relevant for a wide variety of applica-

tions, from modeling neural networks [80] to internet security [1]. To generate an undirected

random graph with a fixed number of nodes, it is natural to first select a degree distribution

through some process and then to connect the nodes in a way that is consistent with the

selected distribution; similarly, a bidegree distribution would be selected if a directed graph

were desired. A well known issue with this procedure is that not all degree distributions are

graphic; that is, it is easy to write down a sequence of n natural numbers {di} such that

there is no graph with n nodes for which the degree of the ith node is di for all i. The aim

of this work is to rigorously establish novel, relatively inclusive, easily checked conditions

on a bidegree sequence that ensure that it is graphic and hence corresponds to one or more

directed graphs. Such conditions can be used as constraints on a degree distribution to en-

sure that sampling from that distribution will yield a graphic degree sequence or to ease the

process of verifying that a (randomly generated) bidegree sequence corresponds to a directed

graph.

To start, we briefly review some standard definitions. In doing so, and in the rest of

the chapter, we will employ what is known as Hoare-Ramshaw notation for closed sets of

integers, namely [a..b] := {x 2 Z : a  x  b} for a, b 2 Z. We will also define N
0

= N [ {0}

and N(n,2)
0

= {(a,b) : a 2 N
0

and b 2 N
0

}.

Definition 1. A bidegree sequence d = (a,b) 2 N(n,2)
0

is graphic if there is a 0-1 binary

matrix with 0’s on the main diagonal such that the sum of the ith row is ai and ith column

is bi for all i = [1..n]. We say a bidegree sequence d 2 N(n,2)
0

is graphic with loops if there is

a 0-1 binary matrix such that the sum of the ith row is ai and ith column is bi. We call a

11



our in-degree sequence and b our out-degree sequence.

Note that when it exists, the 0-1 binary matrix in Definition 1 arises naturally as the

adjacency matrix for the digraph with degrees given by a,b. In this matrix, the (i, j) element

is 1 if the digraph includes an edge from node j to node i and a 0 if it does not. To distinguish

graphicality for digraphs from that for graphs, one might refer to the statement of Definition

1 as defining what it means for d to be digraphic. For simplicity, we shorten this to graphic

since we do not focus on undirected graphs in this paper.

As a final note, all of the results in this chapter immediately extend to graphicality results

for bipartite graphs, since every bipartite graph can be represented as a 0 � 1 rectangular

binary matrix. We can extend any rectangular binary matrix as a square binary matrix by

adding rows (or columns) of 00s. Since there is a one-to-one correspondence between digraphs

(with loops) and square 0 � 1 binary matrices, any su�cient conditions that guarantee

existence for digraphs carry over to bipartite graphs as well.

2.1 EXPLOITING CONCAVITY TO CONSTRUCT NOVEL SUFFICIENT

CONDITIONS

To start, we prove the following Theorem, which considers the maximum of the in-degree

and the maximum of the out-degree as two separate parameters.

Theorem 3. Consider a bidegree sequence d = (a,b) 2 N(n,2)
0

where the entries of a are

arranged in non-increasing order and assume that
Pn

i=1

ai =
Pn

i=1

bi := nc̄ where c̄ is the

average degree. If max ai = Ma and max bi = Mb, where MaMb  nc̄ + 1, then d is graphic

with loops. In particular, in the special case where Ma = Mb, if maxd 
⌅p

nc̄+ 1
⇧
, then d

is graphic with loops.

We will prepare for the proof of the theorem with certain preliminary results. Before

doing so, we want to point out that that the adjustment of the bounds needed to ensure

graphicality Theorem 4 rather than graphicality with loops Theorem 3 is quite small. This

should not be surprising as graphicality requires that the adjacency matrix have 0’s on the

12



main diagonal. Since this restriction only a↵ects n of the n2 entries in our adjacency matrix,

it should have negligible impact in the limit of large n. This concept appears again later

when we consider di↵erent su�cient criteria. Thus, in both instances, after we prove a

su�cient condition to ensure graphicality with loops, we will make a slight alteration to

our su�cient condition and show that the new version guarantees the (slightly) stronger

condition of graphicality.

Now, in the su�cient criteria in Theorem 2, for simplicity suppose that
j
(m+M)

4

2

k
= (m+M)

4

2

, such that (m+M)

4

2

 mn implies M 
p
4mn � m 

p
4mn. We

conclude that if c̄ > 4m, then Theorem 3 (with Ma = Mb), provides a more flexible criterion

for graphicality than that given by Theorem 2.

We also wish to di↵erentiate Theorem 3 from the constraint provided by Chung and Lu

[27]. In their work, the probability of having an outgoing edge from node j to node i is given

by a Bernoulli random variable pij, independent across choices of i, j, such that pij = a
i

b
j

nc̄

where ai is the in-degree of node i and bj is the out-degree of node j. Consequently, they

require that MaMb  nc̄ in order to ensure that the probabilities do not exceed 1. It is not

at all obvious that this bound should translate into a su�cient condition for graphicality,

and it can in fact be awkward for the Chung-Lu algorithm. Specifically, if MaMb = nc̄, and

there exists a node i such that ai = Ma, and a node j such that bj = Mb, then according to

the Chung-Lu algorithm, the probability of constructing an edge between node i and node

j is 1, which is not a natural choice [77].

To begin the analysis, consider all bidegree sequences in N(n,2)
0

with maximum in-degree

Ma, with maximum out-degree Mb, and with average degree c̄, such that nc̄ is the sum

of the in-degrees and also the sum of the out-degrees. To prove Theorem 3, we want to

construct the worst possible scenario; that is, we want to identify the in-degree vector that

for each and every j maximizes
Pj

i=1

aj, and the out-degree vector that for each and every

j 2 [1..n� 1], minimizes F(j,b) :=
Pn

i=1

min(bi, j) (Recall Theorem 1. Once we verify that

the n inequalities still hold under this worst case scenario, we have consequently proved the

theorem. Since identifying the minimizer of F(j,b) is rather technical, we prove the result

in the following Lemma and Corollary for clarity; Lemma 1 also follows from Lemma 2.3

in [57] with ak =  (k) � �(k) as defined below. Notice, however, that F(j,b) in Corollary
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1 is not defined as
Pn

i=1

min(bi, j) and for completeness we will show later in the proof of

Theorem 3 that indeed

nX

i=1

min(bi, j) =
jX

i=1

#(bz : bz � i, 1  z  n). (2.1)

Lemma 1. Let � : N ! N,  : N ! N, where  is a concave function; that is, r (j) =

 (j) �  (j � 1) is non-increasing in j. Let � 2 N. If r�(j) = �(j) � �(j � 1) = � or

r�(j) = � � 1 for all j 2 [↵..�], �(↵)   (↵) and �(�)   (�), then �(j)   (j), for all

j 2 [↵ + 1..� � 1].

Proof. Suppose that there exists a first contradiction such that �(k) >  (k), for some k.

This implies that r�(k) > r (k) as �(k � 1)   (k � 1). But since by assumption and

concavity, r (j)  r (k)  r�(k) � 1  min(r�(j)) for all j > k, this implies that

�(j) >  (j) for all j > k. Since we assumed that �(�)   (�), we have arrived at a

contradiction.

Corollary 1. For b 2 Nn
0

, let F(j,b) =
Pj

i=1

#(bz : bz � i, 1  z  n). Fix M 2 N and

define the set BM of out-degree vectors as BM := {b 2 Nn
0

:
Pn

i=1

bi = nc̄, maxi bi  M ,

and M  nc̄}. Choose k 2 N with k  n such that kM  nc̄ and (k + 1)M > nc̄. Define

b⇤ as b⇤
1

= . . . = b⇤k = M , b⇤k+1

= nc̄ � kM and b⇤l = 0 for all l > k + 1. Then under these

assumptions, for every b 2 BM , F(j,b⇤)  F(j,b) for each and every j 2 [1..n].

Proof. Fix M 2 N. Note that F(j,b) =
Pj

i=1

#(bz : bz � i, 1  z  n) is concave in j

and F(M,b) = nc̄ for all b 2 BM . For b⇤ as defined in the statement of the Corollary,

it follows that F(1,b⇤)  F(1,b) for all b 2 BM . Note that there at most k + 1 positive

entries in the out-degree sequence b⇤ and k of them are identical. Consequently, for j  M ,

there are k or k + 1 entries in b⇤ with entries that equal or exceed j and by definition

rF(j,b⇤) = #(bz : bz � j, 1  z  n) 2 {k, k + 1}. Hence, applying Lemma 1 yields the

desired result.

At this juncture, we now can prove Theorem 3.
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Proof. Consider a bidegree sequence d = (a,b) 2 N(n,2)
0

satisfying the assumptions of The-

orem 3. Let us use the out-degrees to construct an n by n matrix consisting only of zeros

and ones (a Ferrers diagram). For the kth column, starting with the first row, we write

down a 1. We continue writing 1’s until the column sums to bk and let the remaining en-

tries in the column be zero. Denote the kth row sum as Qk. It follows algebraically that
Pn

i=1

min(bi, j) =
Pj

i=1

Pn
k=1

1
(b

k

�i) =
Pj

i=1

Qi =
Pj

i=1

#(bz : bz � i, 1  z  n).

Graphicality is trivial if Ma = 1 as long as
P

i ai =
P

i bi. For Ma > 1, we have

proven that the minimizer has out-degree sequence b⇤ such that b⇤
1

= .... = b⇤M
a

�1

= Mb

(as MaMb  nc̄ + 1). Now, if MaMb  nc̄, then b⇤M
a

= Mb as well. On the other hand,

if MaMb = nc̄ + 1, then b⇤M
a

= nc̄ � (Ma � 1)Mb = Mb � 1. Hence, we are assured that

b⇤M
a

� Mb � 1.

Consequently, for j  Mb � 1,
Pj

i=1

ai  jMa, as max ai  Ma, and furthermore,

jMa =
Pj

i=1

#(b⇤k � i) 
Pn

i=1

min(bi, j). Meanwhile, for all j � Mb,
Pn

i=1

min(bi, j) = nc̄.

Hence, by Theorem 1, the result is proved.

The su�cient condition in Theorem 3 is the best we can do without knowing more

information regarding our degree sequence, as illustrated in the following counterexample.

Counter Example 1. There exists a degree sequence d such that
P

ai =
P

bi = nc̄ ,

MaMb = nc̄+ 2, and d is not graphic with loops.

Proof. Consider a degree sequence with Ma � 2,Mb > 2 where b
1

= ... = bM
a

�1

= Mb and

bM
a

= nc̄� (Ma � 1)Mb = Mb � 2. Furthermore let a
1

= ... = aM
b

�1

= Ma. Then it follows

that this degree sequence is not graphic as,

M
b

�1X

i=1

ai = Ma(Mb � 1) >
M

b

�1X

i=1

#(bk � i) = Ma(Mb � 2) + (Ma � 1) = Ma(Mb � 1)� 1.

With a subtle but natural observation we can generalize Theorem 3 to the case where

we prohibit loops and the bound will be remarkably similar.
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Theorem 4. Consider a bidegree sequence d 2 N(n,2)
0

where
P

ai =
P

bi = nc̄. If max ai 

Ma and max bi  Mb, where (Ma + 1)Mb  nc̄, then d is graphic. In particular, if maxd =

Ma = Mb 
q

1

4

+ nc̄� 1

2

, then d is graphic.

Proof. First, we show that for j  Mb, the jth inequality from the Gale-Ryser Theorem

holds. We have
Pj

i=1

ai  jMa and

jMa = j(Ma + 1)� j ⇤

nX

i=1

min(bi, j)� j 
jX

i=1

min(bi, j � 1) +
nX

i=j+1

min(bi, j).

The starred inequality follows from applying Lemma 1 to minimize the sum
Pn

i=1

min(bi, j) with respect to the constraint that max(bi)  Mb, where

nX

i=1

min(bi, j) =
jX

i=1

nX

k=1

1
(b

k

�i) =
jX

i=1

#(bz : bz � i, 1  z  n),

Mb(Ma + 1)  nc̄, and
Pn

i=1

bi = nc̄. For the minimizing sequence thus obtained, b⇤
1

= ... =

b⇤M
a

+1

= Mb, as Mb(Ma + 1)  nc̄, and hence

nX

i=1

min(b⇤i , j) = j(Ma + 1).

For j � Mb + 1, we can eliminate the minimum functions, as now j � 1 � Mb � bi for

all i. Thus,
jX

i=1

min(bi, j � 1) +
nX

i=j+1

min(bi, j) =
nX

i=1

bi,

and
Pn

i=1

bi �
Pj

i=1

ai for j  n as the ai’s are nonnegative and by assumption
Pn

i=1

ai =
Pn

i=1

bi.

In the special case whereMa = Mb, it follows thatMa =
jq

1

4

+ nc̄� 1

2

k
, as this quantity

is the largest integer that satisfies the inequality M(M + 1)  nc̄.
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For large graphs, Theorems 3 and 4 provide bounds that ensure graphicality of a bidegree

sequence while allowing for a relatively large maximal degree. However, for many graphs we

also have information about a lower bound on in- and out-degrees. Consequently, we aim

to prove two types of extensions. In one extension, Theorem 5, we assume that there is a

nonzero minimum degree, which in turn enables us to construct a more flexible su�cient

condition on the maximum degree to guarantee graphicality. The other type of extension,

given in Corollary 5, also exploits the working assumption of a minimum degree in order to

allow a small set of exceptional degrees to exceed the bound on the maximum proposed in

Theorem 3 while maintaining graphicality. We explore these issues in the following section.

2.2 REFINING OUR SUFFICIENT CONDITIONS WITH THE MINIMUM

DEGREE

To prove the desired extensions, it is convenient to not have to manipulate two seperate

values for the maximum of the in-degree sequence Ma and the maximum of the out-degree

sequence Mb, Henceforth, we drop the notation Ma and Mb and efer to the maximum value

of the bidegree sequence as M , given by

M = max
i

{max
i

ai,max
i

bi}.

Furthermore, throughout this section we will assume that
Pn

i=1

ai =
Pn

i=1

bi, based on the

necessity of this equality for graphicality.

Corollary 2. Suppose that a bidegree sequence d 2 N(n,2)
0

has a maximum value M < n and

for the associated in-degree sequence, #(ai = M) = k, where M  k. Then d is graphic with

loops. More generally, if for some k 2 N, both M  k and Mk  nc̄ hold, then d is graphic

with loops.

Proof. It follows by assumption that M2  Mk  nc̄ and hence Theorem 3 applies.
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An application of Corollary 2 provides us with a powerful check for graphicality with

loops. Indeed, suppose we have verified the first k inequalities of the Gale-Ryser theorem

where the maximum is large (M >>
p
nc̄). We can then look at the residual degree sequence

where the residual maximum is much more friendly and construct a linear upper bound for

the remaining inequalities based on the new maximum of the residual degree sequence to

verify whether the remaining n� k inequalities hold.

Before we move on to prove Theorem 5, we make an adjustment to Corollary 2 to handle

graphicality without loops.

Corollary 3. Suppose that a bidegree sequence d 2 N(n,2)
0

has a maximum value M < n and

for the associated in-degree sequence, #(ai = M) = k, where M < k. Then d is graphic.

More generally, if there exist k,M 2 N, such that M < k and Mk  nc̄, then d is graphic.

Proof. The proof is analogous to the prior corollary, since the assumptions give M(M +1) 

Mk  nc̄ and application of Theorem 4 completes the proof.

We are now ready to prove the following su�cient condition on graphicality, and later we

show that it is an asymptotically sharp refinement over the condition proven by Zverovich

and Zverovich [82].

Theorem 5. Consider a bidegree sequence d = (a,b) 2 N(n,2)
0

where
P

ai =
P

bi = nc̄ and

mind = m2 [1..n]. Define

k⇤ = m+
p
m2 + n(c̄� 2m) (2.2)

and let k = dk⇤e if k⇤ is real and k = 1 otherwise. If

M := maxd  min(

�
n
c̄�m

k
+m

⌫
, n), (2.3)

then d is graphic with loops.
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Proof. To start, suppose that a bidegree sequence has maximal degree M given by (2.3) with

k⇤, k as defined in the statement of the theorem. Note that nc̄�M  Mk+(n� (k+1))m 

nc̄�m. We can thus consider the vector b⇤ such that b⇤
1

= b⇤
2

= ... = b⇤k = M , b⇤k+1

= r and

all other b⇤i = m, where we choose the remainder r such that kM + r+ (n� (k+ 1))m = nc̄

and thus m  r  M . Recall that F(j,b) =
Pn

i=1

min(bi, j) and that we have an alternative

representation of F(j,b) from (2.1). Since F(m,b) = nm for all b with minimum m, we can

apply Lemma 1 to show that b⇤ is a minimizer of F.

At this stage, we assume that k⇤ is real, and we would like to show that the first k Gale-

Ryser inequalities hold. In fact, because of the nonzero minimum m, the first m Gale-Ryser

inequalities are trivially satisfied since M  n; in particular, in the special case of m = n,

Theorem 5 is true. So, the only case we need to consider here is the case when m < k and

m < n, which we henceforth assume. As previously,
Pj

i=1

ai  jM =: V (j). Since V (j) is

linear and W (j) :=
Pn

i=1

min(bi, j) is concave, by Lemma 1, to verify the first k inequalities

of the Gale-Ryser Theorem, it su�ces to show that V (k)  W (k). Therefore, we seek to

verify that the kth inequality holds for our minimizing vector b⇤.

The definition of r implies that the following two equivalent equations both hold:

kM + r �m+ (n� k)m = nc̄ () kM + r = nc̄� (n� k � 1)m. (2.4)

Using r � m in (2.4), it follows that

kX

i=1

ai  kM  nc̄� (n� k)m. (2.5)

Furthermore, for m < k and m < n,

nm+ k(k �m) 
nX

i=1

min(b⇤i , k) 
nX

i=1

min(bi, k), (2.6)

since the middle quantity is k2 +min(r, k) + (n� (k + 1))m and min(r, k) � m.

Combining (2.5) and (2.6) implies that the first k Gale-Ryser inequalities will be guar-

anteed to hold as long as nc̄� (n� k)m  nm+ k(k �m) or, equivalently, as long as

R(k) = k2 � 2mk + 2nm� nc̄ � 0.
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Note that R(k) � 0 for k � k⇤ where k⇤ as defined in (2.2), which we have assumed for

now to be real, is the larger root of R(k). Unfortunately, k⇤ does not have to be a natural

number. But for k = dk⇤e = k⇤ + z, where z := k � k⇤ 2 [0, 1), it follows that R(k) � 0.

We have now established that under this choice of M , the first k Gale-Ryser inequalities

hold, where k may be equal to 1 or k⇤ depending on whether or not k⇤ is real. We no longer

assume that k 6= 1, and we next proceed to show that the remaining inequalities hold as

well. Assume that we have a remainder b⇤k+1

= r > m, and we wish to verify the (k + 1)st

inequality for our minimizing vector. We will construct another polynomial, S(·), such that

if the polynomial is nonnegative when evaluated at (k + 1), then the (k + 1)st inequality in

the Gale-Ryser Theorem holds. Furthermore we will show that for our choice of k, S(u) � 0

for u � k.

It follows from equation (2.4) that kM+r = nc̄+m� (n�k)m and we would like to find

a condition on k that ensures that nc̄+m�(n�k)m  nm+k(k+1�m)+1  F(k+1,b⇤),

where the +1 in the middle quantity is a lower bound on r. We therefore define

S(k) = k2 + k(1� 2m) + (2n� 1)m� nc̄+ 1,

with largest root

k⇤⇤ = m� 1

2
+

r
m2 + nc̄� 2nm� 3

4

(if the roots are positive), and by an analogous argument to that used for R(·), it follows

that for all u � k⇤⇤, S(u) � 0. By noting that k � k⇤ > k⇤⇤ (if k⇤ is real), we have shown

that
k+1X

i=1

ai  F (k + 1,b).

To finish o↵ the proof, it remains to verify the {k + 2, k + 3, ...., n} inequalities. Define

� = 1 if r > m and 0 otherwise. Since we have shown that
Pk+�

i=1

ai 
Pk+�

i=1

min(b⇤i , k+ �) 

F(k + �,b) and we know that
Pn

i=1

ai =
Pn

i=1

min(b⇤i , n) = F(n,b), Lemma 1 guarantees

that for all j such that k+ �  j  n,
Pj

i=1

ai 
Pn

i=1

min(b⇤i , j)  F(j,b). Thus, the proof

is complete.
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Now we state the analogous result to show that a degree sequence is graphic. We also

provide a sketch of the proof, which follows similarly to the proof of Theorem 5, and leave

it to the reader to fill in the missing details.

Theorem 6. Consider a bidegree sequence d = (a,b) 2 N(n,2)
0

where
P

ai =
P

bi = nc̄ and

mind = m, where m  n�1. Let k⇤ = m+1+
p

(m+ 1)2 + n(c̄� 2m) and define k = dk⇤e

if k⇤ is real and k = 1 otherwise. If

maxd  min(

�
n
c̄�m

k
+m

⌫
, n� 1),

then d is graphic.

Proof. Analogously to the proofs of Theorem 5 and Corollary 3, to construct the desired

su�cient condition on M , we want the following inequalities to hold:

nX

i=1

ai  (M + 1)j 
nX

i=1

min(bi, j).

Applying Lemma 1, it su�ces to consider the case when j = k, where #(ai = M)  k.

However, we know that for the remainder r in our usual minimizer construction, as given in

equation (2.4), r = nc̄�Mk �m(n� k � 1) or equivalently kM + r �m+ (n� k)m = nc̄,

and consequently,

kM + k  nc̄� (n� k)m+ k.

Additionally we know that nm+ k(k�m) 
P

i min(b⇤i , k) 
P

i min(bi, k), where b⇤ is the

same as in the proof of Theorem 5. We construct the polynomials

R⇤(k) = R(k)� k = k2 � 2k(m+ 1) + 2nm� nc̄

and

S⇤(k) = S(k)� k � 1 = k2 � 2m(k) + (2n� 1)m� nc̄.

Let k⇤ and k⇤⇤ be the larger of the two roots of R⇤(k) and S⇤(k), respectively:

k⇤ = m+ 1 +
p
m2 + 2m+ 1 + nc̄� 2nm,
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k⇤⇤ = m+
p
m2 + nc̄+m� 2nm.

It follows that if k > k⇤, then both R⇤(k) and S⇤(k) are nonnegative. As before define

k = dk⇤e. Consequently, since k(M � m) � nm  nc̄, we get the constraint that M 
j
nc̄�(n�k⇤)m

k

k
. This verifies the first k or, if there is a remainder, k + 1 inequalities of the

Gale-Ryser Theorem. As in the end of the proof of Theorem 5, invoking Lemma 1 will verify

the remaining inequalities.

Although the maximum value in Theorem 5 is easy to compute, it is not obvious if this

bound is superior to both Theorem 3 (where Ma = Mb) and Theorem 2. Therefore we

provide the following proof of superiority.

Corollary 4. Consider degree sequences with a fixed minimum degree m, fixed average degree

c̄ such that c̄ > m, where we allow the number of nodes, n, in the sequence to vary. Notation-

ally, for each J 2 {2, 3, 4, 5, 6}, we can define HJ(n,m, c̄) such that each Theorem J shows

that a bidegree sequence is graphic (with loops) if the maximum degree M  HJ(n,m, c̄).

Then limn!1
H

q

(n,m,c̄)
H

p

(n,m,c̄) � 1, for each q 2 {5, 6} and p 2 {2, 3, 4}.

Proof. We only prove the result forH
5

(n,m, c̄), although the proof forH
6

(n,m, c̄) is identical.

We break the analysis up into two cases.

Case 1: c̄� 2m  0

In this case, k  2m, and our condition on the maximum is O(n), which is far superior

to O(
p
n).

Case 2: c̄� 2m > 0

Since we are only interested in asymptotic analysis, it su�ces to consider the case when

k⇤ 2 N (so k = k⇤) and H
5

(n,m, c̄) = n c̄�m
k +m 2 N. Consequently,

H
5

(n,m, c̄) = n(
p

m2 + n(c̄� 2m)�m)
c̄�m

n(c̄� 2m)
+m

= (
p

m2 + n(c̄� 2m)�m)
c̄�m

(c̄� 2m)
+m
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=

r
n
(c̄�m)2

c̄� 2m
+m2(

c̄�m

c̄� 2m
)2 �m(

m

c̄� 2m
).

Note that asymptotically for large n, fixed m and c̄, if p = 2, then

lim
n!1

Hpp
4mn

= 1,

while if p 2 {3, 4}, then

lim
n!1

Hpp
c̄n

 1.

So asymptotically, to demonstrate that Theorem 5 is indeed more powerful than Theorems

2-4, we want to show that (c̄�m)

2

c̄�2m � c̄ and (c̄�m)

2

c̄�2m � 4m. For the ensuing discussion, let c̄ = x,

m = y, with x > 2y by assumption.

First consider (x�y)2

x�2y � x () x2�2xy+y2 � x2�2yx, which is true always. Next, note

that (x�y)2

x�2y � 4y () x2 � 2xy + y2 � 4xy � 8y2 () x2 � 6xy � 9y2. Since x > 0, this

inequality is equivalent to 1 � 6( yx)�9( yx)
2. Using another change of variables, where a = y

x ,

we want to know when 1 � 6a � 9a2. Taking the derivative of the right hand side implies

that the maximum value of the right hand side occurs at a = 1

3

. Since 6(1
3

) � 9(1
9

) = 1, we

conclude that asymptotically, Theorem 5 is more powerful than Theorems 2-4.

As a simple example, note that if m = 1, c̄ = 4, n = 10, and M = 6 then k = 6 and

M  bn(c̄�m)/k+mc = 6, so Theorem 5 holds, but (m+M)2/4 = 49

4

> 12 > 10 = mn so

Theorem 2 fails.

As a final comment regarding Theorem 5, while it is not surprising that we can sharpen

the bounds on the maximum by including an additional parameter (nc̄), corresponding to the

total number of edges, it is not readily apparent why the bound would dramatically change

from O(
p
n) to O(n) as two times the minimum number of edges of a node approaches the

average number of edges.

We now conclude our results section with a corollary of Theorem 5 that yields a more

flexible graphicality criterion in which the degrees of some nodes can exceed the upper bound

mentioned in Theorem 5.
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Corollary 5. Consider a bidegree sequence d = (a,b) 2 N(n,2)
0

where
Pn

i=1

ai =
Pn

i=1

bi = nc̄

and mind = m, with m  n and maxd  n. Without loss of generality, take the ai to be

arranged in non-increasing order. Assume that there exists an R such that
PR

i=1

ai = n�,

and
PR

i=1

bi  n� where � < m and n� n �
m � R � 1. Next, define M = maxi�R max(ai, bi)

and k⇤ = m +
p

m2 + n(c̄� 2m) +Rm. Let k = dk⇤e if k⇤ is real and k = 1 otherwise. If

M  min(
⌅
nc̄�nm�n�+Rm

k +m
⇧
, n) and if either k  M or k  n�n �

m�R, then d is graphic

with loops.

Proof. The proof is quite similar to that of Theorem 5, so we only provide a sketch and

leave the details to the reader. Given that we defined
PR

i=1

ai = n�, and � < m, the first

R inequalities of the Gale-Ryser Theorem are trivially satisfied. Furthermore, the first m

inequalities are satisfied trivially as well since maxd  n.

As in the proof of Theorem 5, we note that for arbitrary k > 0,
Pk+R

i=1

ai  kM + n�.

For our minimizing degree sequence, nc̄ = kM + (r � k) + (n� k)m+ n��Rm, where r is

defined in the proof of Theorem 5 and hence kM  nc̄� (n� k)m+Rm� n� since r � m.

Thus, kM + n�  nc̄+Rm� (n� k)m.

Similarly, since we can assume that k > m, it follows that

nm+ k(k �m) 
Pn

i=1

min(bi, k) 
Pn

i=1

min(bi, k +R), provided that k  M .

Putting the bounds on
Pk+R

i=1

ai and
Pn

i=1

min(bi, k+R) together, to satisfy the remainder

of the first k + R Gale-Ryser inequalities, under the assumption that k  M , we want to

fulfill the inequality nm+ k(k �m)� nc̄�Rm+ (n� k)m � 0, where equality is achieved

when k = m +
p

m2 + n(c̄� 2m) +Rm. Consequently, if M 
j
nc̄�n��(n�R)m

dke +m
k
, then

the first k+R  M inequalities in the Gale-Ryser Theorem will be satisfied. To finish o↵ the

proof, we then consider the case where k > M . We know that
Pn

i=1

min(bi, k+R) � nc̄�n�

and
Pk+R

i=1

ai  nc̄� (n� k�R)m. Consequently, we require that n�+Rm  (n� k)m, or

equivalently, k  (n� n �
m �R). Hence, our assumptions imply that the first M inequalities

hold.

Now suppose for simplicity that r = 0. For the degree sequence that maximizes the

in-degree vector a in the Gale-Ryser Theorem, aj = m for all j > k +R, and hence
Pj

i=1

ai

grows linearly in j for these j. We can therefore complete the proof by invoking Lemma
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1, since
Pn

i=1

min(bi, k) is concave in k. This result implies that the remaining inequalities

must hold. In the case where r > 0, as before in Theorems 5 and 6, we exploit the existence

of the remainder to construct refined inequalities that demonstrate that our prior choice for

M is indeed correct.

Recalling Counterexample 1, the only way we were able to construct a degree sequence

that was not graphic was by having many nodes with degrees greater than
p
nc̄. In contrast,

Corollary 5 tells us that in an asymptotic sense, as long as we have a relatively small number

of nodes R with degrees that surpass O(
p
n), such that the sum of their degrees is n� =

O(n1�⌧ ) for some ⌧ > 0, then asymptotically we still have graphicality provided that O(n)

nodes are bounded in-degree by essentially the same bound derived in Theorems 5 and 6. This

observation is useful, for example, for broadening the graphicality criteria for so-called scale

free networks with exponent greater than 2. For such networks, we find that the expected

number of edges contributed by nodes of degree greater than
p
n is n

R np
n

x
x2+⌧

dx = O(n1� ⌧

2 ).

In this setting, Corollary 5 can be viewed in parallel with the prior work of Chen and

Olvera-Cravioto [23], who proved that provided the sum of the in-degrees equals the sum

of the out-degrees, randomly generated degree sequences from a scale-free distribution with

a finite mean (that is, with an exponent greater than 2) are asymptotically (almost surely)

graphic.

2.3 DISCUSSION

While the famous Gale-Ryser inequalities (e.g., [10, 57]) provide necessary and su�cient

conditions for a degree sequence to be graphic, checking these inequalities and using them

to generate graphs [49] can be computationally ine�cient. Work by Zverovich, Alon, Cairns

and their collaborators provides simplified su�cient conditions for graphicality; however,

these conditions assume that the in-degree vector equals the out-degree vector for directed

graphs and are posed in terms of the minimum and maximum of the degree sequence. In our

analysis, we drop the assumption that the in-degree vector equals the out-degree vector and

prove an alternative su�cient condition for graphicality incorporating the average degree
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(Theorems 3, 5). We prove that for fixed minimum and average degree, for su�ciently

large n, Theorem 5 provides more flexible conditions to demonstrate graphicality than those

provided by prior work. The proof method used in this paper builds heavily on that used

by Dahl and Flatberg [31] and Miller [57] in their approaches to relaxing the graphicality

conditions in the Erdös-Gallai and Gale-Ryser Theorems, with the key idea being to exploit

the discrete concavity of the functions appearing in the relevant inequalities. Note that while

all results in this paper are stated in terms of bidegree sequences for directed graphs, these

results apply immediately to bipartite graphs, while the proof methods will extend directly

to the case of undirected graphs as well.

In Counterexample 1, we show that we cannot expect to do much better than our suf-

ficient conditions for graphicality using bounds on the average degree alone. However, we

also notice that to construct a degree sequence that is not graphic, we must choose many

nodes to have large degree. This observation motivates Corollary 5, which says that as long

as only a relatively small number of node degrees exceed O(
p
n), we still have graphicality.

Interpreted in an asymptotic sense, we can relate this result to the work of Chen and Olvera-

Cravioto [23], which shows that asymptotically, degree sequences generated from scale-free

distributions with exponent greater than 2 almost surely will be graphic.
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3.0 ASYMPTOTIC ENUMERATION OF GRAPHS WITH PRESCRIBED

DEGREE SEQUENCES

Given a degree sequence, a fundamental question to ask is whether it is graphic; that is,

does there exist a graph for which the degrees of the nodes are exactly the elements of the

sequence? A more refined view goes beyond simply considering graphicality as a yes-or-no

property and recognizes that there may be very di↵erent numbers of graphs that realize

di↵erent graphic degree sequences. Our main goal in this work is to develop formulas that

approximate the numbers of graphs that realize degree sequences with certain properties,

which are valid asymptotically as the number of nodes in the degree sequence and in the

corresponding graphs goes to infinity.

The problem of counting graphs that realize a given degree sequence can be recast as a

problem of counting 0� 1 binary matrices. Specifically, counting the number of rectangular

0� 1 binary matrices with fixed row and column sums is equivalent to counting the number

of bipartite graphs with a fixed bidegree sequence. Alternatively, counting the number of

square 0 � 1 binary matrices with fixed row and column sums is equivalent to counting

the number of directed graphs with loops that realize a given bidegree sequence. Since any

rectangular 0� 1 binary matrix can be arbitrarily extended to a square 0� 1 binary matrix

by adding either rows or columns of 00s, we focus here on square binary matrices.

In terms of applications, the aforementioned counting problem is an important step for

uniformly generating 0 � 1 matrices (contingency tables) with fixed row and column sums.

Uniform generation of 0� 1 binary matrices has many applications, from detecting statisti-

cally significant subgraphs (motifs) in a network in data mining [46, 41, 26] to determining

the impact of the degree sequence on emergent dynamics in a network of nodes with tempo-

rally varying states [80].
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We provide a novel method for constructing asymptotics (to arbitrary accuracy) for the

number of directed graphs that realize a fixed bi-degree sequence d = (a,b) 2 ZN⇥2 with

maximum degree dmax = O(S
1
2�⌧ ) for an arbitrarily small positive number ⌧ , where S is the

number edges specified by d. Our approach is based on two key steps, graph partitioning and

degree preserving switches. The former idea allows us to relate enumeration results for given

sequences to those for sequences that are especially easy to handle, while the latter facilitates

expansions based on numbers of shared neighbors of pairs of nodes. While we focus primarily

on directed graphs allowing loops, our results can be extended to other cases, including

bipartite graphs, as well as directed and undirected graphs without loops. In addition, we

can relax the constraint that dmax = O(S
1
2�⌧ ) and replace it with amaxbmax = O(S1�⌧ ), where

amax and bmax are the maximum values for a and b respectively. The previous best results,

from Greenhill et al. [42], only allow for dmax = o(S
1
3 ) or alternatively amaxbmax = o(S

2
3 ).

Since in many real world networks, dmax scales larger than o(S
1
3 ), we expect that this work

will be helpful for various applications.

To attain this generality, we initially estimate the ratio kG
d1k/kGd2k, where kGdi

k is the

number of directed graphs with loops that realize the bidegree sequence di, i = 1, 2, under

the constraint that the maximum degree for both of these bidegree sequences is O(S
1
2�⌧ )

for any ⌧ 2 (0, 1
2

]. We can estimate this ratio accurately when the taxicab norm of the

di↵erence of the bidegree sequences, kd
1

�d
2

k
1

, equals 2, and this relation is assumed in the

statements of the theorems that we prove. We can apply the theorems in this work to estimate

kG
dk+1

k/kG
d0k, where kd

k+1

� d
0

k
1

> 2, by considering a product ⇧k
i=0

kG
di+1

k/kG
di
k =

kG
dk+1

k/kG
d0k, where for all i, kdi

�d
i+1

k
1

= 2. (For a rigorous proof that we can construct

a sequence of d
i

’s in this fashion, we refer the reader to a result by Muirhead that can be

found in [11].)

We now summarize our main results as follows:

• In Theorem 7, we derive an expansion for kG
d

k that holds in general for all degree

sequences.

• In Corollary 8, we exploit the sparsity constraints to prove that the terms in the expansion

of kG
d1k/kGd2k based on Theorem 7 decrease geometrically.

• Starting with Corollary 9, we establish an asymptotic approximation for kG
d1k/kGd2k
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allowing for errors of size O(S�2⌧ ).

• Then under modest assumptions regarding the asymptotic approximation for

kG
d1k/kGd2k where we allow errors of O(S�2w⌧ ), for some positive integer w, in Theorem

9 we provide a general method that yields an approximation for kG
d1k/kGd2k allowing

for errors of size O(S�2⌧�2w⌧ ).

• Next in Theorem 10, we demonstrate that if we know that our approximation for

kG
d1k/kGd2k only allow errors of O(S��) where 1

2

 �, we do not need the ’modest

assumptions’ made in Theorem 9 to derive a sharper approximation of kG
d1k/kGd2k

where our new error term is now O(S���2⌧ ). (As the proofs of Theorems 9 and 10 are

very similar, we place the proof in Section 3.6.)

• Then using Theorem 11 we demonstrate how we can recover an (arbitrarily) accurate

asymptotic approximation of kG
d1k with knowledge of an (arbitrarily) accurate approx-

imation of the ratio, kG
d1k/kGd2k

• Subsequently, in Section 3.4 we show that the ’modest assumptions’ of Theorem 9

hold and use that result to establish successively finer asymptotic approximations for

kG
d1k/kGd2k, allowing errors of size O(S�4⌧ ),O(Smax(� 1

2�3⌧,�6⌧)), and O(Smax(�1�2⌧,�8⌧))

respectively, where S is the number of edges in the graph and ⌧ 2 (0, 1
2

].

• Finally, in Section 3.5 we demonstrate that the ’modest assumptions’ in Theorem 9 do

in fact hold if our approximation allows for errors of size O(S� 1
2 ). This result combined

with Theorems 9 and 10 prove that our method enables us to derive approximations of

kG
d1k/kGd2k up to arbitrary accuracy.

• In Section 3.7, we explain how to generalize our results to the case where the product of

the maximum in-degree and maximum out-degree is of O(S1�⌧ ). and illustrate how to

extend our results to undirected and directed graphs, including the case where loops are

prohibited, as well as graphs where we prohibit edges between certain nodes. We also

explore how to compute the likelihood that two arbitrary nodes share an edge with each

other.

We now detail our proof strategy. First, in Section 3.1, we use graph partitioning, inspired

by [58], to construct novel expansions for the number of graphs that realize a bidegree

sequence. That is, for a particular realization of a bidegree sequence, we can partition our
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adjacency matrix into two submatrices, one submatrix containing just the ith and jth rows

(or columns), and another submatrix containing the remaining N�2 rows. In turn, we obtain

two “smaller” bidegree sequences for both of our submatrices. Once we demonstrate how

to count the number of graphs that realize the smaller bidegree sequence corresponding to

the two-row submatrix, we obtain the following expression for kG
d

k in terms of the number

of graphs where two arbitrarily chosen nodes i and j (with degrees ai,aj) have k common

neighbors:

kG
d

k =

a
jX

k=0

{
✓
ai + aj � 2k

aj � k

◆ X

r2X
k

kG
r

k} (3.1)

where r is a (residual) bidegree sequence of the N � 2 remaining rows and Xk is a set of

(residual) bidegree sequences corresponding to graphs where the ith and jth nodes have

exactly k common neighbors.

Next, in Section 3.2, we introduce the idea of degree preserving switches, as discussed in

[56, 55, 59, 69], in which we make a single edge replacement to eliminate a common neighbor

of two nodes without changing any nodes’ degrees. Counting graphs with common images

or pre-images under degree preserving switches allows us to prove that for sparse graphs,

the dominant term in the expansion only involves instances where there are no common

neighbors between the two nodes i and j. That is, in the notation of (3.1),

kG
d

k ⇡
✓
ai + aj

aj

◆X

r2X0

kG
r

k.

Moreover, it turns out that the set X
0

in the prior expression does not change if we consider

d⇤ where d⇤ = d except that node i in d⇤ has degree ai � 1 instead of ai for d = (a,b) with

a = (a
1

, . . . , aN)T . Consequently, we find that

kG
d⇤k

kG
d

k ⇡
✓
ai + aj � 1

ai � 1

◆
/

✓
ai + aj � 1

aj � 1

◆
=

ai
aj
.

A subtlety of the proof is that we first establish the above statement where node i or j has

bounded (in)-degree. We then show that the above relationship still holds even for degree

sequences that lack a node of bounded degree by using the fact that such degree sequences

are very close in taxicab norm to a degree sequence that contains a node of bounded degree.
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We then proceed in Section 3.3 by proving (under modest assumptions) a general tech-

nique that allows for more refined approximations of kGdk, both by considering instances

where nodes i and j can have a nonzero number of common neighbors. We also show how

asymptotics for kG
d

k follow from those obtained for the ratio kG
d

k/kG
d⇤k, where d⇤ is a

degree sequence designed such that both this ratio and kG
d⇤k itself can be estimated. More

precisely, we achieve this result by working with a sequence of intermediary degree sequences,

starting from a sequence for which it is easy to compute the number of graphs that realize

it and, from there, progressing successively closer to d

Subsequently in Section 3.4, we put the technique proposed by Section 3.3 into practice

and computationally verify that the ’modest assumptions’ do indeed hold and derive various

asymptotic approximations for the ratio kG
d

k/kG
d⇤k. And finally in Section 3.5, we prove

that these ’modest assumptions’ hold and consequently that our method yields arbitrarily

accurate asymptotic approxiations for the ratio kG
d

k/kG
d⇤k.

3.1 COUNTING GRAPHS WITH PARTITIONING

In this paper, we will consider bidegree sequences, each denoted by d = (a,b) 2 ZN⇥2, where

for concreteness we specify that a lists the in-degrees of the nodes in the sequence and b the

out-degrees. We are interested in graphs that realize such sequences, where we allow either

0 or 1 connection between each pair of nodes as well as single self-loops within each graph.

Throughout the paper, we use S to denote the number of edges in the graphs that realize d.

Since we do not need to distinguish between degree sequences and bidegree sequences in this

work, we will henceforth simply refer to these as degree sequences. In one special case, it is

particularly easy to count the number of graphs that realize a specified degree sequence.

Lemma 2. Suppose that

a = {a
1

, . . . , ak, 0, . . . , 0},b = {k, .., k, 1, .., 1, 0, .., 0}, and
kX

i=1

ai =
NX

i=1

bi =: S.
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Let q denote the number of times k appears in b and let p = min{a
1

, . . . , ak}. If p < q, then

there does not exist a graph that realizes this bidegree sequence. If p � q then there are

(S � qk)!

⇧i(ai � q)!

graphs that realize the bidegree sequence. Similarly, if a = {k, .., k, 1, .., 1, 0, .., 0} and b =

{b
1

, . . . , bk, 0, . . . , 0}, with corresponding definitions of p and q, then there are

(S � qk)!

⇧i(bi � q)!

graphs that realize the bidegree sequence.

Proof. We present the proof for the first case, since the second is completely analogous. We

first note that the q nodes in b with out-degrees equal to k must connect to all of the nodes

with nonzero degree in a. Of the S � qk remaining outward edges, start with the node that

corresponds to a
1

. There are S � qk choices for outward edges that can supply the a
1

� q

unconnected inward edges to this node, such that there are
�
S�qk
a1�q

�
possible ways to link this

node into the graph. Once these a
1

� q edges have been connected, there are
�
S�qk�a1+q

a2�q

�

ways to link the node that corresponds to a
2

into the graph. Notice that

✓
S � qk � a

1

+ q

a
2

� q

◆✓
S � qk

a
1

� q

◆
=

(S � qk)!

(a
1

� q)!(a
2

� q)!(S � qk � a
1

� a
2

+ 2q)!
.

Multiplying inductively, the (S � qk � a
1

� a
2

+ 2q)! term disappears and we obtain the

desired result.

Remark 1. Lemma 2 generalizes immediately to arbitrary permutations of the given a and

b.

With the above lemma in hand, we can construct an inductive characterization for the

number of graphs that realize a specified degree sequence. First, though, we must define

some notation.

Definition 2. Let kG
d

k denote the number of graphs that realize a degree sequence d. Fur-

thermore, for a set X of degree sequences, let kGXk be the number of graphs that realize any

degree sequence in X.
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Now, consider an arbitrary adjacency matrix A 2 {0, 1}M⇥N . We can write A as

A =

2

6664

A
1

A
2

· · · AN

�M�1,1 �M�1,2 · · · �M�1,N

�M,1 �M,2 · · · �M,N

3

7775

where for each i, Ai 2 {0, 1}(M�2)⇥1. Of course, letting 0 denote a column vector of M � 2

zeros, we have

A =

2

6664

A
1

A
2

· · · AN

0 0 · · · 0

0 0 · · · 0

3

7775
+

2

6664

0 0 · · · 0

�M�1,1 �M�1,2 · · · �M�1,N

�M,1 �M,2 · · · �M,N

3

7775
.

Call the first and second matrices in this equation Al and Ar, respectively. Now, if

A realizes a given degree sequence, (a,b), then there is a vector {s
1

, ..., sN} such that the

degree sequence of (the graph corresponding to) Ar is ({0, ..., 0, aM�1

, aM}, {s
1

, ...., sN}) and

the degree sequence of Al is ({a1, ..., aM�2

, 0, 0}, {b
1

� s
1

, ...., bN � sN}), with the constraint

that none of the si (i.e., the column sums of Ar) can exceed 2 and the si must sum to

aM�1

+ aM . If we know the number of si that equal 2, we can invoke Lemma 1 to count

the number of realizations of the degree sequence of ({0, ..., 0, aM�1

, aM}, {s
1

, ...., sN}). This

idea, extended to a partition of the ith and jth rows rather than specifically the (M � 1)st

and Mth rows, motivates a useful theorem. To state the theorem, we define the set of degree

sequences

Xk(i, j;d) = {(a� aiei � ajej,b� s) : #(sn = 2) = k, #(sn � 3) = 0,

and
PN

n=1

sn = ai + aj}.
(3.2)

Note that in equation (3.2), we explicitly represent the positions (i, j) from which edges will

be partitioned out as well as the base degree sequence d = (a,b). Xk(i, j;d) is a set of

degree sequences, even with d fixed, because di↵erent choices of s can be made that fit the

definition in (3.2). The notation Xk(i, j;d) is cumbersome and the arguments of Xk will be

dropped when possible, but this notation will be needed to make results precise later in the

paper.
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Theorem 7. Fix a degree sequence d = (a,b). Pick an arbitrary pair of nodes, say with

indices i, j and corresponding in-degrees ai, aj, where aj  ai, and define Xk = Xk(i, j;d) as

in (3.2). Then

kG
d

k =

a
jX

k=0

✓
ai + aj � 2k

aj � k

◆
kGX

k

k.

Proof. Any adjacency matrix that realizes d can be partitioned into two adjacency matrices

as we have discussed. Picking any two nodes, with in-degrees denoted by ai, aj, we note

that any realization of our degree sequence d must also be a realization of some degree

sequence (a � aiei � ajej,b � s) 2 Xk for some k  N , combined with a realization of the

degree sequence (aiei + ajej, s). In order for (aiei + ajej, s) to be graphic, we require that

#(si = 2)  aj (see Lemma 1), hence only graphs that realize degree sequences in Xk for

k  aj can correspond to our adjacency matrix partition. If (a � aiei � ajej,b � s) 2 Xk

for k  aj, then Lemma 1 implies that the number of graphs that realize (aiei + ajej, s)

is precisely
�
a
i

+a
j

�2k
a
j

�k

�
. By multiplying this quantity by the number of graphs that can be

generated by the residual degree sequence (a�aiei�ajej,b�s), namely kGX
k

k, and summing

over all Xk for k  aj, we obtain the desired result.

Remark 2. Based on Definition 1, kGX
k

k represents the expression
P

r2X
k

kG
r

k, such that

Theorem 7 agrees with equation (3.1).

At this point, we introduce some additional notation. The rationale is that we will want to

compare numbers of graphs realizing two di↵erent degree sequences that are identical except

that the in-degrees of two particular nodes in the sequences di↵er by 1. A succint way to think

of this relation is to start with a degree sequence d = (a,b) for which
P

k ak =
P

k bk + 1.

Now, for any entry ak � 1 in a, let a�k

= a � e
k

, d�i

= (a�i

,b), and d�j

= (a�j

,b). Note

that the sums of the in-degrees for the sequences d�i

and d�j

are identical and are equal

to the sum of their out-degrees, and d�i

,d�j

are related as desired. Given Theorem 7, we

can attain a nontrivial approximation for the ratio of the number of graphs that realize the

degree sequence d�i

compared to the number of graphs that realize the degree sequence

d�j

. To do so, we will need to work with Xk(i, j;d�i

) and Xk(i, j;d�j

). But note that since

d�i

,d�j

are both defined from the same base sequence d and have the same in-degree sum,
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these two Xk are identical; hence, we will simply refer to this set as Xk in the proof below,

and we will similarly drop the arguments of Xk in most subsequent parts of the paper.

Corollary 6. If ai � aj > 0, then

kG
d�i

k � ai
aj
kG

d�j
k.

Proof. First define the variable � such that if aj + 1  ai, then � = 1 and otherwise, � = 0.

The statement of the Corollary holds trivially if d�j

is not graphic. If d�j

is graphic, then

so is d�i

and we can apply Theorem 1 and note that

kG
d�i

k =

a
j

�1+�X

k=0

✓
(ai � 1) + aj � 2k

aj � 1 + � � k

◆
kGX

k

k �
a
j

�1X

k=0

✓
ai + aj � 2k � 1

aj � k

◆
kGX

k

k.

Similarly, kG
d�j

k =
Pa

j

�1

k=0

�
a
i

+a
j

�2k�1

a
j

�k�1

�
kGX

k

k.

If we show that for all relevant natural numbers k,

✓
ai + aj � 2k � 1

aj � k

◆
� ai

aj

✓
ai + aj � 2k � 1

aj � k � 1

◆
,

then the result will follow. Note that

✓
ai + aj � 2k � 1

aj � k

◆
/

✓
ai + aj � 2k � 1

aj � k � 1

◆
=

ai � k

aj � k
� ai

aj
,

since ai � aj, and the proof is complete.

We next seek a compact expression for kG
d�i

k/kG
d�j

k that will enable us to analyze this

ratio with minimal di�culty without having to explicitly worry about the number of terms

in the formulas for kG
d�i

k or kG
d�j

k found in the summation in Theorem 1. Before we do

that we introduce two additional notational conventions:

⇧r�1

k=r!k = 1 and ⇧0

k=0

!k = !
0

. (3.3)
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Corollary 7.
kG

d�i
k

kG
d�j

k =
ai
aj

 Pa
j

k=0

⇧k�1

l=0

(aj � l)⇧k
l=1

(ai � l)⌘kPa
j

�1

k=0

⇧k
l=1

(aj � l)⇧k�1

l=0

(ai � l)⌘k

!
(3.4)

where

⌘k =
kGX

k

k
[⇧2k�1

l=0

(ai + aj � l � 1)]kGX0k
(3.5)

when k  ba
i

+a
j

�1

2

c, and ⌘a
j

⌘ ⌘a
i

= 1 when k = aj if aj = ai.

Proof. Without loss of generality, assume aj < ai � 1. That is, if aj 2 {ai, ai � 1}, then

we can adjust the calculations with � = 1 as in the proof of Corollary 1 and they will go

through; furthermore, if aj = ai, then the k = aj = ai term in the numerator of the right

hand side of (3.4) is 0, so we can set ⌘a
i

=a
j

= 1 (or any finite number) and the result will

still hold.

By invoking Theorem 1, using Xk = Xk(i, j;d�i

) = Xk(i, j;d�j

), and dividing the nu-

merator and denominator by kGX0k, we obtain

kG
d�i

k/kG
d�j

k =

⇣Pa
j

k=0

�
a
i

+a
j

�2k�1

a
j

�k

�
kGX

k

k/kGX0k
⌘
/
⇣Pa

j

�1

k=0

�
a
i

+a
j

�2k�1

a
j

�k�1

�
kGX

k

k/kGX0k
⌘
.

(3.6)

Now we multiply both the numerator and denominator by a
i

!a
j

!

(a
i

+a
j

�1)!

, which yields

kG
d�i

k/kG
d�j

k =

⇣Pa
j

k=0

⇧

k�1
l=0 (a

j

�l)⇧k

l=0(ai�l)kG
X

k

k
⇧

2k�1
l=0 (a

i

+a
j

�l�1)kG
X0k

⌘
/
⇣Pa

j

�1

k=0

⇧

k

l=0(aj�l)⇧k�1
l=0 (a

i

�l)kG
X

k

k
⇧

2k�1
l=0 (a

i

+a
j

�l�1)kG
X0k

⌘
.

(3.7)

Substituting in ⌘k as defined in equation (3.5), we obtain

kG
d�i

k/kG
d�j

k =

P
a

j

k=0 ⇧
k�1
l=0 (a

j

�l)⇧k

l=0(ai�l)⌘
k

P
a

j

�1

k=0 ⇧

k

l=0(aj�l)⇧k�1
l=0 (a

i

�l)⌘
k

= a
i

a
j

✓ P
a

j

k=0 ⇧
k�1
l=0 (a

j

�l)⇧k

l=1(ai�l)⌘
k

P
a

j

�1

k=0 ⇧

k

l=1(aj�l)⇧k�1
l=0 (a

i

�l)⌘
k

◆
,

(3.8)

which agrees with equation (3.4).
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Remark 3. Obviously the right hand side of (3.4) does not change if we add zero terms

to the sums in the numerator and denominator. The summation in the numerator of this

expression can be rewritten using

a
jX

k=0

⇧k�1

l=0

(aj � l)⇧k
l=1

(ai � l)⌘k =

a
j

+1X

k=0

⇧k�1

l=0

(aj � l)⇧k
l=1

(ai � l)⌘k,

which follows because

a
j

+1X

k=0

⇧k�1

l=0

(aj � l)⇧k
l=1

(ai � l)⌘k �
a
jX

k=0

⇧k�1

l=0

(aj � l)⇧k
l=1

(ai � l)⌘k =

⇧
a
j

l=0

(aj � l)⇧
a
j

+1

l=1

(ai � l)⌘a
j

+1

= 0.

Inductively, it follows that

a
jX

k=0

⇧k�1

l=0

(aj � l)⇧k
l=1

(ai � l)⌘k =
1X

k=0

⇧k�1

l=0

(aj � l)⇧k
l=1

(ai � l)⌘k.

Analogously,

a
j

�1X

k=0

⇧k
l=1

(aj � l)⇧k�1

l=0

(ai � l)⌘k =
1X

k=0

⇧k
l=1

(aj � l)⇧k�1

l=0

(ai � l)⌘k.

Therefore, we can extend the statement of Corollary 2 to read

kG
d�i

k
kG

d�j
k =

ai
aj

✓P1
k=0

⇧k�1

l=0

(aj � l)⇧k
l=1

(ai � l)⌘kP1
k=0

⇧k
l=1

(aj � l)⇧k�1

l=0

(ai � l)⌘k

◆
(3.9)

where ⌘k is defined in the statement of Corollary 2 for k  ba
i

+a
j

�1

2

c and ⌘k = 1 (or any

finite number) for all other k. Expression (3.9) will be useful for providing flexibility in

subsequent calculations.

The results we have proved so far apply to any graphic degree sequence. Under additional

assumptions, at the cost of generality, we can go farther and obtain a power series repre-

sentation for the ratio kG
d�i

k/kG
d�j

k. Specifically, if our graph is in some sense “sparse”,

equation (3.9) suggests that kG
d�i

k/kG
d�j

k = ai/aj +O(✏) for ✏ “small”. We will elaborate

on this idea in the following section.

37



3.2 COUNTING GRAPHS WITH DEGREE PRESERVING SWITCHES

We will use the idea of degree preserving switches to estimate the likelihood that two nodes

have a common neighbor. This estimation will help us to derive a power series expansion of

(3.9) that is valid if we let the number of nodes, or correspondingly the number of elements

in each degree sequence, be su�ciently large. To obtain this result, it is important to set

notation to specify how degrees behave as sequence length grows.

Definition 3. Consider a sequence of degree sequences, {dN}N2N, where each dN 2 ZN⇥2.

We say that dmax({dN}N2N) = O(Sp), where p 2 R and S = S(dN) is the sum of the

edges for the degree sequence dN , if and only if there exists a fixed constant C 2 R such

that limN!1
max(dN

)

Sp

 C, where the maximum is taken over all components of dN and lim

denotes the limit supremum.

For notational simplicity, we will omit explicit reference to the sequence of degree se-

quences when we write d
max

= O(Sp). The use of the O(S) notation is meant to indicate

that we are not referring to the maximum degree of a fixed degree sequence. Analogously,

we can say that for a sequence of degree sequences, the total number of nodes is O(Sp) for

some p 2 R. In addition, we say that the ith node has bounded (in)-degree in the limit of

a sequence of degree sequences, if limN!1(aN)i  C, where C 2 R and (aN)i denotes the

ith element of the vector aN . At this juncture, we are ready to prove a result about the

asymptotic likelihood of obtaining a graph, based on a uniform sampling of graphs realizing

a degree sequence, in which two fixed nodes form edges with a common target node.

Theorem 8. Consider a sequence of degree sequences such that dmax = O(S
1
2�⌧ ) for some

⌧ > 0. Pick an arbitrary node x and another node y such that y has a bounded number

of edges in the limit of the sequence of degree sequences. In the limit of the sequence of

degree sequences, the ratio of the number of realizations of graphs where there does not exist

a node that receives an outward edge from (or supplies an inward to) both x and y relative

to the number of graphs where exactly one node receives an outward edge from (or supplies

an inward edge to) both x and y is O(S2⌧ ).

Proof. We will focus on the case of outward edges from x and y, as the inward case is anal-
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Figure 3.2.1: An example of the type of degree preserving switch described in the proof of

Theorem 2. The top image is the input graph (i.e., the graph before the switch is applied)

and the bottom is the output graph (generated by the switch). Note that in the output

graph, all nodes have the same in and out degrees as in the input graph but the two blue

nodes no longer have a common neighbor.

ogous. Consider a realization of a fixed degree sequence where a node (red in Figure 3.2.1)

receives outward edges from nodes x and y (both blue). We can then define a degree pre-

serving switch by choosing a remaining edge whose end points are not a red or blue node

and redirecting it to the red node. Then to preserve the degree, we replace the edge that

connects the right blue node (x) to the red node with an edge from x to the node that is now

missing an edge. Unfortunately, this operation is not 1:1, since di↵erent input graphs can

yield the same output graph, so we need to account for such repeats in order to accurately

count the likelihood of a node receiving edges from both x and y.

Let us refer to the nodes receiving edges from a fixed node as the out-neighbors of that

node and to the nodes supplying edges to a fixed node as the in-neighbors of that node. In

the output graph of the degree preserving switch operator in Figure 3.2.1, denote the out-

neighbors of node x by S = {s
1

, ..., sl} and the out-neighbors of node y by T = {t
1

, ..., tm},

where l,m are the out-degrees of nodes x, y, respectively. Since the desired result only

pertains to input graphs where x and y share exactly one common out-neighbor, we have

S \T = ;. Importantly, for each input graph that maps to this output graph, x must have
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l�1 out-neighbors that are still its out-neighbors in the output graph, while the out-neighbors

of y in the input and output graphs are the same.

Without loss of generality, suppose that in the input graph, t
1

is the node that has edges

from both x and y. In the output graph denote the in-neighbors of t
1

as U = {u
1

, ...., un}

where n denotes the in-degree of t
1

. In an input graph that is mapped by the degree

preserving switch to the desired output graph, t
1

must have edges with n � 1 of the nodes

in U . Naturally, there are
�
n�1

1

�
ways for this to happen. Since l� 1 of the out-neighbors of

x in the input graph must also be out-neighbors of x in the output graph, we conclude that

there are fewer than nl = O(S1�2⌧ ) ways to generate the same output if t
1

is the node that

has edges with both x and y in the input graph.

We now repeat the same argument for each out-neighbor of y in the output graph. Since

y has bounded degree, it follows that under the degree preserving operation, there are at

most O(S1�2⌧ ) ways to generate the same output.

Now that we know that our degree preserving operation is a O(S1�2⌧ ) : 1 function, to

finish o↵ the proof, we need to identify how many degree preserving switches are possible

from a single graph. The edges that are eligible to be switched connect nodes such that

the source is not an in-neighbor of the common out-neighbor of x and y and the target

does not already receive an edge from x (see Figure 3.2.1). Since x has degree at most

O(S
1
2�⌧ ), that means the total number of edges corresponding to the neighbors of x is at most

O(S1�2⌧ ). Analogously, the common out-neighbor of x and y has degree at most O(S
1
2�⌧ )

and the number of edges corresponding to its in-neighbors is O(S1�2⌧ ). Consequently, we

have O(S)�O(S1�2⌧ ) = O(S) edges that we can choose from for the degree preserving switch

operator to switch. Hence, for every graph where x and y have a common out-neighbor, the

number of unique graphs where they do not have a common out-neighbor is at least the

ratio of O(S) to the number of input graphs that can map to each output graph, namely

O(S)/O(S1�2⌧ ) = O(S2⌧ ), which is our desired result.

Corollary 8. Fix a sequence of degree sequences such that dmax = O(S
1
2�⌧ ). Let k 2 N. For

any two nodes x and y, where y has bounded degree in the limit of the sequence of degree

sequences, the ratio of the number of graphs where k nodes receive edges from both x and
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y compared to the number of graphs where k + 1 nodes receive edges from both x and y is

O(S2⌧ ).

Proof. Perform the same switch technique as in Theorem 2 on a particular node that has an

edge with both x and y, and the result follows analogously.

Next, we apply Corollary 8 to begin to expand the terms in equation (3.4).

Corollary 9. If dmax = O(S
1
2�⌧ ), then

kG
d�i

k =
ai
aj
kG

d�j
k[1 +O(S�2⌧ )].

Proof. First suppose that either node i or node j has bounded degree. By Corollary 3, we

know that for all k � 1,

�
a
i

+a
j

�2k�1

a
j

�k

�
kGX

k

k
�
a
i

+a
j

�1

a
j

�
kGX0k

= O(S�2k⌧ ) and

�
a
i

+a
j

�2k�1

a
j

�k�1

�
kGX

k

k
�
a
i

+a
j

�1

a
j

�1

�
kGX0k

= O(S�2k⌧ ),

as these terms represent the number of graphs with k common neighbors of the two nodes i

and j divided by the number of graphs where nodes i and j have no common neighbors. So

we conclude from equation (3.6) in the proof of Corollary 2 that

kGd�i
k

kGd�j
k =

(ai+a

j

�1
a

j

)
(ai+a

j

�1
a

j

�1 )
+

P
a

j

k=1

(ai+a

j

�2k�1

a

j

�k

)

(ai+a

j

�1
a

j

�1 )
kG

X

k

k
kG

X0
k

1+

P
a

j

�1

k=1

(ai+a

j

�2k�1

a

j

�k�1 )

(ai+a

j

�1
a

j

�1 )
kG

X

k

k
kG

X0
k

=

(ai+a

j

�1
a

j

)
(ai+a

j

�1
a

j

�1 )
+

P
a

j

k=1

(ai+a

j

�2k�1

a

j

�k

)

(ai+a

j

�1
a

j

�1 )
kG

X

k

k
kG

X0
k

1+O(S�2⌧
)

=
(ai+a

j

�1
a

j

)
(ai+a

j

�1

a

j

�1 )

2

664

1+

P
a

j

k=1

(ai+a

j

�2k�1

a

j

�k

)
(ai+a

j

�1
a

j

)
kG

X

k

k
kG

X0
k

1+O(S�2⌧
)

3

775 = a
i

a
j

[1+O(S�2⌧
)

1+O(S�2⌧
)

] = a
i

a
j

[1 +O(S�2⌧ )].

To extend this relationship to the general case where nodes i and j both have degree

O(S
1
2�⌧ ), we consider the degree sequences d(i) = ({a, 1} � e

i

, {b, 0}),d(j) = ({a, 1} �

e
j

, {b, 0}) 2 Z(N+1)⇥2, for which

kG
d�i

k
kG

d�j
k =

kG
d

(i)
�(N+1)

k

kG
d

(i)
�j
k

kG
d

(j)
�i
k

kG
d

(j)
�(N+1)

k , (3.10)
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where node N + 1 has bounded degree and d(j)

�i

= d(i)

�j

. Consequently,

kG
d�i

k
kG

d�j
k =

ai
aj
[1 +O(S�2⌧ )].

We conclude this section noting that the proof technique can be extended to more general

cases. We can relax the constraint that dmax = O(S
1
2�⌧ ) and still attain that two nodes in

general should not share common neighbors. For more details we refer the reader to Section

3.7. On a similar note, the notion that a node of bounded degree and an arbitrary node

should not share common neighbors extends to cases beyond directed graphs with loops,

including directed and undirected graphs without loops. We discuss in Section 3.7 how to

extend these arguments to these cases, noting that similar ideas also apply to graphs with

other edges prohibited besides loops. Section 3.7 explains how to iteratively attain more

refined approximations from the relatively crude approximation given by Corollary 9. These

results also generalize in ways that are discussed in the appendices.

3.3 ASYMPTOTIC ENUMERATION TO ARBITRARY ORDERS OF

ACCURACY

Since we have established some fundamental results in the prior section, we can now derive

our general asymptotic enumeration.

We start by establishing an alternative expression for kG
d�i

k/kG
d�j

k. For this statement,

define X
0

i

as the set of all residual degree sequences (a� aiei� e
j

,b� s) with s constructed

by removing one (outgoing) edge from each of ai nodes; define X
1

i

as the set of all residual

degree sequences constructed by removing two outgoing edges from one node and one edge

from ai � 2 nodes; and define X
0

j

,X
1

j

analogously from (a� e
i

� ajej,b� s).

Corollary 10.

kGd�i

k
kGd�j

k =
ai
aj

 
1 + kGX1

i

k/(aikGX0
i

k)
1 + kGX1

j

k/(ajkGX0
j

k)

!
(3.11)
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Proof. The proof is in the spirit of Corollary 4. Let d(i) = ({a, 1} � e
i

, {b, 0}),d(j) =

({a, 1} � e
j

, {b, 0}) 2 Z(N+1)⇥2. We previously established equation (3.10). But applying

Theorem 1 yields

kG
d

(i)
�(N+1)

k

kG
d

(i)
�j
k =

kGX0
j

k
ajkGX0

j

k+ kGX1
j

k =
1

aj

 
1

1 + kGX1
j

k/(ajkGX0
j

k)

!
.

Similarly,
kG

d

(j)
�i
k

kG
d

(j)
�(N+1)

k =
aikGX0

i

k+ kGX1
i

k
kGX0

i

k = ai(1 +
kGX1

i

k
aikGX0

i

k).

Corollary 10 will be useful to us when combined with the observation that for an arbitrary

degree sequence m,

kGX1
i

k
kGX0

i

k =

P
x2X1

i

kG
x

k
P

x2X0
i

kG
x

k =

P
x2X1

i

kG
x

k/kG
m

k
P

x2X0
i

kG
x

k/kG
m

k . (3.12)

That is, equation (3.11) represents a recursion that expresses the ratio of the number of

graphs of two di↵erent degree sequences as a function of the ratios of the numbers of graphs

of various other degree sequences.

We now state the first of three theorems that will enable us to reach the desired asymp-

totic enumeration results of arbitrary order.

Theorem 9. Let d = (a,b) with
P

an =
P

bn ± 1 and dmax = O(S
1
2�⌧ ). Consider an

approximation that satisfies the equation

kG
d�i

k
kG

d�j
k = f(ei, ej,d, �)(1 +O(S�2w⌧ ))

where w � 1, 2w⌧  � (we define � below), and the last argument � either equals a,

which denotes that
P

an =
P

bn + 1 and the two degree sequences in the ratio di↵er in

their in-degree sequences (i.e., the in-degree sequence is being used to define d�i

), or �

equals b, which has the analogous connotation with respect to out-degree sequences, with
P

an =
P

bn � 1. Assume that f(ei, ej,d, �) = h(ei,d, �)/h(ej,d, �) for some function h.

Furthermore, suppose that for m = O(S
1
2�⌧ ),

h(ei,d1

, �
1

) = h(ei,d0

, �
0

)(1 +O(S��)) (3.13)
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where kd
1

� d
0

k
1

 m, kd
1

� d
0

k1  1, �i is either ai or bi (i.e., the in- or out-degree

sequence of di), and the following equalities of dot products hold: �
1

·ei = �
0

·ei, �1

·ej = �
0

·ej.

If � = a, then there exists a sharper approximation

kG
d�i

k
kG

d�j
k = g(ei, ej,d, a)(1 +O(S�2(w+1)⌧ ))

where

g(ei, ej,d, a) =
ai
aj

exp(log(1 +
(ai � 1)

P
x1 6=... 6=x

a

i�1=x
a

i

⇧a
i

k=1

f(ex
k

, eu
k

,dk,i,j,bk)
P

x1 6=... 6=x
a

i�1 6=x
a

i

⇧a
i

k=1

f(ex
k

, eu
k

,dk,i,j,b)
)�

log(1 +
(aj � 1)

P
x1 6=... 6=x

a

j�1=x
a

j

⇧
a
j

k=1

f(ex
k

, eu
k

,dk,j,i,b)
P

x1 6=... 6=x
a

j�1 6=x
a

j

⇧
a
j

k=1

f(ex
k

, eu
k

,dk,j,i,b)
))

for any arbitrary choice of indices {uk}, where dk,i,j = (a � aiei � ej,b �
Pa

i

�k+1

j=1

eu
j

�
Pk�1

j=1

ex
j

). A similar sharpened approximation, with g depending on b, holds if � = b.

We will postpone the motivation for the assumptions that f(ei, ej,d, �) =

h(ei,d, �)/h(ej,d, �) for some function h and that perturbing the third argument of f (the

degree sequence) only results in relatively small changes in h until Section 6. In Sec-

tion 5, when we use the above theorem to explicitly compute asymptotics of the ratio

kG
d�i

k/kG
d�j

k, we will be able to verify these assumptions directly. Even at this stage,

we already know that the approximation kG
d�i

k/kG
d�j

k = a
i

a
j

(1+O(S�2⌧ )) does not depend

on the degrees of the nodes in the degree sequence other than nodes i and j. Similarly, this

approximation can be expressed in terms of a decomposition like that assumed in Theorem

9, given by kG
d�i

k/kG
d�j

k = [h(ei,d, a)/h(ej,d, a)](1 + O(S�2⌧ )), where h(ei,d, a) = ai.

We now proceed with the proof.

Proof. Consider d such that
P

an =
P

bn + 1. We know from equation (3.11) that

kG
d�i

k
kG

d�j
k =

ai
aj

exp(log(1 +
kGX1

i

k
aikGX0

i

k)� log(1 +
kGX1

j

k
ajkGX0

j

k)).

Let

kG
d�i

k/kG
d�j

k = f(ei, ej,d, a)(1 +O(S�2w⌧ ))
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for some w � 1. Our goal is to show that substituting the decomposition for f into equation

(3.30) yields a sharper approximation g, as specified in the theorem statement (the proof

with � = b is analogous).

To prove this claim rigorously, we show that using f to approximate
kG

X1
i

k
a
i

kG
X0

i

k can allow

us to derive an improved approximation of
kG

d�i

k
kG

d�j

k , in a sense that will be made precise later.

Since
kG

X1
i

k
a
i

kG
X0

i

k is equivalent to
kG

X1
j

k

a
j

kG
X0

j

k , we can carry over our results to the latter expression

to complete the derivation.

For any u 2 X
0

i

, equation (3.12) yields

kGX1
i

k
aikGX0

i

k =

P
x2X1

i

kG
x

k/kG
u

k
ai
P

x2X0
i

kG
x

k/kG
u

k . (3.14)

Now, for any x 2 X
0

i

[X
1

i

, the bidegree sequences u and x include the same number of edges

and identical in-degree sequences. By definition we can write x = (a�aiei�ej,b�
Pa

i

j=1

ex
j

)

and u = (a� aiei� ej,b�
Pa

i

j=1

eu
j

). Let d
1

= u,da
i+1 = x, and define intermediate degree

sequences dk = (a� aiei � ej,b�
Pa

i

�k+1

j=1

eu
j

�
Pk�1

j=1

ex
j

) for each k = 2, . . . , ai. Note that

the sum of the in-degrees equals the sum of the out-degrees in each dk, since by assumption,
P

an =
P

bn + 1.

Letting

�(e
i

, e
j

,d, �) := kG
d�i

k/kG
d�j

k (3.15)

for any choice of d, these definitions imply that for our particular d under consideration,

kG
x

k
kG

u

k = ⇧a
i

k=1

kG
d

k+1
k

kG
d

k

k = ⇧a
i

k=1

�(ex
k

, eu
a

i

�k+1
, (a�aiei�ej,b�

k�1X

j=1

ex
j

�
a
i

�kX

j=1

eu
j

,b), (3.16)

where now the sum of the in-degrees in the third argument of � in (3.15) is one less than the

sum of the out-degrees. Recall that the final argument b of � in (3.15) implies that in the

numerator and denominator of the right hand side of (3.15), a degree is being subtracted o↵

of the out-degree sequence of the bidegree sequence given in the third argument of �, which

means that the in- and out-degree sequences in d�i

,d�j

end up with the same sums. The

particular components of the out-degree sequence from which a degree is being subtracted
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are specified in the first and second arguments of � for the numerator and denominator,

respectively.

Now, define �i to be the di↵erence between
kG

X1
i

k
a
i

kG
X0

i

k evaluated using the exact ratio �

and the same quantity evaluated using the approximation f . Recall that each x 2 X
0

i

was

defined by removing the ai incoming edges to node i along with one outgoing edge from each

of ai distinct nodes. The number of resulting bidegree sequences is the same as the number

of bidegree sequences in which the ai outgoing edges are directed to node i instead of being

removed. There is an analogous equivalence for each x 2 X
1

i

. Hence, we can write �i as

�i =

(ai � 1)
P

x1 6=... 6=x
a
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i
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j

�
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),b)
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i
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j

),b)
P

x1 6=... 6=x
a

i�1 6=x
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i

⇧a
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f(ex
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a

i

�k+1
, (a� aiei � ej, (b�

Pk�1

j=1

ex
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�
Pa

i

�k
j=1

eu
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),b)
.

(3.17)

Since the choice for ua
i

�k+1

is arbitrary and assumption (3.13) in the theorem statement

holds, we can simplify the notation by using fk(xk) in place of the full expression for f .

(We will defer a technical point regarding this simplification to the end of the proof.) In

contrast , � does depend on the degree sequence and on .x
1

, ..., xk�1

. But for simplicity, we

abuse notation and write �k(xk). This reduces to a more tractable (but slightly misleading)

notation:

�i =
(ai � 1)

P
x1 6=... 6=x

a

i�1=x
a

i

⇧a
i

k=1

�k(xk)
P

x1 6=... 6=x
a

i�1 6=x
a

i

⇧a
i

k=1

�k(xk)
�

(ai � 1)
P

x1 6=... 6=x
a

i�1=x
a

i

⇧a
i

k=1

fk(xk)
P

x1 6=... 6=x
a

i�1 6=x
a

i

⇧a
i

k=1

fk(xk)
.

Denote D
0

as the set of sets of ai distinct indices in {1, . . . , N} and D
1

as the set of sets

of ai indices in {1, . . . , N} such that the first ai � 2 are distinct and the final two are equal.

Writing �i as a single fraction, we obtain
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�i =
(ai � 1)[

P
D1
⇧a

i

k=1

�k(xk)
P

D0
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i

k=1

fk(xk)�
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P
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(⇧x
k

2D1�k(xk)⇧x
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2D0fk(xk)� ⇧x
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2D0�k(xk))]P
D0
⇧a

i

k=1

�k(xk)
P

D0
⇧a

i

k=1

fk(xk)
.

We now write �k = fk(1 + ⇠k) where ⇠k depends only on x
1

, ..., xk (but we omit the

dependence) and ⇠k = O(S�2w⌧ ) from the definition of f . Furthermore, denote �k = 0 if

k = ai or k = ai � 1 and �k = 1 otherwise. These steps yield

�i =

(ai � 1)[
P

D1,D0
⇧x

k

2D1fk(xk)(1 + ⇠k�k)⇧x
k

2D0fk(xk)�P
D0
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P

D0
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i
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fk(xk)
(3.18)
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P
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k

2D1fk(xk)⇧x
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D0
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i

k=1

�k(xk)
P

D0
⇧a

i

k=1

fk(xk)
(3.19)

where ✏ is the compensatory term for zeroing out certain terms by inserting the �k into

equation (3.18), which we can express as ✏ = ✏
1

+ ✏
2

� ✏
3

� ✏
4

for

✏
1

=
X

D1

⇠a
i
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i

(xa
i

)fa
i

�1

(xa
i

�1

)⇧k 6=a
i
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fk(xk)(1 + ⇠k)
X
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⇧x
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2D0fk(xk), (3.20)
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i

�1

(xa
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�1
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2D1fk(xk)
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i
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i

(xa
i

)⇧k 6=a
i

fk(xk)(1 + ⇠k). (3.23)
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Now, for k = ai or k = ai � 1, fk(xk)(1 + ⇠k�k) = fk(xk) by definition. Factoring fk(xk)

out for those choices of xk in both D
0

and D
1

, applying a version of the mean value theorem

and using the fact that ⇠k only depends on x
1

, ..., xk enables us to integrate out the last two

variables of D
0

and D
1

. Since the first ai � 2 indices are distinct in each element of both D
0

and D
1

, if we define D⇤ as the set of sets of ai � 2 distinct indices, then the expression for

�i can now be written as

�i =
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where � is the constant from the application of the mean value theorem.

To bound �i, we use the crude approximation that for k = ai � 1, ai, both fk(xk,b) =
b

x

k

b

u

k

(1 + O(S�2⌧ )) and �k(xk) =
b
x

k

b
u

k

(1 + O(S�2⌧ )), and we multiply the numerator and

denominator of �i by (⇧a
i
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i
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k

)2. From equation (4.16), we have that
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Note that ⇠a
i

= O(S�2w⌧ ) and ai  dmax. Moreover, using the relationship that
PN

m=1

bu
k

�k(xm,b) = S(1 + O(S�2⌧ )) to integrate out the last two variables xa
i

�1

and xa
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from D
0

, we can obtain the bound
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Similarly, we conclude that
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i

k=a
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by replacing the summation over D
1

with a summation over D
1⇤, again integrating out the

last two variables xa
i

�1

and xa
i

from D
1

using bu
k

�k(xm,b) = bx
m

(1 +O(S�2⌧ )).
Repeating this argument for all ✏i i = 2, 3, 4, we obtain that
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Simplifying, using the fact that dmax = O(S
1
2�⌧ ), we obtain

�i =
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Therefore, we conclude that g as defined in the theorem statement can be approximated as

g(ei, ej,d, a) =
kGd�i

k
kGd�j

k(1 +O(S�2(w+1)⌧ )), even though our approximation for f is

f(ei, ej,d,x) =
kGd�i

k
kGd�j

k(1 +O(S�2w⌧ )).
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We have nearly completed the proof. We argued above that the choice of uk should not

have any impact in evaluating expressions such as

(ai � 1)
X

x1 6=... 6=x
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By our assumptions on f , the dependence on the degree sequence is ignored (i.e., represents

a higher order term) unless one of the ua
i

�m+1

equals one of the xk’s. (That is, when we
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.)

If this is the case, then consider the product
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where we omitted the dependence on the in-degree sequence and the last argument b. Now

when evaluating f(ex
k

, eu
a

i

�k+1
,b�

Pk�1

j=1
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j

�
Pa

i

�k
j=1

eu
j

), the degree of the xk is bx
k

� 1 if

and only if ai �m + 1  ai � k, so in both terms of the product the out-degree of node xk

is bx
k

� 1.

We will now invoke assumption (3.13). We will condense notation a bit: in the function

h, if d = (a,b) and � selects the in-degree (out-degree) sequence, then we write h(ei, a)

(h(ei,b)). We can thus write (3.28) as

 
h(xk,b�

Pk�1

j=1

ex
j

�
Pa

i

�k
j=1

eu
j

)

h(ua
i

�k+1

,b�
Pk�1

j=1

ex
j

�
Pa

i

�k
j=1

eu
j

)

! 
h(xm,b�

Pm�1

j=1

ex
j

�
Pa

i

�m
j=1

eu
j

)

h(ua
i

�m+1

,b�
Pm�1

j=1

ex
j

�
Pa

i

�m
j=1

eu
j

)

!
.

But since xk = ua
i

�m+1

,

h(xk,b�
Pk�1

j=1

ex
j

�
Pa

i

�k
j=1

eu
j

)

h(ua
i

�m+1

,b�
Pm�1

j=1

ex
j

�
Pa

i

�m
j=1

eu
j

)
= (1 +O(S�2w⌧ )) =

h(xk, z1)

h(ua
i

�m+1

, z
2

)
(1 +O(S�2w⌧ ))

for any arbitrary vectors z
1

,z
2

that satisfy assumption (3.13), as xk = ua
i

�m+1

. In particular,

we can choose z
1

,z
2

such that the out-degree of node xk is bx
k

and not bx
k

� 1 ,hence the

dependence on the degree sequence can be ignored as initially claimed.
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Even with the many assumptions in the statement of Theorem 9, we still do not have

our asymptotic enumeration result for counting the number of graphs realizing a given bide-

gree sequence. The issue is that we would need to evaluate products of approximations

⇧a
i

i=1

f(xi)(1 + O(S�2w⌧ )) where ai = O(S
1
2�⌧ ), which diverges as S ! 1. To avoid this

problem, we note that Theorem 9 does give us a way to shrink the error term in the product,

decreasing the power of S by 1 in each step. Thus, by repeatedly applying Theorem 9, we

can obtain a product of the form ⇧a
i

i=1

f(xi)(1+O(S� 1
2 )), which does not yield divergence in

the limit. To harness this strategy, we use a result that is analogous to Theorem 9 but starts

with an approximation of O(S� 1
2�w⌧ ). For this additional result, stated in Theorem 10, we

no longer need the full assumptions made in Theorem 9, since starting from an improved

approximation means that certain terms must stay bounded.

Theorem 10. Consider an approximation

kG
d�i

k
kG

d�j
k = f(ei, ej,d, �)(1 +O(S� 1

2�w⌧ ))

for some w > 0. Furthermore suppose that for m = O(S
1
2�⌧ ),

f(ei, ej,d0

, �) = f(ei, ej,d1

, �) + z(ei, ej,d0

� d
1

,d
0

, �)

where kd
1

�d
0

k
1

 m and z(ei, ej,d0

�d
1

,d
0

, �)  O(S� 1
2�⌧ )f(ei, ej,d0

, �). If � = a, then

we can construct a sharper approximation

kG
d�i

k
kG

d�j
k = g(ei, ej,d, a)(1 +O(S� 1

2�(w+2)⌧ ))

where

g(e
i

, e
j

,d,a) =

a

i

a

j

exp(log(1 +

(a
i

�1)
P

x1 6=... 6=x

a

i�1=x

a

i

⇧
a

i

k=1f(ex

k

,e
u

k

,(a�a

i

e
i

,(b�
P

k�1
j=1 e

x

j

+
P

a

i

�k

j=1 e
u

j

),b)
P

x1 6=... 6=x

a

i�1 6=x

a

i

⇧
a

i

k=1f(ex

k

,e
u

k

,(a�a

i

e
i

,b�
P

k�1
j=1 e

x

j

+
P

a

i

�k

j=1 e
u

j

),b)
)�

log(1 +

(a
j

�1)
P

x1 6=... 6=x

a

j�1=x

a

j

⇧
a

j

k=1f(ex

k

,e
u

k

,(a�a

j

e

j

,b�
P

k�1
j=1 e

x

j

+
P

a

i

�k

j=1 e
u

j

),b)
P

x1 6=... 6=x

a

j�1 6=x

a

j

⇧
a

j

k=1f(ex

k

,e
u

k

,(a�a

j

e

j

,b�
P

k�1
j=1 e

x

j

+
P

a

i

�k

j=1 e
u

j

),b)
))

for an arbitrary choice of uk. A similar result holds, with g depending on b, if � = b.
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The proof is very similar to the prior theorem so we leave the details to Appendix C.

So in order to construct asymptotics for the ratio of the number of graphs of two slightly

di↵erent degree sequences, starting with our approximation
kGd�i

k
kGd�j

k = a
i

a
j

(1 + O(S�2⌧ )), we

apply Theorem 9, obtaining stronger approximations until we reach an approximation with

a multiplicative error of (1 +O(S� 1
2 )) from the solution. We can then apply Theorem 10 to

construct approximations that are arbitrarily accurate. As mentioned before, this argument

requires that the additional assumptions of Theorem 9 are true, which we will prove in

Section 6.

We now provide a general method for constructing asymptotics for kG
d

k from asymp-

totics for kG
d

k/kG
d⇤k. We start our derivation, as we did in Section 2, by considering a

special case where it is particularly easy to count the number of graphs that realize a specified

degree sequence.

Corollary 11. Consider the degree sequence (a,b) 2 ZN⇥2 where 1 appears exactly S times

in b and 0 appears exactly N � S times in b. Then

kG
(a,b)k =

S!

⇧N
i=1

ai!

Proof. The result follows immediately from Lemma 1 where q = 0 and k = N .

Theorem 11. Define a function ⇢ : N ! N such that b =
PS

k=1

e⇢(k). Suppose that for each

i 2 {1, . . . , S}, the following approximation holds:

kG
(a,

P
S�i

k=1 ek+
P

i

k=1 e⇢(k))
k

kG
(a,

P
S�i+1
k=1 e

k

+

P
i�1
k=1 e⇢(k))

k(1 +O(S�1�✏)) = f(i) (3.29)

for some ✏ > 0. Then

kG
d

k = (1 +O(S�✏))
S!

⇧N
i=1

ai!
⇧S

i=1

f(i).

Proof. For simplicity, we first suppose that S  N . Write 1S =
PS

k=1

ek where ek is the kth

standard unit vector. From Corollary 11,

kG
(a,1

S

)

k =
S!

⇧N
i=1

ai!
. (3.30)
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Consequently,

kG
d

k = kG
(a,1

S

)

k⇧S
i=1

kG
(a,

P
S�i

k=1 ek+
P

i

k=1 e⇢(k))
k

kG
(a,

P
S�i+1
k=1 e

k

+

P
i�1
k=1 e⇢(k))

k . (3.31)

But by assumption (3.29) and equation (3.30), we have that

kG
(a,1S)

k⇧S
i=1

kG
(a,

P
S�i

k=1 ek+
P

i

k=1 e⇢(k))
k

kG
(a,

P
S�i+1
k=1 e

k

+

P
i�1
k=1 e⇢(k))

k =
S!

⇧N
i=1

ai!
⇧S

i=1

f(i)(1 +O(S�1�✏)) = (3.32)

(1 +O(S�✏))
S!

⇧N
i=1

ai!
⇧S

i=1

f(i). (3.33)

Finally, in the event that S > N ,we extend d 2 ZN⇥2 to a bidegree sequence d⇤ 2 ZS⇥2

by appending zeros to d. The proof then proceeds analogously.

In the following section we will apply Theorems 9, 10 and 11 to construct asymptotics

for the number of graphs of a given degree sequence. The cases worked out in the following

section will not only provide extra intution about the veracity of the assumptions of Theorem

9, but will also lay the groundwork for the rigorous proof that the assumptions are indeed

true.

3.4 SOME EXAMPLES ILLUSTRATING THE MAIN RESULT

We start with a technical lemma that will help us evaluate summations of the form
PN

x1 6=... 6=x
r

⇧r
i=1

f(xi). where the notation
PN

x1 6=... 6=x
r

tells us that for each i 2 {1, 2, .., r}, we

take xi 2 {1, 2, ..., N} and we are summing over all
�
N
r

�
choices of r distinct elements in

{1, 2, ..., N}.

Lemma 3. Suppose that f : N ! [0,1),
PN

i=1

f(i) = S, max f(·) = O(S
1
2�⌧ ), and that

x
1

, . . . , xr is a sequence of natural numbers with r = O(S
1
2�⌧ ). Let k be a fixed (i.e., O(1))

natural number and define

⇠ =
NX

x1,..,x
k

,
x
k+1 6=... 6=x

r

⇧r
i=1

f(xi).
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Then
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi) = ⇠(1 +O(S�2⌧ )).

Proof. We proceed by induction on k. Start with k = 1. So

NX

x1 6=... 6=x
r

⇧r
i=1

f(xi) =
NX

x1,x2 6=... 6=x
r

⇧r
i=1

f(xi)� (r � 1)
NX

x1=x2 6=... 6=x
r

⇧r
i=1

f(x
2

). (3.34)

But the bounds on r and max f(·) imply that

(r � 1)
NX

x1=x2 6=... 6=x
r

⇧r
i=1

f(xi)  O(S1�2⌧ )
NX

x2 6=... 6=x
r

⇧r
i=2

f(xi), (3.35)

while
NX

x1,x2 6=... 6=x
r

⇧r
i=1

f(xi) � O(S)
NX

x2 6=... 6=x
r

⇧r
i=1

f(xi). (3.36)

Using (3.35) and (3.36) to express the right hand side of (3.34) in terms of ⇠ yields the

desired result for k = 1.

Now assume that the lemma is true when k = m and consider the case k = m + 1. We

have
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi) =
NX

x1,..,xm

,
x
m+1 6=... 6=x

r

⇧r
i=1

f(xi) +O(S�2⌧ ) =

NX

x1,..,xm

,x
m+1,

x
m+2 6=... 6=x

r

⇧r
i=1

f(xi) +O(S�2⌧ )� (r �m� 1)
NX

x1,...,xm

,
x
m+1=x

m+2
6=... 6=x

r

⇧r
i=1

f(xi).

By applying the estimates (3.35), (3.36), it follows as before that

(r �m� 1)
NX

x1,...,xm

,
x
m+1=x

m+2
6=... 6=x

r

⇧r
i=1

f(xi) = O(S�2⌧ ),

and the proof is complete.
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Corollary 12. With the notation of Lemma 3, let k > m > 1 be fixed natural numbers,

let f, g : N ! [0,1) with g(·)  f(·),
PN

i=1

f(i) = S, and max f(·) = O(S
1
2�⌧ ), and let

r = O(S
1
2�⌧ ). Define

⇣ =
NX

x1=...=x
m

,
x
m+1,...,x

k

,
x
k+1 6=... 6=x

r

g(x
1

)⇧r
i=2

f(xi).

Then
NX

x1=...=x
m

6=... 6=x
r

g(x
1

)⇧r
i=2

f(xi) = ⇣(1 +O(S�2⌧ )).

Proof. The proof is identical to that of Lemma 3.

For use in later proofs, it is worth noting that while the error terms in Lemma 3 (and

analogously in Corollary 12) are expressed as

O(S�2⌧ )
NX

x1,..,x
k

,
x
k+1 6=... 6=x

r

⇧r
i=1

f(xi),

they can also be stated in terms of O(S�2⌧ )
PN

x1 6=... 6=x
r

⇧r
i=1

f(xi) since asymptotically (as the

above results imply),

NX

x1 6=... 6=x
r

⇧r
i=1

f(xi) ⇡
NX

x1,..,x
k

,
x
k+1 6=... 6=x

r

⇧r
i=1

f(xi).

With Lemma 3 and Corollary 12 at our disposal, we can now derive the first order

approximation of our power series with relative ease, but first we introduce some additional

notation.

Definition 4. Given a bidegree sequence d = (a,b) 2 ZN⇥2, we denote ↵k :=
PN

i=1

aki and

�k :=
PN

i=1

bki .

Theorem 12. If maxi max(ai, bi) = O(S
1
2�⌧ ) for ⌧ > 0, then

kGd�i

k
kGd�j

k =
ai
aj
e(ai�a

j

)✏+O(S�4⌧
)

where, ✏ = (�
2

� �
1

)/�2

1

and (ai � aj)✏ = O(S�2⌧ ).
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Proof. We start with the approximation

kG
d�i

k
kG

d�j

k = f(ei, ej,d, a)(1 +O(S�2⌧ ))

for f(ei, ej,d, a) = ai/aj. We can apply Theorem 9, since our approximation depends only

on the degrees of the nodes i and j and we can decompose our approximation, f(ei, ej,d, a) =

h(ei,d, a)/h(ej,d, a), where h(ei,d, a) = ai;below, we shall also use f(ei, ej,d,b) =

h(ei,d,b)/h(ej,d,b), where h(ei,d,b) = bi For the remainder of the proof, we omit the

dependence on d in our notation.

From the conclusion of Theorem 9, we need to evaluate

�i :=
(ai � 1)

P
x1 6=... 6=x

a

i�1=x
a

i

⇧a
i

k=1

f(ex
k

, eu
k

,bk)
P

x1 6=... 6=x
a

i�1 6=x
a

i

⇧a
i

k=1

f(ex
k

, eu
k

,bk)

and the analogously defined �j, where

bk = b�
a
i

�k+1X

j=1

eu
j

�
k�1X

j=1

ex
j

denotes the out-degree of the sequence dk,i,j, as in the statement of Theorem 9. Now,

multiplying our numerator and denominator by ⇧a
i

k=1

bu
k

removes the dependence of f on

eu
k

, as f(ex
k

, eu
k

,bk) = bx
k

/bu
k

except for when xa
i

�1

= xa
i

and k = ai, in which case

f(ex
a

i

, eu
a

i

,ba
i

) = (bx
a

i

� 1)/bu
a

i

, since we have already subtracted an outgoing edge from

the node bx
a

i

�1 , reducing its out-degree by 1.

By Corollary 12, with g = f(ex
a

i

, eu
a

i

,ba
i

) and a relabeling of indices such that the case

where xa
i

�1

= xa
i

becomes the case where x
1

= x
2

, we have

�i =
(ai � 1)

P
x1=x2,x3 6=... 6=x

a

i

⇧a
i

k=1

f(ex
k

,bk)
P

x1,x2,x3 6=... 6=x
a

i

⇧a
i

k=1

f(ex
k

,bk)
(1 +O(S�4⌧ )).

Factoring out
P

x3 6=... 6=x
a

i

⇧a
i

k=1

f(ex
k

,b) yields the following simplification:

�i =
(ai � 1)

P
x1=x2

⇧f(ex
k

,bk)P
x1,x2

⇧f(ex
k

,bk)
(1 +O(S�4⌧ )) =

(ai � 1)(�
2

� �
1

)

�2

1

(1 +O(S�4⌧ )).

where the last equality above follows from the fact that in the numerator where x
1

= x
2

,

f(ex1 ,b1

) ⇤ f(ex2 ,b2

) = f(ex1 ,b1

) ⇤ f(ex1 ,b2

) = bx1(bx1 � 1) = b2x1
� bx1 . Summing over all
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choices for x
1

yields the expression �
2

� �
1

.

We conclude that log(1+ �i) = log(1+ (a
i

�1)[�2��1]

�2
1

)+O(S�4⌧ ) and analogously log(1+ �j) =

log(1+ (a
j

�1)[�2��1]

�2
1

)+O(S�4⌧ ). Hence from Theorem 9 we know that
kG

d�i

k
kG

d�j

k = a
i

a
j

exp[log(1+

(a
i

�1)[�2��1]

�2
1

)� log(1+ (a
j

�1)[�2��1]

�2
1

)+O(S�4⌧ )] where writing the logarithms as a Taylor series

yields
kG

d�i

k
kG

d�j

k = a
i

a
j

exp[ (ai�a
j

)(�2��1)

�2
1

+O(S�4⌧ )].

Finally, note that

(ai � aj)
�
2

� �
1

�2

1

 dmax�2

�2

1

 d2max�1

�2

1

=
d2max

�
1

= O(S�2⌧ )

We can also prove the following statement with relative ease.

Theorem 13. Using the notation from Definition 4 (with ↵
1

= S), if maxi max(ai, bi) =

O(S
1
4�✏) for ✏ > 0, then

kG
d

k = [1 +O(S�4✏)]
S!

⇧N
i=1

ai!bi!
exp(

�(↵
2

� ↵
1

)(�
2

� �
1

)

2S2

).

Proof. We know from Theorem 12 that

kGd�i

k
kGd�j

k =
ai
aj
e(ai�a

j

)✏+O(S�4⌧
)

where ✏ = (�
2

� �
1

)/�2

1

,(ai � aj)✏ = O(S�2⌧ ) when dmax = O(S
1
2�⌧ ) for ⌧ 2 (0, 1/2). If,

in fact, dmax = maxi max(ai, bi) = O(S
1
4�✏), then we have that ⌧ = 1

4

+ ✏ and consequently

O(S�4⌧ ) = O(S�1�4✏). By Theorem 11 and the definition of ⇢ given in the theorem statement,

we know that

kG
d

k =
S!

⇧N
i=1

ai!
⇧S

i=1

f(i)(1 +O(S�4✏))

where by equation (3.29) we can approximate

f(i) =
kG

(a,
P

S�i

k=1 ek+
P

i

k=1 e⇢(k))
k

kG
(a,

P
S�i+1
k=1 e

k

+

P
i�1
k=1 e⇢(k))

k(1 +O(S�1�4✏)).

Now, we will proceed with a sequence of unit out-degree switches that transform an

out-degree sequence consisting entirely of 1’s to the out-degree sequence of d, namely b.

Without loss of generality, suppose that the first node in b has out-degree b
1

, such that

there are b
1

� 1 switches required , and that ⇢(1) = · · · = ⇢(b
1

� 1) = 1, which means
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that all of the switches will be applied to the first node, taking it from out-degree 1 to

out-degree b
1

. Then it follows from Theorem 12 that f(1) = 1

2

exp((↵
2

� ↵
1

)(1 � 2)/S2),

since the first switch changes the out-degree of the first node from 1 to 2. Similarly, it

follows that f(2) = 1

3

exp((↵
2

� ↵
1

)(1 � 3)/S2) and, more generally for k  b
1

� 1, f(k) =

1

k+1

exp((↵
2

� ↵
1

)(1� [k + 1])/S2) = 1

k+1

exp((↵
2

� ↵
1

)(�k)/S2). Hence

⇧b
i

�1

k=1

f(k) = ⇧b
i

�1

k=1

1

k + 1
exp((↵

2

� ↵
1

)(�k)/S2) =

exp((↵
2

� ↵
1

)
Pb1�1

k=1

(�k)/S2)

b
1

!
=

exp(� (↵2�↵1)(b21�b1)
2S2 )

b
1

!
.

Repeating this argument for all of the nodes in the degree sequence yields the result,

kG
d

k = (1 +O(S�4✏))
S!

⇧N
i=1

ai!
⇧S

i=1

f(i) = (1 +O(S�4✏))
S!

⇧N
i=1

ai!bi!
exp(

�(↵
2

� ↵
1

)(�
2

� �
1

)

2S2

).

We now explain the intuition behind some generalizations of Lemma 3 that we need

to achieve higher order approximations. Note that in Theorem 12, using Lemma 3, we

performed an approximation of the form

P
x1=x2 6=... 6=x

r

⇧r
n=1

f(xn)P
x1 6=x2 6=... 6=x

r

⇧r
n=1

f(xn)
⇡
P

x1=x2
⇧2

n=1

f(xn)P
x1,x2

⇧2

n=1

f(xn)

"P
x3 6=... 6=x

r

⇧r
n=3

f(xn)P
x3 6=... 6=x

r

⇧r
n=3

f(xn)

#

=

P
x1=x2

⇧2

n=1

f(xn)P
x1,x2

⇧2

n=1

f(xn)

and we showed that such an approximation yielded an O(S�4⌧ ) error.

More generally, we want to construct approximations of

NX

x1=x2 6=... 6=x
r

⇧r
n=1

f(xn) and
NX

x1 6=x2 6=... 6=x
r

⇧r
n=1

f(xn)

For example, to attain a generalization of Lemma 2, we allow for the possibility (in the

numerator) that x
1

= x
2

= x
3

, but now we need to separate out three terms as opposed to

two to achieve our desired cancellation; that is, we have
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P
x1=x2=x3 6=... 6=x

r

⇧r
n=1

f(xn)P
x1 6=x2 6=... 6=x

r

⇧r
n=1

f(xn)
⇡
P

x1=x2=x3
⇧3

n=1

f(xn)P
x1,x2,x3

⇧3

n=1

f(xn)

"P
x4 6=... 6=x

r

⇧r
n=3

f(xn)P
x4 6=... 6=x

r

⇧r
n=3

f(xn)

#
.

However, once we are computing O(S�4⌧ ) terms, we also need to consider the case where

x
1

= x
2

and x
3

= x
4

, as such terms also turn out to contribute at O(S�4⌧ ). To make this

idea more rigorous, consider approximating

P
x1=x2 6=x3 6=... 6=x

r

⇧r
n=1

f(xn) =
P

x1=x2,x3 6=... 6=x
r

⇧r
n=1

f(xn)� (r � 2)
P

x1=x2=x3 6=... 6=x
r

⇧r
n=1

f(xn).

To obtain a su�ciently high order estimate for the left hand side, we partition the right

hand side into still more terms, motivated by the intuition that terms with more equal signs

under a summation should be of higher order; thus, we consider

X

x1=x2 6=x3 6=... 6=x
r

⇧r
n=1

f(xn) =
X

x1=x2,x3,
x4 6=... 6=x

r

⇧r
n=1

f(xn)� (r � 3)
X

x1=x2,
x3=x4 6=... 6=x

r

⇧r
n=1

f(xn)�

(r � 2)
X

x1=x2=x3,
x4 6=... 6=x

r

⇧r
n=1

f(xn) + . . .

where we have neglected to write out the final terms of still higher order.

Now, since we want to keep the case where x
1

= x
2

and x
3

= x
4

, we have to integrate

out the x
4

, which yields

X

x1=x2 6=x3 6=... 6=x
r

⇧r
n=1

f(xn) =
X

x1=x2,
x3,x4,x5 6=... 6=x

r

⇧r
n=1

f(xn)� (r � 3)
X

x1=x2,x3=x4,
x5 6=... 6=x

r

⇧r
n=1

f(xn)

�(r � 2)
X

x1=x2=x3,x4,
x5 6=... 6=x

r

⇧r
n=1

f(xn)� (r � 4)
X

x1=x2,x3,
x4=x5 6=... 6=x

r

⇧r
n=1

f(xn) + . . .

But we can simply relabel indices to observe that

X

x1=x2,x3,x4=x5 6=... 6=x
r

⇧r
n=1

f(xn) =
X

x1=x2,x3=x4,
x5 6=... 6=x

r

⇧r
n=1

f(xn) + . . . ,
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and we conclude that

P
x1=x2 6=x3 6=... 6=x

r

⇧r
n=1

f(xn) =
P

x1=x2,x3,x4,x5 6=... 6=x
r

⇧r
n=1

f(xn)

�(2r � 7)
P

x1=x2,x3=x4,
x5 6=... 6=x

r

⇧r
n=1

f(xn)�(r � 2)
P

x1=x2=x3,x4,
x5 6=... 6=x

r

⇧r
n=1

f(xn) + . . .

So in fact, it su�ces to factor out four indices. Indeed, the general intuition is that if

we are including k equalities in our expansion, then we will need to factor out 2k indices,

to consider the worst case scenario where x
1

= x
2

, x
3

= x
4

, ..., x
2k�1

= x
2k. But we can then

relabel indices to express terms with, say, x
1

= x
2

, x
3

, x
4

= x
5

, ..., x
2k = x

2k+1

using terms of

the form x
1

= x
2

, x
3

= x
4

, ..., x
2k�1

= x
2k.

With these ideas in mind, we now proceed to derive the higher order approximation. We

subdivide this task into a few steps, starting with an approximation lemma on sums of the

form
P

x1 6=... 6=x
r

⇧r
n=1

f(xn) and sums of the form
P

x1=x2 6=... 6=x
r

⇧r
n=1

f(xn).

Lemma 4. Let f, g : N ! [0,1) with f(·) � g(·),
PN

i=1

f(i) = S, max f(·) = O(S
1
2�⌧ ), and

r = O(S
1
2�⌧ ), r � 4 and define F = ⇧4

i=1

f(xi), G = g(x
1

)⇧4

i=2

f(xi),

⇠̃ =
NX

x1,...,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi)� (4r � 10)
NX

x1=x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi) and

⇣̃ =
PN

x1=x2,x3,x4,
x5 6=... 6=x

r

g(x
1

)⇧r
i=2

f(xi) � (r � 2)
PN

x1=x2=x3,x4,
x5 6=... 6=x

r

g(x
1

)⇧r
i=2

f(xi)

� (2r � 7)
PN

x1=x2,x3=x4,
x5 6=... 6=x

r

g(x
1

)⇧r
i=2

f(xi).

Then

⇠
0

:=
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi) = ⇠̃(1 +O(S�4⌧ )) (3.37)

and

⇣
0

:=
X

x1=x2 6=... 6=x
r

g(x
1

)⇧r
i=2

f(xi) = ⇣̃(1 +O(S�4⌧ )). (3.38)

Furthermore,

⇣
0

⇠
0

=

P
x1=x2,x3,x4

G� (r � 2)
P

x1=x2=x3,x4
G� (2r � 7)

P
x1=x2,x3=x4

G
P

x1,..,x4
F � (4r � 10)

P
x1=x2,x3,x4

F
+O(S� 1

2�5⌧ ).

(3.39)
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Proof. To derive the first equality, start by expressing ⇠
0

as

⇠
0

=
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi) =
NX

x1,
x2 6=... 6=x

r

⇧r
i=1

f(xi)� (r � 1)
NX

x1=x2 6=
x3 6=... 6=x

r

⇧r
i=1

f(xi).

Applying Lemma 2 to the final term yields

⇠
0

=
NX

x1,
x2 6=... 6=x

r

⇧r
i=1

f(xi)� (r � 1)
NX

x1=x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi) +O(S�4⌧ )
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi)

where the error term comes from

O(S�2⌧ )(r � 1)
NX

x1=x2,x3,x4
x5 6=... 6=x

r

⇧r
i=1

f(xi) = O(S�4⌧ )
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi). (3.40)

We next repeat the same argument and relabel to obtain

⇠
0

=
PN

x1,x2,
x3 6=... 6=x

r

⇧r
i=1

f(xi)� (r � 1)
PN

x1=x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi)�

(r � 2)
PN

x1,x2=x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi) +O(S�4⌧ )
PN

x1 6=... 6=x
r

⇧r
i=1

f(xi)

=
PN

x1,x2,
x3 6=... 6=x

r

⇧r
i=1

f(xi)� (2r � 3)
PN

x1=x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi)+

O(S�4⌧ )
PN

x1 6=... 6=x
r

⇧r
i=1

f(xi).

(3.41)

Continuing in this fashion,

⇠
0

=
NX

x1,x2,x3,
x4 6=... 6=x

r

⇧r
i=1

f(xi)� (3r � 6)
NX

x1=x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi) +O(S�4⌧ )
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi).

The next, final step is a bit trickier so we include a little more detail. First, we extract

the x
4

out of the first summation of the above equation and apply (3.40), which yields
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⇠
0

=
PN

x1,x2,x3x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi)� (3r � 6)
PN

x1=x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi)

�(r � 4)
PN

x1,x2,x3,x4=x5,
x6 6=... 6=x

r

⇧r
i=1

f(xi) +O(S�4⌧ )
PN

x1 6=... 6=x
r

⇧r
i=1

f(xi).

But by another application of (3.40),

NX

x1,x2,x3,x4=x5,
x6 6=... 6=x

r

⇧r
i=1

f(xi) =
NX

x2,x3,x4=x5,
x1 6=x6 6=... 6=x

r

⇧r
i=1

f(xi) +O(S�4⌧ )
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi),

where by relabeling, the first term on the right hand side is the same as

NX

x1=x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi).

So we conclude that

⇠
0

=
NX

x1,x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi)� (4r � 10)
NX

x1=x2,x3,x4,
x5 6=... 6=x

r

⇧r
i=1

f(xi) +O(S�4⌧ )
NX

x1 6=... 6=x
r

⇧r
i=1

f(xi),

where the sum in the final term is itself ⇠
0

, such that the first part of the Lemma is established.

The second part of the Lemma follows analogously, while expression (3.39) follows from

cancellation of terms.

Theorem 14. Let dmax = O(S
1
2�⌧ ). Then

kGd�i

k
kGd�j

k =
ai
aj

exp([ai � aj]✏1 � [a2i � a2j ]✏2 +O(Smax(�6⌧,� 1
2�3⌧)))

where

✏
1

=
�
2

+ 2�
3

↵
2

/↵2

1

(�
1

+ �
2

↵
2

/↵2

1

)2
and ✏

2

=
(�

2

� �
1

)2

2�
1

4

+
�
3

�
1

� 2�2

2

�4

1

.
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Proof. From Theorem 12 we know that

kG
d�i

k
kG

d�j
k =

ai
aj

exp((ai � aj)
�
2

� �
1

�2

1

=
ai exp(ai

�2

�2
1
)

aj exp(aj
�2

�2
1
)
(1 +O(S�4⌧ )). (3.42)

Note that the middle expression in (3.42) satisfies the assumption from Theorem 9 that our

approximation can be expressed as h(i,d)/h(j,d) for some function h, and hence we can

use Theorem 9 to derive the next step on our expansion. Similarly if we consider a di↵erent

degree sequence such that kd
0

� d
1

k1 = 1, kd
0

k
1

= kd
1

k
1

and kd
0

� d
1

k
1

= O(S
1
2�⌧ ), then

we introduce a multiplicative error of (1 +O(S�6⌧ )) as

ai
aj

exp((ai � aj)
�
2

� �
1

�2

1

only depends on the second moment of the out-degree sequence �
2

. We introduce the notation

�
2

(d) to explicitly denote the dependence of �
2

on the degree sequence.

Consequently, the di↵erence between |�
2

(d
1

)� �
2

(d
0

)| = O(S1�2⌧ ), hence

a
i

a
j

exp((ai � aj)
�2(d1)

�2
1

)

a
i

a
j

exp((ai � aj)
�2(d0)

�2
1

)
= exp((ai � aj)

�
2

(d
1

)� �
2

(d
0

)

�2

1

) =

exp(O(S
1
2�⌧O(S1�2⌧ )/O(S2)) = exp(O(S� 1

2�3⌧ )).

We now proceed as we did in Theorem 12. We need to evaluate

�i =
(ai � 1)

P
x1 6=... 6=x

a

i�1=x
a

i

⇧a
i

k=1

f(ex
k

, eu
k

,b)
P

x1 6=... 6=x
a

i�1 6=x
a

i

⇧a
i

k=1

f(ex
k

, eu
k

,b)
.

We multiply our numerator and denominator by ⇧a
i

k=1

bu
k

exp(bu
k

↵2

↵2
1
), where ↵

1

,↵
2

are the

moments of the degree sequence d, we drop the dependence of f on eu
k

, and we define

f(ex
k

,b) = bx
k

exp(bx
k

↵2

↵2
1
) to obtain (from (3.42)

�i =
(ai � 1)

P
x1 6=... 6=x

a

i�1=x
a

i

⇧a
i

k=1

f(ex
k

,b)
P

x1 6=... 6=x
a

i�1 6=x
a

i

⇧a
i

k=1

f(ex
k

,b)
.

We can now invoke Lemma 14 to simplify the above summation. Further algebraic simplifi-

cation yields the desired result.
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To indicate how the estimates that we derive can, in theory, be continued indefinitely, we

conclude this section by providing a higher order approximation for a ratio of the numbers

of graphs that realize two di↵erent degree sequences that has an O(S�8⌧ ) correction. As

before, we need a more refined version of Lemma 3 to derive this approximation. We omit

the proof, since the same proof technique that derived Lemma 3 yields the proof of Lemma 4.

On the author’s webpage, we provide code that computes (and proves) the refined variants

of Lemma 3 up to arbitrary order.

Lemma 5. Suppose that g : N ! [0,1), f : N ! [1,1) with f(·) � g(·), that
PN

i=1

f(i) = S,

max f(·) = O(S
1
2�⌧ ), and that r = O(S

1
2�⌧ ), r � 6. Define � =

PN
x1 6=... 6=x

r

⇧r
i=1

f(xi) and

 =
PN

x1=x2 6=... 6=x
r

g(x
1

)⇧r
i=2

f(xi) Furthermore, for notational convenience let F = ⇧6

i=1

f(xi)

and G = g(x
1

)⇧6

i=2

f(xi). Then



�
=


1

�
1

+O(S� 1
2�7⌧ )

where

�
1

=
X

x1,..,x6

F � (6r�21)
X

x1=x2
x3..,x6

F +(9r2�58r+69)
X

x1=x2,x3=x4
x5,x6

F +(6r2�48r+112)
X

x1=x2=x3
x4..,x6

F

and


1

=
X

x1=x2,x3..,x6

G� (r � 2)
X

x1=x2=x3
x4..,x6

G� (4r � 18)
X

x1=x2,x3=x4
x5,x6

G+ (r2 � 5r + 6)
X

x1=x2=x3=x4
x5,x6

G

+(3r2� 21r+30)
X

x1=x2=x3
x4=x5,x6

G+(4r2� 40r+104)
X

x1=x2
x3=x4=x5,x6

G+(2r2� 15r+21)
X

x1=x2
x3=x4,x5=x6

G.

We conclude this section with a statement of the corresponding more refined approxima-

tion.
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Theorem 15. Let dmax = O(S
1
2�⌧ ) and recall that �k =

PN
k=1

bki . We have

kGd�i

k
kGd�j

k =
ai
aj

exp([ai � aj]✏1 � [a2i � a2j ]✏2 + [a3i � a3j ]✏3 +O(Smax(�1�2⌧,�8⌧)))

where we define

✏
1

= Eb[f(x)f(x�1)]

Eb[f(x)]2
+ Eb[f(x)f(x�1)]

2�5Eb[f(x)2]Eb[f(x)f(x�1)]+3Eb[f(x)2f(x�1)]Eb[f(x)]
Eb[f(x)]4

,

✏
2

=
�2Eb[f(x)2]Eb[f(x)f(x�1)]+

1
2Eb[f(x)f(x�1)]

2
+Eb[f(x)2f(x�1)]Eb[f(x)]

Eb[f(x)]4
, and

✏
3

=
� 107

3 �3
2�

11
2 �1�2�3+�2�4

�6
1

for

E
b

[f(x)] :=
P

x2b f(x) f(x) = x+ x2⌘
1

+ x3⌘21
2

� x3⌘
2

,

⌘
1

:= ↵2+2↵3�2/↵2
1

(↵1+↵2�2/↵2
1)

2 , and ⌘
2

:= (↵2�↵1)
2

2↵1
4 + ↵3↵1�2↵2

2

↵4
1

.

3.5 VERIFYING THE ASSUMPTIONS

To prove that the assumptions made in Theorem 9 (and in Theorem 10) hold, it is helpful to

have results to simplify the analysis of ratios of sums of the form
P

x1 6=... 6=x
r

⇧r
i=1

f(xi) that

are more general than the results we proved in Section 5. First, it is helpful to introduce

some notation.

Definition 5. Define the set of natural numbers I = {1, . . . , r}. For any collection A
=

of

disjoint subsets of I, we say that a sequence x 2 Nr satisfies A
=

if for every {i
1

, . . . , im} 2

A
=

, we have xi1 = xi2 = . . . = xi
m

. Given that x satisfies A
=

and that A6= is a subset of

I, we say that x satisfies A 6= if for all i, j 2 A6= such that i, j are not both contained in any

A 2 A
=

, we have xi 6= xj. We denote the set of all x that satisfy both A
=

and A6= by the

notation A
=

⌦ A 6=.
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Before proceeding with the theorem statements that enable us to construct approxi-

mations for ratios of sums of the form
P

x1 6=... 6=x
r

⇧r
i=1

f(xi), we wish to motivate some of

the notation that we use. To approximate
P

x1 6=... 6=x
r

⇧r
i=1

f(xi), we wish to remove some

(fixed) number of x0
is from the list of required inequalities. For example, we can express

P
x1 6=x2

f(x
1

)f(x
2

) =
P

x1,x2
f(x

1

)f(x
2

) �
P

x1=x2
f(x

1

)f(x
2

), where in the first term on

the right hand side, we no longer have to worry about the ‘does not equal’ relationship

of x
1

and x
2

found on the left hand side. To help us identify the dominating terms, we

introduce sets of the form A(i,c)
=

⌦ A(i,c)
6= , where the i denotes the number of equal signs

found under the summation and c denotes a particular instance where i of these vari-

ables are equal. For example, suppose we want to simplify
P

x1 6=x2 6=x3
f(x

1

)f(x
2

)f(x
3

) =
P

x1,x2 6=x3
f(x

1

)f(x
2

)f(x
3

) �
P

x1=x2 6=x3
f(x

1

)f(x
2

)f(x
3

) �
P

x1=x3 6=x2
f(x

1

)f(x
2

)f(x
3

). On

the right hand side there are two summations involving one equality under the summation.

Hence we can define A(1,0)
=

⌦A(1,0)
6= = {{1, 2}}⌦ {1, 2, 3}, A(1,1)

=

⌦A(1,1)
6= = {{1, 3}}⌦ {1, 2, 3}

representing those two summations. Note that in each of these examples i = 1, but since

there are two possible choices, c can be either 0 or 1. Now we present two results regarding

the sums of interest. Since the proofs of the two theorems are essentially identical, we only

prove one of them.

Theorem 16. Suppose that
P

x
m

f(xm) = S and that max f(xm) = O(S
1
2�⌧ ) and r =

O(S
1
2�⌧ ). Consider

P
x1 6=... 6=x

r

⇧r
m=1

f(xm). Fix a natural number k such that 2k  r (where

2k is the number of variables that we remove from the list of inequalities so that they can

equal other variables). Then for all j  k we can write

X

x1 6=... 6=x
r

⇧r
m=1

f(xm) =
jX

i=0

h(i,k)X

c=0

p
(i,c)

X

A
(i,c)
= ⌦A

(i,c)
6=

⇧r
m=1

f(xm) (3.43)

where for each i, h(i, k)+1 represents a number of arrangements of variables with i variables

equal to each other, and h(0, k) = 0; for all i, c, p
(i,c) is a polynomial in r; and for all i < j

and for all c, A(i,c)
=

consists of a collection of subsets of {1, . . . , 2k} with
P

A2A(i,c)
=

(|A|�1) = i

and A(i,c)
6= = {2k + 1, ..., r}. In addition,

• for all c,
P

A2A(j,c)
=

(|A|� 1) = j,

• A(j,c)
6= = {s, s+ 1, ..., r} for some s  3k, and
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• if A 2 A(j,c)
=

has a nontrivial intersection with A(j,c)
6= then A = {s, s + 1, ..., s + t} for

some t such that s + t < r; moreover, there can only be one such A 2 A(j,c)
=

that has a

nontrivial intersection with A(j,c)
6= .

Finally,
p
(i,c)

P
A

(i,c)
= ⌦A

(i,c)
6=
⇧r

m=1

f(xm)
P

x1,...,x2k,x2k+1 6=... 6=x
r

⇧r
m=1

f(xm)
= O(S�2i⌧ ).

Theorem 17. Suppose that
P

x
m

f(xm) = S and that max f(xm) = O(S
1
2�⌧ ) and r =

O(S
1
2�⌧ ). Consider

P
x1=x2 6=... 6=x

r

g(x
1

)⇧r
m=2

f(xm). For simplicity, we assume that the el-

ements in A
=

are disjoint. Fix a number k (where 2k is the number of variables removed

from the list of inequalities). Then for all j  k we can write

X

x1=x2 6=... 6=x
r

g(x
1

)⇧r
m=2

f(xm) =
jX

i=0

h(i,k)X

c=0

p
(i,c)

X

A
(i,c)
= ⌦A

(i,c)
6=

g(x
1

)⇧r
m=2

f(xm)

where for each i, h(i, k)+1 represents a number of arrangements of variables with i variables

equal to each other, and h(0, k) = 0; for all i, c, p
(i,c) is a polynomial in r; and for all i < j

and for all c, A(i,c)
=

consists of a collection of subsets of {1, ..., 2k}, A(i,c)
6= = {2k + 1, ..., r}

with
P

A2A(i,c)
=

(|A|� 1) = i+ 1. In addition,

• for all c,
P

A2A(j,c)
=

(|A|� 1) = j + 1,

• A(j,c)
6= = {s, s+ 1, ..., r} for some s  3k, and

• if A 2 A(j,c)
=

has a nontrivial intersection with A(j,c)
6= then A = {s, s + 1, ..., s + t} for

some t such that s + t < r; moreover, there can only be one such A 2 A(j,c)
=

that has a

nontrivial intersection with A(j,c)
6= .

Finally, for all i  j,

p
(i,c)

P
A

(i,c)
= ⌦A

(i,c)
6=

g(x
1

)⇧r
m=2

f(xm)
P

x1=x2,x3,...,x2k,x2k+1 6=... 6=x
r

g(x
1

)⇧r
m=2

f(xm)
= O(S�2i⌧ ).

Proof of Theorem 16. We proceed by induction. For the base case of j = 1, we start by

showing that the stated conditions hold in the case of i = j (such that the bulleted list
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in the theorem statement applies) and then we come back to (i, c) = (0, 0). We have seen

previously that

X

x1 6=... 6=x
r

⇧r
m=1

f(xm) =
X

x1,x2 6=... 6=x
r

⇧r
m=1

f(xm)� (r � 1)
X

x1=x2 6=... 6=x
r

⇧r
m=1

f(xm).

We denote the set of x over which the final summation occurs as A(1,0)
=

⌦A(1,0)
6= where A(1,0)

=

=

{{1, 2}}, the variables that equal each other, and A(1,0)
6= = {1, 2, ..., r}, the variables that are

required not to equal some (at least one) other variable. The coe�cient p
(1,0) = �(r � 1)

is also a polynomial in r and
P

A2A(1,0)
=

(|A|� 1) = 1 (where we use the superscript (1, 0) to

denote that
P

A2A(1,0)
=

(|A| � 1) = 1 and the 0 keeps track of this particular instance where
P

A2A=
(|A|� 1) = 1).

We next repeat this argument for

X

x1,x2 6=... 6=x
r

⇧r
m=1

f(xm) =
X

x1,x2,x3 6=... 6=x
r

⇧r
m=1

f(xm)� (r � 2)
X

x1,x2=x3 6=... 6=x
r

⇧r
m=1

f(xm)

and in context to the second summation on the right hand side, define p
(1,1) = �(r �

2),A(1,1)
=

= {{2, 3}}, the variables that equal one another, and A(1,1)
6= = {2, 3, 4, .., r}, the

variables that are required not to equal some other variable (where we use the superscript

(1, 1) to denote that
P

A2A(1,1)
=

(|A|� 1) = 1 and the 1 keeps track of this new instance where
P

A2A=
(|A|� 1) = 1). We stop once we reach

X

x1,x2,..,x2k 6=... 6=x

r

⇧

r

m=1f(xm

) =

X

x1,...,x2k,x2k+1 6=... 6=x

r

⇧

r

m=1f(xm

)� (r � 2k)
X

x1,...,x2k=x2k+1 6=... 6=x

r

⇧

r

m=1f(xm

).

(3.44)

Finally, based on the the first sum on the right hand side of equation (3.44), we define

p
(0,0) = 1,A(0,0)

=

= ;, as there are no variables that are required to equal one another,

A(0,0)
6= = {2k + 1, ..., r},the variables that are required not to equal some other variable, as
P

A2A(0,0)
=

(|A| � 1) = 0, and note that only variables with an index of 2k + 1 or greater are

constrained so that they cannot equal one another. Note that in the theorem statement, the

number of instances where we have sets of the form A(1,x)
=

⌦ A(1,x)
6= is 2k, but since we start

with c = 0, the maximumum value of c will be 2k � 1 (and hence define h(1, k) = 2k � 1.)
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From the above inductive construction, we know that for all c 2 {0, 1, .., 2k � 1},

|p
(1,c)|  r. (3.45)

. In addition, since the range of f consists of the non-negative real numbers, we know that

for all c,
X

A
(1,c)
= ⌦A

(1,c)
6=

⇧f(xm) 
X

A
(1,2k�1)
= ⌦A

(1,2k�1)
6=

⇧f(xm) (3.46)

as the number of variables that are required not to equal some other variable in A(1,2k�1)

6= is

smaller than the analogous list for any other instance of A(1,c)
6= . Hence by inequalities (3.45)

and (3.46), we find that

|
P

2k�1

c=0

p
(1,c)

P
A

(1,c)
= ⌦A

(1,c)
6=
⇧f(xm)|

P
x1,...,x2k,x2k+1 6=... 6=x

r

⇧f(xm)
 2kr

P
A

(1,2k�1)
= ⌦A

(1,2k�1)
6=

⇧f(xm)
P

x1,...,x2k,x2k+1 6=... 6=x
r

⇧f(xm)
=

2kr

P
x1,...,x2k�1,x2k=x2k+1 6=... 6=x

r

⇧f(xm)P
x1,...,x2k,x2k+1 6=... 6=x

r

⇧f(xm)
= 2kr

S2k�1

P
x2k=x2k+1 6=... 6=x

r

⇧r
m=2kf(xm)

S2k
P

x2k+1 6=... 6=x
r

⇧f(xm)


2krf(xmax)

P
x2k+1 6=... 6=x

r

⇧r
m=2k+1

f(xm)

S
P

x2k+1 6=... 6=x
r

⇧f(xm)
=

2krf(xmax)

S
= 2k

O(S1�2⌧ )

S
= O(S�2⌧ )

where all products without indices labeled are taken over the set of m values in the index set

of the summation that precedes them. Thus, we have attained our desired results for j = 1.

To proceed with induction, we now assume that the inductive statement holds for j =

n � 1 and prove that it is true for j = n, provided n  k. The inductive hypothesis when

j = n� 1 yields

X

x1 6=... 6=x
r

⇧r
m=1

f(xm) =
n�1X

i=0

h(i,k)X

c=0

p
(i,c)

X

A
(i,c)
= ⌦A

(i,c)
6=

⇧r
m=1

f(xm).

To prove that the inductive statement holds for j = n we manipulate the sets of the

form A(n�1,c)
=

⌦ A(n�1,c)
6= in our inductive hypothesis (where j = n � 1). From our inductive

hypothesis we know that
P

A2A(n�1,c)
=

(|A| � 1) = n � 1; for some s  3k, A(n�1,c)
6= = {s, s +
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1, ..., r}; and there exists at most one set in A(n�1,c)
=

, of the form {s, s+1, ..., s+ t}, that has

a nontrivial intersection with A(n�1,c)
6= .

We proceed as in the base case.

Case 1: Suppose that indeed for some s, t, {s, s + 1, ..., s + t} 2 A(n�1,c)
=

and A(n�1,c)
6= =

{s, s + 1, ..., r}. By assumption we can write A(n�1,c)
=

= A
1

[ {s, s + 1, ..., s + t} where we

define A
1

to be A(n�1,c)
=

� {s, s + 1, ..., s + t}. Since xs = xs+1

= ... = xs+t, we have the

following equality:

p
(n�1,c)

X

A
(n�1,c)
= ⌦A

(n�1,c)
6=

⇧f(xm) = p
(n�1,c)

X

A
(n�1,c)
= ⌦{s+t+1,...,r}

⇧f(xm)� (3.47)

p
(n�1,c)(r � s� t)

X

A1[{s,...,s+t+1}⌦{s,...,r}

⇧f(xm).

The last term on the right hand side of (3.47) is a sum over an index set with n equalities.

Analogous to the proof of the base case, we express this index set as A(n,c⇤)
=

⌦A(n,c⇤)
6= for some

label c⇤. Of course, the product of the two polynomial coe�cients of this term is a polynomial

as well, which we can take as p
(n,c⇤). To see how this works, we proceed for each c depending

on whether s+ t  2k or s+ t > 2k.

Case 1a: s+ t  2k

Analogous to the proof in the base case, the expression (3.47) can be decomposed as

X

A
(n�1,c)
= ⌦

{s+t+1,...,r}

⇧f(xm) =
X

A
(n�1,c)
= ⌦

{s+t+2,...,r}

⇧f(xm)� (r � s� t� 1)
X

A
(n�1,c)
= [{s+t+1,s+t+2}⌦

{s+t+1,...,r}

⇧f(xm).

We use the last term to construct A(n,c⇤)
=

⌦A(n,c⇤)
6= for some c⇤. (Note that

P
A2A(n,c⇤)

=
(|A|�1) =

n). We continue this process until we reach

X

A
(n�1,c)
= ⌦{2k,...,r}

⇧f(xm) =
X

A
(n�1,c)
= ⌦{2k+1,...,r}

⇧f(xm)� (3.48)

(r � 2k)
X

A
(n�1,c)
= [{2k,2k+1}⌦{2k,...,r}

⇧f(xm).
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We note that with j = n, the i = n� 1 terms in (3.43) may be di↵erent from the i = n� 1

terms with j = n�1. Indeed, based on (3.48), we now redefine (for j = n) A(n�1,c)
=

⌦A(n�1,c)
6= =

A(n�1,c)
=

⌦ {2k + 1, ..., r}.

Case 1b: s+ t > 2k

Now since by the assumption of the inductive hypothesis,
P

A2A(n�1,c)
=

(|A| � 1) = n � 1 

k � 1 =)
P

A2A(n�1,c)
=

|A|  2k � 2, there are at least s+ t� 2k + 2 values in {1, ..., s+ t}

that are not in A for all A 2 A(n�1,c)
=

. We then create a relabeling where all values greater

than s+ t are left alone (they map to themselves) and that the values that are not in A for

all A 2 A(n�1,c)
=

include {2k + 1, ..., s + t}. (Hence the largest element in all of the sets in

A(n�1,c)
=

is bounded by 2k.)

Expression (3.47) can be decomposed as

X

A

(n�1,c)
= ⌦{s+t+1,...,r}

⇧f(x
m

) =

X

A

(n�1,c)
= ⌦{s+t,...,r}

⇧f(x
m

) + (r � s� t)
X

A

(n�1,c)
= [{s+t,s+t+1}⌦{s+t,...,r}

⇧f(x
m

)

As in Case 1a, we use the last term to construct A(n,c⇤)
=

⌦A(n,c⇤)
6= for some c⇤. We repeat

this equality until we attain

X

A

(n�1,c)
= ⌦{2k+2,...,r}

⇧f(x
m

) =

X

A

(n�1,c)
= ⌦{2k+1,...,r}

⇧f(x
m

) + (r � 2k � 1)

X

A

(n�1,c)
= [{2k,2k+1}⌦{2k,...,r}

⇧f(x
m

)

Case 2: Suppose that A(n�1,c)
6= = {s, s+1, ..., r} and for all t, {s, s+1, ..., s+t} /2 A(n�1,c)

=

.

We again consider two subcases.

Case 2a: s  2k.

To achieve the desired form, we rewrite

X

A
(n�1,c)
= ⌦{s,...,r}

⇧f(xm) =
X

A
(n�1,c)
= ⌦{s+1,...,r}

⇧f(xm)� (r � s� 1)
X

A
(n�1,c)
= [{s,s+1}⌦{s,...,r}

⇧f(xm).

We use the last term to construct A(n,c⇤)
=

⌦ A(n,c⇤)
6= for some c⇤, proceeding inductively until

we reach
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X

A

(n�1,c)
= ⌦{2k,...,r}

⇧f(x
m

) =

X

A

(n�1,c)
= ⌦{2k+1,...,r}

⇧f(x
m

)� (r � 2k � 1)

X

A

(n�1,c)
= [{2k,2k+1}⌦{2k,...,r}

⇧f(x
m

).

Case 2b: s > 2k.

If A(n�1,c)
=

contains sets with elements that are greater than 2k, we can again perform a

relabeling scheme as in Case 1b such that all of the elements in A(n�1,c)
=

are guaranteed to

be bounded above by 2k:

X

A
(n�1,c)
= ⌦{s,...,r}

⇧f(xm) =
X

A
(n�1,c)
= ⌦{s�1,...,r}

⇧f(xm)+ (r� s� 1)
X

A
(n�1,c)
= [{s�1,s}⌦{s�1,...,r}

⇧f(xm).

We use the last term to construct A(n,c⇤)
=

⌦ A(n,c⇤)
6= for some c⇤ and we repeat this equality

until we attain

X

A

(n�1,c)
= ⌦{2k+2,...,r}

⇧f(x
m

) =

X

A

(n�1,c)
= ⌦{2k+1,...,r}

⇧f(x
m

) + (r � 2k � 1)

X

A

(n�1,c)
= [{2k,2k+1}⌦{2k,...,r}

⇧f(x
m

).

To complete the proof, we need to verify the following properties from our theorem

statement:

• A(i,c)
=

is a collection of disjoint subsets of {1, . . . , 2k}. This fact follows from the conclusion

of each of the cases in the above inductive argument.

•
P

A2A(i,c)
=

(|A| � 1) = i. For each A(i,c⇤)
=

constructed from an A(i�1,c)
=

, it is easy to show

that
P

A2A(i�1,c)
=

(|A| � 1) = i � 1, and then the inductive step adds two more terms to

the sum to yield
P

A2A(i,c⇤)
=

(|A|� 1) = i.

• For i < j, A(i,c)
6= = {2k + 1, ..., r}. This fact is easily verified (and follows trivially) from

the construction through the inductive hypothesis.

• A(j,c)
6= = {s, s + 1, ..., r} for some s  3k. This fact is also easily verified (and follows

trivially) from the proof by induction above.

• If A 2 A(j,c)
=

has a nontrivial intersection with A(j,c)
6= then A = {s, s + 1, ..., s + t}; in

addition, there can only be one such A 2 A(j,c)
=

that has a nontrivial intersection with

A(j,c)
6= . This fact is also easily verified (and follows trivially) from the proof by induction

above.
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•
p
(i,c)

P
A

(i,c)
= ⌦A

(i,c)
6=
⇧r

m=1

f(xm)
P

x1,...,x2k,x2k+1 6=... 6=x
r

⇧r
m=1

f(xm)
= O(S�2i⌧ ). (3.49)

The proof for this result is tricky but also follows from the inductive argument. In the

inductive hypothesis, assume for all sets A(i�1,c)
=

⌦A(i�1,c)
6= and corresponding polynomials

p
(i�1,c) that equation (3.49) holds. Consider what happens when we construct sets of the

form A(i,c⇤)
=

⌦A(i,c⇤)
6= and the corresponding polynomials p

(i,c⇤) from A(i�1,c)
=

⌦A(i�1,c)
6= . We

know from the above inductive proof that p
(i,c⇤)  rp

(i�1,c). Furthermore, there is an

additional equal sign under the summation with the index set A(i,c⇤)
=

⌦ A(i,c⇤)
6= . Suppose

that xm is a variable that does not appear in A(i�1,c)
=

⌦ A(i�1,c)
6= but does appear in

A(i,c⇤)
=

⌦A(i,c⇤)
6= . We bound the contribution of f(xm) in A(i,c⇤)

=

⌦A(i,c⇤)
6= by dmax = O(S

1
2�⌧ ).

That is,

p
(i,c⇤)

P
A

(i,c⇤)
= ⌦A

(i,c⇤)
6=

⇧f(xk)

p
(i�1,c)

P
A

(i�1,c)
= ⌦A

(i�1,c)
6=

⇧f(xk)


dmaxr
P

A
(i,c⇤)
= ⌦A

(i,c⇤)
6=

⇧k 6=mf(xk)
P

A
(i�1,c)
= ⌦A

(i�1,c)
6=

⇧f(xk)
. (3.50)

Now that f(xm) has been ‘taken out’, we can construct a crude lower bound on the

contribution of f(xm) in A(i�1,c)
=

⌦A(i�1,c)
6= , given the hypothesis that

P
x
m

f(xm) = O(S).

So we have from the inequality (3.50) that

p
(i,c⇤)

P
A

(i,c⇤)
= ⌦A

(i,c⇤)
6=

⇧f(xk)

p
(i�1,c)

P
A

(i�1,c)
= ⌦A

(i�1,c)
6=

⇧f(xk)


O(S1�2⌧ )
P

A
(i,c⇤)
= ⌦A

(i,c⇤)
6=

⇧k 6=mf(xk)

O(S)
P

A
(i�1,c)
= ⌦A

(i�1,c)
6=

⇧k 6=mf(xk)
. (3.51)

But now that xm has been e↵ectively removed, the summations over A(i�1,c)
=

⌦ A(i�1,c)
6=

and A(i,c⇤)
=

⌦A(i,c⇤)
6= are identical and we conclude from the right hand side of (3.51) that

p
(i,c⇤)

P
A

(i,c⇤)
= ⌦A

(i,c⇤)
6=

⇧k 6=mf(xk)

p
(i�1,c)

P
A

(i�1,c)
= ⌦A

(i�1,c)
6=

⇧k 6=mf(xk)
 O(S�2⌧ ) (3.52)

Invoking the inductive hypothesis that

p
(i�1,c)

P
A

(i�1,c)
= ⌦A

(i�1,c)
6=

⇧r
m=1

f(xm)
P

x1,...,x2k,x2k+1 6=... 6=x
r

⇧r
m=1

f(xm)
= O(S�2(i�1)⌧ ), (3.53)

and combining this with inequalities (3.51),(3.52) completes the proof.
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We now prove the desired result that validates the assumptions in Theorems 9 and 10

that enable us to extend our enumeration estimate to arbitrary order. But before doing

so, we would like to remind the reader that throughout this work we have been expressing

our approximation f of � such that f = � ⇤ (1 + O(S�2k⌧ )). This statement implies that

f �� = �O(S�2k⌧ ) But since we know by Corollary 8 that �(xi, xj,d, a) =
a
i

a
j

(1+O(S�2⌧ )),

it follows that f � � = a
i

a
j

O(S�2k⌧ ). In the theorem that follows we often interchange

f = �(1 +O(S�2k⌧ ). f � � = �O(S�2k⌧ ) and f � � = a
i

a
j

O(S�2k⌧ ).

Theorem 18. Given an approximation f of � (the true value for the ratio of the num-

ber of graphs that realize two slightly di↵erent degree sequences) such that |f(xi, xj,d) �

�(xi, xj,d)| = a
i

a
j

O(S�2k⌧ ) for some k < 1

4⌧ + 1,

f(xi, xj,d, a) =
h(xi,d, a)

h(xj,d, a)
(3.54)

where

h(xi,d, a) = ai(1 +
rX

v=1

�va
k
v

i ⇧
s
q=1

�m(v,q)
q ↵n(v,q)

q

↵z
1

) (3.55)

for some constants �v,where r, s, z are finite and each term in the summations in the numer-

ator and denominator in (3.54) is O(S�2⌧ ).

Furthermore if kd
1

�d
2

k1  1 and kd
1

�d
2

k
1

= O(S
1
2�⌧ ), assuming the degrees of node

xi are identical in d
1

and d
2

, then

|h(xi,d1

)� h(xi,d2

)| = ai(O(S� 1
2�3⌧ )).

Proof. We prove the result by induction.

The base case holds trivially when k = 1 as by Corollary 9, f(xi, xj,d) = ai/aj and it

also follows trivially that di↵erences in the degree sequence aside from the degrees of nodes

xi or xj do not a↵ect f(xi, xj,d). Similarly, equation (3.54) holds with r = 1 and �
1

= 0 in

the expression (3.55) for both the numerator and denominator of (3.54). So we proceed to

the inductive step.

Given our inductive hypothesis where we have an approximation f where the depen-

dence on the degree sequence in f is su�ciently weak O(S� 1
2�⌧ ) and can be dropped as
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|f(xi, xj,d) � �(xi, xj,d)| = a
i

a
j

(O(S�2(k�1)⌧ )) since 2(k � 1)⌧ < 1

2

+ 2⌧ , we want to show

that the sharper approximation produced by Theorem 9 also has the same property.

By applying Theorem 9, we get a stronger approximation (which we also denote by f)

which is of the form a
i

a
j

exp(log(1 +
kG

X1i
k

kG
X0i

k)) exp(� log(1 +
kG

X1j
k

kG
X0j

k)). From equations (3.14)-

(3.16) in Theorem 9, we have

kGX1ik
kGX0ik

=
(ai � 1)

P
x1 6=... 6=x

a

i

�1=x
a

i

⇧f(xi,mi,d,b)
P

x1 6=... 6=x
a

i

⇧f(xi,mi,d,b)

where the choice of mi is arbitrary. By the inductive hypothesis (3.54), we can drop

the dependence on mi by multiplying the numerator and denominator by ⇧a
i

i=1

bm
i

(1 +
Pr

v=1

�
v

bkv
m

i

⇧

s

q=1�
m(v,q)
q

↵
n(v,q)
q

↵z

1
); that is, we have

kGX1ik
kGX0ik

=
(ai � 1)

P
x1 6=... 6=x

a

i

�1=x
a

i

⇧f(xi,d,b)
P

x1 6=... 6=x
a

i

⇧f(xi,d,b)

where

f(xi,d,b) = bi(1 +
rX

v=1

�vb
k
v

i ⇧
s
q=1

�m(v,q)
q ↵n(v,q)

q

↵z
1

). (3.56)

For simplicity, we will now drop the explicit dependence on d and b from f . Note that by

applying Theorems 16 and 17 to the denominator and numerator respectively we have that

kGX1ik
kGX0ik

=
(ai � 1)

Pk
j=0

Ph(j,k)
c=0

p
(j,c,1)(ai)

P
A

(j,c,1)
= ⌦A

(j,c,1)
6=

⇧f(xi)
Pk

j=0

Ph(j,k)
c=0

p
(j,c,0)(ai)

P
A

(j,c,0)
= ⌦A

(j,c,0)
6=

⇧f(xi)

where the p’s are polynomials in ai, summations denoted with A(j,c,x)
=

are over a finite number

2k of variables. But by Theorems 16 and 17, we can drop the terms in the numerator and

denominator involving p
(k,c,x)

P
A

(k,c,x)
= ⌦A

(k,c,x)
6=

⇧f(xi) as they only contribute a maximum of

O(S�2k⌧ ), hence

(ai � 1)
Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,1)(ai)

P
A

(j,c,1)
= ⌦A

(j,c,1)
6=

⇧f(xi)
Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,0)(ai)

P
A

(j,c,0)
= ⌦A

(j,c,0)
6=

⇧f(xi)
(1 +O(S�2k⌧ )).

(As an abuse of notation, when we write
P

A=
, we are summing over all x 2 N2k, but when

we consider A
=

without the sigma, we are specifying which dummy variables must equal one

another.) In addition, by Theorems 16 and 17, for all j  k � 1, [
A2A(j,c,x)

=
A \ A(j,c,x)

6= = ;
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and A(j,c,x)
6= = {2k + 1, ..., ai}. Hence we can factor out a

P
x2k+1 6=... 6=x

a

i

⇧a
i

i=2k+1

f(xi) from

both the numerator and denominator. This yields

kGX1ik
kGX0ik

=
(ai � 1)

Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,1)(ai)

P
A

(j,c,1)
=

⇧f(xi)
Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,0)(ai)

P
A

(j,c,0)
=

⇧f(xi)
+O(S�2k⌧ )).

Recall that f(xi,d,b) = bi(1 +
Pr

v=1

�
v

bkv
i

⇧

s

q=1�
m(v,q)
q

↵
n(v,q)
q

↵z

1
) where each of the finitely

many terms in the summation is O(S�2⌧ ). Furthermore, note that only A(0,0,0)
=

= ;, so let

us multiply the numerator and denominator by 1

↵2k :

kGX1ik
kGX0ik

=
(ai � 1)

Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,1)(ai)

P
A

(j,c,1)
=

⇧f(x
i

)

↵2k
1Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,0)(ai)

P
A

(j,c,0)
=

⇧f(x
i

)

↵2k
1

+O(S�2k⌧ ). (3.57)

Note that every term in the numerator (ai � 1)p
(j,c,1)(ai)

P
A

(j,c,1)
=

⇧f(x
i

)

↵2k
1

= O(S�2⌧ ) and

except for j = 0 and c = 0, p
(j,c,0)(ai)

P
A

j,c,0)
=

⇧f(x
i

)

↵2k
1

= O(S�2⌧ ). And finally, since A(0,0,0)
=

= ;

and f(xi,d,b) = bi(1 +
Pr

v=1

�
v

bkv
i

⇧

s

q=1�
m(v,q)
q

↵
n(v,q)
q

↵z

1
) where each term in the summation is

O(S�2⌧ )and
P

f(xi) = S+O(S1�2⌧ ), we note that
P

A
(0,0,0)
=

⇧f(x
i

)

↵2k
1

= 1+O(S�2⌧ ) as ↵
1

= S.

We now show that the dependence in equation (3.57) on the degree sequence is ‘small’.

As noted before, (ai � 1)�x,1p
(j,c,x)(ai)

P
A

(j,c,x)
=

⇧f(x
i

)

↵2k
1

= �x,0 + O(S�2⌧ ) where �x,y = 1

if x = y and 0 otherwise and the O(S�2⌧ ) term is some finite sum of terms of the form

�aji
⇧

m

k=1↵
g(k)
k

�
h(k)
k

↵2k
1

each of which are O(S�2⌧ ).

The constraint that �aji
⇧

m

k=1↵
g(k)
k

�
h(k)
k

↵2k
1

= O(S�2⌧ ) holds for all degree sequences such that

dmax = O(S
1
2�⌧ ). Now we consider the perturbation analysis, such that kd

1

� d
0

k
1

=

O(S
1
2�⌧ ) and kd

1

� d
0

k1  1, then |�j(d1

)� �j(d0

)| = O(djmax) = O(S
j

2�j⌧ ). But also note

that max(↵j, �j) = O(S1+

j�1
2 �(j�1)⌧ ) as �j =

P
i b

j
i  dj�1

max

P
i bi = O(S1+

j�1
2 �(j�1)⌧ ). Now if

we measure the impact of considering di↵erent degree sequences d
0

,d
1

on �aji
⇧

m

k=1↵
g(k)
k

�
h(k)
k

↵2k
1

,

this results in a O(S� 1
2�⌧ ) times smaller than �aji

⇧

m

k=1↵
g(k)
k

�
h(k)
k

↵2k
1

. But since �aji
⇧

m

k=1↵
g(k)
k

�
h(k)
k

↵2k
1

=

O(S�2⌧ ), the contribution in equation (3.57) from considering di↵erent degree sequences is

O(S� 1
2�⌧�2⌧ ).

Now to verify that our new higher order approximation f(xi, xj,d, a) =

a
i

a
j

0

@1+

P
r

v=1

�

v

a

k

v

i

⇧s

q=1�
m(v,q)
q

↵

n(v,q)
q

↵

z

1

1+

P
r

v=1

�

v

a

k

v

j

⇧s

q=1�
m(v,q)
q

↵

n(v,q)
q

↵

z

1

1

A, we merely perform a Taylor expansion in the denominator
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of

(ai � 1)
Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,1)(ai)

P
A

(j,c,1)
=

⇧f(x
i

)

↵2k
1Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,0)(ai)

P
A

(j,c,0)
=

⇧f(x
i

)

↵2k
1

+O(S�2k⌧ )

as the denominator can be rewritten in the form 1 + O(S�2⌧ ) where the O(S�2⌧ ) term is

some finite sum of terms of the form �aji
⇧

m

k=1↵
g(k)
k

�
h(k)
k

↵2k
1

each of which are O(S�2⌧ ) and each

term in the numerator is O(S�2⌧ ). Hence we get that

1 +
(ai � 1)

Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,1)(ai)

P
A

(j,c,1)
=

⇧f(x
i

)

↵2k
1Pk�1

j=0

Ph(j,k)
c=0

p
(j,c,0)(ai)

P
A

(j,c,0)
=

⇧f(x
i

)

↵2k
1

+O(S�2k⌧ ) = (1 +
r⇤X

v=1

�va
k
v

i ⇧
s
q=1

�m(v,q)
q

↵2k
1

)

for some finite r⇤.

Repeating the same argument for evaluating the exp(� log(1 + kG
X1jk

kG
X0jk)) term yields the

desired result, that f(xi, xj,d, a) =
a
i

a
j

0

@1+

P
r

v=1

�

v

a

k

v

i

⇧s

q=1�
m(v,q)
q

↵

n(v,q)
q

↵

z

1

1+

P
r

v=1

�

v

a

k

v

j

⇧s

q=1�
m(v,q)
q

↵

n(v,q)
q

↵

z

1

1

A.

3.6 ENUMERATING GRAPHS WITH GREATER DEPENDENCE ON

THE DEGREE SEQUENCE

In this section, we provide a proof of Theorem 10. From Theorem 9, we have an approx-

imation f such that
kGd�i

k
kGd�j

k = f(ei, ej,d, �)(1 + O(S� 1
2�w⌧ )) where � = a or b, where we

have assumed (and justified) up until this point that the dependence on the degree sequence

d in f is weak. Eventually, we will reach a point where such an assumption is no longer

reasonable. In this case we decompose our approximation f into one part that e↵ectively

ignores the dependence of d and a part of f that takes into account d. That is, we can write

f(ei, ej,d1

, �) = f(ei, ej,d0

, �)(1 +O(S� 1
2�⌧ )), (3.58)
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where we have proven that for suitably chosen d
0

the correction will yield a term of size

at most O(S� 1
2�⌧ ). For simplicity, we will consider � = a. Denote the O(S� 1

2�⌧ ) term in

equation (3.58) by z⇤, such that equation (3.58) becomes

f(ei, ej,d1

, a) = f(ei, ej,d0

, a) + z⇤f(ei, ej,d0

, a). (3.59)

In the Theorem below, we restate Theorem 10; note that we implicitly define z =

z⇤f(ei, ej,d0

, a).

Appendix Theorem 1 (Theorem 10). Consider an approximation

kG
d�i

k
kG

d�j
k = f(ei, ej,d, �)(1 +O(S� 1

2�w⌧ ))

for some w > 0. Furthermore suppose that for m = O(S
1
2�⌧ ),

f(ei, ej,d0

, �) = f(ei, ej,d1

, �) + z(ei, ej,d0

� d
1

,d
0

, �)

where kd
1

�d
0

k
1

 m and z(ei, ej,d0

�d
1

,d
0

, �)  O(S� 1
2�⌧ )f(ei, ej,d0

, �). If � = a, then

we can construct a sharper approximation

kG
d�i

k
kG

d�j
k = g(ei, ej,d, a)(1 +O(S� 1

2�(w+2)⌧ ))

where

g(e
i

, e
j

,d,a) =

a
i

a
j

exp(log(1 +

(a
i

� 1)

P
x1 6=... 6=x

a

i�1=x

a

i

⇧

a

i

k=1f(exk

, e
u

k

, (a� a
i

e
i

, (b�
P

k�1
j=1 exj

+

P
a

i

�k

j=1 e
u

j

),b)
P

x1 6=... 6=x

a

i�1 6=x

a

i

⇧

a

i

k=1f(exk

, e
u

k

, (a� a
i

e
i

,b�
P

k�1
j=1 exj

+

P
a

i

�k

j=1 e
u

j

),b)
)�

log(1 +

(a
j

� 1)

P
x1 6=... 6=x

a

j�1=x

a

j

⇧

a

j

k=1f(exk

, e
u

k

, (a� a
j

e
j

,b�
P

k�1
j=1 exj

+

P
a

i

�k

j=1 e
u

j

),b)
P

x1 6=... 6=x

a

j�1 6=x

a

j

⇧

a

j

k=1f(exk

, e
u

k

, (a� a
j

e
j

,b�
P

k�1
j=1 exj

+

P
a

i

�k

j=1 e
u

j

),b)
))

for an arbitrary choice of uk. A similar result holds, with g depending on b, if � = b.
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Proof. Recall the notation from Theorem 9. As before, we define �i to be the di↵erence

between
kG

X1
i

k
a
i

kG
X0

i

k evaluated using the exact ratio � and the same quantity evaluated using

the approximation f . In essence, we will show that using our crude approximation f will

yield an approximation of
kG

X1
i

k
a
i

kG
X0

i

k by a factor of (1+O(S� 1
2�(w+2)⌧ )), after which application

of Corollary 10 yields the result. Again we consider equation (3.17), that is

�

i

=

(a
i

� 1)

P
x1 6=... 6=x

a

i�1=x

a

i

⇧

a

i

k=1�(exk

, e
u

a

i

�k+1 , (a� a
i

e
i

� e
j

,b�
P

k�1
j=1 exj

�
P

a

i

�k

j=1 e
u

j

),b)
P

x1 6=... 6=x

a

i�1 6=x

a

i

⇧

a

i

k=1�(exk

, e
u

a

i

�k+1 , (a� a
i

e
i

� e
j

,b�
P

k�1
j=1 exj

�
P

a

i

�k

j=1 e
u

j

),b)
�

(a
i

� 1)

P
x1 6=... 6=x

a

i�1=x

a

i

⇧

a

i

k=1f(exk

, e
u

a

i

�k+1 , (a� a
i

e
i

� e
j

, (b�
P

k�1
j=1 exj

�
P

a

i

�k

j=1 e
u

j

),b)
P

x1 6=... 6=x

a

i�1 6=x

a

i

⇧

a

i

k=1f(exk

, e
u

a

i

�k+1 , (a� a
i

e
i

� e
j

, (b�
P

k�1
j=1 exj

�
P

a

i

�k

j=1 e
u

j

),b)
. (3.60)

As in the proof of Theorem 9, we abuse notation by using fk(xk), �k(xk) in place of the

full expressions for f and �, even though fk and �k(xk) do also depend on x
1

, ..., xk�1

. This

reduces to a more tractable (but slightly misleading) notation:

�i =
(ai � 1)

P
x1 6=... 6=x

a

i�1=x
a

i

⇧a
i

k=1

�k(xk)
P

x1 6=... 6=x
a

i�1 6=x
a

i

⇧a
i

k=1

�k(xk)
�

(ai � 1)
P

x1 6=... 6=x
a

i�1=x
a

i

⇧a
i

k=1

fk(xk)
P

x1 6=... 6=x
a

i�1 6=x
a

i

⇧a
i

k=1

fk(xk)
.

Let D
0

denote the set of sets of ai indices in {1, . . . , N} such that the variables associated

with these indices are distinct and let D
1

denote the set of sets of ai indices in {1, . . . , N}

such that the variables associated with the first ai � 2 are distinct and those with the final

two are equal. Writing �i as a single fraction, we obtain

�i =
(ai � 1)[

P
D1
⇧a

i

k=1

�k(xk)
P

D0
⇧a

i

k=1

fk(xk)�
P

D1
⇧a

i

k=1

fk(xk)
P

D0
⇧a

i

k=1

�k(xk)]P
D0
⇧a

i

k=1

�k(xk)
P

D0
⇧a

i

k=1

fk(xk)

=
(ai � 1)[

P
D1,D0

(⇧x
k

2D1�k(xk)⇧x
k

2D0fk(xk)� ⇧x
k

2D1fk(xk)⇧x
k

2D0�k(xk))]P
D0
⇧a

i

k=1

�k(xk)
P

D0
⇧a

i

k=1

fk(xk)
.

check: We now apply Theorem 18 repeatedly to write �k = fk(1 + ⇠k) where ⇠k depends

only on x
1

, ..., xk (but we omit the dependence) and, by Theorem 18 and the definition of f ,

⇠k = O(S� 1
2�w⌧ ) for some positive w. Furthermore, let �k = 0 if k = ai or k = ai � 1 and

�k = 1 otherwise.
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These steps yield

�

i

= (3.61)

(a
i

� 1)[

P
D1,D0

(⇧

x

k

2D1fk(xk

)(1 + ⇠
k

�
k

)⇧

x

k

2D0fk(xk

)�⇧

x

k

2D1fk(xk

)⇧

x

k

2D0fk(xk

)(1 + ⇠
k

�
k

)) + ✏]
P

D0
⇧

a

i

k=1�k

(x
k

)

P
D0

⇧

a

i

k=1fk(xk

)

where ✏ is the compensatory term for zeroing out certain terms by inserting the �k into

equation (3.61), which we can express as ✏ = ✏
1

+ ✏
2

� ✏
3

� ✏
4

for

✏
1

=
X

D1

⇠a
i

fa
i

(xa
i

)fa
i

�1

(xa
i

�1

)⇧k 6=a
i

�1,a
i

fk(xk)(1 + ⇠k)
X

D0

⇧x
k

2D0fk(xk), (3.62)

✏
2

=
X

D1

⇠a
i

�1

fa
i

�1

(xa
i

�1

)⇧k 6=a
i

�1

fk(xk)(1 + ⇠k)
X

D0

⇧x
k

2D0fk(xk), (3.63)

✏
3

=
X

D1

⇧x
k

2D1fk(xk)
X

D0

⇠a
i

�1

fa
i

(xa
i

)fa
i

�1

(xa
i

�1

)⇧k 6=a
i

�1,a
i

fk(xk)(1 + ⇠k), (3.64)

✏
4

=
X

D1

⇧x
k

2D1fk(xk)
X

D0

⇠a
i

fa
i

(xa
i

)⇧k 6=a
i

fk(xk)(1 + ⇠k). (3.65)

The procedure for identifying that ✏ is indeed a ‘higher order term’ is exactly identical to

the proof in Theorem 9 and hence we ignore the contribution from ✏.

It follows instantly from equation (3.61) that once we distribute ⇧fk(1+⇠k�k) and cancel

identical terms, the contribution in the numerator only consists of terms where there is at

least one ⇠k in the product. Hence we can define a vector ⌘ where each entry ⌘k either equals

1 or 0 but ⌘ 6= 0 and ⌘a
i

�1

= ⌘a
i

= 0, which yields

�i 
X

⌘ 6=0

(ai � 1)[
P

D1,D0
⇧x

k

2D1fk(xk)(1 + ⇠k�k � ⌘k)⇧x
k

2D0fk(xk)]P
D0
⇧a

i

k=1

�k(xk)
P

D0
⇧a

i

k=1

fk(xk)
� . (3.66)

X

⌘ 6=0

(ai � 1)[
P

D1,D0
⇧x

k

2D1fk(xk)⇧x
k

2D0fk(xk)(1 + ⇠k�k � ⌘k)]P
D0
⇧a

i

k=1

�k(xk)
P

D0
⇧a

i

k=1

fk(xk)
.
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Now, for k = ai or k = ai � 1, fk(xk)(1 + ⇠k�k) = fk(xk) by definition. For these choices

of k in D
0

and D
1

, we employ the relationship that fk = ik + zk where ik is independent

of x
1

, ..., xk�1

and zk = O(S� 1
2�⌧ )fk depends on these values. The zk represent the new

component here relative to Theorem 9, and we need to show that these terms are small

enough that they do not make an important contribution. We denote the first ai�2 variables

in D
0

and D
1

as F
0

and F
1

respectively. We now have the following (omitting the dependence

on x):

�

i


X

⌘ 6=0

(a
i

� 1)

P
D1

[i
a

i

�1 + z
a

i

�1]
2
⇧

x

k

2F1fk(1 + ⇠
k

� ⌘
k

)

P
D0

[i
a

i

�1 + z
a

i

�1][ia
i

+ z
a

i

]⇧

x

k

2F0fkP
D0

⇧

a

i

k=1�k

P
D0

⇧

a

i

k=1fk
�

(3.67)
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i
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⇧

x

k

2F1fk
P

D0
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i
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i

�1][ia
i
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a

i

]⇧

x
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2F0fk(1 + ⇠
k

� ⌘
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)

P
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⇧

a

i
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P
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⇧

a

i

k=1fk
.

With some algebra, we can re-express equation (3.67) as

�i 
X

⌘ 6=0

(ai � 1)
P

D1
[ia

i

�1

]2⇧x
k

2F1fk(1 + ⇠k � ⌘k)
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D0
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�1

][ia
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k

2F0fkP
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� (3.68)

(ai � 1)
P

D1
[ia

i

�1

]2⇧x
k

2F1fk
P
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i
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][ia
i

]⇧x
k

2F0fk(1 + ⇠k � ⌘k)P
D0
⇧a

i

k=1

�k

P
D0
⇧a

i

k=1

fk
+ ⌦

where ⌦ is the compensatory term for omitting the zk terms (which we define later). Now

since ik is independent of x
1

, ..., xk�1

, we can employ the Mean Value Theorem to integrate

out the last 2 variables, define D⇤ as the set of sets of ai � 2 distinct indices, and express

equation (3.68) as

�

i

 (3.69)

X

⌘ 6=0
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k

� ⌘
k

)�2⇧x

k

2D⇤fk � �1⇧x

k
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k

2D⇤fk(1 + ⇠
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� ⌘
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)

P
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k

2D⇤fk⇧x

k

2D⇤fk(1 + ⇠
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� ⌘
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P
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i

k=1�k

P
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⇧
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i

k=1fk
+⌦ =

X

⌘ 6=0

⌦.
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Now we conclude the proof. From equation (3.67) we can write ⌦ = ⌦
+

� ⌦� where

⌦
+

includes the positive compensatory terms from the (first part of) equation (3.67) and

⌦� includes the negative compensatory terms from the (second part of) equation 3.67. The

following table illustrates all of the subcases that constitute the ⌦0
+,is in equation 3.67. The

columns indicate the term in the first summation found in equation (3.67) (⌦
+

) and the rows

indicate the term in the second summation. If the i, jth entry is a X, then this is a relevant

subcase, while the case marked with X is not.

i2a
i

�1

2ia
i

�1

za
i

�1

z2a
i

�1

ia
i

�1

ia
i

X X X
ia

i

�1

za
i

X X X
ia

i

za
i

�1

X X X
za

i

za
i

�1

X X X

Note that only the first entry in the table isX; we already demonstrated through equation

(3.68) that the contribution from the the case where both summations contribute i0s without

any z0s is 0. Hence, we have 11 subcases and we can express ⌦
+

=
P

11

i=1

⌦
+,i and ⌦� =

P
11

i=1

⌦�,i.

As we have demonstrated in this work, the z’s represent terms that are much smaller than

the i0s. Consequently, interesting subcases will involve the fewest number of appearances

fo z’s as possible. Furthermore, by symmetry the terms corresponding to rows involving

the ia
i

�1

za
i

or ia
i

za
i

�1

terms are identical due to symmetry. We therefore only need to

examine two subcases, (a) the subcase where the first summation is 2ia
i

�1

za
i

�1

and the

second summation is ia
i

�1

ia
i

, which we define to be ⌦
+,1,⌦�,1 and (b) the subcase where

the first summation is i2a
i

�1

and the second summation is ia
i

�1

za
i

which we define to be

⌦
+,3,⌦�,3. (We leave the subcase (b) as an exercise to the reader.)

So consider,

⌦
+,1 =

X

⌘ 6=0

(ai � 1)
P

D1
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i

�1
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]⇧x
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fk
. (3.70)
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We will briefly consider the case where there is precisely one ⌘k = 1. By symmetry we will

consider ⌘
1

= 1 and multiply this quantity by ai � 2 (as there are ai � 2 possible choices to

let ⌘k = 1; recall that ⌘a
i

�1

= ⌘a
i

= 0), obtaining

⌦⇤
+,1 :=

(ai � 2)(ai � 1)
P

D1
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(3.71)

But by assumption za
i

�1

 O(S� 1
2�⌧ )fa

i

�1

and trivially ia
i

�1

 Cfa
i

�1

, for some constant

C, so we have that
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Now applying the fact that ai  dmax = O(S
1
2�⌧ ) and ⇠

1

= O(S� 1
2�w⌧ ),

⌦⇤
+,1  O(S�(3+w)⌧ )
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,k 6=12F1fk(1 + ⇠k)
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]⇧x
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2F0fkP
D0
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k=1

�k

P
D0
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i

k=1

fk
. (3.73)

Then employing the technique we used in the proof of Theorem 9 by applying Corollary

9 to reduce the domains D
0

,D
1

to D⇤ we get that

⌦⇤
+,1  O(S�(3+w)⌧ )O(S

7
2�⌧ )

P
D⇤
⇧x

k

2D⇤fk(1 + ⇠k)
P

D⇤
⇧x

k

2D⇤fk

O(S4)
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k=1

�k

P
D⇤
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i

�2

k=1

fk
= O(S� 1

2�4⌧�w⌧ ), (3.74)

and hence this constribution is a higher order term. Finally, we only considered the case

where there is precisely one ⌘k = 1. But cases where there are more positive ⌘0ks yield

even smaller terms! For example, when we had precisely one ⌘k = 1, there were at most ai

choices for selecting k, but for each ⌘k = 1, we end up multiplying the term fk by ⇠k (as

opposed to (1 + ⇠k)), and hence if there are m ⌘0ks that equal 1, then this results in a con-

tribution bounded by ⌦
+,1 

Pa
i

m=1

(ai)m�1⇠m�1⌦⇤
+,1 =

Pa
i

m=1

O(S�w(m�1)⌧�(m�1)⌧ )⌦⇤
+,1 =

O(S� 1
2�4⌧�w⌧ ). Since these contributions are now much smaller than O(S� 1

2�2⌧�w⌧ ), we

conclude that

�i = O(S� 1
2�2⌧�w⌧ )
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and from the beginning part of the proof of Theorem 9 conclude that our new approximation
kGd�i

k
kGd�j

k = g(ei, ej,d, a)(1 +O(S� 1
2�(w+2)⌧ )).

3.7 SOME EXTENSIONS AND COROLLARIES

3.7.1 Maximum of the Degree Sequence

In this section, we briefly mention a generalization of the sparsity assumptions that will also

yield a power series expansion for the number of graphs realizing a degree sequence, using

the techniques of this paper.

Specifically, up to this point, we have assumed that dmax = O(S
1
2�⌧ ). Denote a(k) (b(k))

as the kth entry in an in-degree (out-degree) sequence derived by sorting a and b into

non-increasing order. The key observation is that if

max(
a(1)X

k=1

b(k),
b(1)X

k=1

a(k)) = O(S1�⌧ ), (3.75)

then the appropriate extensions of Corollary 4 and Lemma 2 still hold and we can derive the

corresponding power expansions. Naturally, for example, condition (3.75) holds if a(1)b(1) =

O(S1�⌧ ) or if more simply dmax = O(S
1
2�⌧ ).

Recall the proof of Theorem 2, where we count the number of common neighbors that

receive an outward (inward) edge from both an arbitrary node x and a node of bounded

degree y. In the worst case scenario, (3.75) gives the number of outgoing edges from all of

the neighbors of x. Since there are S edges in the graph, it is intuitive that it would be

di�cult for x and y, which has bounded degree, to share a common neighbor. This idea

forms the foundation for the appropriate extensions of Theorem 2 and Corollaries 3 and 4.

Similarly, with care, we can extend Lemma 2 as follows:

Lemma 6. Suppose that f, g : I := {1, 2, ..., N} ! [1,1) and for simplicity let g(·)  f(·).

Let {x
1

, ..., xr} be distinct inputs from I that yield the largest r outputs for f(·) and assume
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that
Pr

i=1

f(xi) = O(S1�⌧ ),
PN

i=1

f(i) = O(S). Furthermore, let k be an O(1) natural

number and let c
1

, . . . , cr be a sequence of natural numbers. Then

NX

c1 6=... 6=c
r

g(c
1

)⇧r
i=2

f(ci) =
NX

c1,..,c
k

,
c
k+1 6=... 6=c

r

g(c
1

)⇧r
i=2

f(ci)(1 +O(S�⌧ )).

We omit the details of the proofs of these results.

3.7.2 Graphs without Loops and Undirected Graphs

In this section, we discuss how to generalize results from previous sections to directed graphs

without loops and to undirected graphs (with and without loops); similar ideas apply to

graphs with other sets of prohibited edges besides loops.

3.7.2.1 Directed Graphs without Loops As one may expect, when considering di-

rected graphs without loops, the results regarding asymptotic enumeration for directed

graphs with loops carry over as the likelihood that a fixed node has an edge to itself is

small. More specifically,

Lemma 7. Consider a degree sequence d = (a,b) 2 ZN⇥2 where

a = {a
1

, a
2

, 0, . . . , 0},b = {�, �, 2, ..., 2, 1, .., 1, 0, .., 0} and
NX

i=1

ai =
kX

i=1

bi =: S,

with � either 0 or 1 and with 2 appearing q times in b. If a
1

, a
2

� q + �, then there are
�
a1+a2�2��2q

a1���q

�
directed graphs without loops that realize the above degree sequence.

The above Lemma allows for the appropriate generalization of Theorem 7, where we

construct sets of residual degree sequences Xk,�1,�2 for k the number of common neighbors

being considered. Here, �
1

= 1 if node 1 connects to node 2 and is otherwise 0; similarly, �
2

=

1 if node 2 connects to node 1 and is otherwise 0. Since it should be unlikely asymptotically

that either �
1

or �
2

is positive, it follows that kGX0,0,0k becomes the dominating term and the

analysis proceeds as in other cases. (We can make this rigorous by using switching arguments

as we did in Section 3.) This will provide us with arbitrarily accurate asymptotics for the ratio
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of the number of directed graphs (without loops) with degree sequences that are distance 2

apart.

Suppose we knew exactly the number of graphs of one degree sequence that summed

to S. Then we could multiply this quantity by a product of (fractional) terms, where each

fractional term is a ratio of the number of directed graphs without loops, distance 2 apart.

Since from above we have asymptotics for the ratio of the number of graphs distance two

apart, we only need one case where we can count the number of graphs of a given degree

sequence exactly to derive the general formula. For simplicity, we can consider a degree

sequence where all realizations can never have loops. For instance, we can arbitrarily extend

our degree sequence to an analogous degree sequence in Z2N⇥2 and we can consider the degree

sequence ({a
1

, ...., aN , 0, ...., 0}, {0, ..., 0, bN+1

, ..., b
2N)} 2 Z2N⇥2. If bN+1

, ..., b
2N consists of

only zeros and ones, then Corollary 11 applies and all realizations are directed graphs without

loops.

3.7.2.2 Undirected Graphs Practically speaking, the primary di↵erence between ma-

nipulating degree sequences for undirected graphs and degree sequences for directed graphs

is that for directed graphs, the in-degree sequence can be manipulated without impacting

the out-degree sequence. In contrast, with undirected graphs, the corresponding adjacency

matrix is symmetric. As such, while the same thematic ideas also follow through to undi-

rected graphs, care should be taken. More specifically, instead of partitioning two rows (or

two columns) separately, as we were able to do in the directed case, we must partition the

two rows and the two columns together. In the remainder of this section, we will present

results in terms of undirected graphs without loops, noting that the techniques carry over

to the case where loops are allowed.

For the undirected case, we must consider two distinct cases. In the first case, the two

partitioned nodes do not share an edge together. Consequently, if the two nodes have a
1

+a
2

edges, then these edges must also show up in the degrees of a
1

+a
2

other nodes in the graph.

Lemma 8. Consider a degree sequence a 2 ZN for an undirected graph without loops, given

by

a = {a
1

, a
2

, 2, ..., 2, 1, ..., 1, 0, ..., 0}
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where the first two entires of a are followed by q
2

20s and q
1

10s such that q
1

+ 2q
2

=

a
1

+ a
2

. Then there are
�
a1+a2�2q2

a1�q2

�
undirected graphs without loops that realize the above

degree sequence where nodes 1 and 2 are not neighbors.

Alternatively, if nodes 1 and 2 are neighbors then they make a
1

+ a
2

� 2 edges with

other nodes in the graph. We need to consider this case as well and the result is analogous

to Lemma 8. (If we were considering undirected graphs with loops, we would also need to

consider the case where there are self-loops too.) Then as before, we construct sets Xk,�,

where k denotes the number of common neighbors of nodes 1 and 2 and � denotes whether

nodes 1 and 2 are linked to each other. Again, kGX0,0k dominates and the analogous results

hold. To switch from ratios to counts for a particular degree sequence, the following result,

which is analogous to Corollary 6, is fundamental.

Lemma 9. For a degree sequence a 2 ZN for an undirected graph without loops given by

a = {1, ..., 1, 0, ..., 0} with
P

ai = S,

kG
a

k =
S!

2
S

2 (S
2

!)
.

Proof. The proof is constructive. Note that S must be even as otherwise there are no graphs.

For the first edge, there are
�
S
2

�
possible choices of pairs of nodes to connect. After we decide

the initial pair to wire up, then there are
�
S�2

2

�
possible choices to form the second edge. This

reasoning implies that there are ⇧
S

2 �1

k=0

�
S�2k

2

�
= S!

2

S/2 choices for wirings. In this procedure,

however, suppose that all of the choices are the same except for the first two steps. In the first

step in one example, node 1 wires with node 2 and node 3 wires with node 4. Alternatively

in the other example, node 3 wires up with node 4 in the first step, but node 1 wires up

with node 2 in the second step. The output is the same graph, but we counted both of these

instances as two distinct events (graphs). We readily note that there are S
2

! possible ways of

wiring up the same graph with this procedure, as there are S
2

edge pairs in the graph.

The technique for counting the number of undirected graphs with loops for the degree

sequence a = {1, ..., 1, 0, ..., 0} is similar and left as an exercise to the reader. At this juncture,

we note that the idea of prohibiting loops is a special case of prohibiting edges between (two)

nodes. Though it is outside the scope of this work, we strongly expect that the ideas can
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be extended to attain asymptotics for the ratio of the number of graphs of two distinct

degree sequences distance 2 apart where we prohibit edges between certain nodes. As long

as generating a prohibited edge is unlikely for any node in the graph, the ideas of our work

should carry over; that is, the dominating term in the ratio will consist of realizations of

graphs where the two partitioned nodes do not share a common neighbor and no prohibited

edges appear.

3.7.3 Computing Probabilities

While enumerative asymptotics have been employed for constructing realizations of the Uni-

form Model [8], we can also construct probabilities for the likelihood that two nodes share

an edge and compare these probabilities to other random graph models. Suppose node 1

has degree a
1

. Then the probability node 1 receives an outward edge from node 2, which we

denote as Pr(2 ! 1), would be

Pr(2 ! 1) =
1

(a1�1)!

PN
x1=2 6=x2... 6=x

a1�1
kG

(a�a1e1,b�
P

a1
i=1 ex

i

)

k
1

a1!

PN
x1 6=... 6=x

a1
kG

(a�a1e1,b�
P

a1
i=1 ex

i

)

k
(3.76)

To motivate (3.76), suppose we are given our degree sequence and decide to wire up the

edges corresponding to node 1. Our numerator simply counts the number of graphs where we

have wired up node 1 with a
1

other nodes (as node 1 has in-degree a
1

) and one of those nodes

must be node 2. Similarly, our denominator counts the number of graphs where we have

wired up node 1 with a
1

other nodes. Using the techniques of Chapter 3, we can simplify this

further by considering ratios of the form,
kG(a,b�e⇤)k
kG(a,b�e⇤⇤ )k

. We can then express (3.76) as a sum

of products of ratios of the number of graphs from two slightly di↵erent degree sequences,

Pr(2 ! 1) =

1

(a1�1)!

PN
x1=2 6=

x2 6=... 6=x
a1

⇧a1
j=1

kG
a�a1e1,b�

P
a1�j

k=1
e
v
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�
P
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k=1
e
x

j

k

kG
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P
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k=1

e
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�
P
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e
x
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1

a1!

PN
x1 6=... 6=x

a1
⇧a1

j=1

kG
a�a1e1,b�

P
a1�j

k=1
e
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�
P
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k=1
e
x

j
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kG
a�a1e1,b�

P
a1�j+1
k=1

e
v
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�
P

j�1
k=1

e
x

j

k

(3.77)

Using our results from Chapter 3: Corollary 9, Theorem 16 and Theorem 18 to reduce (3.77)

to

Pr(2 ! 1) ⇡ a
1

b
2

S
(1 +O(S�2⌧ )) (3.78)
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and hence we conclude that asymptotically, the probability that two nodes share an edge

under the uniform random graph converge to the probabilities in the Chung-Lu random graph

model! (Recall that we defined the Chung-Lu random graph model in the introduction). Note

that we attain convergence with a factor of (1 + O(S�2⌧ )) where maxi ai = O(S
1
2�⌧ ) and

maxi bi = O(S
1
2�⌧ ). Note that since for many degree sequences ⌧ may be small, the Uniform

random graph model could di↵er dramatically from the Chung-Lu random graph model.
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4.0 CONCENTRATION RESULTS REGARDING THE SPECTRAL

RADIUS FOR RANDOM DIRECTED CHUNG-LU GRAPHS

In this chapter, we seek mathematically rigorous asymptotic results for the dominating

eigenvalue of an adjacency matrix under di↵erent random directed graph models for the

Chung-Lu random graph model as well as a generalization that enables community structure

within the graph. We also attain bounds for how much the dominating eigenvalue can deviate

from the asymptotics for a realization of a graph with fixed N nodes. Finally, we apply our

results in studying the stability of a epidemic (SIS) contact network and the stability of

synchrony in the Kuramoto model.

Random graph models are useful for constructing families of graphs where all graphs in

the collection possess a similar property. More specifically, the dominating eigenvalue of the

adjacency matrix in biological neural networks, boolean genetic networks and epidemiological

networks plays an important role in the stability of solutions to the corresponding dynamical

systems and stochastic processes that occur on these networks. To construct meaningful

statements regarding the aforementioned networks, we also want to utilize a random graph

model that shares characteristics that matches empirically observed real world networks.

One such property is degree heterogeneity, that is, empirically observed networks have nodes

that possess di↵erent numbers of neighbors throughout the network. While we focus on

directed graphs, we can extend many of the proof techniques in this work to undirected

graphs as well. At this juncture, we introduce the definition of the Chung-Lu random graph

model, which allows for the generation of networks with degree heterogeneity.

Definition 6 (Directed Chung-Lu Model). Suppose we have a vector of weights d = (a,b) 2

ZN⇥2 (an expected bi-degree sequence), where S =
P

a
i

2a ai =
P

b
i

2b bi and maxi,j aibj  S.
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We construct an edge from node i to node j with an independent Bernoulli random variable

of probability pij =
b
i

a
j

S

Heuristic arguments have suggested the following result [73],

Conjecture 1. Given a sequence of realizations of the Directed Chung-Lu model where

we consider increasingly large networks with N nodes. Denote the absolute value of the

dominating eigenvalue of A by ⇢(A). Then almost surely,

lim
N!1

⇢(A)
a·b
S

= 1

When constructing bounds on the dominating maximum eigenvalue of an asymmetric

(directed) matrix, we do not have quite as many tools to construct concentration results

compared to the symmetric (undirected) case. Our main theoretical tool will be the following

lemma, but first we introduce the following definition for clarity.

Definition 7. We define the spectral radius of a matrix A 2 RN⇥N to be the absolute value

of the maximal magnitude eigenvalue. More precisely,

⇢(A) = max{|�| : Ax = �x and x 6= 0}

Lemma 10. Let A 2 RN⇥N be an entrywise non-negative matrix. For simplicity, suppose

that the eigenvalues of A are real.

Define �max as the maximum of the eigenvalues of A. It then follows that ⇢(A) = �max.

Furthermore, we have for every positive integer r,

trace(Ar)

N
 ⇢(Ar) = ⇢(A)r  1TAr1 (4.1)

where 1 is the vector of one’s.

For completeness we provide the following proof.
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Proof. First, note that for an entry-wise non-negative matrix A, for any positive integer k,

Ak, will also be an entry-wise non-negative matrix. Now suppose that �max, the maximum of

the eigenvalues of A was in fact negative. Then since the trace of a matrix is the sum of the

eigenvalues, it follows that for some choice of m, trace(Am) < 0, but this is a contradiction

since Am is entry-wise non-negative. As such we conclude that �max = ⇢(A).

The lower bound to ⇢(Ar) in (4.1) follows directly from the fact that ⇢(Ar), equals the

largest nonnegative eigenvalue of Ar and hence is also the maximum of the eigenvalues of Ar

and trace(Ar

)

N is the average of the eigenvalues of Ar.

Next, the equality in (4.1) follows from the fact that if �,x is an eigenvalue, eigenvector pair

of A, then �r,x is an eigenvalue,eigenvector pair of Ar where r is a positive integer. Note

that from the Jordan Cannonical Form that all eigenvalues of Ar are of the form �r where

� is an eigenvalue of A. It then follows that 0  �max = ⇢(A) =) ⇢(A)r = �r
max = ⇢(Ar).

And finally, to prove the upperbound on ⇢(Ar), let v satisfy Av = �maxv where we normalize

v such that vTv = 1. Define |v| to be the vector consisting of the absolute value of the

entries of v. Since A is entry-wise non-negative, it follows that

vTArv = ⇢(A)r  |v|TAr|v|.

Another application of the fact that A is entry-wise non-negative yields

|v|TAr|v|  1TAr1,

as vTv = 1 implies that |v|  1 entry-wise.

We are primarily interested in applications of Lemma 10 in studying the spectral radius

of an adjacency matrix for random graphs. In this case, if A corresponds to a directed

graph, the quantities that bound ⇢(A), 1TAr1 and trace(Ar)/N both have combinatorial

interpretations. More specifically, trace(Ar) =
PN

j=1

eTj A
rej (where ej is the standard unit
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vector) is the number of cycles of length r. Similarly,1TAr1 is the number of paths of length

r.

To see this consider 1TAej. Now, Aej is a vector whose kth entry is 1 if there is an edge

from node j to node k. Consequently, 1TAej is the number of paths starting at node j of

length 1 (and analogously 1TA1 is the number of paths of length 1). One can then proceed

inductively, to show that 1TA2ej is the number of paths starting at node j of length 2 and

so on.

We now provide a sketch of our proof technique to prove a version of Conjecture 1. For

a suitably chosen r, we will show that with high probability

⇢(A)r  1TAr1  (
a · b
S

)r↵ (4.2)

where ↵ depends on the expected degree sequence. We will show that for a suitable sequence

of expected degree sequences (where we vary r with the expected degree sequence), ↵ will

have the property that limr!1 ↵(r)
1
r = 1. Hence it will follow from monotonicity by taking

the rth root of both sides of equation (1), that with high probability,

⇢(A)  a · b
S

↵
1
r

Perhaps less obvious, we will also show a similar relationship holds for involving the

trace(Ar). A conceptually convenient way of seeing this in a special case is to note that

1

N21TAr1 = 1

N2

P
i,j e

T
i A

rej ⇡ 1

N

P
i e

T
i A

rei =
trace(Ar

)

N  ⇢(A)r where the approximation

holds for many expected degree sequences.

More succinctly, we will argue that 1

N2 (
a·b
S )r  1

N21TAr1  ⇢(A)r  1TAr1 and if we

choose r su�ciently large, say r = O((logN)2), we have that ( 1

N2 )
1
r ! 1 and we will be able

to conclude that asymptotically
⇢(A)
a·b
S

! 1.
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4.1 SPECTRAL CONCENTRATION BOUNDS, a·b
S ! 1

Keeping Lemma 10 in mind, we initiate our discussion on bounding the spectral radius

for the Chung-Lu model by bounding the expected number of paths of length r. In order

to identify suitable degree sequences, we will consider two cases seperately, where either

a·b
S ! 1 (this section) or pmax = maxi,j pij ! 0 (next section). Though the results below

hold in considerable generality, many of the initially stated results will only be particularly

useful for the case where a·b
S ! 1. We start by identifying a lower bound on the expectation

of eTj A
rei as our first step for constructing spectral radius concentration results.

Lemma 11. Consider a realization of the Directed Chung-Lu random graph model with

expected degree sequence d = (a,b), where
P

ai =
P

bi = S. Then the expected number of

paths from node i of length r is bounded below by

bi[
a · b
S

]r�1

Furthermore, the expected number of paths of length r is bounded below by

S[
a · b
S

]r�1

Proof. First consider the expected number of paths from node y of length r,

X

i1,...,ir

Prob[Path(y ! i
1

! ... ! ir)]

Now if no edge repeats in the path (and the probability of each edge is independent), then

Prob[Path(y ! i
1

! ... ! ir)] = pyi1⇧
r�1

k=1

pi
k

i
k+1

If however an edge does repeat in the path, since each 0  pij  1 for all i, j, it follows that

for such a path

Prob[Path(y ! i
1

! ... ! ir)] � pyi1⇧
r�1

k=1

pi
k

i
k+1

Consequently, we conclude that the

X

i1,...,ir

Prob[Path(y ! i
1

! ... ! ir)] �
X

i1,...,ir

pyi1⇧
r�1

k=1

pi
k

i
k+1
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Let ax, bx denote the expected in-degree/out-degree of node x. Now applying Chung-Lu,

we simplify

X

i1,...,ir

pyi1⇧
r�1

k=1

pi
k

i
k+1

=
X

i1,...,ir

byai1
S
⇧r�1

k=1

bi
k

ai
k+1

S
=
X

i1,...,ir

byai
r

S
⇧r�1

k=1

bi
k

ai
k

S

where the last equality follows from rearranging the terms. Now by taking expectations

we get that
X

i1,...,ir

Prob[Path(y ! i
1

! ... ! ir)] � by(
a · b
S

)r�1 (4.3)

It then follows that we can construct a lower bound for the expected number of paths of

length r by using (4.3), the lower bound of the expected number of paths of length r starting

from node y and summing over all possible initial node choices. Since
P

i bi(
a·b
S )r�1 =

S(a·bS )r�1, the proof is complete.

By counting the number of times repeating edges appear in a given path, the proof of

Lemma 11 gives us an immediate corollary that will be helpful in constructing an upper-

bound.

Corollary 13. Consider a realization of the Directed Chung-Lu random graph model with

expected degree sequence d = (a,b), where
P

ai =
P

bi = S. The expected number of

paths starting at node i of length r where there are no repeating edges is bounded above by

bi(
a·b
S )r�1. Furthermore, consider the set of all paths Pk where we require the kth edge to be

a repeating edge and no other edges can be repeating. Then for a fixed k < r, the expected

number of paths starting at node i of length r and in Pk are bounded above by pmaxbi(
a·b
S )r�3,

where pmax = a
max

b
max

S .

Now we must construct an upper bound for the expected number of paths of length r

from a given node y.

Theorem 19. Denote pmax = maxi,j pij. Assume S
a·b < 1

2

and that r < a·b
S , then we have

the following upperbound for the expected number of paths from any node y of length r,

X

i1,...,ir

Prob[Path(y ! i
1

! ... ! ir)]  by2(
a · b
S

)r�1exp(pmax
r2( S

a·b)
2

1� r S
a·b

).
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Proof. As demonstrated in Lemma 11 when evaluating the likelihood that a particular path

exists, it is helpful to identify the edges that repeat multiple times throughout the path. We

want a method that identifies ’repeated’ edges that will help simplify our calculations.

Consequently, we establish the following rules for determining which edge is

a repeating edge.

• The first edge is *never* a repeating edge.

• The last edge can only be a repeating edge if it is identical to the first edge.

• The second edge is a repeating edge if it is identical to the first or last edge.

• And then we proceed inductively, the third edge is a repeating edge if it equals the first,

last or second edge, etc.

Now we condition on the possibility that the last edge could be a repeat edge. If the

last edge is indeed a repeat edge, then we also know that the last edge has to equal the first

edge. Furthermore, we know that the first edge starts at node y, similarly the last edge must

also start at node y. We can rewrite this path of length r as a cycle starting and ending

at node y (of length r � 1) where we append this repeated last edge to the cycle. Since

this last edge must be identical to the first edge, we conclude that the expected number of

paths of length r starting at node y (where the last edge is determined by the first edge in

the cycle) equals the expected number of cycles of length r�1 starting and ending at node y.

Now define Pr(y) to be the number of paths of length r starting at node y and Cr(y) to

be the number of cycles of length r starting at node y. Furthermore, denote PL
r (y) to be

the number of paths of length r where the last edge does not repeat. We have the following

decomposition.

E(Pr(y)) = E(PL
r (y)) + E(Cr�1

(y))  E(PL
r (y)) + E(Pr�1

(y)). (4.4)

Applying inequality (4.4) over again, we have that E(Pr(y))  E(PL
r (y))+E(PL

r�1

(y))+
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E(Pr�2

(y)). Repeating this trick inductively will yield that

E(Pr(y)) 
rX

m=2

E(PL
m(y)) + E(P

1

(y)) =
rX

m=1

E(PL
m(y)), (4.5)

where the last equality follows from the fact that a path of length 1 can never have a

repeating edge.

By inequality (4.5), to construct a meaningful bound for E(Pr(y)), it will su�ce to

consider a bound for E(PL
r (y)), where we are only interested in cases where the last

edge (and the first edge) cannot be a repeated edge. To construct this desired bound,

it is helpful to consider some ’simple’ cases.

• First, if there are no repeating edges, it follows from Corollary 13 that the expected

number of paths that satisfy this property is bounded above by by(
a·b
S )r�1.

• Now suppose that there are repeating edges. For each identical repeating edge, denote

the location of all such edges by the set Z (recall that the ’first time’ an edge appears,

that edge is not considered a repeating edge). Then it follows that the contribution from

such paths is,

E(PZ) =
X

i1,...,ir+1
(�

k

,�
k+1)2Z

byai1
S
⇧r

k=1

bi
k

ai
k+1

S
⇧

(�
k

,�
k+1)2Z

S

b�
k

a�
k+1

• Case 1: Z consists of a unique repeated edge. Then we have that

E(PZ)  by
amaxbmax

S
(
a · b
S

)r�3 (4.6)

• Case 2: Z consists of 2 edges and both edges are next to each other in the proposed

path, then

E(PZ)  by
amaxbmax

S
(
a · b
S

)r�4

• Case K: Z consists of K edges and all K edges are next to each other in the proposed

path, then

E(PZ)  by
amaxbmax

S
(
a · b
S

)r�2�K
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Figure 4.1.1: A Sample Path Illustrating an Example of a Repeating Node Block.

To clarify our proof strategy, we consider the following example, the path taken in Figure

4.1.1: A ! B ! C ! D ! B ! C ! D ! E ! D ! F ! G. Each node in the path has

either never been visited before or has been visited before. Furthermore, if the node has been

visited before, it is part of a block of previously visited nodes of some prescribed length. In

the path above, we initially have four nodes that have never been visited before (A-D) then

a block of three previously visited nodes (B-D), followed by a new node E, another ’block’

that we already visited (node D) and then two more nodes that we never visited before.

Recall that we defined pmax = amaxbmax/S. We claim that the following expression is an

upperbound for the expected number of paths of length r starting from node y where the

last edge does not repeat, PL
r (y).

E(PL
r (y))  by

X

k1+
P

r

i=2(i�1)k
i

=r
k1�1

✓ P
ki

k
1

, ..., kr

◆
[kr�k1

1

](
a · b
S

)k1�1⇧i�2

(pmax[
S

a · b ])
k
i (4.7)

The ki variables under the summation in equation (4.7) considers the di↵erent ways of

decomposing a path of length r into repeating node blocks of di↵erent sizes. We will justify

the above claim, term by term. First we explain the appearance of
� P

k
i

k1,...,kr

�
.

Let ki denote the number of repeated node blocks of length i � 1 where k
1

refers to

the number of new nodes that has never been visited before (excluding the first node).

Then consider all paths of length r with ki blocks of length i � 1. Then there are at most
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� P
k
i

k1,...,kr

�
’block’ rearrangements. Furthermore we also have the constraint that the ki � 0

and k
1

+
Pr

i=2

(i � 1)ki = r as the path by definition has length r, must only contain r + 1

nodes and by construction k
1

does not include the presence of the first node.

Next, suppose that we have designated the locations (or times) in the path of length r

that contain previously visited nodes. For example, in Figure 4.1.1 we fixed the 5, 6, 7, and

9 places in the path to consist of previously visited nodes. Now each of these repeated nodes

must correspond to a node that has never been visited before. In the example, k
1

= 7 and

r � k
1

= 4 as the path in the example has 11 nodes. As such there are at most

kr�k1
1

such rearrangements. That is, for each of the r� k
1

places (locations) that consist of previ-

ously visited nodes, the node visited in each such location must match one of the k
1

distinct

nodes in the path.

Suppose for i � 2, there are ki blocks of length i � 1. Then we have the following up-

perbound for the expected number of paths with the given ’block’ structure constraints,

by(
a·b
S )k1�1⇧i�2

(pmax[
S
a·b ])

k
i . Recall Case 1, equation (4.6), where k

1

= r � 1, k
2

= 1, all

other ki = 0 and the bound for the expected number of paths with only one revisited node is

bypmax(
a·b
S )r�3. It can be shown that this formula is consistent with the other aforementioned

cases and is indeed the expected number of paths with the given ’block’ structure constraints.

But we can trivially bound equation (4.7) by,

E(PL
r (y))  by

X

k1+
P

r

i=2(i�1)k
i

=r
k1�1

✓ P
ki

k
1

, ..., kr

◆
(r)r�k1(

a · b
S

)k1�1⇧i�2

(
amaxbmax

S
[
S

a · b ]
1)ki 

by
X

k1+
P

r

i=2(i�1)k
i

=r

(
Pr

i=1

ki)!

k
1

!
(r)r�k1(

a · b
S

)k1�1⇧r
i�2

(amax

b
max

S [ S
a·b ]

1)ki

ki!
 (4.8)

by
X

k1+
P

r

i=2(i�1)k
i

=r

(
rX

i=1

ki)

P
r

i=2 ki

(r)r�k1(
a · b
S

)k1�1⇧r
i�2

(amax

b
max

S [ S
a·b ]

1)ki

ki!
 (4.9)
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But we can write k
1

in terms of the other ki and r and bound
Pr

i=1

ki by r yielding the

upperbound,

by
X

k1+
P

r

i=2(i�1)k
i

=r

r
P

r

i=2 ki(r)
P

r

i=2(i�1)k
i(
a · b
S

)k1�1⇧r
i�2

(amax

b
max

S [ S
a·b ]

1)ki

ki!
 (4.10)

by
X

k1+
P

r

i=2(i�1)k
i

=r

r
P

r

i=2 iki(
a · b
S

)r�
P

r

i=2(i�1)k
i

�1⇧r
i�2

(amax

b
max

S [ S
a·b ]

1)ki

ki!
 (4.11)

by(
a · b
S

)r�1

X

k1+
P

r

i=2(i�1)k
i

=r

⇧r
i�2

(amax

b
max

S [r S
a·b ]

i)ki

ki!
(4.12)

And now to achieve an upperbound we can instead allow the k0
is (ignoring k

1

) to vary

independently resulting in,

by(
a · b
S

)r�1

1X

k2=0,...,k
r

=0

⇧r
i�2

(amax

b
max

S [r S
a·b ]

i)ki

ki!
(4.13)

Then by identifying the Taylor expansion of exp(x), we get that (4.13) in fact equals,

by(
a · b
S

)r�1⇧r
i=2

exp(pmaxr
i(

S

a · b)
i) = by(

a · b
S

)r�1exp(
rX

i=2

pmaxr
i(

S

a · b)
i)  (4.14)

by(
a · b
S

)r�1exp(pmax
r2( S

a·b)
2

1� r S
a·b

) (4.15)

Now from (4.15) and (4.5) we conclude that

E(Pr(y)) 
rX

m=1

by(
a · b
S

)m�1exp(pmax
m2( S

a·b)
2

1�m S
a·b

) 

by(
a · b
S

)r�1exp(pmax
r2( S

a·b)
2

1� r S
a·b

)
rX

m=1

(
S

a · b)
r�m 

by(
a · b
S

)r�1exp(pmax
r2( S

a·b)
2

1� r S
a·b

)
1

1� S
a·b



2by(
a · b
S

)r�1exp(pmax
r2( S

a·b)
2

1� r S
a·b

)

where the last inequality follows from the assumption that a·b
S > 2.
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Now that we have results regarding the expectation of the number of paths of length r

, we now seek concentration results regarding the dominating eigenvalue of the adjacency

matrix.

Theorem 20. Denote A as a realization of a random Chung-Lu graph with expected degree

sequence d = (a,b) 2 ZN⇥2. Furthermore let pmax = a
max

b
max

S and S =
P

i ai =
P

i bi. Then

for every ✏ 2 (0, 1) there exists an N
1

, N
2

such that if (logN)2( S
a·b)

2 < 1

N1
, N > N

2

and

(logN)2( S
a·b) <

1

2

, then

Prob(⇢(A)  (1 + ✏)
a · b
S

) � 1� ✏

Proof. First, suppose that

log(N) >
30

✏
and (logN)2(

S

a · b)
2 <

✏

100
(4.16)

where we assume without loss of generality that ✏ < 1.

Consider the expected number of paths, Pr, of length r . By Theorem 19, we have that

for r = (logN)2,

E(Pr)  2S(
a · b
S

)r�1exp(pmax
r2( S

a·b)
2

1� r S
a·b

).

By Markov’s Inequality we have that,

Prob(Pr > Z)  E(Pr)

Z
.

Now if Z = N ⇤ E(Pr), we have that,

Prob(Pr > Z)  1

N
.

It then follows that with probability at least 1� 1

N from Lemma 10,

⇢(A)r = ⇢(Ar)  2NS(
a · b
S

)rexp(pmax
r2( S

a·b)
2

1� r S
a·b

). (4.17)

Consequently, with probability at least 1� 1

N ,

⇢(A)  (2NS)
1
r

a · b
S

exp(pmax
r( S

a·b)
2

1� r S
a·b

) (4.18)
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But recall that we chose r = (logN)2 so we have that (4.18) simplifies to,

⇢(A)  (2NS)
1

(logN)2
a · b
S

exp(pmax
(logN)2( S

a·b)
2

1� (logN)2 S
a·b

). (4.19)

We first consider the term from (4.19),

exp(pmax
(logN)2( S

a·b)
2

1� (logN)2 S
a·b

). (4.20)

By assumption (4.16), we have that (4.20) is bounded above by

exp(
2✏

100
)  (1 +

6✏

100
), (4.21)

where we also used the fact from (4.16) that (logN)2 S
a·b < 1

2

and that exp(x)  1 + 3x

for x < 1 (since ✏ < 1).

Now we consider the other coe�cient from (4.19),

(2NS)
1

(logN)2  (2N3)
1

(logN)2 , (4.22)

where the right hand side comes from the fact that the total number of edges must be

bounded above by N2.

We consider the log of the right hand side of (4.22).

log(2N3)
1

(logN)2 =
3log(N) + log(2)

(logN)2
 (4.23)

4log(N)

(logN)2
=

4

log(N)
<

4✏

30
. (4.24)

So we conclude that (4.22) is bounded above by

exp(
4✏

30
)  (1 +

12✏

30
). (4.25)

since for x < 1, exp(x)  1 + 3x.

Using (4.21) and (4.25) to bound (4.19), we get that,

⇢(A)  a · b
S

(1 +
12✏

30
)(1 +

6✏

100
)  a · b

S
(1 +

18✏

30
+

72✏2

3000
)  a · b

S
(1 + ✏) (4.26)
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for ✏ < 1.

Note that this bound is valid for at least probability 1 � 1

N where 1 � ✏  1 � ✏
30



1� 1

logN  1� 1

N and the proof is complete.

Remark 4. Under additional assumptions in Theorem 20 regarding how fast a·b
S ! 1, we

can weaken the constraint that N > exp(30✏ ) (✏ = O( 1

log(N)

)) to say that with high probability

the maximum eigenvalue does not exceed a·b
S by too much. In particular if (a·bS ) = O(N), we

can choose r = O(N) and we will get an analogus theorem to that above where ✏ = O( log(N)

N ).

To prove the lower bound, we want to evaluate trace(Ar

)

N , the average of the number of

cycles of length r in the network.

Corollary 14. Given an expected bidegree sequence d, for a given realization A it follows

that for 2 < r < a·b
S ,

(
a · b
S

)r  E(trace(Ar))  2(
a · b
S

)rexp(
r2pmax(

S
a·b)

2

1� r S
a·b

). (4.27)

Proof. This Corollary is essentially an extension of Theorem 19, where Theorem 19 provides

an upper bound for the expected number of paths of length r, Corollary 14 is a statement

about the upper bound for the expected number of cycles of length r. To (partially) explain

the di↵erences found between this Corollary 14 and Theorem 19, consider the expected

number of cycles of length 1. This quantity equals
PN

i=1

a
i

b
i

S = a·b
S . Since the proof for the

upperbound is nearly identical to that of Theorem 19, Corollary 13 and Lemma 11 ,and

similar to the proof of our next result, Theorem 21, we omit the details.

In order to bound trace(Ar) from below with high probability, we will compute the

variance of the number of paths of length r that start and end at the same node. We can

express trace(Ar), as a summation of indicator random variables for each possible path that

could be in a realization of a graph from the Chung-Lu random graph model. Denote each

of these indicator variables as Xi. It follows then that

V ar(trace(Ar)) = V ar(
X

Xi) =
X

V ar(Xi) +
X

i 6=j

Cov(Xi, Xj)
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. We are primarily interested in pairs i, j such that Cov(Xi, Xj) 6= 0 (as we can trivially

bound V ar(Xi) = E(X2

i )�E(Xi)2 = E(Xi)�E(Xi)2 where we used the fact that E(X2

i ) =

E(Xi) as Xi is a 0-1 indicator random variable and it follows that V ar(Xi)  E(Xi)).

Theorem 21. As defined earlier, we denote trace(Ar) =
PZ

i=1

Xi where Xi is an indicator

random variable denoting the existence (or lack thereof) of a specific path of length r that

starts and ends at the same node. Suppose that 2 < 2r < a·b
S . It follows that

X

i 6=j

Cov(Xi, Xj)  2r2 ⇤ pmax
a · b
S

2r�2

exp(
4r2pmax(

S
a·b)

2

1� 2r S
a·b

). (4.28)

Furthermore it follows that

V ar(trace(Ar))  E(trace(Ar)) + 2r2pmax
a · b
S

2r�2

exp(
4r2pmax(

S
a·b)

2

1� 2r S
a·b

). (4.29)

Proof. The proof strategy is analogous to Theorem 19. First consider a path (represented

by the indicator variable X
1

) of length r that starts and ends at the same node and all of

the edges are distinct.

Pr(X
1

= 1) = ⇧r
i=1

px
i

x
i+1 = ⇧

r
i=1

bx
i

ax
i+1

S
= ⇧r

i=1

ax
i

bx
i

S
,

where the last equality follows from the requirement that x
1

= xr+1

.

Now consider the case where (only) the mth edge in X
1

is a repeat edge.

It then follows that

Pr(X
1

= 1) = ⇧r
i=1,i 6=m

bx
i

ax
i+1

S
= (⇧m�1

i=1

ax
i

bx
i

S
)
ax

m

bx
m+1

S
(⇧r

i=m+2

ax
i

bx
i

S
). (4.30)

Or more simply,

Pr(X
1

= 1)  pmax(⇧
r
i=1,i 6=m,m+1

ax
i

bx
i

S
). (4.31)

Similarly, if m,m+ 1, ...m+ n are all repeat edges it follows that

Pr(X
1

= 1)  pmax(⇧
r
i=1,i 6=[m...m+n+1]

ax
i

bx
i

S
). (4.32)
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And more generally, as in the proof of Theorem 19, we can describe the occurence of

repeat blocks as R = [i[mi....mi + ni + 1] where each ’block’ or set [mi....mi + ni + 1] is

disjoint from all of the other sets in the union.

Furthermore, define B to be the number of ’blocks’ or sets in the union that we used to

construct R.

It follows in generality that

Pr(X
1

= 1)  pBmax(⇧i/2R
ax

i

bx
i

S
). (4.33)

Similarly, we can bound the probability of the existence of two distinct loops,

Pr(X
1

= 1, X
2

= 1)  pBmax(⇧i/2R
ax

i

bx
i

S
) (4.34)

where B now represents the total number of repeating node blocks when calculating the

probability of the joint existence of paths X
1

and X
2

.

Now we are only interested in paths that have a non-trivial covariance. It follows analo-

gous to equation (4.7) in Theorem 19, we have that

X

i 6=j

Cov(Xi, Xj) 
X

k1+
P

r

i=2(i�1)k
i

=2r
k12[1...2r�1]

✓ P
ki

k
1

, ..., kr

◆
[k2r�k1

1

](
a · b
S

)k1⇧i�2

(pmax[
S

a · b ])
k
i , (4.35)

where for i � 2, the ki refer to the number of repeating node blocks of length i�1. Using

the fact that we can write k
1

in terms of the other ki, k1 = 2r �
Pr

i=2

(i� 1)ki and that we

are only summing over ki that satisfy the constraint that k
1

 2r, we get that

X

k1+
P

r

i=2(i�1)k
i

=2r
k12[1...2r�1]

(
Pr

i=1

ki)!

k
1

!
(2r)2r�k1(

a · b
S

)2r�
P

r

i=2(i�1)k
i⇧r

i�2

(amax

b
max

S [ S
a·b ]

1)ki

ki!
. (4.36)

Repeating the same argument from Theorem 19, we achieve the desired upperbound.

X

k1+
P

r

i=2(i�1)k
i

=2r
k12[1...2r�1]

2r
P

r

i=2 ki(2r)
P

r

i=2(i�1)k
i(
a · b
S

)2r�
P

r

i=2(i�1)k
i⇧r

i�2

(amax

b
max

S [ S
a·b ]

1)ki

ki!
 (4.37)
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(
a · b
S

)2r
X

k1+
P

r

i=2(i�1)k
i

=2r
k12[1...2r�1]

⇧r
i�2

(amax

b
max

S [2r S
a·b ]

i)ki

ki!
. (4.38)

Now define �ij = 1 if i = j and zero otherwise. To ease the analysis, we consider all of

the di↵erent scenarios to identify which ki (i � 2) must be at least 1. Once we know which

ki must always be at least 1, since we want to be able to write our upperbound using an

exponential function, we will factor out the term so that e↵ectively ki will be able to range

from 0 to 2r, instead of 1 to 2r. Since this term is bounded above by 2rpmax
S
a·b , we get that,

2rpmax(
a · b
S

)2r�1

X

k1+
P

r

i=2(i�1)k
i

=2r
j2[2,...,r]
1k

j

⇧r
i�2

(amax

b
max

S [2r S
a·b ]

i)ki��
ij

ki!
 (4.39)

2rpmax(
a · b
S

)2r�1

X

k1+
P

r

i=2(i�1)k
i

=2r
j2[2,...,r]
1k

j

⇧r
i�2

(amax

b
max

S [2r S
a·b ]

i)ki��
ij

(ki � �ij)!
. (4.40)

Since there are at most r choices for which ki is bounded below by 1, we get that,

2r2pmax(
a · b
S

)2r�1

1X

k2=0,...,k
r

=0

⇧r
i�2

(amax

b
max

S [2r S
a·b ]

i)ki

ki!
 (4.41)

2r2pmax(
a · b
S

)2r�1⇧r
i�2

exp(pmax[2r
S

a · b ]
i)  (4.42)

2r2pmax(
a · b
S

)2r�1exp(pmax
[2r S

a·b ]
2

1� 2r S
a·b

). (4.43)

To construct the desired lowerbound on ⇢(A), we could appeal to Chebyshev’s Inequality.

Instead we will use a more distribution specific approach. We will state the result from Janson

in full generality and then discuss the implications of their work in context to counting paths

and cycles of prescribed length.
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Theorem 22. [Janson 1990] Consider a set of independent random indicator variables

{Ji}i2Q and a family {Q(↵)}↵2B of subsets of index set Q. Define I↵ = ⇧i2Q(↵)Ji and

T =
P

↵2B I↵. Define Cov =
P

↵1 6=↵2
Cov(I↵1 , I↵2) Then for ✏ 2 [0, 1],

Pr((1� �)E[T ]  T ) � 1� exp(�1

2

(� ⇤ E[T ])2

E[T ] + Cov
) (4.44)

Remark 5. In the language of Theorem 22 according to the Chung-Lu random graph model,

the existence of a particular edge (Ji) is independent with respect to the existence of another

edge in the graph. As such we define Q to be the set that identifies (orders) all of the possible

N2 edges that could exist in our graph of N nodes. Consider a particular cycle, and denote

it by ↵. We can express ↵ as a product of independent indicator variables ⇧i2Q(↵)Ji, where

the elements in the set Q(↵) ⇢ Q identify the edges (the independent indicator variables Ji)

used to form the cycle ↵. We denote the indicator variable corresponding to this cycle by I↵

and let B consist of all of the sets Q(↵) formed by all of the possible cycles ↵ of length r

that could appear in our graph. Hence Theorem 22 provides us with a bound that can make

it di�cult for the sum of cycles (of prescribed length r) to be too much smaller than the

expected value. This leads us to the desired result.

Theorem 23. Denote A as a realization of a random Chung-Lu graph with expected degree

sequence d = (a,b) 2 ZN⇥2. Furthermore let pmax = a
max

b
max

S and S =
P

i ai =
P

i bi. Then

for every ✏ 2 (0, 1) there exists a �
1

,�
2

such that if S
a·b < �

1

, 2(logN)2 S
a·b < 1

2

and 1

N < �
2

then

Pr((1� ✏)
a · b
S

 ⇢(A)) � 1� ✏.

Proof. First fix an arbitrary ✏ 2 (0, 1) and suppose that

(logN)2
S

a · b < min(
1

4
,

s
�32exp(1

2

)

log(✏)
) and (4.45)

log(N) >
6

✏
. (4.46)
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Now consider Theorem 22 and consider the number of cycles of length r = (logN)2 which

we denote by C. Then we have from Theorem 21 and Lemma 12 that

Pr(
E[C]

2
 C) � 1� exp(�1

8

(a·bS )2r

[2r2pmax
a·b
S

2r�2

+ a·b
S

r
]exp(

4r2p
max

(

S

a·b )

2

1�2r S

a·b
)
). (4.47)

Recall that by assumption (4.45) we have that

Pr(
E[C]

2
 C) � 1� exp(�1

8

(a·bS )2

[2r2pmax +
a·b
S

�r
]exp(8r2pmax(

S
a·b)

2)
). (4.48)

We can simplify this further since a·b
S > 1 and by assumption (4.45), (logN)4 S

a·b
2

< 1

16

and say that

Pr(
E[C]

2
 C) � 1� exp(� 1

16

(a·bS )2

[r2 + 1]exp(1
2

)
) =) (4.49)

Pr(
E[C]

2
 C) � 1� exp(� 1

32

1

r2( S
a·b)

2exp(1
2

)
). (4.50)

Using assumption (4.45) yields,

Pr(
E[C]

2
 C) � 1� ✏. (4.51)

Finally, with probability 1� ✏ we have that

(
1

2N
)

1
(logN)2

a · b
S

 (
E(C)

2N
)

1
(logN)2  (

C

N
)

1
(logN)2  ⇢(A), (4.52)

where the first inequality comes from Lemma 11 and the final inequality holds from

Lemma 10.

Since assumption (4.46) implies that

|log( 1

2N

1
(logN)2

)| = | log(2N)

(logN)2
|  | 2

logN
|  ✏

3
(4.53)

and 1� 3x  exp(�x) =) 1� ✏  exp(log( 1

2N )
1

(logN)2 ). Consequently from (4.52) with

probability at least 1� ✏,
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(1� ✏)
a · b
S

 ⇢(A).

Remark 6. We can in fact get a faster convergence result by considering the number of

cycles of length r (where r is a parameter). For r > 1 when we invoke Theorem 22, our

covariance term C will be positive. For clarity, Cr will denote the cycles of length r and

Cov(r) will be used to denote the C mentioned in Theorem 22. We argued in Theorem 21

that Cov(r) ⇡ r S
a·b

2 ⇤ E(Cr)2. Since in the limit for r large E(Cr) ⌧ E(Cr)2 provided

a·b
S ! 1, we can invoke Theorem 21 where � = 1

2

and show that since Cov(r) ⌧ E(Cr)2

(for suitably chosen r), with high probability the number of cycles of length r cannot be less

than half of E(Cr). Since 1

2

a·b
S

r  Cr  ⇢(A)r, taking the rth root where r ! 1 yields

the result. More precisely, if a·b
S = O(N), we can prove (a version of) Theorem 23 where

choosing r = O(N) implies that ✏ = O( 1

N ).

We conclude this section with a simulation (Figure 4.1.2) plotting the empirical distri-

bution of the spectral radius from 100 realizations of the Chung-Lu random graph model

from a fixed expected (bi)-degree sequence where there the networks consist of 600 nodes

and a·b
S ⇡ 161.

4.2 CONCENTRATION BOUNDS WHEN pMAX ! 0

We now wish to extend our results to the case where a · b/S is (asymptotically) finite. In

order to prove results of this nature, we will require that pmax ! 0, that is the likelihood

any two fixed nodes share an edge should vanish asymptotically. We again stress, as sug-

gsested in Figure 4.1.2, that our results not only provide asymptotic information regarding

the concentration of the dominating eigenvalue of a sequence of realizations of Chung-Lu

random graphs, but also computable concentration results that bound the likelihood that

the dominating eigenvalue deviates from a ·b/S for a randomly generated network from the
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Figure 4.1.2: Speed of the Convergence of ⇢(A) to a·b
S in the Chung-Lu random graph model.

The x-axis indicates the relative error ✏ of the empirically observed ⇢(A) such that

⇢(A) = (1 + ✏)a·bS . The y axis marks probabilities, whose meanings vary based on the three

curves. The red curve is the empirical probability mass function plotting the relative error

of the dominating eigenvalue from a·b
S , where we constructed 100 realizations of Chung-Lu

random graphs with a prescribed expected degree sequence d 2 Z600⇥2 such that a·b
S ⇡ 161.

The magenta curve is an application of the concentration result (Theorem 20) regarding the

distribution of the dominating eigenvalue ⇢(A) from realizations of Chung-Lu random graphs

with the same prescribed expected degree sequence d. For this curve, the y � axis provides

an upperbound on the probability the spectral radius exceeds the relative error from a·b
S

on the x-axis. Similarly, the blue curve is an application of the concentration result from

Theorem 23.
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Chung-Lu random graph model with a fixed number of nodes. The following definition will

help us greatly in achieving our desired goal.

Definition 8. A simple cycle is a path that begins and ends at the same node where no other

node is visited more than once. Denote the number of simple cycles of length r by SC(r).

Since the number of simple cycles of length r is a lower bound for the trace(Ar), it su�ces

to show that with high probability that the number of simple cycles of length r is roughly

(a·bS )r.

Lemma 12. Consider a realization of the Directed Chung-Lu random graph model with

expected degree sequence d = (a,b), where
P

ai =
P

bi = S. Then

[
a · b
S

� rpmax]
r  E(SC(r))  (

a · b
S

)r. (4.54)

Proof. We can write the expected number of simple cycles of length r as,

E(SC(r)) =
X

i1=i
r+1 6=i2... 6=i

r

⇧r
k=1

pi
k

i
k+1

=
X

i1 6=... 6=i
r

⇧r
k=1

ai
k

bi
k

S
.

where the first equality follows from the fact that with simple cycles we do not have to

worry about an edge repeating in a cycle (as in Lemma 11) and the second equality follows

from invoking the definition of Chung-Lu and rearranging terms.

We then have the upperbound that,

E(SC(r)) 
X

i1,...,ir

⇧

r

k=1
a
i

k

b
i

k

S
= (

X

i1

a
i1bi1
S

)(

X

i2,...,ir

⇧

r

k=2
a
i

k

b
i

k

S
) = (

a · b
S

)(

X

i2,...,ir

⇧

r

k=2
a
i

k

b
i

k

S
) = (

a · b
S

)

r.

To derive the lower bound,

(

a · b
S

� rp
max

)

X

i1 6=... 6=i

r�1

⇧

r�1
k=1

a
i

k

b
i

k

S
= (

a · b
S

� r
a
max

b
max

S
)

X

i1 6=... 6=i

r�1

⇧

r�1
k=1

a
i

k

b
i

k

S


X

i1 6=... 6=i

r

⇧

r

k=1
a
i

k

b
i

k

S
.

Repeating this argument for each of the ik’s yields that,

(
a · b
S

� rpmax)
r 

X

i1 6=... 6=i
r

⇧r
k=1

ai
k

bi
k

S
.
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We will also want to construct our covariance term as used in Theorem 22. To do so, we

have the following result.

Lemma 13. Consider the covariance term for the number of simple cycles of length r,

denoted by Cov(r), (as defined in Theorem 22 where our covariance term is derived from

the expectation of sum of products consisting of pairs of indicator variables, the existence of

simple cycles).

We then have that

Cov(r)  pmaxr
2(
a · b
S

)2r�2exp(pmaxr
2

S
a·b

1� S
a·b

). (4.55)

Proof. In the spirit of Theorems 19 and 21, we claim that the following is an upperbound

for the covariance term.

Cov(r) 
X

k1+
P

r

i=2(i�1)k
i

=2r
1k12r�1

✓ P
ki

k
1

, ..., kr

◆
(
a · b
S

)k1⇧i�2

(pmax[r
S

a · b ]
1)ki (4.56)

The key di↵erence between (4.56) and the claim in Theorem 21, is that because we are

only considering simple cycles, when evaluating the covariance of two distinct simple cycles

each with length r, in the first cycle there cannot be a repeated node block (because it is

a simple cycle) and in the second cycle if there is a repeated node block of size i, then you

have at most r choices for constructing that repeated node block (as opposed to ri).

To clarify this point, in the second simple cycle suppose a repeated node block of size z

appears of the form m
1

! m
2

! ... ! mz. (Consider a particular choice for m
1

. ) Since

m
1

can only appear once in a simple cycle, it must be that there is only one possible choice

for m
2

, the node that appears after m
1

in the first cycle. Proceeding inductively, given a

particular value for m
1

, all of the other m0s are completely determined. Hence there are at

most r distinct choices for each block of size z. Employing the same tricks as in Theorem

19, demonstrates that,

X

k1+
P

r

i=2(i�1)k
i

=2r
1k12r�1

(
rX

i=1

ki)
P

r

i=2 ki(
a · b
S

)2r�1�
P

r

i=2(i�1)k
i⇧i�2

(pmax[r
S
a·b ])

k
i

ki!
 (4.57)
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(
a · b
S

)2r�1

X

k1+
P

r

i=2(i�1)k
i

=2r
1k12r�1

(r)
P

r

i=2 ki⇧i�2

(pmax[r(
S
a·b)

i])ki

ki!
 (4.58)

(
a · b
S

)2r�1

X

k1+
P

r

i=2(i�1)k
i

=2r
1k12r�1

⇧i�2

(pmax[r2(
S
a·b)

i])ki

ki!
. (4.59)

Now since k
1

cannot exceed 2r � 1, at least one of the k0
is (i � 2) is positive. Hence

inside the summation, all of these terms have a common factor of pmaxr2
S
a·b . It then follows,

pmaxr
2(
a · b
S

)2r�2

1X

k2=0,...,k
r

=0

⇧i�2

(pmax[r2(
S
a·b)

i])ki

ki!
 (4.60)

pmaxr
2(
a · b
S

)2r�2exp(pmaxr
2

S
a·b

1� S
a·b

). (4.61)

And since (4.61) is an upperbound for Cov(r), the proof is complete.

Consequently, we have the following concentration result.

Corollary 15. Denote A as a realization of a random Chung-Lu graph with expected degree

sequence d = (a,b) 2 ZN⇥2. Furthermore let pmax = a
max

b
max

S and S =
P

i ai =
P

i bi. Then

for every ✏ 2 (0, 1) there exists a �
1

,�
2

such that if pmax(logN)2 < �
1

and 1

N < �
2

then

Pr((1� ✏)
a · b
S

 ⇢(A)) � 1� ✏.

Proof. The proof is analogous to Theorem 23 and as such we only provide a sketch. From

Lemmas 13 and 12, for su�ciently small pmax, we have that Cov(SC((logN)2) ⌧

[E(SC((logN)2)]2. As such we can invoke Theorem 22 to show that with high probability

the number of simple cycles of length (logN)2 cannot be less than half the expected number

of simple cycles.

E(SC((logN)2))

2N
 SC((logN)2)

N
 trace(A(logN)

2
)

N
 ⇢(A)(logN)

2
.

As
(

a·b
S

�(logN)

2p
max

)

(logN)2

2N  E(SC((logN)

2
))

2N , this would impliy that,

(
1

2N
)

1
log(N)2 (

a · b
S

� log(N)2pmax)  ⇢(A).
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Since ( 1

2N )
1

(logN)2 ! 1 for N su�ciently large and (logN)2pmax ! 0, we conclude that

with high probability (1� ✏),

(1� ✏)
a · b
S

 ⇢(A).

Constructing a meaningful upperbound on the number of paths of length r when pmax !

0 is more challenging. We cannot simply follow the proof strategy used in Theorem 19 as we

have to worry about the contribution from repeating node blocks. Analogously, consider the

(unlikely) event that a subgraph of k nodes exists where each node has bidirectional edges

with each of the other k nodes and a·b
S ⌧ k. In the proof of Theorem 19, we were able to

ignore this complication altogether due to the assumption that a·b
S ! 1 su�ciently fast.

The following lemma demonstrates that with high probability when pmax ! 0,we in fact do

not have to worry (too much) about this dilemna.

Definition 9. Define the minimal edge set of a path P to be an ordered list of edges (of

minimal size) required for the entire path to exist. Note that since P must have minimal

size, we cannot have the same edge appear twice in the minimal edge set. By convention

when constructing a minimal edge set, as we observe edges in a path, we simply add the edge

to the minimal edge set if we have never observed that particular edge before. Furthermore,

we say that a path has k node repetitions if there are k distinct simple cycles that can be

formed from the minimal edge set. Analogously, we can say that an edge set has k node

repetitions if there are k distinct simple cycles that can be formed from that edge set.

Example: Consider the path P = 1 ! 2 ! 3 ! 1 ! 2 ! 4. For the path P to exist,

we only need the following edges to exist: 1 ! 2, 2 ! 3, 3 ! 1 and 2 ! 4. These edges

{(1, 2), (2, 3), (3, 1), (2, 4)} would then form the minimal edge set of path P .

Essentially, we will seek a result that says that paths cannot have too many node repe-

titions. More precisely, it will be burdensome to consider the minimal edge set of a path

P with excessively many node repetitions. Instead, we will want to construct a subset (of
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edges) of the minimal edge set with a smaller number of node repetitons. The following

Lemma formalizes this claim and the proof explains how to construct such a subset.

Lemma 14. Consider a path P with k > 1 node repetitions and its corresponding minimal

edge set M . Then for any j  k, we can construct a reduced edge set E ⇢ M , such that

E has j node repetitions, the first node in the first edge in E and the last node in the last

edge in E must belong to a simple cycle that can be formed from the edges in E.

Proof. We will illustrate the procedure using an example, but the procedure used holds in

the full generality of the lemma statement.

Consider the path P = 1 ! 2 ! 2 ! 3 ! 4 ! 3 ! 1 and its minimal edge set

M = {(1, 2), (2, 2), (2, 3), (3, 4), (4, 3), (3, 1)}.

• First, starting with the empty set we add edges from our minimal edge set M to our

reduced edge set E until we can construct j simple cycles. For this example, consider

j = 2. This yields the edge set E = {(1, 2), (2, 2), (2, 3), (3, 4), (4, 3)}.

• Then, we remove edges from the beginning of our edge set E until we reach an edge such

that its removal would decrease number of simple cycles that we can form our current

edge set. This yields the set E = {(2, 2), (2, 3), (3, 4), (4, 3)}.

• Observe that if any of the edges in the edge set E do not exist, then the path P cannot

exist. Furthermore by construction, the first and last node in our new edge set must

belong to a simple cycle that we can construct from our edge set.

With Lemma 14 at hand, we seek one more lemma so that we can prove the desired

result that there cannot exist a path with many node repetitions with high probability.

Lemma 15. Suppose E is a reduced edge set with t node repetitions, as we constructed in

Lemma 14. We can map the reduced edge set E to a union of sets [t
i=1

Mi where each Mi

consists of a set of nodes. Furthermore, the Mi sets have the following properties:

• The first node in M
1

and the last node in Mt all belong to a simple cycle that can be

constructed from the edges in E (provided that the edges in E exist).
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• The last node in Mj for each j is a node that has appeared either before in the same set

Mj or in a set Mi where i < j.

• The first node in Mj for each j > 1 is a node that has appeared in some set Mi where

i < j.

• And finally, let xk,i be the kth node in Mi. Then the probability that all edges in the

reduced edge set E exist equals

⇧t
i=1

⇧|M
i

|�1

k=1

bx
k,i

ax
k+1,i

S
. (4.62)

Proof. We first illustrate the mapping of the reduced edge set E with t node repetitions to

the union of sets [t
i=1

Mi where each Mi consists of a set of nodes. We start by decomposing

our reduced edge set E as a union of edge sets [t
i=1

Ei, where we add the edges from E to E
1

and stop once E
1

has precisely one node repetition. Then starting where we left o↵, we add

edges to E
2

and stop once E
1

[E
2

have precisely two node repetitions. Since by assumption

the last node of the last edge belongs to a simple cycle, we can express E = [t
i=1

Ei such

that the subset [k
i=1

Ei has precisely k node repetitions for all k  t.

Example: We clarify the above procedure with the following example. Consider the re-

duced edge set E = {(2, 2), (2, 3), (3, 4), (4, 3)}. Then since E has two node repetitions and

the first node of the first edge and the last node of the last edge both belong to simple cycles

that can be formed by the edges of E, we can write E
1

= {(2, 2)}, since E
1

already has one

node repetition we stop here and then E
2

= {(2, 3), (3, 4), (4, 3)}. Note that E
1

has precisely

one node repetition and E
1

[ E
2

= E has two node repetitions.

Now given Ei, we can construct Mi as follows. Consider the first node of each edge in

Ei and add those nodes to Mi in that order. Then add the last node of the last edge of Ei

to Mi. This completes the construction of the Mi.

Example: As before consider E = E
1

[ E
2

= {(2, 2)} [ {(2, 3), (3, 4), (4, 3)}. It then

follows that M
1

= {2, 2}, where we added the first node of each edge of E
1

and then the last

node of the last edge of E
1

to M
1

and M
2

= {2, 3, 4, 3}. Now note that the probability of all
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of the edges in E existing equals ⇧2

i=1

⇧|M
i

|�1

k=1

b
x

k,i

a
x

k+1,i

S .

Note that by construction, since the first node of the first edge and the last node of the

last edge in E belong to a simple cycle that can be constructed from the edges of E, these

nodes are precisely the first and last nodes of M
1

and Mt respectively. Hence the first bul-

leted statement holds.

The second bulleted statement holds since by construction [k
i=1

Ei the last node in the last

edge of Ek forms a simple cycle. Consequently, this node appears as the last node in Mk

and must have appeared elsewhere in the set [k
i=1

Mi.

Now for the third bulleted statement, we have two cases; either the first node in Mi equals

the last node in Mi�1

, in which the claim is trivial, or they are distinct. If they are distinct,

since each minimal edge set is constructed from a path, then in the path there exists a col-

lection of edges in the minimal edge set M that connect the last node in Mi�1

to the first

node in Mi. Denote these nodes as mi�1

and mi respectively.

It follows from the second bulleted statement that there is a simple cycle containingmi�1

.

Now consider the collection of edges that appear earlier in M that connect mi�1

to mi. Note

that if we delete an edge that belongs to a simple cycle in a minimal edge set, the number of

node repetitions decreases by 1, as all edges in the minimal edge set can only appear once.

Recall that in the proof of Lemma 14, to form the reduced edge set E, if M = {e
1

, ..., er},

then E = {ej, ej+1

, ..., ek} for some j, k such that 1  j  k  r. Now we only delete edges in

the beginning, e
1

, ..., ej�1

if those edges do not contribute to the number of node repetitions.

Since by construction the appearance of the edges that connect mi�1

to mi must appear

before ek and the earlier appearance of the edges connecting mi�1

to mi would contribute to

the number of node repetitions, we conclude that the path that connects mi�1

to mi does

appear earlier in E and consequently mi appears earlier in some Mi0 for i
0

< i.

Denote the probability that all edges in E exist by Pr(E). It follows that since E is a
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subset of the minimal edge set of a path P all of the edges are distinct and that

Pr(E) = ⇧e=(x,y)2E
bxay
S

= ⇧t
i=1

⇧e=(x,y)2E
i

bxay
S

. (4.63)

Now consider the kth edge in Ej for some particular choice of j. Denote this edge as

(x, y). It follows from construction of Mj that x is precisely the kth element in Mj and y is

the k + 1st element in Mj. Consequently, we conclude that

Pr(E) = ⇧t
i=1

⇧e=(x,y)2E
i

bxay
S

= ⇧t
i=1

⇧|M
i

|�1

k=1

bx
k,i

ax
k+1,i

S
, (4.64)

where xk,i is the kth node in Mi.

The strength of Lemma 15 lies in the fact that it helps us identify which nodes repeat in

a reduced edge set. For example consider some arbitrary bounded function f : N ! R and

define f⇤ to be the smallest upperbound of f . Then it follows that,
PN

i=1,j=1

[f(i)]2f(j) 

f⇤
PN

i=1,j=1

f(i)f(j); if f⇤ ! 0 and
PN

i=1

f(i) = O(1), then this upperbound converges to

0. To summarize, we will want to identify which indices (nodes) repeat in the reduced

edge set as if for example we chose the wrong index and bounded
PN

i=1,j=1

[f(i)]2f(j) by

f⇤
PN

i=1,j=1

[f(i)]2  Nf⇤
PN

i=1

[f(i)]2, the presence of the N would lead us to a potentially

useless upperbound as it is possible that f⇤ ! 0 and 1

f2
⇤
⌧ N . By noting that with a little

care we can treat this abstract function f in place of the probabilities used to construct the

edges in our graph, we can derive the following result.

Lemma 16. Consider a sequence of (expected) degree sequences d = (a,b) where pmax  R
N⌧

,

R is a fixed constant, ⌧ > 0 and a·b
S > 1. Then with probability at least p⇤ = 1� �, all paths

of length not exceeding L = k⌧
2

⇤ loga·b
S

(N), have less than k + 1 node repetitions, where

� = RkL3k�2

N
k⌧

2
.

Remark: Note that asymptotically we are guaranteed that � ! 0 in Lemma 16 as for

fixed k, pmax = O(N�⌧ ), L = O(log(N)) and consequently � = O((N
�⌧

2 (logN)3)k) ! 0.
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Proof. To bound the likelihood of the existence of any path of length at most L with at least

t node repetitions, we will instead consider the likelihood of the existence of a reduced edge

set with t node repetitions containing no more than L+1� t distinct nodes. Denote Pr(E⇤)

as the probability all edges in the set E⇤ exist. It follows from Lemma 15 that for a given

reduced edge set E⇤ with t node repetitions that

Pr(E⇤) = ⇧
t
i=1

⇧|M
i

|�1

k=1

bx
k,i

ax
k+1,i

S
= ⇧t

i=1

bx1,iax|M
i

|,i

S
⇧|M

i

|�1

k=2

bx
k,i

ax
k,i

S
= (4.65)

bx1,1ax|M
t

|,t

S
⇧t�1

j=1

ax|M
j

|,jbx1,j+1

S
⇧t

i=1

⇧|M
i

|�1

k=2

bx
k,i

ax
k,i

S
(4.66)

where xk,i is the kth node in Mi.

Ideally, we would like to bound each of the
a
x|M

j

|,j bx1,j+1

S terms by a pmax. However, we

only want to do so when x
1,j and x|M

j

|,j already contribute a term of the form b
x⇤ax⇤
S so that

when we sum over all possible choices for the nodes in [t
i=1

Mi, we do not end up with an

extra factor of an N , where N is the number of nodes. Normally, this is not a problem as we

know from Lemma 15 that the last node for every Mj can be found either in the same Mj

or an earlier Mi where i < j. Similarly, the first node in every Mj, except for M1

can also

be found in an earlier Mi where i < j. Consequently, we focus on whether the first node in

M
1

appears elsewhere.

To analyze (4.65) we have the following cases.

• Case 1: The first node in M
1

and the last node in Mt are di↵erent.

– 1a. Since the first node and last node must respectively be the first and last node

in two di↵erent simple cycles by Lemma 14, the first and last node must appear

elsewhere in the M 0
ks. Case 1a. supposes that there exists an Mk�1

,Mk such that

the last node in Mk�1

equals the first node in Mk which equals the first node in M
1

.

– 1b. Alternatively, there exists an Mk�1

such that the last node in Mk�1

equals the

first node in M
1

, but the first node in Mk does not equal the first node in M
1

.

• Case 2: The first node in M
1

equals the last node in Mt.

First in Case 1a, we know that there exists a k, such that for the first node x
1,1 = x|M

k

|,k =

x
1,k+1

. Similarly for the last node we know there exists a k
0

and k
1

such that 1 < k
0

< |Mk1 |
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and (k
0

, k
1

) 6= (|Mt|, t) where xk0,k1 = x|M
t

|,t as by our representation of our reduced edge set

as a union of sets of M 0
ks, the first time a node appears (except for the very first node in our

reduced edge set), it cannot appear at the beginning of an Mk. Consequently, since Lemma

14 requires that x|M
t

|,t is part of a simple cycle and by assumption x
1,1 6= x|M

t

|,t , there exists

a distinct (k
0

, k
1

) such that xk0,k1 = x|M
t

|,t. Consequently in Case 1a, we can bound bx1,1 by

bmax and ax|M
t

|,t by amax and we are guaranteed that a factor of b
x⇤ax⇤
S appears in (4.65) for

x⇤ = x
1,1 and x⇤ = x|M

t

|,t. For Case 1a we have the following upperbound,

b
x1,1ax|M

t

|,t

S

b
x1,1ax1,1

S
⇧

t�1
j=1,j 6=k

a
x|M

j

|,j bx1,j+1

S
⇧

t

i=1⇧
|M

i

|�1
k=2

b
x

k,i

a
x

k,i

S
 pt�1

max

b
x1,1ax1,1

S
⇧

t

i=1⇧
|M

i

|�1
k=2

b
x

k,i

a
x

k,i

S
.

(4.67)

where everytime we apply the pmax upperbound to the product of degrees of nodes, those

nodes also appear in the product
b
x1,1ax1,1

S ⇧t
i=1

⇧|M
i

|�1

k=2

b
x

k,i

a
x

k,i

S in (4.67). Note that to derive

(4.67) ⇧t�1

i=1,i 6=k

a
x|M

i

|,ibx1,i+1

S contributes a pt�2

max and
b
x1,1ax|M

t

|,t
S contributes a factor of pmax.

Now in Case 1b, we again have that for the last node we know there exists a k
1

and k
2

such that 1 < k
2

< |Mk1 | such that xk2,k1 = x|M
t

|,t. Furthermore by assumption, we know

that there exists a k 6= t such that x
1,1 = x|M

k

|,k and xk+1,1 6= x
1,1. We conclude that xk+1,1

must have appeared elsewhere and it follows from (4.65) that,

bx
k+1,1

ax|M
t

|,t

S

bx1,1ax|M
k

|,k

S
⇧t�1

j=1,j 6=k

ax|M
j

|,jbx1,j+1

S
⇧t

i=1

⇧|M
i

|�1

k=2

bx
k,i

ax
k,i

S
 (4.68)

pt�1

max

bx1,1ax1,1

S
⇧t

i=1

⇧|M
i

|�1

k=2

bx
k,i

ax
k,i

S
.

Finally in Case 2, we know the first node equals the last node x
1,1 = x|M

t

|,t. We then

can reduce (4.65) to

bx1,1ax1,1

S
⇧t�1

j=1

ax|M
j

|,jbx1,j+1

S
⇧t

i=1

⇧|M
i

|�1

k=2

bx
k,i

ax
k,i

S


bx1,1ax1,1

S
pt�1

max⇧
t
i=1

⇧|M
i

|�1

k=2

bx
k,i

ax
k,i

S
(4.69)

Denote the set Et to contain all of the reduced edge sets E⇤ with t node repetitions and

no more than L+1� t distinct nodes, where t � 2. We implicitly denote the dependence of
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Mi on E⇤ and define Pr(Et) to be the probability that there exists an E⇤ 2 Et such that all

of the edges in E⇤ exist..

Then from (4.65),(4.67),(4.68) and (4.69) we conclude that

Pr(Et) 
X

E⇤2Et

bx1,1ax1,1

S
pt�1

max⇧
t
i=1

⇧|M
i

|�1

k=2

bx
k,i

ax
k,i

S
 (4.70)

L3t�2pt�1

max(
a · b
S

)
P

|M
i

|�2t  L3t�2pt�1

max(
a · b
S

)L. (4.71)

where we get (a·bS ) by summing over all possible choices for the xi,j. Furthermore we get

a factor of L2t�2 as we can choose at most L di↵erent nodes to be xk,1 for each k > 1 and

xk,|M
k

| and each k < t. We then bound the di↵erent possible choices for the sizes of the t

Mk sets by Lt. Choose L = k⌧
2

loga·b
S

(N). Note that (a·bS )L = N
k⌧

2 .

Hence it then follows from (4.71) that

Pr(Et) 
L3t�2N

t⌧

2 Rt

N t⌧
=

L3t�2Rt

N t⌧
. (4.72)

where we invoked the fact that pmax  R
N⌧

. Note that if we choose L = O((logN)2), since

R is a constant, Pr(Et) ! 0 and hence if we fix t, the likelihood of the existence of a path

of length no greater than L with t node repetitions vanishes asymptotically as N ! 1.

Lemma 16 asymptotically guarantees that with high probability any path in a realization

of a Chung-Lu graph of less than O(log(N)) length cannot contain more than one distinct

simple cycle. Such a restriction will help us in counting the number of repeating node blocks.

Suppose we are guaranteed that there are a total of m node repetitions in a given path. If

we look at all potential repeating node blocks of less than O(log(N)) length, we know that

we can only place one distinct simple cycle in the entire node block. At this juncture, we

consider Figure 4.2.1 to help us identify the paths that Lemma 16 says cannot exist with

high probability.

In each section of Figure 4.2.1, we used colored rectangles to indicate the presence of a

node on a given path. For clarity the numbers within each of the rectangles indicate the

node’s identity. The unfilled spaces before, after and in between the colored rectangles
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Figure 4.2.1: Restriction on Repeating Edge Blocks for pmax ! 0. Each subcase (a-e)

indicates a collection of paths of su�ciently small length that may or may not exist in a

Chung-Lu random graph with high probability according to Lemma 16. The numbers within

each of the rectangles indicate the node’s identity. We denote certain nodes using orange

rectangles, as opposed to blue rectangles, to help identify when a simple cycle within a

particular path beings and ends. In case (a), we are considering a collection of paths that

contain a cycle formed by the node labeled 1. Subsequently in case (b), we consider a single

path that contains two cycles, one of the cycles begins and ends with node 1 and another

that contains node 2. In case (c), we consider two distinct cycles that contain the node 1.

Note that the color orange helps distinguish between the two di↵erent cycles. The first cycle

is relatively small and does not contain the node 2, while the second cycle does contain node

2. Case (d) illustrates the possibility that a single path could contain a concatenation of the

same cycle. And finally in case (e), we illustrate a subset of the paths considered in case (a),

where we consider specific nodes to the left and right of the cycle containing node 1. See the

text for details.
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(nodes) exemplify the idea that even without knowing all of the nodes in the path, we can

still invoke Lemma 16 to rule out the likelihood of its existence. The key observation is that

wherever we place the given distinct cycle, we cannot have additional di↵erent cycles in a

node block/path of su�ciently small length.

In part (a) of Figure 4.2.1 we decided the location of a particular cycle by visiting node

1 twice in two particular locations. But if we carelessly assign locations for additional nodes

and create another cycle, as indicated in Part (b) of Figure 4.2.1, this violates Lemma

16 because now we have two node repetitions (distinct cycles) within a path bounded by

O(log(N)) length.

Similarly (c) is another violation of Lemma 16. Here, as identifying when a cycle begins

and ends can be challenging, we used the color orange to emphasize the start and comple-

tion of a cycle. We have two distinct cycles, one cycle from the first two orange 10s and a

longer second cycle where the blue 2 is in between the two orange 10s.

However, as demonstrated in part (d), we can concatenate the same cycle over and over

again. This will not be a violation of Lemma 16. Ultimately though once we decide the

location of our cycle and the number of times we concatenate the same cycle to itself, we

cannot have another node repetition as illustrated in part (e) of Figure 4.2.1.

We now provide some intuition for how Lemma 16 helps us limit the number of repeat-

ing node blocks within a given path. First consider a path of fixed length r and break up

the path into portions each of length O(log(N)). Now whenever a repeating node block

occurs we have a limited number of choices on how to choose which nodes appear in the

repeating node blocks. Recall how we mapped our reduced edge set to a union of sets of

nodes, [Mi in Lemma 15. Note that we are constructing our repeating node block based on

edges already visited, so consider the auxilliary graph induced by these edges. Only nodes

that appear at the end or the beginning of a set Mi can have more than one incoming or

outgoing neighbor in this auxiliary graph. More precisely, if the path has at most m node
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repetitions, we can envision the construction of our auxiliary graph such that each node has

1 inward and outgoing edge and then m additional edges are added based on the nodes that

appear at the end and beginning of the Mi sets. Now from Lemma 16 we know that there

cannot be more than two distinct simple cycles in an O(log(N)) block of any given path.

Hence after we decide the location of a particular cycle in this block, one can show that

if a path has at most m node repetitions, then before the concatenation of the particular

cycles there are at most mkexp(m) possible ways of choosing nodes for k repeating nodes

blocks of arbitrary size that are contained within this O(log(N)) portion of the path. We

achieve this (non-trivial) bound as there are mk choices for deciding the inital choice in each

repeating node block (based on the constrained number of node repetitions in the path),

When choosing nodes in the repeating node blocks, we are restricted by the edges found in

the auxiliary graph, where most nodes have only one neighbor. As such one can show that,

we need to multiply the quantity mk by exp(m) as Lemma 16 prevents us from having many

di↵erent nodes that have more than degree 1 in the auxiliary graph. With this idea at hand,

we now present the desired Theorem.

Theorem 24. Consider a sequence of (expected) degree sequences d = (a,b) where pmax 
R
N⌧

, R is a fixed constant, ⌧ > 0 and a·b
S > 1. Let r = m⌧

2

⇤ loga·b
S

(N). Define Pr(y,G) to be

the number of paths of length r starting at node y for a given graph G 2 G, where no path

of length r in G has more than m+ 1 node repetitions and no path in G of length less than

⌧
2

⇤ loga·b
S

(N) has more than 1 node repetition. (Recall Lemma 16). For notational simplicity

define

⌘ = [⌧ log a·b
S

(N)]2(m+ 1)2

and suppose that

(⌘)
2

⌧⇤loga·b
S

(N)

<
a · b
S

,

then,

E(Pr(y,G)) 
byexp(

2mr
⌧

2 ⇤loga·b
S

(N))

)

1� S
a·b

(
a · b
S

)r�1exp(pmax
⌘( S

a·b)
2

1� S
a·b(⌘)

2
⌧⇤loga·b

S

(N)

).
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Proof. The proof is nearly identical to Theorem 19. Similar to equation (4.7), we have that

E(PL

r

(y,G))  (4.73)

b
y

exp(
2mr

⌧

2 ⇤ log a·b
S

(N))

)

X

k1�1
k1+

P
r

i=2(i�1)k
i

=r

✓ P
k
i

k1, ..., kr

◆
(⌘)

1+
2(i�1)k

i

⌧⇤log a·b
S

(N)

(

a · b
S

)

k1�1
⇧

i�2(
p
max

S

a · b )

k

i

where ⌘ = log⌧ a·b
S

(N)2(m+ 1)2 and r = m⌧
2

⇤ loga·b
S

(N). PL
r is the number of paths starting

from node y of length r, where require the last edge in the path to not be a repeating edge,

G 2 G, and the ki for i > 1 denote the number of repeated node blocks of length i� 1. The

key di↵erence is instead of having r(i�1)k
i possible choices for each of the ki repeating node

blocks of length i� 1, we claim that we have at most ([⌧ ⇤ loga·b
S

(N)]2(m + 1)2)
1+

2(i�1)
⌧⇤loga·b

S

(N)

choices for each repeating node block of length i�1. To see this note that by assumption, we

can only have at most one cycle on any path of length bounded by ⌧
2

⇤ loga·b
S

(N). Since there

at most m+1 node repetitions in the entire path of length r by construction, we claim that

any repeating node block of length i� 1  ⌧
2

⇤ loga·b
S

(N) has at most [⌧ ⇤ loga·b
S

(N)]2(m+1)2

choices for the node block repetition.

In particular, we can have at most one unique (simple) cycle in the entire ⌧
2

⇤ loga·b
S

(N)

portion of the path by assumption. There are at most m + 1 choices for a particular cycle

since there are only m + 1 node repetitions in the path of length r. Furthermore, we can

choose to place the cycle in at most i locations in a repeating node block of length i. In

addition, we can concatenate the same cycle at most i times. This yields i2(m+ 1) possible

choices for a repeating edge block of length i bounded by ⌧
2

⇤ loga·b
S

(N). For now we only

consider the (m + 1) choices for the initial node in the repeating node block. Note that

i  ⌧ ⇤ loga·b
S

(N) and we conclude that the number of possible choices for a repeating node

block is bounded by [⌧ ⇤ loga·b
S

(N)]2(m+ 1)2.

To apply a similar bound to a node block of any length, we divide the node block into

smaller node blocks each of length ⌧
2

⇤ loga·b
S

(N) and possibly one node block that is smaller

than the others. The number of choices for this larger repeating node block is then bounded

by ([⌧ ⇤ loga·b
S

(N)]2(m+1))
1+

2(i�1)
⌧⇤loga·b

S

(N)

by considering the number of possible choices for each

smaller repeating node block of length bounded by ⌧
2

⇤ loga·b
S

(N).

We did not consider the number of choices for the repeating node blocks that occur

aside from the appearance of the cycle and the first node in each repeating node block; we
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consider this issue at this juncture. One can show that for every portion of the path of length

⌧
2

⇤ loga·b
S

(N), we need to multiply [⌧ ⇤ loga·b
S

(N)]2(m+ 1)2 by exp(2m). More precisely, the

number of choices for nodes in the repeating node blocks comes from the number of paths of

fixed length from an arbitrary node that do not have node repetitions in the auxiliary graph

formed by the edges we already visited in constructing a given path. More succinctly, we

can construct our auxiliary graph by fixing the number of nodes to be, N⇤, and having each

node possess one incoming and one outgoing edge. Then we can add up to m additional

edges to the auxiliary graph based on the upperbound of the m node repetitions in the path.

Consequently, we can define fd(m) to be an upperbound for the number of paths without

node repetitions of length d from any fixed node in this auxiliary graph constructed with

m additional edges. Suppose the initial node that maximizes this quantity has out-degree

x
1

+ 1. It follows that

fd(m)  max
x1m,x12Z

x1+1X

i=1

fd�1

(m� x
1

) = max
x1m,x12Z

(1 + x
1

)fd�1

(m� x
1

),

where the first inequality comes from the fact that since we are only considering paths

without node repetitions. More specifically by considering the particular node, with out-

degree 1 + x
1

, and graph that maximizes fd(m), we can instead bound this quantity by the

number of paths of length d � 1 coming from this node’s neighbors, where we essentially

delete the node as we do not consider paths with node repetitions. Note that if our auxiliary

graph with no additional edges, then we can let fd⇤(0) = 1 for any d⇤. Furthermore, since

the maximum number of paths of length 0 from a given node is bounded by 1, we get that

f
0

(m⇤) = 1 for any m⇤. Proceeding inductvely we conclude that,

fd(m)  maxP
d

i=1 xi

m
x
i

�0,i2{1,...,d}

⇧d
i=1

(1 + xi)  (1 +
m

d
)d  exp(m),

where the second to last inequality can be proven by induction on d. As we consider

paths from the auxiliary graph before and after the appearance of the concatenation of cycles

in the node block, we get a factor of exp(2m). Since we have r
⌧

2 ⇤loga·b
S

(N)

such portions in

our path, this yields a total of exp( 2mr
⌧

2 ⇤loga·b
S

(N))

) possible choices. Multiplying (4.73) by this
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quantity accounts for such choices in all possible repeating node blocks that may exist in our

path. The proof then proceeds identically to that of Theorem 19 and we omit the details.

4.3 PARTITIONED CHUNG-LU MODEL

We now seek to extend our results to a generalization of the Chung-Lu model. Similar models

have been defined in context to community detection for undirected graphs [21, 22, 48, 60, 65].

These models are special cases of the model below, where we construct our model in a general

sense such that analogous proof statements still hold.

Definition 10. We define the Chung-Lu Partitioned Random Graph Model such that we are

given a collection of expected degree sequences for submatrices of our adjacency matrix. We

construct an edge from node i to j by means of an independent Bernoulli random variable

pij where pij is proportional to the product of the expected out-degree of node i and expected

in-degree of node j of the corresponding submatrix.

The first result we prove holds in considerable generality. Therefore, we introduce the

following (more general) definition.

Definition 11. We define the K-Partitioned Random Graph Model such that we are given

a collection of expected degree sequences for submatrices of our adjacency matrix. We assign

each node to one of K groups (or communities), denoted by the function G(·). We then

construct an edge from node i to j by means of an independent Bernoulli random variable

pij where pij depends on G(i) and G(j) .

We will find that the following norm will be helpful in proving bounds for the dominating

eigenvalue in the Chung-Lu Partitioned Random Graph model. For completeness, we provide

the following definition.

Definition 12. Consider a vector x 2 RN⇥1. Denote |x| as the l1 norm (or taxicab norm

for the vector). That is |x| =
PN

i=1

|xi|. Furthermore for a matrix B 2 RN⇥N , we can also

define |B| to be the l1 norm of the matrix where |B| =
P

i,j |bij|.
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For simplicity we will consider the case where there are two communities (analogous

results hold when there are more than two communities).

Unsurprisingly, computing the number of paths and cycles becomes much more chal-

lenging when we incorporate partitions (communities) into our random graph model. We

therefore introduce the following lemma that will facilitate the computation of otherwise

unweildy expressions.

Lemma 17. Consider the 2-Partitioned Random Graph Model. Denote the number of paths

from node i
0

to node ir of length r as Pr[i0 ! ir]. and define pij(x, y) to be pij if node i in

group x and node j in group y and 0 otherwise. Then,

E(Pr[i0 ! ir]) = |
X

i1,...,ir�1

[⇧r�1

k=1

A(ik, ik+1

, ik)]p| (4.74)

where | · | denotes the taxicab norm, ik�1

= [(i
1

, i
2

), (i
2

, i
3

), ..., (ik�1

, ik)]

and if (i, j) /2 i then,

A(i, j, i) =

 p
ij

(1,1) p
ij

(1,1) 0 0

0 0 p
ij

(2,1) p
ij

(2,1)
p
ij

(1,2) p
ij

(1,2) 0 0

0 0 p
ij

(2,2) p
ij

(2,2)

!

else if (i, j) 2 i,

A(i, j, i) = Gij =

 G
ij

(1,1) G
ij

(1,1) 0 0

0 0 G
ij

(2,1) G
ij

(2,1)
G

ij

(1,2) G
ij

(1,2) 0 0

0 0 G
ij

(2,2) G
ij

(2,2)

!

where Gij(c, d) = 1 if node i is in group c and node j is in group d and Gij(c, d) = 0

otherwise.

and

p = [pi0i1(1, 1), pi0i1(2, 1), pi0i1(1, 2), pi0i1(2, 2)]
T

Furthermore for arbitrary i
0

, i
1

, i
2

, consider the rth component of A(i
1

, i
2

)p.

• If r = 1 this corresponds to the probability of a path under the constraint that G(i
2

) =

1, G(i
1

) = 1.

• If r = 2 this corresponds to the probability of a path under the constraint that G(i
2

) =

1, G(i
1

) = 2.
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• If r = 3 this corresponds to the probability of a path under the constraint that G(i
2

) =

2, G(i
1

) = 1.

• If r = 4 this corresponds to the probability of a path under the constraint that G(i
2

) =

2, G(i
1

) = 2.

Proof. We proceed by induction starting with r = 2.

So consider
0

BBBBBB@

pi1i2(1, 1) pi1i2(1, 1) 0 0

0 0 pi1i2(2, 1) pi1i2(2, 1)

pi1i2(1, 2) pi1i2(1, 2) 0 0

0 0 pi1i2(2, 2) pi1i2(2, 2)

1

CCCCCCA

0

BBBBBB@

pi0i1(1, 1)

pi0i1(2, 1)

pi0i1(1, 2)

pi0i1(2, 2)

1

CCCCCCA
=

=

0

BBBBBB@

pi0i1(1, 1)pi1i2(1, 1) + pi0i1(2, 1)pi1i2(1, 1)

pi0i1(1, 2)pi1i2(2, 1) + pi0i1(2, 2)pi1i2(2, 1)

pi0i1(1, 1)pi1i2(1, 2) + pi0i1(2, 1)pi1i2(1, 2)

pi0i1(1, 2)pi1i2(2, 2) + pi0i1(2, 2)pi1i2(2, 2)

1

CCCCCCA

Each entry of the vector classifies the probability of a path from i
0

to i
2

under di↵erent

assumptions. It then follows from the definition that the first entry assesses the probability

of a path where i
2

is in group 1 and i
1

is in group 1. The second entry details paths where i
2

is group 1 and i
1

is in group 2. The third entry specifies paths where i
2

is in group 2 and i
1

is in group 1. And finally, the fourth entry specifies where i
2

is in group 2 and i
1

is in group

2. In the case (i
0

, i
1

) = (i
1

, i
2

), then the existence of the path does not depend on the edge

(i
1

, i
2

) and we instead multiply the vector p by the matrix Gi1i2 (as defined in the statement

of Lemma 17. It then follows by linearity that taking the taxicab norm of the sum of such

vectors (where we sum over all possible choces of i
1

) will be the expected number of paths

from i
0

to i
2

.

Inductive Step: Suppose we were given a vector with the probability of the existence

of a paths of length k (consisting of nodes i
0

, ..., ik) where each of the four components of the

vector denote the probability where ik is in group y and ik�1

is in group x. We symbolically
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denote this quantity as pk(x, y). Now to compute the probability of the existence of a path

of length k + 1, we then consider

0

BBBBBB@

pi
k

i
k+1

(1, 1) pi
k

i
k+1

(1, 1) 0 0

0 0 pi
k

i
k+1

(2, 1) pi
k

i
k+1

(2, 1)

pi
k

i
k+1

(1, 2) pi
k

i
k+1

(1, 2) 0 0

0 0 pi
k

i
k+1

(2, 2) pi
k

i
k+1

(2, 2)

1

CCCCCCA

0

BBBBBB@

pk(1, 1)

pk(2, 1)

pk(1, 2)

pk(2, 2)

1

CCCCCCA

The output of which will yield a vector with four entries each considering di↵erent cases

based on the group membership of the node ik and ik+1

. Alternatively, if the edge (ik, ik+1

)

has been already visited earlier in the path, we multiply the vector by the matrix Gi
k

i
k+1

.

It then follows by linearity that taking the taxicab norm of the sum of such probabilities

of existence of paths of length k (over all possible choces of i
1

, ..., ik) will be the expected

number of paths from i
0

to ik+1

.

To bound the expected number of paths of length r under this partitioned random graph

model, we will want to express the bounds of the norm of a matrix vector product in terms

of the dominating eigenvalue of the matrix. As such, we need the following result (see [44],

page 494). Since the idea behind their proof is quite succinct, for completeness, we include

their proof in this work.

Lemma 18. Let B 2 RN⇥N be a (entry-wise) nonnegative matrix and let x be the eigen-

vector corresponding to the dominating eigenvalue. Assume that the eigenvector x is strictly

positive. Furthermore let b(m)

ij denote the i,jth entry of Bm. Then for all integers m and

integers j such that 1  j  N , we have that

nX

i=1

b(m)

ij  maxk xk

mink xk
⇢(B)m

and
mink xk

maxk xk
⇢(B)m 

nX

j=1

b(m)

ij
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Proof. Consider the eigenvector corresponding to the dominating eigenvalue �max = ⇢(B)

and its eigenvector x. Then we have that for any j,

min
k

xk

X

i

b(m)

ij 
X

i

b(m)

ij xi = [Bmx]j = ⇢(B)mxj  ⇢(B)m max
j

xj

=)
X

i

b(m)

ij  ⇢(B)m
maxk xk

mink xk

With the above Lemma at hand, we need to bound maxk xk and mink xk for the domi-

nating eigenvector.

Lemma 19. Let rmax, cmax be the maximum row sum and column sum of B 2 Rn⇥n. In

addition, suppose every entry is at least equal to m > 0. Denote ⇢(B) = �max. Since by the

Gresgorin Disc Theorem �max  min(rmax, cmax). Then

m

min(cmax, rmax)�m(n� 1)
 m

�max �m(n� 1)
 mink xk

maxk xk

and
maxk xk

mink xk
 �max �m(n� 1)

m
 min(cmax, rmax)�m(n� 1)

m

Proof. Consider the eigenvector x and require that
Pn

j=1

xj = 1 where we are guaranteed

that each entry in the eigenvector is non-negative by the Perron-Frobenius Theorem. Then

we have for all k,

m =
nX

j=1

mxj 
nX

j=1

bjkxj = �maxxk

It then follows that for all k
m

�max
 xk

Consequently,
m

�max
 min

k
xk

. Furthermore, since
P

j xj = 1, we have that

max
k

xk  1� m ⇤ (n� 1)

�max
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This implies that
m

�max �m(n� 1)
 mink xk

maxk xk

and
maxk xk

mink xk
 �max �m(n� 1)

m

We then get the immediate corollary,

Corollary 16. Let B be an (entry-wise) non-negative matrix, B2 be an entry-wise positive

matrix and let x be the eigenvector corresponding to the dominating eigenvalue. Furthermore

let b(m)

ij denote the i,jth entry of Bm .Let cmax be the maximum row sum of B2 2 Rn⇥n and

furthermore suppose every entry is at least equal to 1, (hence rmax � n). Then

[
nX

j=1

b(m)

ij ]
1
m  cmax

1
m⇢(B)

and

(cmax)
� 1

m⇢(B)  [
nX

j=1

b(m)

ij ]
1
m

We now prove our desired result regarding the expected number of paths of length r.

Theorem 25. Consider a realization of a graph in the 2-Partitioned Chung-Lu random graph

model. Denote Pr as the number of paths of length r. Define

P =

0

BBBBBB@

a

(11)·b(11)

S11

a

(21)·b(11)

S21
0 0

0 0 a

(12)·b(21)

S12

a

(22)·b(21)

S22

a

(11)·b(12)

S11

a

(21)·b(12)

S21
0 0

0 0 a

(12)·b(22)

S12

a

(22)·b(22)

S22

1

CCCCCCA

.

Furthermore suppose for all choices of m and i
1

, ..., im+1

, that there exists an ↵ such that

0

@
b
(1,1)
max

b
(1,1)
max

0 0

0 0 b
(2,1)
max

b
(2,1)
max

b
(1,2)
max

b
(1,2)
max

0 0

0 0 b
(2,2)
max

b
(2,2)
max

1

A⇧m
k=1

Gi
k

i
k+1

0

B@
a
(1,1)
max

/S11 0 0 0

0 a
(2,1)
max

/S21 0 0

0 0 a
(1,2)
max

/S12 0

0 0 0 a
(2,2)
max

/S22

1

CA  ↵P (4.75)
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where Gi
k

i
k+1

is defined in Lemma 17 and the inequality holds entry-wise. Furthermore

assume that ⇢(P) > 2.

Then

E(Pr)  8 ⇤ S ⇤ cmax ⇤ ⇢(P)r�1 ⇤ exp( r2↵⇢(P)�1

1� r⇢(P)�1

)

where cmax is the maximum column sum of P2 and the vectors a(x,y),b(x,y) are the cor-

responding expected row and column sums of the partitions in A =

0

@A
11

A
12

A
21

A
22

1

A as defined

in the Partitioned Chung-Lu random graph model.

Remark. While condition (4.75) at first look may appear like a di�cult condition to

satisfy, this in fact is not so. Upon careful observation of Lemma 17, Gij consists of two

columns that are from the standard unit basis and two columns that are zero. Consequently

when we perform a matrix vector multiplication, the taxicab norm resulting vector cannot

be greater than the taxicab norm of the input. Equivalently, we can write for any vector

v, that |Gijv|  |v|. Now a matrix product of the form (4.75) indicates a repeating edge

block of length m. If ⇢(P) ! 1, then since G has the property that |Gijv|  |v|, we can

often satisfy condition (4.75) with ease. It is worth mentioning that even if we cannot satisfy

(4.75), we could still prove a useful generalization of Theorem 25 by requiring that for each

m we can find an ↵m such that

0

@
b
(1,1)
max

b
(1,1)
max

0 0

0 0 b
(2,1)
max

b
(2,1)
max

b
(1,2)
max

b
(1,2)
max

0 0

0 0 b
(2,2)
max

b
(2,2)
max

1

A⇧m
k=1

Gi
k

i
k+1

0

B@
a
(1,1)
max

/S11 0 0 0

0 a
(2,1)
max

/S21 0 0

0 0 a
(1,2)
max

/S12 0

0 0 0 a
(2,2)
max

/S22

1

CA  ↵mP
m. (4.76)

Alternatively, we can also satisfy (4.75), if the product of the norms of the left and right

matrices on the left hand side of (4.75), are su�ciently small, analogous to the case where

pmax ! 0. With this in mind, we now provide the proof.

Proof. The proof is similar to Theorem 19. We first try to construct an upperbound to

the expected number of paths of length r where there are no repeating edges. Denote this

quantity by Pr,0.

By Lemma 17, we find that
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E(Pr,0) 

|
X

i0 6=
... 6=i

r

⇧r�1

k=1

0

@
p
i

k

i

k+1
(1,1) p

i

k

i

k+1
(1,1) 0 0

0 0 p
i

k

i

k+1
(2,1) p

i

k

i

k+1
(2,1)

p
i

k

i

k+1
(1,2) p

i

k

i

k+1
(1,2) 0 0

0 0 p
i

k

i

k+1
(2,2) p

i

k

i

k+1
(2,2)

1

A

0

@
p
i0i1 (1,1)

p
i0i1 (2,1)

p
i0i1 (1,2)

p
i0i1 (2,2)

1

A |

(4.77)

Recall that A =

0

@A
11

A
12

A
21

A
22

1

A. We define a(x,y)i
k

to be 0 if ik does not belong to group x.

If ik does belong to group x, then a(x,y)i
k

will be the expected row sum corresponding to node

ik in the submatrix Ayx. Analogously, we define b(x,y)i
k

to be 0 if ik does not belong to group

y. If ik does belong to group y, then b(x,y)i
k

will be the expected column sum corresponding

to node ik in the submatrix Ayx. Consequently by the definition of the Chung-Lu random

graph, we have that

0

@
p
i

k

i

k+1
(1,1) p

i

k

i

k+1
(1,1) 0 0

0 0 p
i

k

i

k+1
(2,1) p

i

k

i
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p
i

k

i

k+1
(1,2) p

i

k

i

k+1
(1,2) 0 0

0 0 p
i

k

i

k+1
(2,2) p

i

k

i

k+1
(2,2)

1

A =

0

BB@

a
(1,1)
i

k+1
/S11 0 0 0

0 a
(2,1)
i

k+1
/S21 0 0

0 0 a
(1,2)
i

k+1
/S12 0

0 0 0 a
(2,2)
i

k+1
/S22

1

CCA

0

BB@

b
(1,1)
i

k

b
(1,1)
i

k

0 0

0 0 b
(2,1)
i

k

b
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k

b
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i

k

b
(1,2)
i

k

0 0

0 0 b
(2,2)
i

k

b
(2,2)
i

k

1

CCA (4.78)

Because this is rather unweildy, we will denote

Ai
k+1

=

0

BB@

a
(1,1)
i

k+1
/S11 0 0 0

0 a
(2,1)
i

k+1
/S21 0 0

0 0 a
(1,2)
i

k+1
/S12 0

0 0 0 a
(2,2)
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k+1
/S22

1

CCA (4.79)
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k

=

0
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Now it follows from equation (4.77), (4.79) and (4.80),

E(Pr,0)  |
X

i0 6=
... 6=i

r

⇧r�1

k=1

Ai
k+1

Bi
k

0

BBBBBB@

pi0i1(1, 1)

pi0i1(2, 1)

pi0i1(1, 2)

pi0i1(2, 2)

1

CCCCCCA
| (4.81)

Which we can rewrite as,
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Recall from (4.79) and (4.80) that
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And from the statement of this Theorem, Theorem 25, recall the definition of P. It

follows that by summing over all possible choices of nodes for ik that,

P =
NX

i
k

=1

Bi
k

Ai
k

(4.84)

Hence we conclude from (4.82) that,
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where Sij denotes the expected sum of entries in the submatrix Aij. Now by definition

of P, P4 is an entry-wise positive matrix where each entry is bounded below by 1. Define

cmax to be the maximum column sum of P2. It follows by Corollary 16, that each column

sum of Pr�1 is bounded above by cmax⇢(Pr�1). Hence we conclude that
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E(Pr,0)  4cmax(S11

+ S
12

+ S
21

+ S
22

)⇢(Pr�1)

We can simplify this by defining S
11

+ S
12

+ S
21

+ S
22

= S and get that,

E(Pr,0)  4cmaxS⇢(P)r�1

Now we repeat the argument utilized in Theorem 20 counting paths with duplicate edges.

We will compute the bound when there is precisely one duplicate edge (where the dupli-

cate edge is not in the end).

Suppose that the repeating edge in the path is the mth edge.

Then we have that
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Using the argument as before (4.78),(4.79),(4.80) we get that
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where S = (S
11
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, S
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)

But by assumption 4.75, we conclude that

E(Pr,1,m)  |Pr�m�1↵PPm�2S|  ↵|Pr�2S|  4Scmax↵⇢(P)r�2

Denote the number of expected paths of length r where the last edge just not repeat as

E(PL
r ).

It follows using an anlogous argument from Theorem 19 we have the following inequality,

where we denote the expected number of paths of length r where the last edge does not repeat

E(PL
r ) and ki is the number of repeating edge blocks of length i� 1,

E(PL
r )  4Scmax
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Then continuing with the argument in Theorem 19, it follows that,
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E(PL
r )  4Scmax⇢(P)r�1exp(

↵[r2⇢(P)�1]

1� r⇢(P)�1

) (4.90)

And we conclude that

E(Pr) 
rX

i=1

E(PL
i )  8Scmax⇢(P)r�1exp(

↵[r2⇢(P)�1]
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)

as ⇢(P) > 2.

We now have the following concentration result.

Corollary 17. Consider a realization of a graph A in the 2-Partitioned Chung-Lu random

graph model. Denote Pr as the number of paths of length r. Define
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Furthermore suppose that condition (4.75) from Theorem 25 holds.

Then for every ✏ > 0, there exists �
1

,�
2

such that if 1

N < �
1

and log(N)2⇢(P)�1 < �
2

,

then

Pr(⇢(A)  (1 + ✏)⇢(P)) � 1� ✏.
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Proof. The proof is analogous to Theorem 20. Invoking Theorem 25 where we consider paths

of length r = log(N)2, Lemma 10 and Markov’s Inequality yield the result.

In a similar spirit to Corollary 17, we anticipate that a similar proof technique will yield

analogous concentration results regarding the lower bound for the dominating eigenvalue in

the case when ⇢(P) ! 1. In addition, Lemma 16, the lemma that restrict the number of

simple cycles that can appear on a path of a prescribed length, holds for an ensemble of ran-

dom graph models, not just the Chung-Lu model. As such, we also expect that concentration

results regarding the dominating eigenvalue also hold, similar to the case where pmax ! 0 in

the prior section, where instead we demand that maxx,y max a

(x,y)

S
x,y

maxx,y maxb(x,y) ! 0.

To further attest to the validity of Theorem 25 and Corollary 17, we considered five di↵erent

expected partitioned degree sequences associated with a network containing 200, 400, 600, 800

and 1000 nodes. For each expected partitioned degree sequence, we generated 100 realizations

from the 2-Partitioned Chung-Lu random graph model. Then we computed the dominating

eigenvalue from each of these realizations. In Figure 4.3, we plotted box plots corresponding

to the di↵erence from the observed dominating eigenvalue and ⇢(P) in pink and the di↵er-

ence between the dominating eigenvalue and a·b
S in blue. As suggested by Figure 4.3, the

prediction from a·b
S appears increasingly inaccurate as we increase the size of the network, in

contrast to the predictor ⇢(P), which appears to improve as we consider increasingly large

networks.

Determining the dominating eigenvalue of the adjacency matrix can have a profound

e↵ect on the underlying dynamics of the network. For example consider a susceptible-

infected-susceptible (SIS) epidemiological model, where at each step an infected node infects

a neighbor with probability ��t and recovers (from sick to healthy) with probability �t,

where �t denotes the length of the time step. We then have the following result,

Theorem 26 (Ganesh, Massoulie, Towsley [39]). Consider an SIS epidemiological model,

where infected nodes infect neighbors with probability ��t at each time step and recover with

probability �t. Furthermore, suppose our adjacency matrix A 2 RN⇥N is symmetric. Then

for �t su�ciently small, if ⇢(A) < 1

� , then the expected (stopping) time for the network to
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Figure 4.3.1: The x axis indicates networks of di↵erent sizes generated by the 2-Partitioned

Chung-Lu model. The y axis denotes the di↵erence between the dominating eigenvalue and

the chosen predictor. The blue box and whisker plots use the predictor a·b
S and the pink box

and whisker plots use the predictor ⇢(P).

be infection free from any initial condition is O(log(N)).

While our adjacency matrices are not symmetric, Theorem 26 relates the dominating

eigenvalue of the adjacency matrix to the stability of the healthy state and provides a frame-

work for constructing cases where di↵erences in the spectral radius of the adjacency matrix

between the Chung-Lu and Partitioned Chung-Lu model could have severe repercussions on

the dynamics.

Consequently in Figure 4.3, we generated three realizations from the 2-Partitioned

Chung-Lu models all with approximately the same value for a·b
S , but di↵erent values for

⇢(P), and simulated 100 trials of the SIS epidemiolgocial stochastic process for each choice

of � 2 {.05, .06, .07} with the initial condition that half of our network starts out infected.

As expected ⇢(P) accurately predicted the network resilience to the pathogen; in contrast,

the predictor a·b
S , could not e↵ectively discern di↵erences among the networks.

As another example to further illustrate the importance of the spectral radius of the

adjacency matrix on the dynamics of the network, we consider the Kuramoto model. We
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Figure 4.3.2: Distribution of Stopping Times in the SIS Model for Networks with Commu-

nity Structure. The three colored box and whisker plots correspond to the three di↵erent

networks, the x axis indicates the value for the paramater � and the y axis indicates the

stopping time when nodes can no longer be infectious.
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can define the Kuramoto model with and without noise. In particular if there is no noise,

then the dynamics are described by the following system of di↵erential equations where

d✓i
dt

= !i +K
X

j

Aij sin(✓i � ✓j) (4.91)

i identifies the node in our network, A is our adjacency matrix, !i is the ’natural fre-

quency’ of node i andK is a (non-negative) parameter indicating coupling strength. In terms

of applications, the Kuramoto model is a popular toy model for considering the internactions

of a biological neural network. In this context, we are often interested if the neurons exhibit

synchronous spiking, which may be indiciative of schizophrenia, Parkinson’s or Alzheimer’s

disease. Mathematically, we can construct a synchrony parameter, r ,by representing each

✓i as a vector on the unit circle. We then take the magnitude of the weighted sum of the

vectors, where we weight the vector based on the out-degree of node i, and then normalize

the magnitude so that the synchrony parameter can range only from 0 to 1. If the network

behaves in a synchronous fashion then we expect the sum of such vectors to be very large

and the synchrony parameter to be approximately 1. If in fact the vectors associated with

the ✓i point in an ensemble of di↵erent directions, we expect cancellation and anticipate that

r will be close to 0.

More succinctly we define our synchrony parameter r as,

r = k
PN

j=1,m=1

Ajmei✓m

S
k, (4.92)

where S is the number of edges in our network and k · k is the euclidean norm. We now

have the following result,

Theorem 27 (Restrepo, Ott and Hunt [72]). Given an adjacency matrix A 2 RN⇥N , suppose

that the natural frequences !i are randomly chosen, independent from node i. Furthermore

suppose the !i follow a unimodal distribution ⌦(!) which is symmetric about the maximum

and the maximum value of ⌦(!) occurs without loss of generality at ! = 0. Then asymptot-

ically as N ! 1, the onset of solutions where the synchrony parameter r > 0, as defined in

(4.92) for the Kuramoto model (4.91) starts when the coupling K > 2

⇡⌦(0)⇢(A)

.
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Informally, the spectral radius determines the stability of the asynchronous state in the

network. Consequently in Figure 4.3, we numerically tested the impact of the spectral

radius of realizations from the 2-Partitioned Chung-Lu random graph model, where all three

networks attain roughly the same value for a·b
S , but have di↵erent values for ⇢(P). We then

run 50 simulations of the Kuramoto dynamics for each network and record the distribution

of the time average of the synchrony parameter r. As anticipated by Theorem 27, ⇢(P)

correctly predicts which networks exhibit greater amounts of synchrony when K is not too

large.
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Figure 4.3.3: Distribution of the Synchrony Parameter in the Kuramoto Model with Noise.

The three colored box and whisker plots correspond to the three di↵erent networks and the

y axis marks the synchrony paramater r. Here, we added independent white gaussian noise

to each node in the the Kuramoto model (4.91) and chose random initial conditions each of

the di↵erent trials.
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5.0 CONCLUSIONS

The challenge of identifying families of graphs that behave similarly under a prescribed

dynamical process arises in numerous applications including ecology, epidemiology and neu-

roscience. More specifically, prior evidence has demonstrated that the degree sequence of

a graph can impact the dynamical behavior of the network. In order to better understand

the intricacies of the dependence of the degree sequence on the dynamics, we initially con-

sidered the Uniform Model, where we randomly construct a graph that realizes a given

bi-degree sequence in an unbiased fashion. Since we want to numerically observe the impact

of the degree sequence on the dynamics, in the first two chapters we devoted our e↵orts

to build machinery that would assist us in constructing random realizations of networks in

the Uniform Model. Initially in Chapter 2, we developed techniques to quickly determine

if we can construct a graph from a given degree sequence. Employing our easily verifiable

su�cient conditions for graphicality can not only assist us in quickly identifying graphic de-

gree sequences but also can supplement existing techniques for randomly generating degree

sequences by guaranteeing that the degree sequence output will be graphic as well. [23, 53].

To assist us in sampling graphs from the Uniform Model, in Chapter 3 we provided a

novel method for constructing asymptotics up to arbitrary order for the number of graphs

that realize a given degree sequence,extending the work of Greenhill, McKay and Wang [42].

More specifically, Greenhill, McKay and Wang[42] provide an asymptotic enumeration result

when the maximum degree is o(S
1
3 ); in constrast, our asymptotic enumeration results apply

to degree sequences allowing for the maximum degree to be O(S
1
2�⌧ ) where S is the sum of

the number of edges and the positive variable ⌧ depends on the degree sequence d = (a,b).

As many real world networks contain a handful of nodes of large degree, scaling larger than

o(S
1
3 ), we expect that our results will be helpful for generating realizations of graphs in the
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uniform model with degree sequences similar to those observed in real world networks.

Our primary motivation for pursuing the asymptotic enumeriation problem dealt with

constructing realizations of the uniform random graph model to perform numerical sim-

ulations to comprehend the impact of the degree sequence on the underlying dynamics;

nevertheless, our asymptotic results have considerable theoretical significance as well. Iden-

tifying unique properties of di↵erent random graph models is important for selecting the

appropriate random graph model for a given application. For this purpose, we can invoke

our asymptotic enumeration results to find probabilities for the likelihood two nodes share

an edge and compare these probabilities with other random graph models. We demonstrated

in Section 3.7 that the probability that two nodes share an edge in the Uniform Model con-

verges to the probability given in the Chung-Lu random graph model with a multiplicative

error bounded above by (1 +O(S�2⌧ )).

Such conclusions regarding the similarity between the Uniform Model and the Chung-Lu

random graph model should be taken with care. In particular, we stress that the speed of the

convergence depends on the degree sequence and there are many degree sequences where the

probabilities in the Uniform Model converge rather slowly to the probabilities in the Chung-

Lu model. This concern has been numerically demonstrated in [76] where they considered

the impact of di↵erent ’uniform’ random graph models on the network architecture. The

implications regarding the similarity (or lack thereof) of di↵erent ’uniform’ models a↵ects

not only problems pertaining to stability of solutions of dynamical or stochastic processes on

families of networks, but also includes community detection where a ’uniform’ random graph

model classifies nodes into communities depending on whether the graph under consideration

deviates from typical realizations of the random graph model [36, 61].

Due to the aforementioned di�culty in choosing a particular random graph model to un-

derstand real world networks, we want to prove results regarding an assortment of random

graph models in addition to the Uniform Model and focus on the related Chung-Lu model.

Consequently in Chapter 4, we provide rigorous and novel consentration results regarding

the relative error of the dominating eigenvalue of the adjacency matrix from the asymptotic

limit in two cases, where either the likelihood of any two nodes sharing an edge vanishes in

the limit or the quantity a·b
S diverges. The proof of the conjecture posed practical mathemat-
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ical challenges as the vast majority of eigenvalue, eigenvector results deal with symmetric

matrices; in contrast, we could not make such symmetry assumptions regarding our adja-

cency matrix. Furthermore, we emphasize that our results not only provide asymptotics for

the dominating eigenvalue, but also provide useful concentration bounds for the dominating

eigenvalue of the adjacency matrix in a graph with finitely many nodes. We then presented a

novel approach for extending our asymptotic eigenvalue results to the Partitioned Chung-Lu

random graph model where each partitioned submatrix has an expected degree sequence that

follows the Chung-Lu random graph model, allowing for community structure in the network.

Since the dominating eigenvalue of the adjacency matrix can correspond to the stability of

solutions of certain dynamical processes, we demonstrated through numeric simulation the

impact of partitioning or community structure regarding the onset of synchrony in the Ku-

ramoto Model, a toy model for biological neural networks and the stability of the endemic

state in an SIS (susceptible-infected-susceptible) model for epidemiological networks.

Our results addressing some of the challenges of modeling real world networks led to a

number of open problems as well. Foremost in the uniform sampling problem, although our

asymptotic results pertaining to the number of graphs that realize a given degree sequence

can assist greatly in constructing samples from the uniform model, proving theoretical re-

sults regarding the actual computational complexity of implementing a particular sampling

procedure remains an open problem. We also proved in this work that the uniform model

converges to the Chung-Lu model. Since the convergence may not necessarily be fast, we

want to stress the importance of choosing the correct random graph model along with the

correct parameters when analyzing real world networks. Of course identifying the random

graph model that appropriately emulates the empirically observed real world network seems

like a highly non-trivial,partially ill-defined, and yet important problem for the practitioner.

This challenge implicitly appears in selecting parameters for the Partitioned Chung-Lu Ran-

dom Graph Model. When deciding the parameters for the Partitioned Chung-Lu random

graph model to fit our empirically observed network, how should we partition our network

and how many partitions should we choose?

Recall that we introduced the Partitioned Chung-Lu random graph model primarily be-

cause the model enabled us to extend our eigenvalue consentration results from the Chung-Lu
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model to allow for networks with possibly intricate community structure. Can we generalize

our results pertaining to the concentration results of the dominating eigenvalue to other cases

besides Chung-Lu type random graphs? Even though the Chung-Lu probabilites simplified

the mathematical analysis regarding the asymptotic limit for the dominating eigenvalue, the

main obstacle should stem from the fact that our adjacency matrix may not be symmetric,

not the actual asymptotic limit of the dominating eigenvalue. Consequently, we expect that

analogous eigenvalue concentration results should hold for other random graph models as

well. We can also consider extensions of our eigenvalue results in terms of weighted directed

graphs. In epidemiological networks certain individuals are more prone to infection than

others, which we can model using weighted edges in our graph. Consequently, can we extend

our eigenvalue concentration results to random graph models allowing for certain distribu-

tions of positive edge weights? We assert that these questions are exciting directions for

further inquiry;but in any case, we anticipate that the results proven in this work: our easy

to use su�cient conditions for guaranteeing graphicality of a collection of degree sequences,

the novel procedure for constructing enumerative asymptotics of graphs with a prescribed

degree sequence for sampling graphs from the uniform model, and the dominating eigenvalue

concentration results for the adjacency matrix of directed graphs, will greatly assist us in

our endeavor to better grasp the intricacies of modeling dynamical processes on real world

networks.
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amples for sequential importance sampling of binary contingency tables. Algorithmica,
64(4):606–620, 2012.

[15] Jose H Blanchet et al. E�cient importance sampling for binary contingency tables. The
Annals of Applied Probability, 19(3):949–982, 2009.

[16] Joseph Blitzstein and Persi Diaconis. A sequential importance sampling algorithm for
generating random graphs with prescribed degrees. Internet Mathematics, 6(4):489–522,
2011.

[17] David Burstein, Franklin Kenter, Jeremy Kun, and Feng Shi. Interception in distance-
vector routing networks. To Appear in the Journal of Complex Networks, 2016.

[18] David Burstein and Jonathan Rubin. Su�cient conditions for graphicality of bidegree
sequences. arXiv preprint arXiv:1511.02411, 2015.

[19] Grant Cairns, Stacey Mendan, and Yuri Nikolayevsky. A sharp refinement of a result
of alon, ben-shimon and krivelevich on bipartite graph vertex sequences. arXiv preprint
arXiv:1403.6307, 2014.

[20] E Rodney Canfield, Catherine Greenhill, and Brendan D McKay. Asymptotic enumer-
ation of dense 0–1 matrices with specified line sums. Journal of Combinatorial Theory,
Series A, 115(1):32–66, 2008.

[21] Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs
with general degrees in the extended planted partition model. Journal of Machine
Learning Research, 2012:1–23, 2012.

[22] Sanjeev Chauhan, Michelle Girvan, and Edward Ott. Spectral properties of networks
with community structure. Physical Review E, 80(5):056114, 2009.

[23] Ningyuan Chen, Mariana Olvera-Cravioto, et al. Directed random graphs with given
degree distributions. Stochastic Systems, 3(1):147–186, 2013.

[24] Wai-Kai Chen. On the realization of a (p, s)-digraph with prescribed degrees. Journal
of the Franklin Institute, 281(5):406–422, 1966.

[25] Yuguo Chen, Persi Diaconis, Susan P Holmes, and Jun S Liu. Sequential monte carlo
methods for statistical analysis of tables. Journal of the American Statistical Associa-
tion, 100(469):109–120, 2005.

[26] Leonid Chindelevitch, Po-Ru Loh, Ahmed Enayetallah, Bonnie Berger, and Daniel
Ziemek. Assessing statistical significance in causal graphs. BMC bioinformatics,
13(1):35, 2012.

149



[27] Fan Chung and Linyuan Lu. Connected components in random graphs with given
expected degree sequences. Annals of combinatorics, 6(2):125–145, 2002.

[28] Fan Chung and Linyuan Lu. The average distance in a random graph with given ex-
pected degrees. Internet Mathematics, 1(1):91–113, 2004.

[29] Fan Chung, Linyuan Lu, and Van Vu. Eigenvalues of random power law graphs. Annals
of Combinatorics, 7(1):21–33, 2003.

[30] Fan Chung and Mary Radcli↵e. On the spectra of general random graphs. the electronic
journal of combinatorics, 18(1):P215, 2011.

[31] Geir Dahl and Truls Flatberg. A remark concerning graphical sequences. Discrete
mathematics, 304(1):62–64, 2005.

[32] Charo I Del Genio, Hyunju Kim, Zoltan Toroczkai, and Kevin E Bassler. E�cient
and exact sampling of simple graphs with given arbitrary degree sequence. PloS one,
5(4):e10012, 2010.
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