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 A segmer-based approach towards monomer synthesis was successfully carried out to 

produce a series of linear α,ω-diolefinic species with varying linker lengths. Ring-closing 

metathesis (RCM) using a cis-selective ruthenium catalyst yielded a large strainless macrocycle 

that then underwent entropy-driven ring-opening metathesis polymerization (ED-ROMP). When 

compared to the same polymerization carried out with the complementary trans-monomer, the 

ED-ROMP of cis-monomer demonstrated a significantly higher degree of molecular weight 

control. The narrow dispersity exhibited by this process suggests that a new regime of selectivity 

enhanced ED-ROMP (SEED-ROMP) has been achieved. Reaction kinetics for this process were 

probed and the process was compared to alternative polymerization methods. Finally, the high 

degree of control was exemplified in a series of chain extension and block copolymerization 

experiments. Ultimately, SEED-ROMP represents a novel method to obtain well-defined 

copolymers of precise molecular weights. 
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1.0  INTRODUCTION 

1.1 SEQUENCED COPOLYMER SYNTHESIS 

Monomer sequences contained within engineered and naturally occurring polymers impart 

unique physical and chemical properties to the bulk material. Biopolymers such as proteins, for 

example, have behaviors and morphologies wholly dependent on their constitutive amino acid 

sequences.1-3 The profound complexity of naturally occurring biopolymers is difficult to 

reproduce synthetically, and as such, far fewer and less rigorous studies have been carried out on 

non-biological polymers.4 One of our primary goals is to explore the interplay between sequence 

and properties using bioassimilable engineered materials. Ultimately, the results of this project 

and others in our research group have demonstrated unequivocally that control over monomer 

sequence is not only possible, but that it leads to polymers with properties that are predictable 

and customizable. 

In this dissertation, we will begin first with an overview of the principles and limitations 

governing sequenced and living polymerization methods, focusing specifically on entropy-driven 

ring-opening metathesis polymerization (ED-ROMP). Next, we will describe the preparation of 

sequenced macrocyclic monomers containing either cis- or trans-internal olefins from α,ω-

diolefin precursors. We will then discuss the development of a method to produce sequenced 

copolymers with defined molecular weights through ED-ROMP, selectivity enhanced ED-
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ROMP (SEED-ROMP), and deactivation ED-ROMP (DED-ROMP). Specifically, molecular 

weights and dispersities of the polymers obtained through these methods will be investigated and 

compared. Finally, we will demonstrate the application of this method in the formation of block 

copolymers through a one-pot sequential ED-ROMP − ROMP protocol. 

1.1.1 PLGA as an ideal system to explore, elaborate and optimize 

Poly (lactic-co-glycolic acids) (PLGAs) are some of the most successfully implemented 

polymers for medicinal applications.5,6 They typically are comprised of a random sequence of 

lactic (L) and glycolic (G) units that are bioassimilable upon hydrolytic degradation.6-8 Relative 

amounts of L or G can be adjusted to improve stability or to tailor the polymer’s physical 

properties for specific purposes. Applications of PLGAs are diverse and include FDA- and 

EMA-approved microparticle formulations and biomedical devices used for such purposes as 

drug delivery and stem cell scaffolding for regenerative medicine.7,9-14 Scheduled degradation 

over short periods of time is useful in applications such as drug delivery. PLGAs that degrade 

over much longer periods of time are well suited to applications such as temporary implants and 

stem cell scaffolds. Importantly, very few options for scaffolding materials exist in regenerative 

medicine applications, and fewer afford the customization ability of sequenced PLGAs. Because 

lactic and glycolic acids are physiologically benign, there are innumerable opportunities for 

growth in this area of biomedical science. 
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1.1.2 Segmer-based approach used by Meyer group 

Traditionally, PLGAs are synthesized through the condensation of lactic acid and glycolic acid 

or the ring-opening polymerization (ROP) of lactide and glycolide (Scheme 1A). Both of these 

methods result in a random assembly of L and G monomers and no degree of sequence control is 

observed. PLGA copolymers are fairly simple to obtain, but tradeoffs with regards to efficiency 

and versatility often need to be made when targeting higher levels of sequence fidelity.4 

Scheme 1. A. Randomly sequenced PLGAs assembled through condensation or ring-opening polymerization; B. 
Repeating sequence copolymers constructed through SAP. 
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In recent years, our group has developed the Segmer Assembly Polymerization (SAP), an 

iterative and mild approach for producing polymers with tunable monomer sequences (Scheme 

1B).15-17 SAP improves on traditional methods by pre-assembling short templates of precisely 

sequenced L and G monomers. These sequenced oligomers, called segmers, can be comprised of 

any length or combination of L and G units. Syntheses of these segmers are straightforward and 

iterative, involving sequential deprotection and coupling until the desired segmer is obtained. 

Segmers can then be polymerized through a standard ester condensation protocol to yield 

repeating sequence copolymers with perfect stereocontrol for the L-components.  

Traditional condensation polymerization and SAP can incorporate an incredible range of 

α-hydroxy acids beyond just L and G.18 The resulting polymers will have wholly unique 

properties, as established by the ratios, sequences, and stereochemistry of their respective 

constituent monomers.. Although there is a synthetic tradeoff that is accepted in the production 

of segmers, SAP offers an unparalleled degree of sequence refinement that is otherwise 

unachievable through ROP methods (Figure 1). Using an orthogonal protecting group strategy, 

iterative deprotection and coupling steps are carried out until the desired unprotected segmer is 

obtained. This strategy can be used to obtain a large library of segmers combinations in a 

convergent manner. The segmer can then be subjected to condensation polymerization to yield a 

repeating sequence copolymer. 
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Figure 1. Comparison of traditional condensation polymerization (A) and SAP (B) as methods to obtain random or 
repeating sequence copolymers from a pool of α-hydroxy acids. 

 

 

The diversity in method and monomer options gives rise to a naming convention whereby 

critical information about the polymerization method along with ratios and stereochemistry of 

monomers can be provided (i.e., R-ROP-PLGA-75 refers to random ring-opening 

polymerization to form PLLGA with 75% stereopure LL and 25% G content). In cases where the 

method is defined previously, emphasis on sequence fidelity can be made simply by naming the 

segmer used, as in poly LG, which describes a perfectly sequenced polymer of repeating LG 

segmers. Sequenced oligomers are named in order of C side to O side, as demonstrated in 

Scheme 1B. 

In solution, sequenced PLGAs have microstructures that are highly dependent on 

sequence and stereochemistry, resulting in NMR spectra that are surprisingly well resolved and 
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differentiable. Although there are limitations to NMR analysis of PLGAs constructed through 

SAP, we have observed up to octad level spectral resolution corresponding to stereocenters 31 

atoms apart.17 Further evidence that SAP produces polymers without discernable sequence 

scrambling can be found by inspecting their MALDI spectra.19 For instance, the masses of the 

chains present in poly LG correspond to incremental decreases of segmer mass (130 amu) and 

minor peaks corresponding to L (72 amu) or G (58 amu) loss (Figure 2).  

Figure 2. MALDI TOF analysis confirms the sequence fidelity of poly LG following SAP.  
Image reprinted with permission from The American Chemical Society, Ref. 17,  copyright 2010. 

1.1.3 Influence of sequence on physical properties of polymers 

Former group members Dr. Ryan Stayshich and Dr. Jian Li have recently demonstrated the 

unique ability to manipulate the hydrolytic susceptibility and degradation mechanism of 

sequenced PLGAs through adjustments to the monomer sequence.15-17,20 In an exhaustive study 

currently underway, we are investigating further the complex interplay between monomer 
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sequence and physical attributes of PLGAs. Microparticle morphology and degradation 

properties in particular have been found to be incredibly dependent on the order and frequency of 

lactic and glycolic repeat units (Figure 3). By manipulating the sequence and stereopurity of 

PLGAs, the duration and mechanism of polymer degradation can be successfully customized.20,21 

Sequenced PLGAs are viable for bioengineering applications requiring a narrow but variable 

interval over which decomposition should occur.15 

  

 

Figure 3. The influence of sequence on degradation (A) and swelling (B) of PLGAs. 
Images reprinted with permission from The American Chemical Society, Ref. 20, copyright 2014. 

 

 

The most significant conclusions from these physical properties studies thus far have been: 

a) Racemic PLGAs degrade faster than stereopure PLGAs. 

b) Random PLGAs degrade rapidly compared to sequenced PLGAs, which have more 

linear degradation rates. 

c) Longer G-block lengths lead to faster degradation. Conversely, increased numbers of 

L-L linkages slow degradation. 
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d) The mechanism of structural failure for polymeric materials depends greatly on 

sequence. 

 

These findings have been further demonstrated in ongoing studies focused on the structural 

features and mechanism of degradation (stereocomplex formation, lactic acid and drug release, 

swelling and erosion, two-photon and SEM visualization of pellet morphologies during 

decomposition) as well as the investigation of physical and mechanical properties (stress/strain 

and modulus, contact angle, fiber production via electrospinning).15,16,19,21,22 

1.1.4 Limitations of SAP-condensation method to obtain sequenced PLGAs 

The SAP method has been of great use in enabling access to custom sequence PLGAs, but 

suffers from lack of reproducibility with respect to polymer molecular weights. Typically, 

molecular weights (Mns) for our SAP-produced PLGAs fall in the range of 20-40 kDa with 

dispersities (Đ) of 1.2-1.6, but an increased degree of control over molecular weight would make 

these materials much more robust for industrial and biological applications. Our group therefore 

set out to explore methods that would enable us to target particular molecular weights without 

sacrificing sequence control. 
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1.2 CONTROLLED POLYMERIZATIONS AND ENTROPY-DRIVEN RING-

OPENING METATHESIS POLYMERIZATION 

The ultimate goal of this research project was to improve our SAP method in order to obtain 

polymers with predetermined molecular weights and monodisperse molecular weight 

distributions. Use of an equilibrium-based polymerization such as ED-ROMP would eliminate 

the possibility of achieving a truly living polymerization. However, we hypothesized that a 

highly controlled polymerization would be possible through modulation of key reaction 

parameters.  

Matyjaszewski defines controlled polymerization as one that exhibits characteristics of a 

living polymerization, but where nonproductive chain-breaking events like termination or 

secondary metathesis undoubtedly occur.23-26 The occurrence of these chain-breaking processes 

is negligible compared to propagation and therefore does not significantly affect the outcome of 

the polymerization. Degree of “livingness” in these pseudo-ideal reactions is not only subjective 

but also can be misleading because factors such as chain lengthening often lead to further 

deviation. The most important characteristic of controlled polymerizations is the simultaneous 

growth of chains, leading to desirable features including: 

A) Predictable molecular weights that are proportional to monomer conversion and tuned 

through adjustments of the monomer to initiator ratio. 

B) Linear first-order kinetic behavior where the rate constant of chain propagation (kpr) 

can be related to monomer concentration ([M]) as a function of time (t) such that: 

𝑘𝑘𝑝𝑝𝑝𝑝 =
ln[𝑀𝑀]0

[𝑀𝑀]𝑡𝑡
𝑡𝑡   (Equation 1) 
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C) Poisson molecular weight distributions indicated by molecular weight dispersities 

(calculated by Mw/Mn) close to 1. 

1.2.1 Principles governing the mechanism and outcomes of ROMP and ED-ROMP 

ROMP is a powerful and versatile tool that harnesses the inherent reactivity of strained cyclic 

monomers. The mechanism for ruthenium-catalyzed olefin metathesis, originally proposed by 

Chauvin, begins with an initiation step in which a transition metal alkylidine coordinates to a 

cyclic olefin.27-31 Subsequent [2+2]-cycloaddition yields a metallocyclobutane intermediate that 

can undergo cycloreversion and then elaboration through further propagation steps. Because the 

reactivity of the new chain end is similar to that of the initiating species, propagation continues 

until equilibrium is achieved or the reaction is terminated (Scheme 2). The driving force of 

ROMP is the enthalpic release of ring strain, although minor entropic penalties counteract this to 

a small degree.32  
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Scheme 2. Mechanism of ring-opening metathesis polymerization. 
Reprinted with permission from Macmillan Publishers Ltd: Ref. 33, copyright 2010. 

 

 

While mechanistically similar, ED-ROMP is quite distinct from ROMP because the 

macrocyclic monomers are inherently strainless. With ring sizes greater than 14 atoms, release of 

ring strain (ΔH) is negligible and the reaction is instead driven forward by the influence of 

increased translational and conformational entropy (ΔS). Reaction parameters governing ED-

ROMP behavior can be understood by applying the Gibb’s free energy equation:  

ΔGp = ΔHp – TΔSp  (Equation 2) 

with the understanding that ΔHED-ROMP is far closer to zero than the ΔHROMP. Factors that 

enhance the entropic contribution to ΔGp, such as monomer concentration and temperature, 

therefore, become much more influential. It is not uncommon for ED-ROMP to be carried out in 

0.1-5 M solutions or even neat conditions. Although there are many early examples of its use, 

very few of those resulted in high yields or thorough polymer characterization.34-43 More 

recently, the generality of ED-ROMP has been demonstrated through incorporation of a variety 
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of backbones including esters, amides, aromatic rings, polyethylene glycol (PEG) and 

rotaxanes.44 

A prominent feature of ROMP and ED-ROMP is the propensity of growing polymer 

chains towards undesired secondary metathesis events like intramolecular backbiting and 

intermolecular chain transfer (Scheme 3).33,45 In intermolecular chain transfer, the active metal 

alkylidine of one polymer chain intercepts an internal olefin of another polymer chain. The 

number of active chains in solution remains constant, but these chains will now have 

redistributed molecular weights. In intramolecular chain transfer, also known as backbiting, the 

active chain end reacts with itself, leading to a macrocyclic oligomer (MCO) and a truncated 

polymer chain. These competing metathetical pathways do not deactivate polymer chains to 

further growth, but are typically undesired because they increase the heterogeneity of polymer 

chain lengths obtained. 

 

 

Scheme 3. Intermolecular and intramolecular secondary metathesis. 
Reprinted with permission from Macmillan Publishers Ltd: Ref. 33, copyright 2010. 

 

 

Strategies have been employed to minimize the degree of secondary metathesis that 

occurs during ROMP, including the use of specialized catalysts with higher catalyst initiation 
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rates,46 solvents that exhibit increased coordination to catalyst,47 addition of competitive ligands 

such as PCy3 or PPh3,48,49 and manipulation of substrate to increase monomer reactivity.45 

Similar efforts to curb secondary metathesis have not been extensively investigated for ED-

ROMP reactions. Although secondary metathesis broadens the dispersity of resulting polymers, 

it does not lead to sequence scrambling. It is therefore anticipated that even if an ED-ROMP is 

poorly controlled with respect to molecular weight, polymeric products will retain their desired 

sequences. 

1.2.2 Ring-chain equilibrium in ED-ROMP 

According to the Jacobson-Stockmayer theory of ring-chain equilibrium, the formation of MCOs 

during ED-ROMP is inevitable (Figure 4, top).50-52 Assuming a catalytic amount of active chains 

are present, monomer initially will be incorporated into the growing polymer chain. However, at 

a late stage in the polymerization, a critical monomer concentration will be approached where 

backbiting and polymerization are predicted to occur at equal rates.41-43 The dispersity of the 

sample, as determined by Mw/Mn,  is theoretically predicted to approach 2 at equilibrium. 

 

 

Figure 4. Metathetical equilibrium between cyclic, linear and polymer species. 
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Additionally, this phenomenon can be taken advantage of in order to recycle polymer 

through a process known as cyclodepolymerization (CDP; Figure 4, top).53,54 Here, high dilution 

conditions entropically favor polymer degradation into a mixture of cyclic monomer and MCOs. 

Condensation polymers that can be recycled in this way are of incredible interest for industrial 

purposes and include polyesters,55-60 polycarbonates,56,61,62 polyamides,60 and high-performance 

aromatic polymers.63,64 Although CDP is not always viable, it is seen an incredible advantage to 

be able to successfully recycle polymers into their respective MCOs through ring-chain 

equilibrium manipulation.58 

CDP can also serve as a high yielding and efficient means of obtaining MCO starting 

materials for ED-ROMP.56,65-67 Monomers that cannot be obtained through ring-closing 

metathesis (RCM) or suffer from contamination with adventitious linear oligomers are excellent 

candidates for this method. Polymeric species can be first obtained from linear α,ω-diolefins 

through acyclic diene metathesis polymerization (ADMET, Figure 4, right). The condensation 

polymerization can be facilitated through vacuum removal of the ethylene byproduct in a way 

similar to RCM (Figure 4, left). When the purified polymer is exposed to additional catalyst 

under dilute conditions, ring-chain equilibrium leads to degradation of the material into a mixture 

of corresponding MCOs that can then be subjected to ED-ROMP.  

The interconnected relationship between RCM, CDP, ED-ROMP and ADMET enables 

access to polymer through multiple routes. While ADMET is an attractive option for certain 

purposes, it simply does not allow controlled molecular weight polymers to be obtained on a 

reasonable scale without rigorous optimization for each new oligomeric sequence.68 Step growth 

processes such as ADMET are inherently time dependent and suffer from diminishing 
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concentrations of reactive end groups as the reaction progresses. Further, it is incredibly difficult 

to predict polymeric molecular weights for a particular segmer without extensive trial and error.  

ED-ROMP is significantly less dependent on time, tolerant of many functional groups, 

and produces polymers whose molecular weights are inherently related to reagent stoichiometry 

and concentration.69,70 In examples where both ADMET and ED-ROMP were carried out on 

analogous monomers, ED-ROMP consistently gave higher molecular weight polymers.40,55,71-73 

In this precedent, minimal methodological optimization for ED-ROMP was required regardless 

of functional groups contained therein. The comprehensive nature of the method was identified 

as an attractive complement for our group’s PLGA studies, where a large variety of monomer 

sequences would be subjected to standardized polymerization conditions. 
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2.0  DEVELOPMENT OF A SELECTIVITY-ENHANCED ENTROPY-DRIVEN 

RING-OPENING METATHESIS POLYMERIZATION 

2.1 PROJECT RATIONALE 

In an effort to harness the untapped potential of sequenced copolymers, we set out to exploit the 

advantageous sequence control possible during ED-ROMP while working towards an improved 

molecular weight profile. ED-ROMP benefits from many characteristics ideal for this research 

project: generality and functional group tolerance, sequence fidelity, scalability, and the potential 

for molecular weights that are determined by monomer to initiator ratios. Despite this, several 

challenges would need to be overcome in order to make this a successful and viable alternative to 

the SAP method. Molecular weight and dispersity control were anticipated to be the primary 

means of achieving our goals.  

As previously mentioned, the SAP method produces PLGAs with a broad range of 

molecular weights and dispersities. Segmers requiring G-G couplings during condensation 

(GLG, GLLG, etc.) were much more resistant to high conversions and typically only achieved 

molecular weights ~20 kDa.17 It was not uncommon, however, for other “well-behaved” segmers 

to produce polymers with highly variable molecular weights, even when carried out by the same 

researcher. Both ED-ROMP and SAP would necessarily provide polymeric materials with good 

sequence control, but it was our hope that ED-ROMP would allow us to achieve what we could 
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not with SAP in terms of consistent and predictable molecular weight profiles. In addition to 

developing a method to obtain pseudo-PLGAs via ED-ROMP using standard conditions, we also 

wanted to expand the current art for improving molecular weight control during copolymer 

synthesis. Finally, we wanted to identify synthetic steps that would be ideal for diversification in 

future stages of the project. 

2.1.1.1 Selectivity-enhanced ED-ROMP  

To the best of our knowledge, no study of ED-ROMP has been carried out with the purpose of 

improving molecular weight control, lowering dispersities and accessing block copolymers. In 

order to achieve this, we hypothesized that application of an additional kinetic driving force to 

the polymerization would be necessary. We believed that as in ROMP, an increase in the rate of 

propagation (kpr) would mitigate the rate of secondary metathesis (ktr) to further improve 

molecular weight control during polymerization (Scheme 4). While the ring-chain equilibrium 

would prevent a completely living system with no chain breaking events, a polymerization with 

unparalleled living character would certainly be achieved. Overall, the result would be a 

selectivity-enhanced ED-ROMP, which we have termed SEED-ROMP. Importantly, SEED-

ROMP would enable the polymerization to enter a more living regime where block architectures 

would be possible. 
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Scheme 4. Proposed rate enhancement during SEED-ROMP would curb secondary metathesis. 
 

 

Reactivity differences between cis- and trans-olefins have been widely utilized in smaller 

ring systems where enthalpic contributions to ring strain dominate. For instance, the ring strain 

observed in cis-cyclooctene (COE) is 7.4 kcal/mol whereas the ring strain of trans-COE is 16.7 

kcal/mol.74 Although ROMP of either monomer will deliver polycyclooctene, the ROMP of 

trans-COE has more inherently living character due to its elevated reactivity.45,75 In a strainless 

macrocyclic system such as ours, analogous considerations of cis/trans reactivity differences are 

not possible.  

In SEED-ROMP, we speculated that a combination of kinetic and thermodynamic 

improvements would lead to a significant improvement in control for the polymerization (Figure 

5). Steric bias would likely increase catalyst accessibility for the cis-monomer. The degree of this 

enhancement might depend on factors such as conformational flexibility, size of the 

macromonomer and steric demands of the existing catalyst ligands. This trend has been reported 

in other systems, where Z-olefins had greater access than E-olefins to sterically encumbered 

catalysts.76-79 Further, this effect would be responsible for decreasing ktr in SEED-ROMP relative 

to ED-ROMP because the bulky polymerized chain responsible for secondary metathesis would 

contain trans-olefins.80 An enthalpic driving force would also be anticipated for the reaction due 
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to the cis-to-trans conversion of olefinic material during polymerization, further favoring the 

metathesis of macromonomer over polymerized material.81,82  

Figure 5. SEED-ROMP benefits from both a kinetic and thermodynamic advantage during polymerization. 

Ultimately, an increase in kpr along with a decrease in ktr would have the potential to significantly 

improve the degree of molecular weight control observed in the system.45,46,83 We predicted that 

if we were able to achieve this, we would likely observe the following: 

A) In early stages of polymerization, molecular weights would increase rapidly due to

high monomer concentration and rapid propagation. Though dispersities might be

elevated at the earliest time points due to delays in catalyst initiation and subsequent

chain introduction, they would shortly thereafter decrease and remain low as a result

of the kinetic bias of propagation over secondary metathesis.

B) In late stages of polymerization, molecular weight growth would stall as remaining

monomer is depleted. Only at very long reaction times would ktr surpass kpr, leading

to increased dispersities and decreased molecular weights.
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C) A linear relationship would be observed when comparing molecular weights with

different monomer:catalyst ratios, assuming prohibitive viscosity increases did not

result in poor mixing.

2.1.1.2 Deactivation ED-ROMP 

Fast-initiating ruthenium species such as Grubbs’ third generation catalyst (G3, Figure 6) are 

frequently utilized to achieve a more controlled ROMP.69,84 This catalyst features a strongly 

ligating NHC group and also weakly coordinating bromopyridines that dissociate more rapidly 

than the phosphine ligands of Grubbs first and second generation catalysts (G1 and G2, Figure 

6).85 The result is a kpr that is somewhat larger than that of G2 but a ki that is more than 10,000 

times higher.86,87 The relatively high ki/kpr as well as the short lifetime of this catalyst mitigates 

secondary metathesis events. 

With negligible chain transfer, backbiting, or chain termination, monodisperse polymers 

are possible even when using monomers typically susceptible to secondary metathesis such as 

norbornene.46 The degree of control achieved with G3 is demonstrated through its linear 

relationship between molecular weight and monomer to catalyst ratio. Despite the advantage of 

increased access to polymers of targeted molecular weights and narrow dispersities, this catalyst 

has a significantly truncated lifetime that may preclude sequential reactions.88 It therefore 

represents a short-lived alternative to G2 mediated ED-ROMP and exists as a distinct form of 

polymerization that we have termed deactivation ED-ROMP (DED-ROMP).  

2.1.1.3 Summary 

The SAP method developed within our group allows for an extraordinary degree of sequence 

control, but is associated with challenges in accessing higher molecular weight polymers and 
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achieving molecular weight control. ED-ROMP offers a means to bypass these obstacles in a 

mechanistically orthogonal way. It enables the synthesis of sequenced copolymers with increased 

opportunities for tunable molecular weights and specialty reactions such as block 

copolymerization (Table 1).  

Table 1. Comparing the attributes of SAP and proposed ED-ROMP methods. 

Our research plan was to first assess the generality of ED-ROMP using a variety of 

macromonomers containing internal trans-olefins. The results from these polymerizations, 

carried out by Ryan Weiss, will be briefly summarized herein.22 Then, using a well-performing 

sequence from this preliminary study, we would carry out SEED-ROMP with the corresponding 

cis-macromonomer. The results from the preliminary ED-ROMP study would enable us to 

compare the degree of selectivity enhancement encountered during subsequent SEED-ROMP 

experiments. If the SEED-ROMP resulted in a substantial improvement in living character for 

the polymerization, we would further probe the limits of polymeric architectures achievable 

through chain extension and block copolymer experiments. Finally, we wanted to compare 
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molecular weights and dispersities for polymers constructed through SEED-ROMP and DED-

ROMP. 

2.2 DESIGN AND SYNTHESIS OF CYCLIC PLGA-INSPIRED MONOMERS 

2.2.1 Synthetic Plan for ED-ROMP studies of cis- and trans-macromonomers 

In an effort to make a convergent and diversifiable scheme, we developed a synthesis following 

the SAP philosophy of segmer assembly. Late-stage RCM would allow for a highly efficient 

route to obtain macromonomers necessary for ED-ROMP and SEED-ROMP studies. Each step 

could conceivably be scaled up to obtain gram-quantities of material. RCM requires dilute 

conditions to prevent intermolecular metathesis (<0.01 M), and would therefore be the most 

limiting step with respect to scale. With compounds as large as our linear segmers, even more 

dilute conditions would likely be required. Overall, the iterative nature of this route makes it 

extremely tolerant of sequence modifications and highly general; requirements include formation 

of an α,ω-diolefin prior to RCM and a functionally benign backbone that will not interfere with 

metathesis (Scheme 5). 

 

 

Scheme 5. Proposed route for the convergent synthesis of sequenced copolymers via ED-ROMP. 
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2.2.2 Catalyst selection for RCM and ED-ROMP reactions 

We proposed that through judicious selection of catalysts, we would be able to achieve our goals 

in a highly convergent manner. We benefitted from the substantial pioneering work of others like 

Grubbs, Schrock, and Hoveyda in the field of organometallic chemistry and had access to many 

suitable commercially available options.80,89,90 As mentioned previously, Grubbs’ third 

generation catalyst (G3, Figure 6) is ideal for DED-ROMP studies due to its relatively high 

ki/kpr. Use  of this catalyst would lead to rapid polymer formation and abrupt catalyst 

deactivation prior to late-stage secondary metathesis. 

 

 

Figure 6. Grubbs’ 1st (G1) and 2nd generation (G2), cis-selective nitrato-type Grubbs (GN) and Grubbs’ 3rd 
generation (G3) catalysts selected to facilitate ED-ROMP studies. 

 

 

Grubbs’ robust second generation catalyst (G2, Figure 6) would be used to obtain trans-

olefins through RCM and also to carry out ED-ROMP reactions. These applications were highly 

precedented using a variety of ring sizes and peripheral functionality.57,91 CH2Cl2 would be used 

as a reaction solvent with appropriate levels of dilution or concentration to manipulate ring chain 

equilibrium and stabilize polar intermediates during catalyst initiation.87 Conveniently, when 

using G2, saturation conditions can be assumed for the polymerization, as described in great 

detail by Grubbs and coworkers.87 G2 experiences a reduced phosphine ligand dissociation rate 
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(k1) when compared to catalysts like G1, but a comparatively improved dissociative substitution 

rate (k2) with incoming olefin. The apparent rate of propagation for polymerizations carried out 

with G2 could be expressed as: 

−d[M]
d𝑡𝑡 = 𝑘𝑘𝑝𝑝[Ru activated chains] = ln [M]0 [M]t⁄

t   Equation (3)

As the key step to obtaining the SEED-ROMP macromonomers, we required a cis-

selective catalyst capable of carrying out RCM with high selectivity and compatible functional 

group tolerance. We turned to Grubbs and coworkers’ very recent work in cis-selective catalyst 

development. Though there were few examples of its use in literature, we were intrigued by the 

group’s C-H activated ruthenium catalyst GN (Figure 6).92-96 The catalyst features a bidentate X-

type nitrato ligand, adamantyl chelate, NHC carbene and Hoveyda-type styrenyl ligand and was 

shown to deliver products with high Z-selectivity due to its proposed side-bound mechanism.97,98 

In this mechanism, transition states leading to E-products are disfavored due to electronic 

destabilization and constrained ligand geometry that reinforces steric interactions between the 

metallocyclobutane substituents and the mesityl ring of the NHC ligand (Scheme 6).99 

Scheme 6. Proposed steric interactions for various ruthenacycle confromations of GN. 
Reprinted with permission from Springer: Ref. 99, copyright 2014. 
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Of great interest to us, a series of RCM experiments have been carried out by Grubbs and 

coworkers to produce minimally functionalized macrocycles 13-20 atoms in size with 30-75% 

yields and >75% Z-selectivity.96 Use of this catalyst had not yet been fully explored in literature, 

and so we recognized this as an exceptional opportunity to expand the current scope of reactions 

possible. We also acknowledged that uncertainties with respect to functional group and substrate 

intolerance were a significant potential pitfall, but we nonetheless moved forward with plans for 

alternate routes if cis-selective RCM could not be achieved.100-104 

2.2.3 Biological and chemical significance of selected ED-ROMP monomers 

Segmer components for ED-ROMP were selected to mimic the PLGA system while 

incorporating necessary olefinic functionality for metathesis. We anticipated that these pseudo-

PLGAs would have differing physical properties from the PLGAs previously synthesized by our 

group.17,105,106 The olefinic component would likely lower the glass transition temperature (Tg) 

by increasing conformational flexibility and by interrupting polymeric associations. Slightly 

offsetting this, the palindromic nature of the sequences would generate even numbers of carbon 

atoms spanning these ester groups following hydrogenation, a factor known to encourage 

crystallinity.107,108 While PLGA is a solid at room temperature, we were uncertain what the 

morphology of these polymers would be. Hydrolytic byproducts were also of interest to us. 

Lactic and glycolic monomers would be used along with ethylene glycol and an additional 

olefinic tether group (containing C8, C6, and C4 alkenyl groups). Hydrolytic byproducts from 

these components (lactic acid, glycolic acid, ethylene glycol, suberic acid, adipic acid and 



26 

succinic acid, respectively) are bioassimilable or have very low associated toxicity and can be 

eliminated through normal metabolic pathways.6-8  

Figure 7. Graphical depiction of H-bonding opportunities (left) and a partial micellar array (right) of PEG-
terminated ED-ROMP polymers and human insulin. 

Preliminary models were constructed to graphically demonstrate the potential interaction 

of these pseudo-PLGAs in applications such as encapsulating micelles. Our goal was to 

qualitatively depict favorable associations between pseudo-PLGA models and biomaterials such 

as proteins. In these experiments, truncated sequences of pseudo-PLGA were terminated with a 

short block of polyethylene glycol (PEG), a typical strategy to reinforce micellar structure. A 

crystal structure of human insulin was obtained from the Protein Data Bank and imported into 

MacPyMol for analysis (PDB ID 1BEN).109 Rapid virtual screening was carried out with MM2 

energy minimization, removal of non-polar hydrogens, selection of rotatable bonds and 

predictive docking analysis using AutoDock Vina 1.1.2 and the MGL Tools 1.5.6 suite from the 

Scripps Research Institute.110-113 Representative binding conformations are shown in Figure 7. 

We recognized the significant limitations of this method, especially with respect to polymeric 
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sequence, size and bond rotation, and so quantitative predictions of binding affinity were not 

taken into account. Observable in all models were the favorable H-bonding interactions possible 

between the pseudo-PLGA and the protein and also the predictable preference of PEG chains to 

point outward. While the biocompatibility of polymer fragments was of general interest to us in 

the planning stages of this project, physical, mechanical and biological properties studies of these 

materials is not our primary focus at this stage of the research program.  

2.2.4 Synthesis of linear Eg-(LGL-X)2 segmers 

ED-ROMP segmers were designed to incorporate alternating lactic and glycolic pairs with 

specific consideration for regioregularity. A lack of regiospecificity is typical in metathesis 

reactions (Figure 8).60 In recent ED-ROMP studies of linear-sequence monomers, Jamie Nowalk 

found a statistical distribution of head-tail, tail-tail, and head-head polymeric linkages were 

incorporated into the copolymer (representative outcome: 49%, 25% and 26%, respectively).114 

Substrate-modification approaches have been successfully implemented in ROMP to achieve 

high head-to-tail regioregularity, as demonstrated by the work of Hillmyer, Gutekunst and 

Hawker.115-117 These existing solutions are not possible in ED-ROMP systems where 

macromonomers do not have inherent ring strain and therefore not as high of reactivity or where 

incorporation of ancillary functionality is required. 
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Figure 8. Linkage types observed following ED-ROMP with asymmetric macromonomer sequences. 

Palindromic sequences were developed to bypass this challenge and to eliminate spectral 

ambiguity during segmer assembly and polymerization. Conveniently, we found that this 

alteration significantly improved our ability to monitor reaction progress with respect to 

conversion and isomeric ratios. Macromonomer ring sizes for the desired library varied from 26-

32 atoms, which was well above the threshold necessary for ED-ROMP. Requisite internal 

olefins were incorporated with various alkenoate ester moieties (X), and an ethylene glycol (Eg) 

subunit reminiscent of G served as a symmetric center. Once polymerized, the material had a 

sequence of [-X-LGL-Eg-LGL-X-]n with the length of the alkyl chain in X varying from 0-2 

(Figure 9). 
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Figure 9. Palindromic sequence of ED-ROMP polymers compared to PLGA. 
Lactic acid, L = blue; glycolic acid, G = green, ethylene glycol, Eg = striped green. 

Sequenced oligomers were constructed using the segmer assembly method that had 

proved to be so robust in our group’s previous studies.17,22 The symmetric nature of the 

macromonomers allowed for a highly convergent approach to be used. Coupling with alkenoate 

esters and RCM were carried out at a late stage to enable facile library diversification through 

extensions in the alkyl chain length and incorporation of either cis- or trans-internal olefins. 

Efforts began with synthetic optimization and large-scale production of the RCM 

precursors. The complete synthesis of Eg-(LGL)2 was carried out multiple times on a 10-30 g 

scale with respect to final isolated product, resulting in a substantial improvement in yield 

compared to previous efforts. A carbodiimide-promoted coupling strategy was employed to join 

G, L, Eg and X (X = pentenoate, P; butenoate, B; or acrylate, A) scaffolds and proved to be both 

mild and consistently high-yielding.17,118,119 Two additional analogues prepared by Ryan Weiss 

incorporated an acidic subunit reminiscent of the commercially ubiquitous caprolactone 

(heptenoic acid, C) to form Eg-(LC-P)2 and Eg-(LLC-P)2 segmers.22 
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Starting with Me-L-Si, saponification to L-Si was immediately followed by 

carbodiimide-promoted coupling with Bn-G to form Bn-GL-Si (Scheme 7). Hydrogenolysis of 

the benzyl protecting group and subsequent coupling to Bn-L produced Bn-LGL-Si. Further 

hydrogenolysis yielded LGL-Si, which was then coupled to either side of ethylene glycol to give 

the symmetric Eg-(LGL-Si)2. The entire process was carried out over 6 steps with 64% overall 

yield. When required, purifications were facile owing to the disparate polarities of starting 

material and products at each stage. Reactions were highly scalable, with similar outcomes 

whether on a 50 mg or a 50 g scale. 

Scheme 7. Scalable and high-yielding synthesis of Eg-(LGL-Si)2. 
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Double silyl deprotection of Eg-(LGL-Si)2 was unexpectedly challenging considering the 

ease with which the reaction was carried out on similar mono-protected species in our group. The 

reaction itself proceeded in a nearly stepwise fashion and could be monitored easily by TLC; Rf 

values for starting material, mono-deprotected intermediate, and product were easily 

distinguishable and the compounds themselves were separable during purification. However, it 

proved to be suprisingly sensitive, frequently generating oligomers and hydrolytic byproducts 

that co-eluted with product during purification. These byproducts remained inseparable in later 

steps, and so optimization at this stage was prioritized. The most common contaminants during 

deprotection included those resulting from asymmetric single deprotection or compounds like L-

Eg-L that resulted from cleavage at the site of the centermost G-L linkage. G-L bond lability in 

this reaction correlates well with ongoing degradation studies in our group where increased 

hydrolytic susceptibility of -G- linkages is observed.  

Multiple strategies were employed to minimize the potential for unwanted side reactions, 

including use of an AcOH buffer, changes in concentration of TBAF and use of alternative 

deprotection reagents (Table 2). Large equivalents of AcOH slowed the reaction prohibitively 

(entries 5, 6) but also suppressed the formation of oligomeric species. When reactions under 

these conditions were allowed to proceed over multiple days  (entries 7, 8), quantitative yields 

were possible. Unfortunately, these same conditions periodically resulted in small amounts of 

oligomer formation and the lack of reproducibility was unacceptable for our purposes. 

Concerned that different outcomes were achieved with different bottles of commercial TBAF, 

we attempted deprotection with the crystalline tris-(dimethylamino)sulfonium 

difluorotrimethylsilicate (TASF), a less basic fluoride source (entries 9, 10).120 Complete 

conversion was achieved, but the product mixture had significant oligomer contamination. We 
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therefore turned back to TBAF, but focused efforts on minimizing the basic contaminants 

produced through contact with water. Gratifyingly, pre-drying all freshly-purchased reagents 

successfully suppressed undesired side reactions and consistently delivered pure Eg-(LGL)2 with 

excellent yields on a multigram scale. 

Table 2. Representative outcomes for the deprotection of Eg-(LGL-Si)2. 

It is worth noting that the optimization series for the deprotection of Eg-(LGL-Si)2 also 

resulted in the establishment of a method to cleanly obtain mono-deprotected material, Si-LGL-

Eg-LGL (Table 2, entry 8, modified with truncated reaction times). Asymmetric segmer 

architectures could be accessed using this route, as demonstrated through the coupling of LGL-
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Eg-LGL-Si to 3-butenoic acid to form B-LGL-Eg-LGL-Si (Scheme 8). Though beyond the 

scope of the current project, this strategy would be ideal in systems where asymmetric monomer 

was desired. For instance, incorporation of a group capable of post-functionalization after 

polymerization would enable attachment of cleavable drug, fluorophore, or RGD group in a 1:1 

rather than a 2:1 ratio of pendant group to segmer. Due to the incredible functional group 

tolerance of ED-ROMP, we would expect polymerization of this modified compound to proceed 

similarly to the others.22 Control over degree of polymerization (DP) would translate to control 

over amount of this pendant group contained in polymer and, significantly, would solve an 

ongoing problem encountered with formulating drug-loaded PLGAs.8 Use of this asymmetric 

pathway to control head-tail ratios during the polymerization of non-palindromic sequences may 

not be ideal for our purposes because any reduction in kpr would necessarily decrease molecular 

weight control during ED-ROMP. 
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Scheme 8. Possible mono-deprotection route to incorporate pendant group for biomaterials applications. 

Once the diol Eg-(LGL)2 was obtained, each side could be coupled to form the 

corresponding C3, C4, or C5 alkenoate ester Eg-(LGL-X)2 (Scheme 9). The double couplings that 

provided Eg-(LGL-B)2 and Eg-(LGL-P)2 went smoothly on multigram scales by adjusting the 

standard conditions for mono-esterification. More mild reaction conditions were required for the 

formation of Eg-(LGL-A)2, which proved to be more sensitive to our standard coupling 

procedures. To improve reaction outcomes, conditions were adjusted to increase dilution, shorten 

reaction times, lower temperature, and facilitate coupling with a mild base and DMAP. After 
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encountering difficulties with Eg-(LGL-A)2 in later metathesis reactions, no further experiments 

were carried out on this substrate. 

 

 

Scheme 9. Coupling of Eg-(LGL)2 to form Eg-(LGL-X)2. 

 

2.2.5 Trans-selective RCM with G2 to form trans-cyclic-Eg-(LGL-P)2  

With the linear α,ω-diolefin segmers in hand, RCM was carried out to produce the cyclic 

monomers needed for ED-ROMP. Use of catalyst G2 and dilute conditions (0.001 M) delivered 

trans-cyclic-Eg-(LGL-P)2 in 93% yield with 84% trans-olefin selectivity (Scheme 10). 

Regardless of scale, conversion of starting material was complete after stirring overnight, and the 

increased polarity of the cyclic species made purification efforts straightforward. As in other 

stages, 1H-NMR proved valuable due to the loss of terminal olefin peaks at ~5.8 ppm, the 

formation of internal olefin peaks at ~5.5 ppm, and the decreased distance between G-methylene 
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peaks at ~4.8-4.7 ppm (Figure 10). Ryan Weiss performed similar RCM experiments to 

successfully obtain trans-cyclic-Eg-(LGL-B)2 and trans-cyclic-Eg-(LC-P)2 for the project’s 

initial ED-ROMP studies.22 Efforts to perform RCM on Eg-(LGL-A)2 were unsuccessful, likely 

due to the decreased reactivity of the electron deficient olefin.121-123 Gram-scale reactions could 

be carried out on Eg-(LGL-P)2, Eg-(LGL-B)2, and Eg-(LC-P)2 in >80% yield. Tolerance of 

exposure to air and significant humidity in the laboratory when preparing stock solutions was 

also noted. Significant increases in scale would therefore only be limited by the dilute conditions 

necessary to inhibit intermolecular oligomerization. 

 

 

Scheme 10. Ring-closing metathesis to form trans-cyclic-Eg-(LGL-P)2. 
 

2.2.6 Cis-selective RCM with GN to form cis-cyclic-Eg-(LGL-P)2 

Nine steps in the synthesis of the cis-selective GN catalyst (Figure 6) had already been carried 

out in high yield when it serendipitously became commercially available. With a reliable supply 

of catalytic material, our efforts shifted from catalyst synthesis to the ring closing itself. 

Surprisingly, it appears that usage of this catalyst has only been reported from the Grubbs group 

thus far. Only two substrate types have undergone GN-catalyzed RCM,94,96,124,125 but it has also 
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been used to catalyze homodimerization and cross metathesis,92,124,125 ROMP,93 and 

ethenolysis.96,126 

 An allylbenzene homodimerization was first carried out as a control experiment to 

compare the reactivity of the commercially available catalyst to that observed by Grubbs and 

coworkers.92 Though it was noted that the catalyst was more stable than others in the series, we 

also wanted to establish that our glovebox conditions would be sufficient for carrying out the 

RCM successfully. Early studies of GN noted that steric interactions with the NHC, while 

enhancing cis-selectivity, also could lead to a decrease in productive catalyst turnovers.96,97 In 

order to manipulate ring-chain equilibrium and discourage oligomerization, dilute conditions, 

elevated temperatures and vacuum were required.  

The reaction was successfully monitored over time in an NMR tube equipped with a 

controlled atmosphere valve. THF-d8 solvent was used so progress could be directly monitored 

for conversion and % cis-isomer observed. A GN stock solution was prepared and directly added 

to a solution of 1 in the glovebox (Scheme 11). The reaction tube was frequently evacuated to 

remove ethylene byproduct and drive the reaction equilibrium forward. After letting the reaction 

go overnight, conversion had increased to 70%, with negligible trans isomer observed. 

Consistent with what has been previously observed, the reaction stalled if not frequently 

evacuated but would continue again once vacuum was applied.127-130 The rather small volume of 

headspace in the reaction tube likely magnified this effect. Additional time and evacuation of the 

reaction vessel led to increased conversion at the cost of Z-selectivity, with a final sample having 

87% conversion and 83% cis-isomer. Satisfied in the reaction outcome, we proceeded with our 

synthesis. 
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Scheme 11. Homodimerization of allylbenzene. 

The homodimerization reaction highlighted for us the delicate balance that can exist 

between temperature, concentration, vacuum efficiency and reaction time with this catalyst. 

Understanding that we would have to optimize the RCM of monomers for conversion and Z-

selectivity, we set out to probe key reaction parameters. Concentration and solvent choice were 

an immediate concern, as dilution would discourage undesired intermolecular reactions and 

solvent adjustment has been known to bring about beneficial conformational changes during 

RCM.94 Preliminary RCM reactions were carried out with the C4-alkenoate to form cis-cyclic-

Eg-(LGL-B)2. Dissolution in 1,2-dichloroethane (DCE) was found to produce fewer byproducts 

when compared to THF (not shown), so further experiments were exclusively run in DCE. DCE 

in this case may encourage conformational coiling, increasing proximity of chain ends. 

Additionally, freeze-pump-thaw cycles did not appear to substantially influence reaction 

outcomes so commerically available solvent was used without degassing or distilling. Important 

findings and representative examples are shown below in Table 3. 
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Table 3. Representative results of cis-selective RCM experiments. 

Constant vacuum conditions proved to be the parameter most responsible for reaction 

success. Initially, the RCM of Eg-(LGL-P)2 was carried out in oversized vessels with frequent 

evacuation to account for ethylene generation, but long reaction times made this protocol 

impractical (Entry 1). The reactions stalled and oligomeric byproducts contaminated the sample, 

falling closely in line with our homodimerization results and those by Grubbs and coworkers.96 

When a very slight active vacuum was applied, the yield improved modestly and Z-selectivity 

reached 88% (Entry 2). Wanting to encourage further product formation, the same reaction was 

carried out, but with a second aliquot of 10 mol% catalyst added (Entry 3). The yield was 

successfully increased to 89%, but at the cost of 10% Z-selectivity. Our primary concern was 
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optimizing the reaction to minimize oligomer formation increase Z-selectivity. High conversion 

was less of a priority due to the ease of isolating unreacted starting material. 

Looking to efficiently remove ethylene, a more elaborate apparatus was designed to 

allow moderate vacuum to be established. This increased vacuum allowed the solution to reflux, 

which would further encourage solvated ethylene removal. The modification resulted in both 

high yield (88%) and high Z-selectivity (88%, Entry 4). The reaction was reproducible and 

scalable, being carried out on up to a 1.4 g scale while maintaining an 87-90% Z-selectivity. In 

these cases, the color of the catalyst solution often was markedly different than the pale purple of 

reaction solutions containing active catalyst. Conveniently, oligomeric byproducts were not 

observed using these conditions and unreacted starting material could be easily isolated during 

purification to raise yields to >90% BRSM.  

Although the 1H-NMR spectrum for cis-cyclic-Eg-(LGL-P)2 was very similar to that of 

the trans-isomer, it was possible to differentiate them (Figure 10). The resonances corresponding 

to internal alkene protons (~5.4 ppm) and G-methylene protons (~4.8 ppm) were shifted upfield 

by 0.1 ppm and 0.02 ppm, respectively, compared to trans-cyclic species. It is interesting to note 

when comparing the NMRs of LGL-B and LGL-P variants that the relative position of peaks 

corresponding to internal olefins reverses, with the cis-ring peak appearing farther downfield. 

Due to the active vacuum of the reaction apparatus, monitoring conversion of starting material to 

product mid-reaction was difficult. After reaction conditions had been optimized, it was not 

necessary to disrupt the vacuum and backfill with active nitrogen to remove aliquots for NMR or 

TLC.  
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Figure 10. Comparing the chemical shifts of linear segmer (A) with cis- and trans-cyclic segmers (B and C). 

Once the RCM had been sufficiently optimized for the substrate, we continued on with 

the SEED-ROMP studies. In the course of synthesizing additional monomer in later stages of the 

project, we unexpectedly encountered two additional points of interest regarding this monomer. 

First, the extreme base sensitivity observed for Eg-(LGL-Si)2 and Me-GL-TBS was not 

observed for cis-cyclic-Eg-(LGL-P)2. In studies probing the stability of macromonomer, no 

decomposition was observed even when exposed to up to 30 equivalents LiOH at room 

temperature (Scheme 12). Decomposition would be certain in aqueous solutions over extended 

periods of time, but this degree of hydrolytic resistance was unexpected. 
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Scheme 12. The macromonomer is stable when exposed to aqueous basic conditions. 

In the course of determining the ideal vacuum strength for the reaction, a higher 

concentration RCM was carried out. NMR and MS of the crude reaction mixture confirmed 82% 

conversion of the starting material to the linear dimer cis-Pp-(LGL-Eg-LGL-P)2, where Pp 

stands for the C8 diester resulting from the metathesis of two P groups (Scheme 13). The result, 

while clearly not desired for this aspect of the project, is interesting nonetheless as it relates to 

planned future studies on the relationship between ring size and reactivity during SEED-ROMP. 

ED-ROMP monomers are inherently unstrained and so we hypothesize that reactivity trends will 

not be affected by ring size.55,60 This homodimer can undergo either a cis- or a trans-selective 

RCM to produce a cyclic dimer for ED-ROMP. In a substrate containing two cis-olefins, SEED-

ROMP results for varying ring sizes can be directly compared. In a substrate containing one cis-

olefin and one trans-olefin, reactivity differences between each olefin can be studied with more 

control. In a non-palindromic sequence, this cis-trans-dimer approach could also be used to 

influence head-tail ratios due to the increased reactivity of the cis-olefin. While this route has not 

pursued further at this time, intentional oligomer formation is nonetheless a means to explore the 

SEED-ROMP of larger rings at a later date. 
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Scheme 13. Cis-selective homodimerization of Eg-(LGL-P)2. 

Shortly after the optimization series was undertaken, Grubbs and coworkers published 

examples of cis-selective cross metathesis and RCM of more functionally complex 

peptidomimetics.94 They noted that cross-metathesis reactions occurred best at higher 

concentrations (0.1-0.4 M) and provided materials with 60% conversion, nicely paralleling what 

was observed in our incidental homodimerization reaction. In their hands, resin-bound 21-

membered peptidomimetics were obtained through RCM with good conversions (70-80%) and 

Z-selectivities (>90%) when 10 mol% or 2×10 mol% catalyst were used. Both our results and

those of the Grubbs group demonstrate clearly that high functional group tolerance and Z-

selectivity can be expected with catalyst GN, even when carrying out reactions on large and 

bulky oligomeric material. 

2.2.7 Use of scavenger resin to remove quenched ruthenium species 

The macromonomer samples obtained through RCM were of excellent purity for the ED-ROMP 

and SEED-ROMP projects described herein. However, we foresaw that later stages of this 
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research project would necessarily involve microparticle fabrication and in vivo histology studies 

similar to the ongoing SAP-PLGA project. In an effort to address the presence of heavy metals in 

metathesis samples, we sought out an efficient purification method. Oral absorption of Ru is low 

(up to 3.5% in rats) and acute and genetic toxicity studies suggest that it is less toxic than 

platinum species such as the chemotherapeutic cisplatin.131 For pharmaceutical purposes, the 

FDA limits ruthenium in excipients and drug substances orally (5 ppm, 100 μg permitted daily 

exposure) and parenterally (0.5 ppm, 10 μg permitted daily exposure).132 With good solubility in 

CH2Cl2 and high catalyst contamination (10 mol%), we decided that this would be the ideal stage 

for targeted Ru removal. True to our synthetic approach, we desired a highly general and 

scalable method to achieve this. Though crude material was subjected to column 

chromatography after RCM, there was often a distinguishable Ru contamination in the otherwise 

colorless samples on large scales. Further purifications decreased the residual Ru, but this 

process is highly inefficient with regards to time cost and solvent waste.  

We selected the mercaptopropyl QuadraSil®MP resin, which was reported to sequester 

>99% residual Grubbs catalyst (< 5 ppm Ru) and to be easily removed by filtration.133 Resin was

added (50 equiv with respect to catalyst) to a solution of unpurified RCM material in CH2Cl2 

(0.01 M) and vigorously stirred overnight. All sequestered Ru contaminants settled to the bottom 

of the vial and could be easily removed by passage through a pre-rinsed syringe filter (Figure 

11D). Resulting samples were colorless. Use of this resin in such proportions may be cost 

prohibitive with multi-gram scale RCM, but carrying out the same protocol with even 5 equiv. of 

resin resulted in a dramatic reduction of Ru content (Figure 11C). Once concentrated, crude 

samples could then be purified by column prior to polymerization.  
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Figure 11. Use of resin to sequester Ru contaminants over time following RCM. 

2.3 SELECTIVITY-ENHANCED ENTROPY-DRIVEN RING-OPENING 

METATHESIS POLYMERIZATION  

ED-ROMP of the ring-closed macrocycle was of great interest to us and proved highly 

successful with both cis- and trans-macromonomers. This section will first explain how reactions 

were monitored and analyzed during polymerization. Then we will describe the ED-ROMP 

studies carried out in our group, starting with a brief summary of results for the ED-ROMP of 

trans-macromonomers carried out by Ryan Weiss.22 Finally, a thorough examination will be 

detailed for the unprecedented SEED-ROMP behavior observed when cis-cyclic-Eg-(LGL-P)2 

was used. 
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2.3.1 Monitoring reaction outcomes during ED-ROMP 

Reaction progress could successfully be monitored during the course of ED-ROMP experiments 

through aliquot removal and a subsequent ethyl vinyl ether (EVE) quench.87 A significant 

challenge for polymeric analysis by NMR is that conformational flexibility, high viscosity, and 

sequence scrambling often leads to substantial peak broadening. As discussed previously, 

sequenced PLGAs have well-resolved spectra as a result of conformational bias in polymer 

microstructures. Conformational bias is extended to these ED-ROMP materials despite the 

palindromic sequence modification and alkyl chain incorporation.  

As in prior PLGA studies, the peaks corresponding to G-methylene protons were 

essential for examining reaction progress. While this method provides a good estimate of 

monomer depletion, it should be noted that MCO formation due to ring-chain equilibrium 

confounds the analysis, as larger MCOs have peaks that overlap with those of the polymer. 

Therefore, % conversion values calculated in this way are better understood as a comparison of 

the relative amounts of unreacted monomer to polymer and large MCOs. When the polymer was 

exposed to catalyst in high dilution conditions to maximize MCO formation, it was estimated 

that the monomer was by far the most stable compound and represented 93% of the mixture at 

equilibrium. The deviation for conversion calculations due to the contribution from large MCOs 

is therefore minimal. This outcome is discussed in further detail in Section 2.3.6. Estimated 

conversion and E:Z ratios of macromonomer were determined at each stage of the 

polymerization as shown below in Figure 12.  
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Figure 12. Macromonomer cis-to-trans ratios can be determined by comparing G-methylene 1H-NMR peaks. 

As in previous PLGA studies, polymeric samples also gave easily identifiable NMR spectra. 

Individual peaks were sharp and resolved without any additional purification following the 

polymerization. A crude NMR following the SEED-ROMP of cis-cyclic-Eg-(LGL-P)2 is shown 

below in Figure 13. Ratios of the cis-to-trans isomer ratio in polymer samples were determined 

by examining olefinic peaks g (5.4-5.5 ppm) because G-methylene peaks for these isomers had 

coalesced. Polymerizations had such large DPs that end groups could not be observed by NMR. 

Figure 13. 1H-NMR of unpurified polymer following the SEED-ROMP of cis-cyclic-Eg-(LGL-P)2. 
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Molecular weights and dispersities were determined using gel permeation 

chromatography (GPC), a form of size exclusion chromatography that separates components 

based on their hydrodynamic volumes. Earlier elution times correspond to higher molecular 

weight materials, and narrow peak widths correspond to decreased dispersity. Conversion of 

monomer to polymer was also apparent in each sample. An example is shown below, where the 

polymerization of cis-cyclic-Eg-(LGL-P)2 over time can be clearly observed (Figure 14).  

Figure 14. Representative GPC curves demonstrating SEED-ROMP progress. 

2.3.2 Summary of results for the ED-ROMP of trans-macromonomers 

Initial polymerization studies were carried out by Ryan Weiss and involved the ED-ROMP of 

trans-macromonomers prepared through the G2-mediated RCM described above. These 

experiments clearly demonstrated outcomes that we had predicted, and in some respects 

exceeded our expectations for polymerization control.22 Polymeric sequences were retained in all 

examples (LGL-P, LGL-B, LC-P, LLC-P variations) and functional group tolerance for all 
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sequences was apparent. Standard conditions of 1.25 mol% G2 catalyst and 0.7 M CH2Cl2 were 

used to obtain polymers with Mn 26-50 kDa and dispersities of 1.3-1.4. Following 

polymerization, hydrogenation over Pd/C reduced internal olefins to yield completely saturated 

alkyl chains between repeating units. A representative example for the ED-ROMP of trans-

cyclic-Eg-(LGL-P)2, is shown below in Scheme 14 with each component of the segmer shaded 

for clarity. 

 

 

Scheme 14. ED-ROMP of trans-cyclic-Eg-(LGL-P)2. 
 

 

As theoretically predicted, monomer conversion increased rapidly at the onset of the 

reaction and a ring-chain equilibrium point was reached after 2 h (Figure 15). Molecular weights 

also rose rapidly at the early stages of the polymerization, but suffered as the reaction continued 

due to apparent increase of secondary metathesis. For instance, in the ED-ROMP of trans-cyclic-

Eg-(LGL-P)2, molecular weights peaked at 50 kDa after 30 min when monomer conversion was 

at 53%. After that point, secondary metathesis began to compete more aggressively with 

propagation and Mn decreased. Concurrently to this, Đ increased from 1.15 to 1.29, reflecting a 

more heterogeneous population of chain lengths. Despite this increase, dispersities remained well 

below the theoretical value of 2 and significantly lower than many previously reported 
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experiments.44 Reactions were stopped once maximum conversion had been maintained for 2-3 

hours to maintain lower dispersity samples. Additionally, the lifetime of G2 is presumably too 

short for the time required to achieve equilibrium. 

Figure 15. Molecular weight (solid black) and dispersity (dashed green) as a function of time (A) and % conversion 
(B) for the ED-ROMP of trans-cyclic-Eg-(LGL-P)2.

A degree of molecular weight control was observed when [M]/[cat] ratios were adjusted 

at four intervals across a range of 20-125 in the ED-ROMP of trans-cyclic-Eg-(LLC-P)2, but 

deviations from theoretical molecular weights were clearly apparent (Figure 16). In a perfectly 

living system, for instance, one would expect a doubling of [M]/[cat] to result in a doubling of 

polymer molecular weight. We are uncertain at this time as to the cause of non-linear deviations 

from predicted Mns when [M]/[cat] ratios are adjusted. The phenomenon appears to be 

independent of secondary metathesis as dispersities for the polymers were consistent (~1.3) for 

all of the experiments. The deviation, wherein molecular weights are higher than theoretically 
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predicted at high catalyst loadings and lower than theoretically predicted at lower catalyst 

loading has also been previously observed by other groups during ED-ROMP.88  

 

 

Figure 16. Adjusting monomer to catalyst ratios influences molecular weights obtained during ED-ROMP. 
Reprinted with permission from The American Chemical Society, Ref. 22, copyright 2015. 

 

 

Overall, these preliminary ED-ROMP experiments yielded polymers with moderate 

control of molecular weights and complete sequence retention. Most importantly, they 

demonstrated the generality of the method; results were highly reproducible and ED-ROMP was 

successful regardless of alkene tether length or variations in scale or macrocycle ring size. 

Dispersities were comparable to those obtained in the SAP method, but we now were able to 

consistently access a higher molecular weight regime for our polymeric materials.  

We also saw that there was significant potential for improvement through use of SEED-

ROMP. ED-ROMP of trans-macromonomers did not produce polymers with as much molecular 

weight control as was ideal. The non-linear [M]/[cat] plot demonstrated that targeted molecular 
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weights may not be possible in new sequences without prior [M]/[cat] studies. Further, 

improvements in dispersity would enable polymerization to block architectures.  

2.3.3 Low concentration manipulation of ring-chain equilibrium during ED-ROMP  

Prior to carrying out SEED-ROMP experiments, a NMR scale competition experiment was 

devised for a 50:50 mixture of cis-cyclic-Eg-(LGL-P)2 and trans-cyclic-Eg-(LGL-P)2. An 

automated time course experiment was developed using a custom delay schedule spanning a 5h 

period. Our goal was to monitor consumption of monomer in the initial stages of the reaction to 

gauge reactivity differences between cis- and trans-isomers. The dilute solution required for 

NMR analysis would slow reaction kinetics at crucial early stages of the reaction. We understood 

that the effects of ring-chain equilibrium and secondary metathesis at such dilution would highly 

favor oligomer formation rather than polymer. Experiments carried out by Gross and coworkers 

showed that oligomers predominated in ED-ROMPs carried out with their samples in 

concentrations <0.05 M.88 Whether polymer or oligomer formed was not an immediate concern 

for this experiment, though, as bias towards cis-macromonomer consumption would likely still 

be evident. 
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Scheme 15. Competition experiment using cis- and trans-macromonomers. 

As expected, the cis-fused macrocycle reacted quickly and equilibrium was established 

after 1h to yield a mixture of metathesis products with ~16% cis-olefin content. While cis-

monomer consumption could be directly observed through the reaction, trans-monomer peaks 

were unfortunately not differentiable from those of the products (Figure 17). We would expect 

G-methylene peaks for a highly unconstrained system (i.e. those of larger MCOs) to be set far

apart, as seen in the homodimerized material and the polymer. Indeed, small peaks in that region 

did appear at longer reaction times. We were uncertain at what threshold in MCO size (n in 

Scheme 15) this peak shift would occur. The results of this experiment nonetheless showed that 

the significant preference in MCO size is very small when ring-chain equilibrium dominates. 

While it did not give us a clear determination of cis/trans reactivity differences as we had hoped, 

it corroborated later cyclodepolymerization experiments in which the ring-chain equilibrium was 
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manipulated in the opposite direction. Later MALDI analysis of samples that had reached ring-

chain equilibrium showed that the overwhelming preference in MCO ring size was n = 1. What 

we had likely achieved in this preliminary reaction was therefore simply a ring-opening followed 

by a trans-selective ring-closing reaction along with a statistical distribution of MCOs with n>1. 

Figure 17. Reaction of a ~50:50 isomeric mixture of macromonomers (top) when exposed to G2 in dilute conditions 
(bottom). 

2.3.4 Kinetics study of selectivity enhanced ED-ROMP 

With the cis-macromonomer in hand, we examined its behavior when exposed to 1.25 mol% G2 

at high concentration (0.7 M). Excitingly, the polymerization under these conditions appeared to 

enter a selectivity-enhanced regime as we had hypothesized. Visual inspection alone showed a 

dramatic improvement in the rate of polymerization when cis-cyclic-Eg-(LGL-P)2 was used. The 

reaction solution became an immobile gel after just 2 min and conversion reached 89% after only 

10 min (Figure 18). This change in physical appearance was in stark contrast to the trans-

macromonomer experiments, where 1 h was required for similar viscosity changes to be 
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observed and 2 h were required for 88% conversion to be achieved. Direct overlays of reaction 

outcomes for ED-ROMP and SEED-ROMP are shown in the following section. 

Figure 18. Sample mixtures became gelled within 2 min of SEED-ROMP. 

Examination of very early and very late time points for SEED-ROMP gave us insight into 

the respective degree of kinetic and thermodynamic enhancement of this reaction. As we had 

hoped, the increased rate of propagation appeared to decrease the incidence of secondary 

metathesis in the course of the reaction. Dispersity was maintained at 1.1 and molecular weights 

exceeding 60 kDa (Table 4). When the polymerization was allowed to continue for 4 h, 

conversion exceeded 95%, Mn was maintained at 60.0 kDa, and dispersity was an 

unprecedentedly low 1.11. To the best of our knowledge, this represents the highest degree of 

living character that has ever been observed in an ED-ROMP. 
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Table 4. Results for the SEED-ROMP of cis-cyclic-Eg-(LGL-P)2 at selected time intervals. 

Visualization of data from this kinetics study shows just how profoundly the performance 

of ED-ROMP was improved (Figure 19). Molecular weights increased rapidly at the earliest 

stages of the reaction and only suffered ~6 kDa of mass reduction by the time the reaction was 

quenched at 4 h (Figure 19A, B). Dispersity increases were not observed at prolonged reaction 

times as in previous experiments, which is suggestive of minimal secondary metathesis (Figure 

19A and B, green). GPC peaks remained monodisperse over all time points although fluctuations 

in molecular weights could easily be seen (Figure 19E). An aliquot left for 2 days prior to 

quenching displayed additional deterioration with respect to molecular weight and dispersity 

(54.4 kDa, 1.12, Figure 19E purple). The catalyst lifetime had certainly been eclipsed during 
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such a long reaction period, but the continued reaction compared with the 4 h time point suggests 

that total loss of catalyst activity was not the reason for observed secondary metathesis evasion. 
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Figure 19. Visualizing SEED-ROMP data; Mn (solid black) and Đ (dashed green) vs. time (A) and % conversion 
(B); % conversion vs. time (C); rate law determination (D); overlay of GPC traces for selected time points.  



 59 

Conversion was high but incomplete, owing to the equilibrium processes that are 

unavoidable during ED-ROMP. We expected a slightly lower conversion due to the ring-chain 

equilibrium, especially when compared to the ED-ROMP of the trans-macromonomer. At this 

time, it is uncertain why monomer depletion is so complete in this reaction. The rate of reaction 

is certainly faster, which would work to stymie secondary metathesis and encourage monomer 

conversion. However, the polymer formed through SEED-ROMP and ED-ROMP is identical, 

and should be subjected to the same ring chain equilibrium that would convert polymer to 

MCOs. Early catalyst deactivation is a possibility, although as noted above, the polymerization 

did continue in some capacity at longer reaction times. 

Rapid chain propagation followed first order kinetics (Figure 19D). The rate of 

propagation for the reaction, 4.1×10-3 s-1, was determined using Equation 3 to plot 𝑙𝑙𝑙𝑙 �[𝑀𝑀]0
[𝑀𝑀]𝑡𝑡

� over 

time (Figure 19D). A linear correlation was observed until monomer became too depleted at 89% 

conversion (t = 600s). The rate obtained is within a range expected for ED-ROMP, and is an 

order of magnitude less than for that of the ROMP of strained rings such as cyclooctene and 

norbornene, which have ring strain.33,44,59,88,134,135  

Additional analysis of monomer consumption during SEED-ROMP revealed significant 

reactivity differences between cis-cyclic-Eg-(LGLP)2 and trans-cyclic-Eg-(LGLP)2. All SEED-

ROMP reactions were carried out with monomer having at least 87:13 cis- to trans-olefin ratios. 

The 1H-NMR peaks correlating to G-methylene and olefinic protons were differentiable enough 

to compare isomeric ratios in the samples (Figure 12, Figure 19). In this reaction, the rate of cis-

macromonomer consumption far exceeded that of trans-macromonomer in the starting mixture. 

So, although the monomer sample began with a cis-to-trans ratio of 87:13, the ratio had reversed 

to 35:65 after 10 min, becoming enriched in trans-isomer at higher conversions (Figure 20). 



 60 

 

    

Figure 20. Remaining macromonomer becomes enriched in trans-isomer as conversion increases. 
 

 

Ultimately in this project, we hoped to achieve molecular weight control in a range 

suitable for our group’s ongoing PLGA studies (30-50 kDa). We and others had seen a non-

linear relationship when catalyst amounts were altered during ED-ROMP, and we were curious 

what the molecular weight limitations of SEED-ROMP would be. In the ensuing SEED-ROMP 

experiments, molecular weight control was found to be linear over an extended range of catalyst 

loading, enabling Mns between 40-75 kDa to be targeted. This result would only be expected in a 

highly controlled system with a number of active chain ends proportional to catalyst.136 

Molecular weights above theoretically predicted values suggest that the number of propagating 

chains is fewer than the moles of catalyst added. A sustained linear relationship for all 

experiments implies an unparalleled degree of molecular weight control can be expected across 

an expansive range of [M]/[cat]. The consistent deviation from theoretical values also suggests 

that a predictable fraction of catalyst is active in the initial stage of SEED-ROMP when the 

majority of monomer is consumed. Access to even greater molecular weights would likely be 
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relatively straightforward, but is beyond the needs of our group and the detection limits of the 

GPC and so was not pursued further. 

 

 

Figure 21. Predictable relationship observed when mol% catalyst was varied. 
 

 

To further investigate the degree of livingness and the role of secondary metathesis in the 

polymerization, chain extension experiments were carried out. Dispersity values remained low 

throughout SEED-ROMP polymerizations, even at long reaction times. As noted above, letting 

the reaction continue after 4 h resulted in slight degradation of polymeric materials, seen through 

broadening dispersity and decreasing Mn. This continued reactivity showed that at least some of 

the initially activated chains remained active at longer periods of time. However, we wanted to 

unequivocally determine whether the lack of significant dispersity increases at longer reaction 

times was due to inherent bias of the SEED-ROMP system or if a significant number of active 

chains had been deactivated in earlier stages of the reaction.  

Chain extension experiments would mimic block copolymerization, in which an initial 

monomer sample was allowed to polymerize for a period before a second batch of monomer was 
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added to the mixture (Scheme 16). In this case, the monomer used in both additions would be the 

same. The result of the experiment would be a lengthening of the active chains by an amount 

determined by the moles of monomer supplied in the second addition. If, for example, half of the 

active chains were quenched after the initial stages of the polymerization, then they would no 

longer be able to participate in SEED-ROMP when the second batch of monomer was added. 

The result would be a mixture containing two populations of polymer, each with narrow 

dispersities: one of Mn correlating to the monomer-to-catalyst ratio of the first addition, and one 

with a significantly higher Mn to account for the additional monomer provided. Ideally, a 

monodisperse population of chains at elevated molecular weights would be obtained instead. If 

this was the case, we could conclude that the high degree of living character in the system was 

the reason for the incredibly low maintained dispersities. 

Scheme 16. Chain extension experiments lengthen chains by providing additional monomer for SEED-ROMP. 

Initial ED-ROMP reactions were carried out with 1.25 mol% G2 at 0.7 M CH2Cl2. After 

10 or 30 min, an additional aliquot of monomer in 0.7 M CH2Cl2 was added to the reaction 

solution and allowed to stir for an additional 10 or 30 min. The experiment was first carried with 

only 10 min allowed for each phase of polymerization, but this resulted in incomplete conversion 

of monomer during chain extension. The polymer that resulted had a Mn of 74.3 kDa, which, 

when adjusted for monomer conversion, was only 0.4 kDa away from the experimentally 
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predicted Mn of Figure 21. The experiment was subsequently repeated using 30 min for each 

stage of the polymerization to encourage conversion of monomer. Allowing the monomer 

additional time to react during increased conversion to 91%. The molecular weight of the 

polymeric sample unfortunately fell into a range that is not well-resolved using currently 

available columns. The GPC peak remained monomodal following polymerization, with 

dispersities of 1.11 maintained in both experiments. A GPC overlay for the chain extension of 

poly (LGL-Eg-LGL-Pp) is shown below, demonstrating the increase in molecular weight 

without change in dispersity (Figure 22). These chain extension experiments support our claim of 

living character for the polymerization, they corroborate the catalyst variation experiments, and 

they also provide an alternate method to obtain high molecular weight polymers or copolymers. 

 

 

Figure 22. Molecular weight increases and dispersity is maintained during chain extension experiments. 
 

 

The results from SEED-ROMP improve greatly on prior experiments of ED-ROMP using 

trans-macromonomers. Conversion of monomer during the reaction was rapid and molecular 

weights were obtained in a highly predictable manner based on monomer conversion and 
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[M]/[cat] ratios across an expansive molecular weight range. Linear first-order kinetic behavior 

was observed and the rate constant of chain propagation (kpr) is in the range expected for an ED-

ROMP. Very low dispersity polymers were obtained in all experiments regardless of scale, 

catalyst loading, method of monomer addition or conversion. Molecular weights diminished and 

dispersity increased over longer reaction periods by a very small amount, as would be expected, 

but these effects were not significant. Finally, polymers were well-defined and showed no signs 

of sequence scrambling by 1H-NMR. 

2.3.5 Comparison of ED-ROMP outcomes when using cis- or trans-macromonomer. 

Although specific points of comparison have already been addressed in the previous section, we 

thought it would be beneficial to see a visual comparison of data obtained when cis- or trans-

macromonomer was used. Presented here are plots overlaying data regarding the molecular 

weight, conversion, dispersity and initial rate of SEED-ROMP and ED-ROMP (Figure 23). In 

these figures, the profound level of kinetic bias introduced into the reaction is clearly visible. 
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Figure 23. Comparison of SEED-ROMP and ED-ROMP when using cis- and trans-macromonomers, respectively. 
  

2.3.6 Manipulating the metathetical equilibrium through ADMET and CDP. 

We next moved to compare the sequential RCM and ED-ROMP method to alternative pathways 

and methodologies for obtaining sequenced copolymers. Our goal was to perform preliminary 

experiments to gauge the reactivity of Eg-(LGL-P)2 under ADMET conditions and to determine 

whether polymeric materials could be recycled back to monomer through CDP (Figure 4). 
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Starting from the open chain α,ω-diolefin Eg-(LGL-P)2, one can envision direct formation of 

poly (LGL-Eg-LGL-Pp) through ADMET (Scheme 17).  

As mentioned previously, in those few examples where ADMET and ED-ROMP were 

both used, ED-ROMP gave access to higher molecular weight polymers.40,55,71 Additionally, 

ADMET often requires more extensive optimization for every substrate to reach the desired 

conversion, dispersity, and molecular weight. It is a step growth polymerization that engages in 

continuous cross-metathesis, average molecular weight increases slowly relative to conversion so 

high conversions are required to obtain longer chain lengths. Similar to ED-ROMP, ADMET 

suffers from weak thermodynamic driving force for polymerization due to its enthalpically 

neutral bond formation. Elevated temperatures and ethylene removal can be used, but there is a 

significant barrier to higher molecular weight polymers without extensive optimization.  

Scheme 17. ADMET of Eg-(LGL-P)2 using HG1 or G2. 

Hoveyda Grubbs 1st generation catalyst (HG1) has previously been used to obtain 

moderate molecular weight polymers through ADMET and was selected for the study.137 In the 

early stages of the synthesis of GN, we had prepared HG1 from G1, and so had access to large 
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quantities of that catalyst. A second reaction using G2 would be carried out, although we noted 

that in some cases, increased olefin isomerization of monomeric and polymeric materials has 

been noted.138-140 Eg-(LGL-P)2 was subjected to 1 mol% of either HG1 or G2 at high 

concentration in a sealed tube. Vacuum was applied to the vessel and the mixture was heated to 

40 °C while stirring to encourage ethylene removal.141 After quenching the reactions with EVE, 

the product mixtures were analyzed.  

We found that a significant population of smaller chain sizes (DP 2, 3, 6) still 

predominated when either GH1 or G2 were used, indicating a very sluggish reaction. The 

reaction appeared slower when G2 was used, and internal olefin isomerization was also 

observed. To counter the low reactivity of the monomer, longer reaction times and use of a 

higher boiling solvent could be used. Higher molecular weight chains represented only a very 

small fraction of the mixture and had an Mn of 43.1 kDa and Đ of 1.12, suggesting that 

optimization of the reaction could conceivably lead to an alternate route of access to poly (LGL-

Eg-LGL-Pp). Based on literature precedent, we would expect that moderate molecular weights 

and low dispersities would not be possible without significant optimization, and even then may 

not compare to that observed with ED-ROMP.40,57,71,72 The most attractive use of ADMET for 

our purposes is as a tool to access macrocyclic monomers that are resistant to RCM conditions 

via CDP. 

 



 68 

 

Scheme 18. Cyclodepolymerization of poly (LGL-Eg-LGL-Pp) to produce a mixture of MCOs. 
 

 

CDP allows for both the recycling of polymeric and oligomeric species back to their 

respective MCOs.55,58,142 Assuming the CDP is complete, the product mixture will contain MCOs 

with little contamination by adventitious linear olefins. This would be ideal in a situation where 

RCM was impossible or where it yielded an inseparable mixture of α,ω-diolefin precursor and 

ring-closed product. Using a sample of poly (LGL-Eg-LGL-Pp) from earlier ED-ROMP studies, 

a dilute mixture was prepared using CH2Cl2 (0.02 M) and 1 mol% G2. The solution was allowed 

to stir at 40 °C for 8 h prior to quenching with EVE. The resulting NMR mirrored that of the 

dilute cis-trans competition experiment previously conducted, suggesting that equilibrium had 

been established (Figure 17, Figure 24).  
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Figure 24. NMR of MCO mixture following cyclodepolymerization with G2. 

The product mixture had a 83:17 ratio of E:Z products, which was also consistent with 

previous findings. Analysis of the ESI-MS shows that the masses of MCOs present in the 

product mixture heavily favor the macrocyclic species where n=1. Ratios of detected intensities 

for the peaks corresponding to n=1, n=2, and n=3 were approximately 93 : 7 : < 1. This strategy 

of recycling polymerized materials is ideal in situations where trans-macromonomer is desired, 

but it is not possible at this time to access the cis-macromonomer using this method. When CDP 

was carried out in the presence of up to 15 mol% GN in DCE at 60 °C, cis-cyclic-Eg-(LGL-P)2 

was not obtained. This result is expected, given the steric constraints of the catalyst, which is 

known to have negligible reactivity with internal trans-olefins.96,126,143 
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Figure 25. Cyclodepolymerization favors the formation of small MCOs. 

2.3.7 Deactivation ED-ROMP using fast-initiating Grubbs’ third generation catalyst 

Following the ED-ROMP studies of trans-cyclic-Eg-(LGLP)2 and cis-cyclic-Eg-(LGLP)2, we 

wanted to compare the results to those obtained when using DED-ROMP conditions. The 

unprecedented level of control we were able to achieve during SEED-ROMP led us to 

hypothesize that we had entered into the regime of molecular weight control typically only seen 

when using G3 in ROMP. Specifically, the low dispersity and apparently linear relationship 

between molecular weight and monomer to catalyst ratio were similar to what would be expected 

in DED-ROMP, as discussed previously. 

Exposure of cis-cyclic-Eg-(LGLP)2 to G3 resulted in polymer with molecular weight and 

dispersity comparable to those observed in SEED-ROMP (58.2 kDa and 1.16, compare to Table 
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4). The polymerization occurred rapidly as anticipated, with the sample viscosity increasing to 

prevent stirring after only 2 min. Complete conversion was observed when the polymerization 

was quenched after 2 h. As in previous experiments, the molecular weight obtained was over 10 

kDa higher than that predicted by monomer to catalyst ratio. Further molecular weight control 

studies were not performed, although a linear trend could be expected as described above. The 

final polymer resulting from DED-ROMP contained 86% trans-olefin, similar to ED-ROMP and 

SEED-ROMP polymers. When trans-cyclic-Eg-(LGL-P)2 was exposed to the same conditions, 

similarly high conversions and trans-olefin content were observed, although sample viscosity 

appeared to increase at a slower rate. 

Scheme 19. DED-ROMP of cis-cyclic-Eg-(LGL-P)2 using G3. 

Due to the nature of the catalysts used to perform SEED-ROMP and DED-ROMP, the 

mechanism of formation for these polymers is necessarily distinct. The high reactivity and 

selectivity of SEED-ROMP is founded on principles of kinetic and thermodynamic enhancement 

induced by the macrocyclic cis-olefin. Conversely, high reactivity and selectivity in DED-ROMP 

is primarily due to improvements in the ratio of ki to kpr for the catalyst itself. NMRs obtained 

mid-polymerization for these two distinctive reactions demonstrate this significant difference. As 
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shown in Figure 26, the consumption of cis-monomer is more rapid than trans during SEED-

ROMP. As the reaction progresses, trans-monomer begins to dominate the remaining monomer 

pool. In DED-ROMP, cis-monomer depletion does not occur to such a degree, with 65% cis-

monomer remaining at 86% conversion.  

Figure 26. Conversion of cis-monomer is more rapid during SEED-ROMP than DED-ROMP. 
Monomer and final polymer samples are shown at top and bottom, respectively; NMRs corresponding to aliquots 
removed prior to complete conversion during SEED-ROMP (G2) and DED-ROMP (G3) are shown in the middle; 

relative peak heights corresponding to G-methylene protons are illustrated at right. 
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2.3.8 Rationalizing the selectivity enhancement observed during SEED-ROMP 

The underlying source of selectivity enhancement that occurs during SEED-ROMP is 

presumably related to the improved ability of the cis-macromonomer to access the propagating 

catalyst.83 In a collaborative effort with Dr. Peng Liu and Cheng Fang, we set out to 

computationally investigate and rationalize the phenomena. We compiled a series of model 

compounds, shown below in Figure 27, to enable comparison of both cis- and trans-

macromonomers of varying sizes. This collaborative effort is still ongoing and therefore only 

preliminary findings are summarized in brief herein. 
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Figure 27. Monomer library for the computational analysis of ED-ROMP kinetics. Left: cyclic, right: acyclic.  
 

Computational studies carried out by Dr. Liu and Mr. Fang suggest that the reactivity 

enhancement observed for cis-cyclic-Eg-(LGL-P)2 is due to the increased likelihood of the 

macromonomer to exist in a conformationally active state. The constrained nature of the 
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macromonomers in energy-minimized conformations limits the accessibility of internal olefins 

during metathesis, which necessarily has a significant effect on their respective abilities to 

engage in chain propagation. Further investigations confirmed that the activation energy required 

for [2+2] cycloaddition was highly dependent on the dihedral angle of the two C-C bonds 

adjacent to the olefin. It appears that increased populations of cis-macromonomers exist in 

metathesis-active conformations required for polymerization. More complete details regarding 

these findings will be published in the near future. 

2.4 SEQUENTIAL ED-ROMP—ROMP BLOCK COPOLYMERIZATION 

Once we had established the highly living character of SEED-ROMP, we next expanded the 

scope of our studies to include the formation of defined block copolymers. Block copolymer 

architectures are typically only accessible during living polymerizations because successful 

integration of both block components requires controlled chain extension.84 Copolymerizations 

of non-living ED-ROMP scaffolds have been carried out previously but did not provide access to 

well-defined block copolymers. In their work to synthesize long chain polyesters, Duchateau and 

coworkers performed a tandem ED-ROMP—ROMP but obtained polymers with dispersities >2 

and with little sequence control.106 Contrary to previous efforts, we envisioned a one-pot ED-

ROMP—ROMP protocol could be used to yield well-defined block microstructures controlled 

through the sequential addition of monomer components (Scheme 20). 
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Scheme 20. Block copolymers formed through successive SEED-ROMP and ROMP. 

ROMP was a mechanistically ideal pairing for the SEED-ROMP protocol because the 

two reactions could conceivably be carried out in one pot. In this process, SEED-ROMP would 

be allowed to occur prior to addition of a more reactive strained monomer for ROMP. 

Concentrations and catalyst loadings for the two reactions are highly compatible. Sequential 

addition would limit the opportunity for gradient copolymers to form, as might be the case if 

both monomers were exposed to catalyst simultaneously.144 Relative ratios of each monomer 

incorporated into the copolymer backbone could be adjusted simply by altering feed ratios. As 

before, final molecular weights would be proportional to the amount of catalyst used (i.e. number 

of chains possible) and amounts of monomer added (i.e. DP possible for each block).  

We had already demonstrated through chain extension experiments that a second 

polymerization reaction was possible following an initial SEED-ROMP with G2. If the second 

phase of metathesis polymerization was highly controlled, as in our chain extension experiments, 

a low dispersity “co” polymer would be produced. We could foreseeably use this strategy to 

carry out ED-ROMP reactions with two types of pseudo-PLGAs to make a true copolymer with 

tailored degradation patterns or cleavable pendant groups. In this preliminary study, we wanted 

to demonstrate that this principle could effectively be applied to monomers other than our 

pseudo-PLGAs. Typically, G3 is used to obtain ROMP block copolymers due to the secondary 

metathesis that can be prevalent when using G2.46,83,84,145 Because we had already shown that 
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molecular weight control could be maintained with a second addition of monomer, we did not 

prioritize low dispersity as much in these block copolymerizations as we had in previous 

experiments. 

We proposed the use of norbornene (NBE) as a model system for ROMP due to its 

immense popularity and potential for functional group diversification. While we would be using 

nonfunctionalized NBE for these proof-of-concept experiments, its pharmaceutical applicability 

when fully functionalized has been well documented.33,69,145-148 For instance, NBE polymers 

appended with a tripeptide arginine-glycine-aspartic acid (RGD) motif showed higher activity 

than the corresponding peptide in cancer-associated fibroblast inhibition.149-151 Additionally, 

solubility properties can be tailored for copolymers through the use of NBE functionalized with a 

polyethylene glycol (PEG) chain.152,153 Amphiphilic copolymers incorporating NBE-PEG and 

other polar groups have been shown to self-assemble into micelles with great success for 

applications such as drug delivery.154,155 The significant precedent for appending groups such as 

a fluorophore, solubility-enhancing group, or cleavable drug to NBE makes this substrate highly 

attractive for our purposes (Figure 28). 

Figure 28. Copolymer with a ROMP block functionalized to incorporate drug or to enhance solubility properties. 

Block copolymerization using a sequential SEED-ROMP—ROMP protocol was 

successful when ROMP occurred for short reaction times. Preliminary ROMP 
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homopolymerization experiments demonstrated that at longer reaction times, molecular weights 

plummeted and dispersities approached 2 as secondary metathesis took hold. Block 

copolymerizations were started with SEED-ROMP, which was carried out by exposing cis-

cyclic-Eg-(LGL-Pp)2 to 1.25 mol% G2 in 0.7 M CH2Cl2. After 10 min, 25 equivalents NBE in 

0.7 M CH2Cl2 were added to the polymerization mixture. The ROMP was allowed to proceed for 

either 1 min or 5 min prior to quenching with EVE. An excess of monomer was added to 

encourage preferential block formation over secondary metathesis, and unreacted NBE could 

later be removed in vacuo due to its relatively low boiling point (96 °C). A control experiment 

was quenched after the initial 10 min SEED-ROMP and delivered poly (LGL-Eg-LGL-Pp) with 

molecular weight and dispersity consistent with previous kinetics and chain extension 

experiments (Mn 60.4 and Đ of 1.1). Block architectures could be successfully accessed upon 

NBE addition, producing copolymers with elevated Mns (Scheme 21).  

Scheme 21. Block copolymerization through sequential SEED-ROMP—ROMP. 

Molecular weight changes for the copolymers at different reaction times were as 

expected, with an initial increase in Mn with the onset of ROMP (Figure 29, green) and later 
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decrease at longer reaction times (Figure 29, blue). The propensity of NBE to engage in 

secondary metathesis was evident as time progressed, and dispersities would be expected to 

increase further if longer times for ROMP were permitted.145 Molecular weights increased 

approximately 11 kDa during the ROMP phase of the reaction even with truncated reaction 

times. The 6.4-fold difference in monomer molecular weight leads to smaller contributions to 

overall polymer molecular weight for NBE at similar DPs. The polymer obtained after 

polymerization had a molecular weight of 71 kDa, representing a DPSEED-ROMP of 100 and 

DPROMP of 117. Thermal properties for block copolymers were not determined, although visual 

inspection shows that the Tg of the of block copolymers is certainly above that of poly (LGL-

Eg-LGL-Pp).156 

Figure 29. GPC overlay for control (red) and block copolymerization (blue and green, dashed) experiments. 

As expected, NMR analysis of block copolymers was complicated by the atactic nature of 

the polymer, but nonetheless correlated well with what was anticipated.157 Olefinic linkages in 
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the polynorbornene block occurred with 59-64% cis-selectivity in block copolymerizations and 

preliminary ROMP homopolymerization experiments. Resonances associated with protons and 

carbons at vinyl (5.2, 5.4 and 134, 133 ppm) and allylic (2.8, 2.4 and 39, 43 ppm) positions could 

be evaluated for cis- and trans-linkages, respectively. A representative NMR is shown below 

comparing the block copolymer with those of homopolymers poly (LGL-Eg-LGL-Pp) and poly 

(NBE) (Figure 30). 

Figure 30. Comparison of 1H-NMR spectra for homopolymers and SEED-ROMP—ROMP block copolymer. 

Improvements could certainly be made with regards to monomer incorporation during 

this preliminary study. Although NBE has a large degree of ring strain (27.2 kcal/mol), it also 

suffers from decreased propagation rates due to steric hindrance impeding the formation of the 

Ru-olefin metallocyclobutane.74 It is uncertain at this time what DPROMP would be targeted in 
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future efforts within our group, but secondary metathesis certainly limits the DPROMP achievable 

while maintaining a controlled block copolymerization when non-functionalized NBE is used.158 

Poor control over the ROMP would likely not prevent future applications where NBE-PEG was 

utilized to improve water solubility. However, control over DPROMP would certainly be necessary 

if the aim was to append drug or fluorophore. Chain transfer reagents or labile coordinating 

ligands like PPh3 have been used in the past to improve the ki/kpr for the reaction and allow 

access to a higher DPROMP.48,145 Preliminary ROMP homopolymerization reactions also 

suggested conducting the ROMP at 0 °C would result in decreased secondary metathesis. An 

alternative to this approach would be to simply use G3 as long as reactions could be completed 

within the catalyst lifetime.46 The success of these proof-of-concept block copolymerizations 

suggests that this method will be viable in applications with more complex block architectures in 

future studies. 
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3.0  SUMMARY AND FUTURE DIRECTIONS 

3.1.1 Summary 

In this thesis, we have demonstrated that a highly living regime of ED-ROMP is possible for 

sequenced oligomers when the macromonomer contains an endocyclic cis-olefin. This powerful 

reaction has enabled us to produce sequenced copolymers with unprecedented levels of control 

over a broad range of molecular weights. Sequenced α,ω-diolefins were synthesized according to 

the efficient and scalable segmer assembly method. They were then subjected to RCM, mediated 

by either the trans-selective G2 or the cis-selective GN. Both reactions proved to be high 

yielding and highly selective. This the first time that successful use of GN has been reported 

outside of the Grubbs group, and has certainly expanded the scope of reactions possible for this 

new catalyst.  

Selectivity enhancement and the living character of SEED-ROMP were probed in a series 

of kinetics and chain extension experiments. All polymerization reactions could be precisely 

analyzed using standard NMR spectroscopy and SEC methods. Molecular weights and 

conversion increased rapidly during the reaction, and dispersity was maintained even at long 

reaction times. A linear correlation between [M]/[cat] and Mn was established, a characteristic 

that is typically only observed during a living polymerization. Compared to the ED-ROMP of the 

corresponding trans-macromonomer, significant improvements in rate of propagation and 
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molecular weight control were observed. Further, cyclodepolymerization was shown as a viable 

method to recycle polymerized material back to a mixture of MCOs. Polymer chains could be 

extended once initial monomer had been consumed through the addition of more monomer or the 

highly strained bicyclic NBE. These polymerizations demonstrate the potential for the 

incorporation of property-modulating groups through a sequential SEED-ROMP—ROMP 

protocol. They also provide the opportunity to access significantly higher Mn sequenced 

copolymers in future studies. 

3.1.2 Future Directions 

SEED-ROMP represents a new method to obtain well-defined sequenced copolymers with a high 

degree of molecular weight control. It is a clear improvement over our SAP approach in terms of 

molecular weight control, and more extensive physical properties analysis of these polymers are 

currently underway. Our primary focus moving forward is the exploration of the physical and 

morphological properties of ED-ROMP materials, with an emphasis on practical applicability. 

We specifically want to know whether the interesting properties displayed by SAP-PLGAs will 

also be observed with these polymers.  

One goal of further properties studies of ED-ROMP materials is to gain an understanding 

how each component of the segmer contributes to the overall properties of the corresponding 

polymer. For instance, we have found that the olefin tether of the ED-ROMP material can easily 

be reduced following polymerization, but its inherent flexibility is disruptive to lattice 

formation.22 The ED-ROMP polymers discussed herein have a high degree of PLGA character, 

but have been tuned to enable the metathetical formation of palindromic sequenced polymers. 
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When possible, we intentionally designed requisite sequence modifications to minimize 

divergence from PLGA. Two groups, the ethylene glycol and the olefinic tether, have been 

specifically incorporated for this to occur. Now that we have demonstrated that ED-ROMP is 

possible for a range of polyester sequences, we will work to study how these two groups affect 

properties such as microparticle degradation and how their influence can be minimized. 

In order to study the property-directing role of non-L or G groups in the ED-ROMP 

polymers, we are currently investigating the limits of influence that tether and linker groups can 

have. One phase of this project will be devoted to increasing the amount of L and G character in 

a non-palindromic macromonomer, which would likely align the properties of the resulting 

polymer more closely to those of SAP-PLGAs. We also are concerned with situations in which 

ancillary groups modify the polymer properties significantly. Sequence-controlled polymers are 

often obtained at the cost of incorporation of property directing groups.4,116,117,144,159 We believe 

that ED-ROMP enables the formation of sequence-controlled polymers with comparatively 

diminished impact on the polymeric backbone. We have therefore begun an additional phase of 

the ED-ROMP study in order to gain insight into the property-directing role of alternate linker 

groups. Preliminary experiments have been carried out to facilitate this second study, and are 

briefly summarized below. 

Using a convergent strategy, we will substitute the ethylene glycol subunit in ED-ROMP 

macromonomers with a variety of endocyclic linker groups. As in our current synthetic method, 

coupling to the linker group will precede RCM. Linker groups to be incorporated include alkyl, 

ethylene glycol, sulfide, and urea and will eventually be expanded further (Scheme 22).  
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Scheme 22. General route to obtain ED-ROMP materials with linker variation for physical properties studies. 

Synthesis of the most stable precursors to Linker-(LGL-B)2 formation have been carried 

out on multi-gram scale. Linker fragment synthesis began with the hydrolysis of Me-L-Si as 

previously discussed. Double coupling of alkyl, ethylene glycol, sulfide, and urea diols to L-Si 

delivered 9-12, with the most significant byproduct resulting from single coupling. A first year 

graduate student, Jordan Swisher, conducted the purification of sulfide and PEG analogues, 

finding that unreacted monomer and asymmetric intermediate were isolable during purification. 

Deprotection of 7 went smoothly, providing L-alkyl-L (10) in high yield when the conditions 

previously developed for Eg-(LGL-TBDPS)2 were used. This unprotected diol was stable at low 

temperature over several months, but analogues 10-12 were maintained at the protected 

intermediate to avoid potential decomposition. 
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Scheme 23. Synthesis of L-linker-L fragments 8-11. 
 

 

Multigram synthesis of the second fragment was carried out according the segmer 

assembly method, stopping at the most stable advanced intermediate, Me-GL-B (18) (Scheme 

24). As above, Me-L-Si saponification yielded L-Si, which was immediately coupled to Bn-G to 

yield Bn-GL-Si. Protecting group strategies were adjusted slightly to enable facile G-

deprotection at a later stage in the presence of a terminal olefin. The benzyl protecting group was 

replaced with methyl, affording Me-GL-TBDPS in two steps with 88% yield. Deprotection of 
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the silane delivered Me-GL, which could then be coupled to 3-butenoic acid to form Me-GL-B 

in 75% over two steps. The efficiency of this scheme could certainly be improved by establishing 

desired protecting groups prior to the initial L-G coupling reaction. These preliminary studies 

were carried out with stock materials that we had in hand, with ease of access being prioritized 

over stepwise efficiency. In future development of this project, this process will certainly be 

streamlined. Once the linker is incorporated into the segmer, RCM will lead to the desired 

macromonomer that can then be polymerized via ED-ROMP or SEED-ROMP. 

 

 

Scheme 24. Progress towards the synthesis of cyclic linker analogues. 
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4.0  EXPERIMENTAL 

Modeling Experimental 

Substrates for preliminary docking studies were constructed using ChemDraw Ultra 12.0. The 

geometrically optimized conformations were obtained from MM2 energy minimization before 

being converted to .mol format using Chem3D Pro 12.0. PyMOL was used for further rendering 

and visualization of models. Removal of non-polar hydrogens, selection of rotatable bonds and 

predictive docking analysis were carried out using AutoDock Vina 1.1.2 and the MGL Tools 

1.5.6 suite from the Scripps Research Institute.110-113  

 

 

Synthesis Experimental 

All reactions were performed under an inert atmosphere of N2 gas in oven-dried glassware using 

anhydrous solvents, unless otherwise noted. Methylene chloride (CH2Cl2, Fisher), ethyl acetate 

(EtOAc, Sigma Aldrich) and tetrahydrofuran (THF) were purified by a solvent dispensing 

system by J. C. Meyer and passed over two columns of neutral alumina. All other anhydrous 

solvents were purchased from Sigma-Aldrich. Reactions were monitored by thin–layer 

chromatography (TLC) carried out on 0.25 mm EMD silica gel plates (60F–254) using heat or 

UV light (254 nm) for visualization and KMnO4 stain as a developing agent. TSI silica gel (230–

400 mesh) was used for flash chromatography. 1H- and 13C-NMR spectra were recorded on a 
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Bruker Avance II Ultrashield Plus equipped with a cryoprobe at 600 and 150 MHz, 500 and 125 

MHz, or 400 and 100 MHz, respectively. Chemical shift values are in ppm relative to residual 

solvent signal. The following abbreviations are used to indicate the multiplicities: s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS data was obtained on a LC/Q-

TOF instrument. Low-resolution mass spectra were obtained on an Applied Biosciences API 

2000 ESI- triple quadrupole mass spectrometer with a Shimadzu UFLC inlet system. Molecular 

weights and dispersities were obtained on a Waters GPC (THF, 0.5 mL/min flow rate) with Jordi 

500, 1000, and 10000 Å divinyl benzene columns, and refractive index detector (Waters) was 

calibrated to polystyrene standards. 

 

 

 

 

 

Preparation of L-TBDPS (6). 

To a stirring solution of Me-L-Si (4, 37.8 g, 110 mmol) in THF (500 mL) at 0 oC was slowly 

added a solution of LiOH (18.5 g, 442 mmol) in H2O (500 mL). Once the addition was complete, 

the solution was allowed to warm to rt and stirred for an additional 3 h. The reaction solution 

was concentrated to half volume, diluted with brine (100 mL) and extracted with Et2O (3 × 200 

mL). The aqueous layer was acidified to pH < 1 with 3M HCl. The mixture was then extracted 

with Et2O (5 × 100 mL), dried over MgSO4, filtered, and concentrated in vacuo to provide the 

crude product as a colorless oil (32.0 g, 88%). The oil had identical spectral properties to those 
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found in literature17 and was used in subsequent reactions without further purification; 1H NMR 

(400 MHz, CDCl3) δ 7.68 (m, 4 H), 7.43 (m, 6 H), 4.35 (q, J = 6.8 Hz, 1 H), 1.34 (d, J = 7.2 Hz, 

3 H), 1.12 (s, 9 H). 

Representative protocol: ALS-1015 

 

 

 

Preparation of Bn-GL-TBDPS (15).  

To a stirring solution of Bn-G (17.8 g, 107.3 mmol) and L-TBDPS (6, 32.0 g, 97.5 mmol) in 

CH2Cl2 (1000 mL) was added DPTS (5.741 g, 19.5 mmol). Once the DPTS had dissolved, DCC 

(22.1 g, 107 mmol) was added and the solution stirred overnight. The reaction mixture was then 

filtered, concentrated to approximately 250 mL, diluted with hexanes, and filtered again. This 

concentration and filtration cycle was repeated one additional time whereupon the solution was 

concentrated in vacuo. The crude material was purified by flash chromatography (SiO2, 2.5-10% 

EtOAc in hexanes) to provide the product as a colorless oil (46.48 g, 87%); 1H NMR (500 MHz, 

CDCl3) δ 7.67 (m, 4H), 7.44 (m, 11H), 5.8 (s, 2H), 4.61 (d, J = 16.0 Hz, 1H), 4.46 (d, J = 15.6 

Hz, 1H), 4.39 (q, J = 6.8 Hz, 1H), 1.38 (d, J = 6.8 Hz, 3H), 1.07 (s, 9H). 

Representative protocol: ALS-1016 
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Preparation of GL-TBDPS.  

To a stirring solution of Bn-GL-TBDPS (34.1 g, 71.4 mmol) in EtOAc (700 mL) under N2 was 

added 10% Pd/C (3.41 g, 10% w/w). The reaction vessel was then purged twice with a H2 

balloon and allowed to stir overnight under 1 atm H2. Once the reaction had completed, the 

vessel was evacuated and filled with N2 and the mixture was filtered over celite and concentrated 

in vacuo. The crude material was purified by flash chromatography (SiO2, 2.5-25% EtOAc in 

hexanes) to provide the product as a colorless liquid (27.6 g, 88%); 1H NMR (400 MHz, CDCl3) 

δ 11.03 (br s, 1H), 7.68 (m, 4H), 7.46 (m, 6H), 4.62 (d, J = 16.4 Hz, 1H), 4.51 (d, J = 16.4 Hz, 

1H), 4.42 (q, J = 6.8 Hz, 1H), 1.42 (d, J = 6.8 Hz, 3H), 1.10 (s, 9H); 13C NMR (100 MHz, 

CDCl3) δ 173.03, 172.79, 135.89, 135.73, 133.39, 132.89, 129.84, 127.67, 127.61, 68.60, 59.98, 

26.77, 21.23, 19.21; HRMS (ESI) [M-H]+ calc mass 385.14713, found 385.14768.22 

Representative protocol: Sequence-controlled copolymers prepared via entropy-driven ring-

opening metathesis polymerization.22 

 

 

 

 

Preparation of Bn-LGL-TBDPS.  

To a stirring solution of Bn-L (11.6 g, 64.2 mmol) and GL-TBDPS (22.6 g, 58.4 mmol), in 

CH2Cl2 (290 mL) was added DPTS (13.3 g, 64.2 mmol). Once the mixture became 
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homogeneous, DCC (13.3 g, 64.2 mmol) was added and the reaction was allowed to stir 

overnight. The solution was filtered and the filtrate was concentrated in vacuo. The crude 

material was purified by flash chromatography (SiO2, 2.5-25% EtOAc in hexanes) to provide the 

product as a colorless liquid (32.0 g, 93%); 1H NMR (400 MHz, CDCl3) δ 7.70 (m, 4H), 7.46 

(m, 11H), 5.18 (q, J = 7.2 Hz, 1H), 5.18 (d, J = 14.0 Hz, 1H), 5.17 (d, J = 14.0 Hz, 1H), 4.70 (d, 

J = 16.0 Hz, 1H), 4.47 (d, J = 16.0 Hz, 1H), 4.41 (d, J = 6.8 Hz, 1H), 1.50 (d, J = 6.8 Hz, 3H), 

1.44 (d, J = 6.8 Hz, 3H), 1.08 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 173.15, 170.06, 167.01, 

136.05, 135.88, 135.30, 133.57, 133.11, 129.97, 128.77, 128.60, 128.30, 127.81, 127.76, 69.43, 

68.76, 67.32, 60.45, 26.94, 21.43, 19.37, 16.96; HRMS (ESI) [M+NH4]+ calc mass 566.2574, 

found 566.2578. 

Representative protocol: ALS-1018. 

 

 

 

 

Preparation of LGL-TBDPS.  

To a stirring solution of Bn-LGL-TBDPS (29.8 g, 54.2 mmol) in EtOAc (540 mL) under N2 was 

added 10% Pd/C (10 % w/w, 5.42 g). The reaction vessel was evacuated and purged three times 

with a 1 atm H2 balloon. The reaction was allowed to stir 1 day under 1 atm H2. The vessel was 

placed under N2, filtered over celite, and concentrated in vacuo. The crude material was purified 

by flash chromatography (SiO2, 5-100% EtOAc in hexanes) to provide the product as a colorless 

liquid (25.0 g, 99%); 1H NMR (400 MHz, CDCl3) δ 11.13 (br s, 1H), 7.66-7.64 (m, 4H), 7.43-
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7.32 (m, 6H), 5.16 (q, J = 7.2 Hz, 1H), 4.65 (d, J = 16 Hz, 1H), 4.42 (d, J = 16 Hz, 1H), 4.36 (q, 

J = 6.8 Hz, 1H), 1.50 (d, J = 7.2 Hz, 3H), 1.40 (d, J = 6.8 Hz, 3H), 1.07 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ 174.96, 173.08, 166.82, 135.89, 135.72, 133.38, 132.93, 129.82, 127.65, 127.60, 

68.70, 68.59, 60.23, 26.77, 21.26, 19.20, 16.67; HRMS (ESI) [M+H]+ calc mass 457.16771, 

found 457.16838.22 

Representative protocol: ALS-1023 

Preparation of Eg-(LGL-Si)2. 

To a stirring solution of ethylene glycol (1.84 mL, 32.5) and LGL-Si (24.9 g, 54.2) in CH2Cl2 

(120 mL) was added DPTS (1.43 g, 4.85 mmol). Once the mixture became homogeneous, DCC 

(5.45 g, 26.4 mmol) was added and the reaction was allowed to stir overnight. The solution was 

filtered and the filtrate was concentrated in vacuo. The crude material was purified by flash 

chromatography (SiO2, 7.5-20% EtOAc in hexanes) to provide the product as a colorless liquid 

(11.3 g, 98.3%); 1H NMR (400 MHz, CDCl3) δ 7.68 (m, 8H), 7.46-7.34 (m, 12H), 5.17 (q, J = 

6.8 Hz, 2H), 4.68 (d, J = 16.0 Hz, 2H), 4.46 (d, J =15.6 Hz, 2H), 4.40 (q, J = 6.8 Hz, 2H), 4.34 

(m, 4H), 1.48 (d, J = 7.2 Hz, 6H), 1.40 (d, J = 6.8 Hz, 6H), 1.07 (s, 18H); 13C NMR (100 MHz, 

CDCl3) δ 172.98, 169.75, 166.82, 135.88, 135.71, 133.38, 132.95, 129.81, 127.65, 127.59, 

69.09, 68.58, 62.69, 60.24, 26.77, 21.26, 19.20, 16.70; HRMS (ESI) [M+NH4]
+ calc mass 

960.4022, found 960.4017.22 
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Representative protocol: Sequence-controlled copolymers prepared via entropy-driven ring-

opening metathesis polymerization.22 

 

 

 

 

Preparation of Eg-(LGL)2.  

To a stirring solution of Eg-(LGL-TBDPS)2 (3.16 g, 3.33 mmol) in THF (83 mL) at 0 oC under 

N2 was slowly added acetic acid (3.0 mL, 53 mmol) and then TBAF (1.0 M in THF, 10.0 mL). 

The reaction was stirred at 0 oC overnight, then the ice bath was removed and stirring continued 

at rt for an additional day. After cooling the reaction mixture to 0 oC, brine (150 mL) was added. 

The resulting aqueous layer was extracted with CH2Cl2 (3 × 150 mL), the combined organic 

layers were washed with aqueous saturated sodium bicarbonate solution (150 mL), dried over 

MgSO4 and then concentrated in vacuo. The concentrate was then chromatographed over silica 

using 25-75% EtOAc in hexanes as the eluent to provide the product as a white solid (1.55 g, 

quantitative). Note: although this particular experiment was the highest yielding of all attempts, 

the conditions described above did not lead to consistent reaction outcomes. An optimized 

procedure is also included here with a typical yield. To a stirring solution of Eg-(LGL-TBDPS)2 

(0.114 g, 0.12 mmol) in THF at 0 oC was added AcOH (55 μL, 0.97 mmol) that had been pre-

dried over 3 Å molecular sieves prior to use. TBAF (1.0 M in THF, 363 μL, 0.36 mmol) was 

added dropwise and the resulting solution was stirred at rt 4 h. The solution was then cooled to 0 

oC, diluted with EtOAc (5 mL) and pH 7.4 buffer (5 mL) was added. The aqueous layer was 
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extracted with EtOAc (3 × 5 mL), the combined organic layers were dried over Na2SO4, 

filtered, and concentrated in vacuo to give the crude product as a faintly yellow oil. The residue 

was purified by chromatography on SiO2 (35−100% EtOAc in hexanes) to provide the product as 

a colorless liquid (89%; Rf = 0.10, 50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.22 

(q, J = 7.0 Hz, 2H), 4.85 (d, J = 16.0 Hz, 2H), 4.76 (d, J = 16.0 Hz, 2H), 4.44 (m, 6H), 2.89 (s, 

1H), 2.88 (s, 1H), 1.54 (d, J = 7.0 Hz, 6H), 1.50 (d, J = 6.8 Hz, 6H); 13C NMR (125 MHz, 

CDCl3) δ 175.01, 169.89, 166.90, 69.58, 66.91, 62.96, 61.02, 20.40, 16.87; HRMS (ESI) 

[M+NH4]
+calc mass 484.1666, found 484.1627. 

Representative protocol: ALS-1094. 

 

 

 

 

Preparation of LGL-Eg-LGL-TBDPS. 

Monodeprotected LGL-Eg-LGL-TBDPS could be obtained as the major product by using the 

above deprotection method, but stopping the reaction prior to completion. The time required 

depended significantly on the scale of the reaction, but deprotection occurred in a stepwise 

manner and could be easily monitored by TLC (Rf 0.34, 50% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ 7.68 (m, 4H), 7.45 (m, 6H), 5.18 (q, J = 7.0 Hz, 1H), 5.17 (q, J = 7.0 Hz, 1H), 

4.84 (d, J = 16 Hz, 1H), 4.74 (d, J = 16 Hz, 1H), 4.68 (d, J = 16 Hz, 1H), 4.47 (d, J = 16 Hz, 1H), 

4.43 (m, 6H), 2.76 (d, J = 5.5 Hz, 1H), 1.52 (d, J = 7.0 Hz, 3H), 1.49 (d, J = 7.0 Hz, 6H), 1.42 

(d, J = 7.0 Hz, 3H), 1.09 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 175.01, 173.17, 169.99, 169.82, 
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167.04, 166.78, 136.05, 135.88, 133.55, 133.14, 129.98, 127.82, 127.76, 69.53, 69.27, 68.76, 

66.86, 62.93, 62.87, 61.01, 60.44, 26.94, 21.42, 20.46, 19.37, 16.86. 

 

 

 

 

Preparation of B-LGL-Eg-LGL-TBDPS.  

To a stirring solution of LGL-Eg-LGL-TBDPS (89 mg, 0.13 mmol) and vinyl acetic acid (18 

μL, 0.16 mmol) in CH2Cl2 (1.4 mL) was added DPTS (8.4 mg, 0.28 mmol) and then DCC (32 

mg, 0.16 mmol). The mixture was allowed to stir 19 h, then additional vinyl acetic acid (5 μL, 

0.044 mmol) in CH2Cl2 (0.2 mL) was added. After 1.5 h, hexanes were added (2 mL) and the 

mixture was filtered. The filtrate was washed with 1M HCl (0.5 mL) and sat. aq. NaHCO3 (0.5 

mL), then the combined aqueous layers were extracted with CH2Cl2 (2 mL). The combined 

organic layers were washed with brine (2 mL) and concentrated in vacuo to give the crude 

product as a colorless oil. The residue was purified by chromatography on SiO2 (15−20% EtOAc 

in hexanes) to provide the product as a colorless liquid (76 mg, 76%); 1H NMR (500 MHz, 

CDCl3) δ 7.68 (m, 4H; ArH), 7.45 (m, 6H; ArH), 5.94 (ddt, J = 17.0, 10.5, 7.0 Hz, 1H; b), 5.22 

(m, 5H; a,d,g,g’), 4.87 (d, J = 16.0 Hz, 1H; f), 4.68 (d, J = 16.0 Hz, 1H; f), 4.64 (d, J = 16.0 Hz, 

1H; f’), 4.47 (d, J = 16.0 Hz, 1H; f’), 4.40 (m, 4H; i,i'), 4.38 (q, J = 7.0 Hz, 1H; d), 3.19 (m, 2H; 

c), 1.57 (d, J = 7.0 Hz, 3H; h,h’ or e), 1.51 (d, J = 7.0 Hz, 3H; h,h’ or e), 1.49 (d, J = 7.0 Hz, 3H; 

h,h’ or e), 1.42 (d, J = 7.0 Hz, 3H; e’), 1.09 (s, 9H; SiCH3); 13C NMR (125 MHz, CDCl3) δ 

173.14, 170.97, 170.24, 169.93, 169.85, 167.00, 166.73, 136.05, 135.88, 133.57, 133.14, 129.98, 
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129.77, 127.82, 127.76, 119.09, 69.42, 69.26, 68.76, 68.56, 62.92, 62.85, 60.86, 60.42, 38.72, 

26.94, 21.42, 19.37, 16.95, 16.87, 16.86. 

Representative protocol: ALS-2047. 

 

 

 

 

Preparation of Eg-(LGL-A)2.  

To a stirring solution of Eg-(LGL)2 (55 mg, 0.118 mmol) in CH2Cl2 (1.2 mL) at 0 oC was added 

DIPEA (82 μL, 0.472 mmol), DMAP (6 mg, 0.0472 mmol), and then a solution of acryloyl 

chloride (38 μL, 0.472 mmol) in CH2Cl2 (0.7 mL) dropwise. The solution was stirred for 30 min, 

and then allowed to warm to room temperature and stirred for an additional 1.5 h. Once the 

reaction was completed by TLC, it was cooled to 0 oC, diluted with CH2Cl2 (5 mL), and 

quenched with sat. aq. NaHCO3 (5 mL). The resulting aqueous layer was extracted with CH2Cl2 

(3 � 5 mL), the combined organic layers were washed with brine (5 mL), dried with Na2SO4, 

filtered, and concentrated in vacuo to give the crude product as a faintly yellow oil. The residue 

was purified by chromatography on SiO2 (5−25% EtOAc in hexanes) to provide the product as a 

colorless liquid (68 mg, 55 %); 1H NMR (400 MHz, CDCl3) δ 6.51 (dd, J  = 17.6, 1.2 Hz, 2 H), 

6.22 (dd, J = 17.2, 10.4 Hz, 2 H), 5.92 (dd, J = 10.4, 0.8 Hz, 2 H), 5.27 (q, J = 6.8 Hz, 2 H), 5.20 

(q, J = 7.2 Hz, 2 H), 4.89 (d, J = 16.0, 2H), 4.68 (q, J = 16.0 Hz, 2H), 4.40 (m, 4H), 1.62 (d, J = 

7.2 Hz, 6H), 1.53 (d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 170.24, 169.84, 166.73, 
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165.41, 132.22, 127.60, 69.38, 68.48, 62.88, 60.83, 17.01, 16.83; HRMS [M+H]+ calc mass 

575.1612, found 575.1582. 

Representative protocol: ALS-1068. 

 

 

 

 

Preparation of Eg-(LGL-B)2.  

To a stirring solution of Eg-(LGL)2 (0.113 g, 0.243 mmol), 3-butenoic acid (0.05 mL, 0.588 

mmol) in CH2Cl2 (2.4 mL) was added DPTS (0.029 g, mmol). Once the mixture became 

homogeneous, DCC (0.112 g, 0.542 mmol) was added and the reaction was allowed to stir 

overnight. The reaction was filtered to and the filtrate was diluted with CH2Cl2 (50 mL), washed 

with 1 M HCl (50 mL), and washed with saturated aqueous NaHCO3 (50 mL). The aqueous layer 

was then extracted with CH2Cl2 (2 × 25 mL), the organic layers were combined, dried over 

MgSO4, and concentrated in vacuo. The crude material was purified by flash chromatography 

(SiO2, 17.5-20% EtOAc in hexanes) to provide the product as a colorless liquid (0.116 g, 

79.2%); 1H NMR (400 MHz, CDCl3) δ 5.98 (ddt, J = 17.2, 10.4, 6.8 Hz, 2H), 5.22 (m, 8H), 4.89 

(d, J = 16.0 Hz, 2H), 4.61 (d, J = 16.0 Hz, 2H), 4.39 (m, 4H), 3.23 (m, 4H), 1.58 (d, J = 7.2 Hz, 

6H), 1.53 (d, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 170.82, 170.08, 169.69, 166.57, 

129.59, 118.94, 69.24, 68.38, 62.73, 60.69, 38.55, 16.78, 16.69; HRMS (ESI) [M+H]+ calc mass 

603.19251, found 603.19073.22  
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Representative protocol: Sequence-controlled copolymers prepared via entropy-driven ring-

opening metathesis polymerization.22 

Preparation of Eg-(LGL-P) 2. 

To a stirring solution of Eg-(LGL)2 (0.980 g, 2.10 mmol), 3-butenoic acid (0.47 mL, 4.62 mmol) 

in CH2Cl2 (42 mL) was added DPTS (0.247 g, 0.840 mmol). Once the mixture became 

homogeneous, DCC (0.954 g, 4.62 mmol) was added and the reaction was allowed to stir 

overnight. The reaction was concentrated to half volume and then filtered. The filtrate was 

washed with 1 M HCl (10 mL), and washed with saturated aqueous NaHCO3 (10 mL). The 

aqueous layer was then extracted with CH2Cl2 (10 mL), the organic layers were combined, 

washed with brine (15 mL), dried over Na2SO4, and concentrated in vacuo. The crude material 

was purified by flash chromatography (SiO2, 15-20% EtOAc in hexanes) to provide the product 

as a colorless liquid (1.13 g, 86%); 1H NMR (400 MHz, CDCl3) δ 5.89 (ddt, J = 16.8, 10.4, 6.4 

Hz, 2H), 5.200 (q, J = 7.2 Hz, 2H), 5.197 (q, J = 7.2 Hz, 2H), 5.09 (dd, J = 16.8, 1.2 Hz, 2H), 

5.02 (dd, J = 10.4, 1.2 Hz, 2H), 4.89 (d, J = 16.0 Hz, 2H), 4.65 (d, J = 16.0 Hz, 2H), 4.41 (m, 

4H), 2.56 (m, 4H), 2.44 (m, 4H), 1.57 (d, J = 7.2 Hz, 6H), 1.53 (d, J = 7.2 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) δ 172.51, 170.39, 169.87, 166.77, 136.55, 115.78, 69.40, 68.32, 62.90, 

60.82, 33.23, 28.78, 17.00, 16.87; HRMS (ESI) [M+H]+ calc mass 631.22326, found 631.2225.22 

Representative protocol: ALS-1084. 
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Preparation of trans-cyclic-Eg-(LGL-P)2. 

To a stirring solution of Eg-(LGL-P)2 (17 mg, 27 μmol) in CH2Cl2 (27 μL) was added a solution 

of catalyst G2 (2.3 mg, 2.7 μmol) in CH2Cl2 (1 mL). The resulting solution was stirred for 18 h 

before being quenched through the addition of ethyl vinyl ether (0.2 mL). Once concentrated, the 

crude oil was purified by chromatography on SiO2 (10–20% EtOAc in hexanes) to afford trans-

cyclic-Eg-(LGL-P)2  (17 mg, 93% yield, 84% trans) as a colorless oil. 1H NMR (500 MHz, 

CDCl3) δ 5.54 (m, trans) and 5.41 (m, cis) (2H), 5.23 (m, 4H), 4.83 (d, J = 16 Hz, 2H), 4.72 (d, J 

= 16 Hz, 2H), 4.41 (m, 4H), 2.47 (m, 4H), 2.36 (m, 4H), 1.55 (d, J = 7.0 Hz, 6H), 1.53 (d, J = 

7.0 Hz); 13C NMR (125 MHz, CDCl3) δ 172.37, 170.35, 169.92, 166.77, 129.49 (trans), 129.14 

(cis), 69.51, 68.26, 62.87, 60.94, 33.79, 27.72, 17.02, 16.85; HRMS (ESI) [M+H]+ calc mass 

603.19251, found 603.19028.22 

Representative protocol: ALS-1069. 
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Preparation of 2 through allylbenzene homodimerization. 

In the glovebox, a solution of GN (949 μg, 1.5 μmol) in THF-d6 (0.1 mL) was added to an NMR 

tube equipped with a controlled atmosphere valve. Allylbenzene (1, 0.177 g, 1.5 mmol) in THF-

d6 (0.4 mL) was then added, the tube was sealed, removed from the glovebox, evacuated and 

heated to 35 °C. The tube was periodically evacuated, and NMRs were taken for 2 days prior to 

quenching the reaction mixture with EVE (0.5 mL) and concentrating in vacuo. After 2 days, 

87% conversion from 1 to 2 was observed, with 83% cis-olefin selectivity. For clarity, peak 

integrals are provided as if the mixture contained a 50:50 ratio of 1:2. 1H NMR (500 MHz, 

CDCl3) δ 7.29 (m, 10H; 2), 7.24 (m, 10H; 1), 6.02 (ddt, J = 17.2, 10.4, 6.8 Hz, 2H; 1), 5.75 (m, 

2H; 2), 5.39 (s, ethylene), 5.11 (m, 2H; 1), 3.57 (d, J = 5.6 Hz, 4H; 2), 3.39 (d, J = 6.4 Hz, 2H; 

1). Data for the remaining time points is shown below. 

Representative protocol: ALS-1017. 

 

Table 5. Homodimerization of allylbenzene with GN. 
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Preparation of cis-cyclic-Eg-(LGL-P)2. 

In the glovebox, a solution of ruthenium catalyst GN (69 mg, 0.1094 mmol) in DCE (20 mL) 

was added to a stirring solution of Eg-(LGL-P)2 (690 mg, 1.094 mmol) in DCE (200 mL). The 

vessel was immediately removed from the glovebox and stirred at 60 °C under a constant low 

vacuum (photo of apparatus follows protocol). After 26 h of stirring, the reaction solution was 

cooled to rt, ethyl vinyl ether (2 mL) was added, and the solution was stirred for an additional 30 

min before being concentrated. The crude product was purified by chromatography on SiO2 (10–

25% EtOAc in hexanes) to afford cis-cyclic-Eg-(LGL-P)2 (0.578 g, 88% yield, 95 % BRSM, 

12:88 E:Z) as a colorless oil; 1H NMR (500 MHz, CDCl3) δ 5.51 (m, trans) and 5.43 (m, 

cis)(2H), 5.23 (m, 4H), 4.83 (d, J = 16.0 Hz, 2H, trans), 4.81 (d, J = 16.0 Hz, 2H, cis), 4.40 (m, 

4 H), 2.48 (m, 8H), 1.55 (d, J = 7.0 Hz, 6H), 1.53 (d, J = 7.0 Hz, 6H); 13C NMR (125 MHz, 

CDCl3) δ 172.44, 170.32, 169.92, 166.77, 129.47 (trans), 129.12 (cis), 69.52, 68.34, 62.81, 

60.96, 33.96, 22.91, 16.94, 16.80; HRMS (ESI) calc. mass 603.1920, found 603.1940. 

Representative protocol: ALS-2061. 
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Figure 31. Apparatus setup for RCM using cis-selective catalyst GN. 

Preparation of homodimer Pp-(LGL-Eg-LGL-P)2. 
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Prepared as above, but solvent was removed by vacuum overnight, providing a mixture of 

starting material and homodimer in a 18:82 ratio (80%, 83% cis-internal olefin). 1H NMR (500 

MHz, CDCl3) δ 5.87 (ddt, J = 17.0, 10.5, 6.5, 2H; r), 5.49 (m, 0.17 rel. H; trans-a), 5.44 (m, 0.83 

rel. H; cis-a), 5.193 (q, J = 7.0 Hz, 4H; n & k or g & d), 5.190 (q, J = 7.0 Hz, 4H; n & k or g & 

d), 5.09 (dd, J = 17.0, 1.5 Hz, 2H; sz), 5.02 (dd, J = 10.5, 1.5 Hz, 2H; sE), 4.88 (d, J = 16.0 Hz, 

1H; f), 4.88 (d, J = 16.0 Hz, 1H; m), 4.65 (d, J = 16.5 Hz, 1H; m), 4.65 (d, J = 16.0 Hz, 1H; f), 

4.40 (m, 8H; i & j), 2.55 (m, 4H; c & p), 2.47 (m, 4H; b & q), 1.56 (d, J = 7.0 Hz, 12H; e & o), 

1.52 (d, J = 7.0 Hz, 12 H; h & l); 13C NMR (125 MHz, CDCl3) δ 172.49, 170.38, 169.87, 166.77, 

136.57 (r), 129.48 (trans-a), 129.03 (cis-a), 115.77 (s), 69.41 (g & k), 68.36 (d or n) 68.33 (d or 

n), 62.91 (i & j), 60.84 (f & m), 33.84 (c), 33.26 (p), 28.78 (q), 22.66 (b), 17.00 (e & o) 16.87 (h 

& l); HRMS (ESI) [M+H]+ calc mass 1233.4085, found 1233.4086. 

Representative protocol: ALS-2051, 0.1 M concentration suggested for further investigations.94 

 

 

 

ED-ROMP competition experiment between cis and trans-cyclic-Eg-(LGL-P)2. 

A pre-mixed solution of trans-cyclic-Eg-(LGL-P)2 (6.2 mg, 10.2 μmol) and cis-cyclic-Eg-

(LGL-P)2 (5.8 mg, 9.6 μmol) in CDCl3 (315 μmol) was added to an NMR tube equipped with a 

controlled atmosphere valve. A solution of G2 (220 μg, 0.25 μmol) in CDCl3 (160 μL) was then 

added under N2 and the tube was inserted into a 600 MHz NMR for further analysis as the 

reaction progressed. 20 1H NMR spectra were acquired over the course of 4 hours, with 

particular attention being paid to the G-methylene peak region 4.65-4.85 ppm. A final ratio of 
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cis:trans observed for the quenched solution was 0.20 to 1, corresponding to 17% cis-monomer 

remaining. Data for the remaining time points is shown below. 

Representative protocol: ALS-1080. 

Table 6. Amount of cis-cyclic-Eg-(LGL-Pp) remaining during ED-ROMP at various time points. 

Removal of ruthenium contaminants using metal scavenger resin. 

To a solution of unpurified cis-cyclic-Eg-(LGL-P)2 (Ru contamination: 30 mg, 0.05 mmol) was 

in CH2Cl2 (5 mL) was added QuadraSil®MP thiol resin (5-50 equiv). The resulting mixture was 

vigorously stirred for 18-24 h and the insoluble material was then removed through a pre-rinsed 

syringe filter. The filtrate was concentrated in vacuo, then the crude material was subjected to 

purification by chromatography on SiO2 as described above. 

Representative protocols: ALS-2078 (50 equiv resin) and ALS-2080 (5 equiv resin). 
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Preparation of poly (LGL-Eg-LGL-Pp).  

Poly (LGL-Eg-LGL-Pp) was synthesized using a variety of methods, detailed below. 

Representative spectral data is as follows: 1H NMR (500 MHz, CDCl3) δ 5.49 (m, 1.7 H; trans), 

5.42 (m, 0.3H, cis), 5.20 (q, J = 7.5 Hz, 2H), 5.18 (q, J = 7.0 Hz, 2H), 4.89 (d, J = 16.5 Hz, 2H), 

4.65 (d, J = 16.5 Hz, 2H), 4.41 (m, 4H), 2.50 (m, 4H), 2.35 (m, 4H), 1.56 (d, J = 7.0 Hz, 6H), 

1.53 (d, J = 7.5 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ 172.39, 170.27, 169.75, 166.66, 129.35, 

69.27, 68.17, 62.79, 60.69, 33.69, 27.58, 16.88, 16.74; DSC: Tg = 18 °C. 

SEC (THF) for ED-ROMP experiments:  Mn = 33.4 kDa, Mw = 46.0 kDa, ᴆ = 1.40.22

SEC (THF) for SEED-ROMP experiments:  Mn = 60.4 kDa, Mw = 67.3 kDa, ᴆ = 1.11. ALS-2002 

SEC (THF) for DED-ROMP experiments:  Mn = 58.2 kDa, Mw = 67.6 kDa, ᴆ = 1.16. ALS-3069 

SEED-ROMP kinetics study. 

To a stirring solution of cis-cyclic-Eg-(LGL-P)2 (72 mg, 120 μmol) and CH2Cl2 (121 μL) was 

added a solution of catalyst G2 (1.3 mg, 1.5 μmol) in CH2Cl2 (50 μL). Aliquots were removed 

via pipette at the specified time points over the course of 2 days and added to a GC vial 

containing a solution of ethyl vinyl ether in order to quench the catalyst. Samples were diluted 
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with CH2Cl2, passed through a celite plug and concentrated. The cis-to-trans ratio of monomer 

was approximated by comparing peak integrations at 4.85-4.75 ppm (Figure 32). Total 

conversion was approximated by comparing peak integrations at 4.9-4.75 ppm (Figure 13). The 

E:Z ratio of polymeric materials, as determined by peak integrations at 5.6-5.3 ppm,  was 85:15. 

Representative protocol: ALS-2002. 

Figure 32. Monitoring cis- and trans-macromonomer consumption during SEED-ROMP. 
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Table 7. Analysis of polymerization samples during SEED-ROMP kinetics studies. 

Molecular weight control study. 

A solution of catalyst G2 (1-3 mol%) in CH2Cl2 (~0.5 M) was added to a vial containing cis-

cyclic-Eg-(LGL-P)2 in CH2Cl2 (final concentration 0.7 M). Reaction mixtures were shaken for 2 

h, quenched with EVE (0.5 mL), and shaken an additional 30 min. The mixture was dissolved in 

CH2Cl2 and concentrated in vacuo to yield poly (LGL-Eg-LGL-Pp) with varying molecular 

weights. Results are summarized in the table below. Entry 4, corresponding to the results of a 

chain extension experiment, has also been included. 

Representative protocols: ALS-2008, 2028, 3083, 3085. 

Table 8. Molecular weight control study of SEED-ROMP at various catalyst loadings. 
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Chain extension experiment of poly (LGL-Eg-LGL-Pp).  

A solution of catalyst G2 (0.18 mg, 0.22 μmol) in CH2Cl2 (10 μL) was added to a pre-mixed 

solution of cis-cyclic-Eg-(LGL-P)2 (10.5 mg, 17.4 μmol) in CH2Cl2 (15 μL). After shaking for 

20 min, a second aliquot of cis-cyclic-Eg-(LGL-P)2 (10.5 mg, 17.4 μmol) in CH2Cl2 (25 μL) was 

added. The polymerization was quenched through the addition of EVE (0.5 mL) and allowed to 

shake for 30 min. The mixture was dissolved in CH2Cl2 and passed through a celite plug before 

concentrating in vacuo to yield a viscous residue (18.4 mg, 90.6% conversion, 31% cis-olefin in 

unreacted starting material). Spectral data matched that previously reported for poly (LGL-Eg-

LGL-Pp). SEC (THF): molecular weights too high to be determined; ᴆ ≈ 1.11. Note: when each 

phase of polymerization was allowed to stir for only 10 min, polymer was obtained with 68% 

conversion, adjusted theo. Mn = 60.0 kDa, actual Mn = 74.3 kDa, Mw = 82.5 kDa, ᴆ = 1.11. 

Representative protocol: ALS-2030. 

ADMET of poly (LGL-Eg-LGL-Pp) with HG1. 

A solution of catalyst HG1 (0.585 mg, 0.974 μmol) in CH2Cl2 (9 μL) was added to a pre-mixed 

solution of Eg-(LGL-P)2 (61 mg, 97.4 μmol) in CH2Cl2 (40 μL) in a sealed tube. The tube was 

backfilled with N2 and then evacuated before stirring at 40 °C. The tube was periodically 

evacuated over the course of the reaction, then quenched with EVE (1 mL) and stirred for 10 min 

before concentrating in vacuo to provide a mixture of oligomers (n=2-6 observed by SEC) and 
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poly (LGL-Eg-LGL-Pp) with DPs ranging from 2 to 71 (58 mg, 64% trans-internal olefin in 

product mixture). 

Representative protocol: ALS-3063. 

 

 

 

Cyclodepolymerization of poly (LGL-Eg-LGL-Pp).  

A solution of catalyst G2 (0.23 mg, 0.27 µmol) in CH2Cl2 (200 µL) was added to a pre-mixed 

solution of poly (LGL-Eg-LGL-Pp) (16 mg, 26.6 µmol) in CH2Cl2 (1.12 mL). The reaction was 

stirred at 40 °C under N2 for 8h then quenched with EVE (2 mL) and stirred for an additional 30 

min. It was then concentrated in vacuo to provide cyclic-Eg-(LGL-P)2 and oligomers with size n 

as a viscous oil (16 mg, 83% trans-olefin in product mixture); in each of the three peak regions 

(n = 1-3), peaks corresponding to [M+H]+ (minor), [M+Na]+ (major) and [M+K]+ (minor) were 

observed: 

n = 1: HRMS [M+Na]+ calc mass 625.1745, found 625.1746, detected intensity 8.4 x 108 

n = 2: HRMS [M+Na]+ calc mass 1227.3592, found 1227.3595, detected intensity 6.24 x 107 

n = 3: HRMS [M+Na]+ calc mass 1807.5613, found 1807.5617, detected intensity 1.97 x 106 

Representative protocol: ALS-3051. 
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DED-ROMP of cis-cyclic-Eg-(LGL-P)2 catalyzed by G3. 

A solution of catalyst G3 (0.196 mg, 0.222 µmol) in CH2Cl2 (10 µL) was added to a pre-mixed 

solution of cis-cyclic-Eg-(LGL-P)2 (10.7 mg, 17.8 µmol) in CH2Cl2 (15 µL) and shaken for 2h. 

The reaction was quenched through the addition of EVE (0.5 mL), allowed to stir for an 

additional 30 min, then concentrated in vacuo to yield crude poly (LGL-Eg-LGL-Pp) (10.1 mg, 

94%, 86% trans-olefin). Trace amounts of unreacted monomer were observed by 1H NMR but 

were too small to be quantified. SEC (THF): Mn = 58.2 kDa, Mw = 67.6 kDa, ᴆ = 1.16. 

Representative protocol: ALS-3069. 

 

 

 

DED-ROMP of trans-cyclic-Eg-(LGL-P)2 catalyzed by G3.  

A solution of catalyst G3 (0.352 mg, 0.398 µmol) in CH2Cl2 (20 µL) was added to a pre-mixed 

solution of trans-cyclic-Eg-(LGL-P)2 (19.2 mg, 31.9 µmol) in CH2Cl2 (26 µL) and shaken for 

2h. The reaction was quenched through the addition of EVE (0.5 mL), allowed to stir for an 

additional 30 min, then concentrated in vacuo to yield crude poly (LGL-Eg-LGL-Pp) (18 mg, 

94%, 87% trans-olefin). Trace amounts of unreacted monomer were observed by 1H NMR but 

were too small to be quantified. SEC (THF): unable to be obtained by GPC at this time due to 

instrument repairs. 

Representative protocol: ALS-3071. 

 

 

 



 112 

ROMP of strained monomers to form homopolymers at various temperatures. 

Representative protocols: ALS-2035-2046. 

Preliminary ROMP experiments were conducted using the same conditions as block experiments 

but without initial addition of ED-ROMP monomer. Note that lack of monomer and overall 

dilution with respect to total molecule concentration necessarily brings about differences for 

ROMP and ROMP paired with ED-ROMP—ROMP. The results from this set of experiments do 

not therefore reflect precise outcomes expected for the ROMP phase of the sequential reaction. 

Two strained monomers were used in these control studies, NBE and COE. Sample protocols 

and a table of results are detailed below: 

 

 

 

 

A. ROMP of norbornene to form poly(NBE).  

A solution of G2 (180 µg, 0.212 µmol) in CH2Cl2 (25 µL) was added to a pre-mixed solution of 

NBE (40 mg, 423 µmol) in CH2Cl2 (25 µL) at room temperature. The vial was shaken for 1 min, 

then EVE was added and the mixture was diluted with additional CH2Cl2 (0.3 mL) with manual 

stirring. The quenched solution was passed through a celite plug with CH2Cl2 rinsing and 

concentrated in vacuo to provide crude poly(NBE) as a white solid (4.7 mg, 50 µmol, 12% 

conversion, 54% cis-olefin incorporation); 1H NMR (500 MHz, CDCl3) δ 5.38 (m, trans) and 

5.23 (m, cis) (2H), 2.79 (br s, cis) and 2.44 (br s, trans) (2H), 1.88 (br m, 1.1H), 1.80 (br m, 2H), 

n
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1.35 (br m, 2H), 1.09 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 134.17, 134.10, 134.00, 133.93, 

133.33, 133.18, 133.05, 43.58, 43.29, 42.91, 42.25, 38.83, 38.57, 33.28, 33.09, 32.53, 32.36. 

B. ROMP of cis-cyclooctene to form poly(COE).

A solution of G2 (180 µg, 0.212 µmol) in CH2Cl2 (10 µL) was added to a pre-mixed solution of 

cis-COE (47 mg, 425 µmol) in CH2Cl2 (40 µL) at room temperature. The vial was shaken for 5 

min at 0 °C, then EVE was added and the mixture was diluted with additional CH2Cl2 (0.3 mL) 

with manual stirring. The quenched solution was passed through a celite plug with CH2Cl2 

rinsing and concentrated in vacuo to provide crude poly(COE) as a white solid (10.8 mg, 98 

µmol, 23% conversion, 34% cis-olefin incorporation); 1H NMR (500 MHz, CDCl3) δ 5.41 (m, 

trans) and 5.35 (m, cis) (2H), 2.02 (m, cis) and 1.99 (m, trans) (4H), 1.33 (m, 8H). 

Table 9. Homopolymerization of NBE and COE in preliminary ROMP experiments. 

n

nd. This polymer was insoluble in THF and not analyzed further by SEC. 

NBE  
rt, 1 min 

NBE  
rt, 5 min 

NBE  
0 °C, 1 min 

NBE  
0 °C, 5 min 

COE  
rt, 1 min 

COE  
rt, 5 min 

COE  
0 °C, 1 min 

COE  
0 °C, 5 min 

Mn (kDa) 48 23 11* 77* 69 nd 53 89 
Mw (kDa) 63 47 12 85 86 nd 63 102 
Đ 1.3 2.1 1.1 1.1 1.2 nd 1.2 1.1 
% conversion (by mass) 6.5 30 12 6.5 75 81 37 23 
DPtheo  [M]/[cat] 2000 2000 2000 2000 2000 2000 2000 2000 
DPactual (Mn/monomer) 507 243 116 814 626 nd 476 811 
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Sequential SEED-ROMP—ROMP: preparation of poly [(LGL-Eg-LGL-Pp)-block-(NBE)]. 

Representative protocols: ALS-2006-2011.  

SEED-ROMP—ROMP reactions were carried out sequentially, with SEED-ROMP occurring for 

10 min prior to NBE addition. ROMP was allowed to continue for either 1 min or 5 min. Control 

experiments were quenched after the SEED-ROMP phase of the reaction. A sample protocol is 

detailed below: 

A solution of G2 (0.18 mg, 0.218 µmol) in CH2Cl2 (10 µL) was added to a pre-mixed solution of 

cis-cyclic-Eg(LGL-Pp) (10.5 mg, 17.4 µmol) in CH2Cl2 (15 µL) and allowed to shake for 10 min 

before a pre-mixed solution of NBE (41 mg, 435 µmol) in CH2Cl2 (25 µL) was added at room 

temperature. The vial was shaken for 1 min, and EVE was added and was shaken for an 

additional 10 min. The mixture was diluted to a pre-weighed vial after diluting with CH2Cl2 (0.3 

mL) and concentrated in vacuo to provide crude poly [(LGL-Eg-LGL-Pp)-block-(NBE)] as a 

solid  (18.5 mg, 93% SEED-ROMP monomer conversion, 64% cis-olefin incorporation in 

poly(NBE); based on DP, composition is 46 mol% block A (poly (LGL-Eg-LGL-Pp), DP 100) 

and 54 mol% block B (poly(NBE), DP 117). To add clarity to integration numbers presented 

n
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herein, a 50:50 ratio of A:B has been assigned, and a 50:50 cis:trans ratio has been assigned for 

the NBE block. 1H NMR (500 MHz, CDCl3) δ 5.51 (m, atrans) and 1.42 (m, acis) (2H), 5.35 (br s, 

1H, jtrans) and 5.21 (m, 5H, dg & jcis), 4.89 (d, J = 16.0 Hz, 2H, f), 4.65 (d, J = 16.5 Hz, 2H, f), 

4.41 (m, 4H, i), 2.85 (br s, 2H, kcis), 2.50 (m, 5H, c and ktrans), 2.33 (m, 4H, b), 1.87 (m, 1H, m1), 

1.80 (m, 2H, l1) 1.55 (d, J = 6.0 Hz, 6H, e), 1.53 (d, J = 7.0 Hz, 6H, h) 1.35 (m, 2H, l2), 1.09 (m, 

1H, m2); 13C NMR (125 MHz, CDCl3) δ 172.49 (A), 170.38 (A), 169.86 (A), 166.78 (A), 134.14 

(B), 134.07 (B), 134.03 (B), 133.99 (B), 133.90 (B), 133.28 (B), 133.15 (B), 133.00 (B), 129.49 

(A), 129.154 (B), 129.04 (B), 69.41 (A), 68.36 (A), 68.30 (A), 62.92 (A), 60.83 (A), 43.56 (B), 

43.27 (B), 42.90 (B), 42.24 (B), 38.81 (B), 38.56 (B), 33.84 (A), 33.25 (B), 33.07 (B), 32.52 (B), 

32.36 (B), 27.72 (A), 17.02 (A), 16.88 (A); SEC (THF): Mn = 71.4 kDa, Mw = 78.8 kDa, ᴆ = 1.10. 

Representative protocol: ALS-2006 to 2011. 

Table 10. Sequential ED-ROMP—ROMP Block copolymerization 
Conditions 1 2 3 

Time ED-ROMP (min) 10 10 10 

Time ROMP (min) -- 1 5 

Mn 60.4 71.4 66.6 

Mw 67.3 78.8 75 

Đ 1.11 1.10 1.13 

OTBS
O

O

Preparation of Me-L-TBS (3).
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Preparation of L-TBS (5). 

A solution of LiOH (77 mg, 1.85 mmol) in H2O (4.6 mL) was added dropwise to a pre-cooled 

solution of Me-L-TBS (3, 101 mg, 0.463 mmol) in THF (4.6 mL). Once addition was complete 

and the starting material was gone by TLC, the THF was concentrated in vacuo, brine was added 

(5 mL), and the aqueous layer was extracted with Et2O (2 × 10 mL). The aqueous layer was 

acidified until pH ~4 with 1 M HCl, then immediately extracted with Et2O (3 × 10 mL), dried 

over MgSO4, filtered, and concentrated in vacuo to give the crude product as a colorless oil (90 

mg, 96%). This compound was unstable at room temperature and used shortly after its 

OTBS
O

HO

To a mixture of Me-L (104 g, 1.0 mol) and imidazole (68.1 g, 1 mol) in DMF (60 mL) at 0 oC 

was added TBSCl (158 g, 1.05 mol) in 3 portions. After stirring 24 h, the reaction mixture was 

diluted with brine (250 mL) and extracted with Et2O (3 × 500 mL). The combined organic layers 

were then washed with brine (300 mL), dried with MgSO4, filtered, and concentrated in vacuo to 

give the crude product as a colorless oil (214 g, 98%). The residue had identical spectral 

properties to those found in literature160 and was used in subsequent reactions without further 

purification; 1H NMR (500 MHz, CDCl3) δ 4.35 (q, J = 5.2 Hz, 1 H), 3.72 (s, 3 H), 1.40 (d, J = 

5.6 Hz), 0.90 (s, 9 H), 0.10 (s, 3 H), 0.07 (s, 3 H); 13C NMR (125 MHz, CDCl3) δ 174.69, 68.55, 

51.98, 25.86, 21.50, -4.84, -5.13. 

Representative protocol: ALS-2089. 
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preparation. It had identical spectral properties to those found in literature161 and was used in 

subsequent reactions without further purification; The following protocol modifications can be 

made: (a) if the reaction is incomplete by TLC, a preliminary wash with organic solvent can be 

carried out to isolate unreacted starting material; (b) on larger scales, acidification should be 

carried out carefully but rapidly at 0 °C and 0.5-1 M citric acid can be used in place of HCl to 

avoid decomposition at pH < 3.  1H NMR (500 MHz, CDCl3) δ 9.30 (br s, 1 H), 4.39 (q, J = 6.6 

Hz, 1 H), 1.47 (d, J = 6.6 Hz, 3 H), 0.94 (s, 9 H), 0.159 (s, 3 H), 0.155 (s, 3 H); 13C NMR (125 

MHz, CDCl3) δ 174.01, 68.96, 25.77, 21.20, -4.41, –5.16. 

Representative protocol: ALS-3029 

Preparation of alkyl-(L-TBDPS)2 (9) 

1,5-pentanediol (0.91 mL, 8.4 mmol), DCC (3.66 g, 17.7 mmol) and DPTS (0.993 g, 3.38 mmol) 

were sequentially added to a solution of L-TBDPS (6, 5.82 g, 17.7 mmol) in CH2Cl2 (84 mL). 

The mixture was stirred for 16 h, then was concentrated to 25% volume, diluted with hexanes 

(30 mL) and filtered. The filtrate was concentrated in vacuo to give the crude product as a yellow 

oil then purified by flash chromatography on SiO2 (10−40% EtOAc in hexanes) to provide the 

product as a colorless oil (5.136 g, 84%) with trace contamination with unreacted 6; 1H NMR 

(500 MHz, CDCl3) δ 7.73 (m, 8H), 7.44 (m, 12H), 4.29 (q, J = 6.5 Hz, 2H), 3.95 (m, 4H), 1.50 

OTBDPS
O

OTBDPSO
O

O
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(p, J = 7.0 Hz, 4H), 1.36 (d, J = 7.0 Hz, 6H), 1.31 (m, 2H), 1.09 (s, 18H); HRMS (ESI) 

[M+NH4]+ calc mass 742.3954, found 742.3944. 

Representative protocol: ALS-2058. 

 

 

 

 

Preparation of L-alkyl-L (13). 

To a stirring solution of 9 (5.10 g, 7.04 mmol) in THF (70 mL) at 0 °C was slowly added pre-

dried AcOH (1.0 mL, 17.6 mmol) and TBAF (4.1 mL, 15.5 mmol). The ice bath was removed 

and the reaction was stirred at rt for 2 h, when the solution was cooled to 0 °C and additional 

TBAF (11.4 mL) was added. The solution was stirred for another 1.5 h, then was quenched with 

the addition of brine (100 mL) after cooling to 0 °C. The THF was concentrated and the solution 

was diluted with Et2O and separated. The aqueous layer was extracted with Et2O (3 × 100 mL), 

the combined organic layers were washed with sat. aq. NH4Cl (50 mL) and dried over MgSO4. 

The solution was concentrated in vacuo and purified by flash chromatography on SiO2 (15−50% 

EtOAc in hexanes) to provide the product as a colorless oil (5.14 g, 84%); 1H NMR (500 MHz, 

CDCl3) δ 4.30 (dq, J = 6.5, 5.0 Hz, 2H), 4.24 (m, 4H), 2.77 (d, J = 5.0 Hz, 2H), 1.75 (p, J = 6.5 

Hz, 4H), 1.47 (m, 2H), 1.43 (d, J = 6.5 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ 175.90, 66.89, 

65.42, 28.28, 22.37, 22.37, 20.58; HRMS (ESI) [M+H]+ calc mass 249.1333, found 249.1333. 

Representative protocol: ALS-2058. 

 

OH
O

OHO
O

O
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Preparation of PEG-(L-TBS)2  (10). 

To a stirring solution of diethylene glycol (1.11 g, 10.5 mmol) and L-TBS (3, 4.49 g, 22.0 mmol) 

in CH2Cl2 (105 mL) was added DPTS (1.23 g, 4.18 mmol) and DCC (4.53 g, 22.0 mmol). The 

solution was stirred 24 h, then concentrated to 25% volume, diluted with hexanes (50 mL) and 

filtered. The filtrate was concentrated in vacuo then purified by chromatography on SiO2 

(10−100% EtOAc in hexanes) to provide the product as a colorless oil with minor contamination 

with 3 and mono-coupled intermediate (2.03 g, 41%, 62% BRSM); 1H NMR (500 MHz, CDCl3) 

δ 4.37-4.21 (m, 6H), 3.70 (t, J = 5.0 Hz, 4H), 1.41 (d, J = 8.5 Hz, 6H), 0.90 (s, 18H), 0.10 (s, 

6H), 0.07 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 174.21, 69.12, 68.45, 63.83, 25.86, 21.49, 

18.45, -4.80, -5.14; HRMS (ESI) [M+NH4]+ calc mass 479.2855, found 479.2842. 

Representative protocol: ALS-3027. 

 

 

 

 

Preparation of sulfide-(L-TBS)2 (11). 

To a stirring solution of 2,2’-thiodethanol (1.26 g, 10.3 mmol) and L-TBS (3, 4.43 g, 21.7 mmol) 

in CH2Cl2 (103 mL) was added DPTS (1.21 g, 4.13 mmol) and DCC (4.47 g, 21.7 mmol). The 

OTBS
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O
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solution was stirred 23 h, then concentrated to 25% volume, diluted with hexanes (50 mL) and 

filtered. The filtrate was concentrated in vacuo then purified by chromatography on SiO2 

(10−100% EtOAc in hexanes) to provide the product as a colorless oil with trace contamination 

with 3 and mono-coupled Si-L-sulfide intermediate (2.60 g, 51%, 78% BRSM); 1H NMR (500 

MHz, CDCl3) δ 4.36-4.25 (m, 6H), 2.82 (t, J = 6.8 MHz, 2H), 1.41 (d, J = 6.8 MHz, 6H), 0.90 

(s, 18H), 0.10 (s, 6H), 0.07 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 174.01, 68.45, 63.59, 35.07, 

30.76, 25.86, 21.52, -4.76, -5.10; HRMS (ESI) [M+NH4]+ calc mass 512.2892, found 512.2898. 

Representative protocol: ALS-3025. 

 

 

 

 

 

Preparation of 1,3-bis(hydroxymethyl)urea (8). 

A solution of oxazolidinone (7, 10.0 g, 115 mmol) and ethanolamine (7.0 mL, 117 mmol) were 

stirred at 150 °C for 3.5 h, then the mixture was allowed to cool to rt. 1-butanol (20 mL) was 

added with manual stirring, and the mixture was let to stand at 0 °C for 17h. After warming to rt, 

the solid product was collected by vacuum filtration with washing by hexanes (20 mL). The 

collected solid was diluted with acetone (100 mL) and stirred 1h before filtering again. The white 

solid (12.4 g, 73%) had identical spectral properties to those found in literature162 and was used 

in subsequent reactions without further purification; 1H NMR (500 MHz, DMSO-d6) δ 6.02 (t, J 

H
N

O

H
NHO OH
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= 5.5 Hz, 2 H; NH), 4.68 (t, J = 5.5 Hz, 2 H; OH), 3.41 (q, J = 5.5 Hz, 4 H; HO-CH2), 3.09 (q, J 

= 5.5 Hz, 4 H; NH-CH2); 13C NMR (125 MHz, DMSO-d6) δ 159.32, 61.76, 43.01. 

Representative protocol: ALS-2083. 

 

 

 

 

Preparation of Urea-(L-TBS)2 (12) 

To a stirring solution of 8 (0.928 g, 6.26 mmol) and L-TBS (5, 2.69 g, 13.2 mmol) in CH2Cl2 (63 

mL) was added DPTS (0.737 g, 2.51 mmol) and DCC (2.71 g, 13.2 mmol). The solution was 

stirred 18 h, then concentrated to 25% volume, diluted with hexanes (50 mL) and filtered. The 

filtrate was concentrated in vacuo and isolated as a crude solid that was used without further 

purification (2.94 g, 95%); 1H NMR (500 MHz, CDCl3) δ 4.75 (t, J = 5.5 Hz, 2H, NH), 4.35 (q, 

J = 6.5 Hz, 2H, CH), 4.25 (m, 4H, O-CH2), 3.50 (m, 4H, N-CH2), 1.40 (d, J = 7 Hz, 6H, CH3), 

0.90 (s, 18H, tBu-CH3), 0.09 (s, 6H, Si-CH3), 0.07 (s, 6H, Si-CH3); HRMS (ESI) [M+H]+ calc 

mass 521.3073, found 521.3077. 

Representative protocol: ALS-3023. 

 

 

 

 

H
N

O

H
NO O

O
O

O
OTBS TBS

BnO

O

OTBS
O

O



 122 

Preparation of Bn-GL-TBS (16). 

To a stirring solution of Bn-G (12.0 g, 72.4 mmol) and L-TBS (5, 12.3 g, 60.3 mmol) in CH2Cl2 

(600 mL) was added DPTS (3.56 g, 12.1 mmol). Once the DPTS had dissolved, DCC (14.9 g, 

72.4 mmol) was added and the solution stirred 21 h. The reaction mixture was then filtered, 

concentrated to approximately 50 mL, diluted with 50% Et2O in hexanes (200 mL), and filtered. 

The filtrate was concentrated in vacuo and the crude yellow oil was purified by flash 

chromatography (SiO2, 2.5% EtOAc in hexanes) to provide the product as a colorless oil (14.8 g, 

70%); 1H NMR (500 MHz, CDCl3) δ 7.39 (m, 5 H), 5.19 (s, 2 H), 4.74 (d, J = 16.0 Hz, 1 H), 

4.68 (d, J = 16.0 Hz, 1 H), 4.46 (q, J = 6.5 Hz, 1 H), 1.45 (d, J = 7.0 Hz, 3 H); 0.90 (s, 9 H), 0.10 

(s, 3 H), 0.08 (s, 3 H); 13C NMR (125 MHz, CDCl3) δ 173.63, 167.54, 135.19, 128.79, 128.71, 

128.59, 68.28, 67.28, 60.92, 25.85, 21.49, 18.44, -4.81, -5.19; HRMS (ESI) [M+K]+ calc mass 

359.2686, found 359.2041. 

Representative protocol: ALS-3053. 

 

 

 

 

Preparation of Me-GL-TBDPS (18).  

To a solution of GL-TBDPS (1.03 g, 2.66 mmol) in DMF (9.9 mL) were added K2CO3 (1.84 g, 

13.3 mmol) and CH3I (0.835 mL, 13.3 mmol) dropwise. After stirring for 18 h, the reaction 

mixture was filtered with EtOAc rinsing. The filtrate was partitioned between EtOAc (40 mL) 

and H2O (40 mL) and the resulting organic layer was washed with H2O (2 × 30 mL), sat. aq. 

O

O

OTBDPS
O

O
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NaHCO3 (30 mL), Na2S2O3 (30 mL) and brine (30 mL). Unreacted starting material was isolated 

by acidifying the combined aqueous layers with 1 M HCl and extracting with EtOAc (3 × 10 

mL). The organic layer that contained product was dried over Mg2SO4, filtered, and concentrated 

in vacuo to provide the product as a colorless oil (0.633 g, 86%). The crude compound contained 

a silyl ether impurity and was used in the subsequent step without further purification. 1H NMR 

(500 MHz, CDCl3) δ 7.73 (m, 4H), 7.46 (m, 6H), 4.59 (d, J = 15.6 Hz, 1H), 4.46 (d, J = 16.0 Hz, 

1H), 4.42 (q, J = 6.8 Hz, 1H), 3.73 (s, 3H), 1.43 (d, J = 6.8 Hz, 3H), 1.10 (s, 9H) (silyl 

contaminant observed at 7.73, 7.46, 1.07); 13C NMR (125 MHz, CDCl3) δ 173.24, 168.06, 

136.06, 135.89, 133.63, 133.15, 129.96, 127.81, 127.76, 68.83, 60.66, 52.32, 26.94, 21.41, 19.38 

(silyl contaminant observed at 135.34, 134.94, 129.80, 127.87, 26.71, 19.36); HRMS (ESI) calc 

mass 418.2044, found 418.2048. 

Representative protocol: ALS-2055. 

 

 

 

 

Preparation of Me-GL (19).   

To a stirring solution of Me-GL-TBDPS (16, 0.536 g, 1.37 mmol) in THF (13.7 mL) at 0 °C was 

slowly added AcOH (0.310 mL, 5.49 mmol) and then TBAF (2.75 mL, 2.75 mmol) that had been 

pre-dried over 3 Å MS. The reaction solution was allowed to warm to rt by removing the ice 

bath. After stirring for an additional 2 h, a solution of sat. aq. NaCl (5 mL) was added, the THF 

was concentrated under reduced pressure and the solution was diluted with Et2O (20 mL). The 

O

O

OH
O

O
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aqueous layer was extracted with Et2O (2 × 5 mL), and the combined organic layers were 

washed with sat. aq. NH4Cl (10 mL), dried over MgSO4, filtered and concentrated in vacuo to 

give the crude product as a colorless oil (0.193 g, 89%); 1H NMR (500 MHz, CDCl3) δ 4.77, (d, 

J = 16.0 Hz, 1H), 4.69 (d, J = 16.0 Hz), 4.44 (m, 1H), 3.78 (s, 3H), 2.78 (m, 1H), 1.50 (d, 3H); 

13C NMR (125 MHz, CDCl3) δ 175.17, 167.81, 66.90, 61.24, 52.54, 20.47; LRMS [M+H]+ calc 

mass 385, found 385. 

Representative protocol: ALS-2057. 

 

 

 

Preparation of Me-GL-B (20).  

Protocol: To a stirring solution of Me-GL (96 mg, 0.593 mmol) in CH2Cl2 (5.9 mL) was added 

vinyl acetic acid (57 µL, 0.652 mmol), DPTS (35 mg, 0.119 mmol) and DCC (135 mg, 0.652 

mmol). The resulting solution was stirred 18 h, and then additional vinyl acetic acid (43 µL, 

0.533 mmol) was added. This reaction solution was concentrated in vacuo after stirring 4 h and 

re-dissolved in a solution of 75% hexanes in CH2Cl2 (5 mL). The precipitate was removed by 

filtration. The filtrate was washed with NaHCO3 (5 mL), the aqueous layer was extracted with 

CH2Cl2 (2 × 5 mL) and dried over Na2SO4, filtered, and concentrated in vacuo to give the crude 

product as a faintly yellow oil. The residue was purified by chromatography on SiO2 (5−40% 

EtOAc in hexanes) to provide the product as a colorless liquid (119 mg, 87%); 1H NMR (500 

MHz, CDCl3) δ 5.98 (ddt, J = 17.0, 10.5, 7.0 Hz, 1H), 5.23 (dd, J = 10.5, 1.5 Hz, 1H),  5.19 (dd, 

J = 17.0, 1.5 Hz, 1H), 5.21 (q, J = 7.2 MHz, 1H), 4.79 (d, J = 4.79 Hz, 1H), 4.61 (d, J = 16.0 Hz, 

O

O

O
O
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1H), 3.23 (m, 2H), 1.59 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ170.97, 170.28, 

167.74, 129.74, 119.06, 68.60, 61.03, 51.44, 38.71, 16.92; HRMS (ESI) [M+H]+ calc mass 

231.086, found 232.0864. 

Representative protocol: ALS-2060. 

 

 



126 

APPENDIX 

EXPERIMENTAL SPECTRA 



127 



 128 

10
9

8
7

6
5

4
3

2
1

pp
m

1.074
1.225
1.243
1.261
1.367
1.384

2.028

4.079
4.097
4.115
4.133
4.339
4.356
4.373
4.390
4.418
4.457
4.567
4.607
5.113
5.145
5.177
7.240
7.288
7.295
7.298
7.302
7.315
7.323
7.327
7.332
7.336
7.342
7.343
7.348
7.351
7.354
7.354
7.359
7.373
7.375
7.379
7.387
7.393
7.397
7.401
7.408
7.412
7.415
7.422
7.430
7.433
7.437
7.634
7.638
7.644
7.646
7.651
7.654
7.658
7.663
7.667
7.670

9.38

3.00

1.01
1.00
1.00

2.00

11.15

4.14

40
0B

B
n−

G
L−

TB
D

P
S

x

x

x

Bn
O

O

O
TB

DP
S

O

O

B
n-
G
L-
TB
D
PS



 129 

10
9

8
7

6
5

4
3

2
1

pp
m

1.092

1.408
1.424

2.046

4.366
4.383
4.400
4.417
4.466
4.507
4.574
4.615

7.337
7.355
7.377
7.397
7.417
7.437
7.455
7.657
7.662
7.665
7.672
7.681

9.09

3.03

1.02
1.01
1.00

6.17

4.05

B
n−

G
L−

TB
D

P
S

, i
so

la
te

d 
du

rin
g 

G
L−

S
i c

ol
um

n�

x
x

x

x

HO

O

O
TB

DP
S

O

O

G
L-
TB
D
PS



 130 

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

10
0

pp
m

19.210
21.231

26.769

59.984

68.603

127.610
127.668
129.843
132.888
133.391
135.726
135.887

172.794
173.032

C
D

C
l3

, 4
00

A
; M

ay
 2

7,
 2

01
4

A
LS

−I
−0

05

12
8

13
0

13
2

13
4

13
6

pp
m

127.610
127.668

129.843

132.888
133.391

135.726
135.887

G
L-
TB
D
PS

HO

O

O
TB

DP
S

O

O

G
L-
TB
D
PS



 131 

10
9

8
7

6
5

4
3

2
1

pp
m

1.099
1.418
1.435
1.482
1.499

4.363
4.380
4.396
4.413
4.433
4.473
4.655
4.695
5.141
5.172
5.176
5.192
5.210
5.227
7.310
7.321
7.329
7.339
7.349
7.362
7.367
7.380
7.384
7.402
7.413
7.420
7.425
7.428
7.437
7.442
7.450
7.457
7.461
7.464
7.662
7.666
7.675
7.679
7.682
7.694
7.698

9.07

3.04
3.01

1.00
0.99
1.00

2.99

10.88

4.00

C
D

C
l3

, 4
00

A
; M

ay
 2

8,
 2

01
4

A
LS

−I
−0

09

O

O

O
TB

DP
S

O

O
Bn
O

O

B
n-
LG
L-
TB
D
PS



 132 

20
0

18
0

16
0

14
0

12
0

10
0

80
60

40
20

0
pp

m

16.955
19.365
21.427
26.939

60.448

67.319
68.757
69.433

127.761
127.813
128.300
128.604
128.768
129.971
133.111
133.567
135.295
135.879
136.051

167.012
170.058
173.152

C
D

C
l3

, 4
00

A
; M

ay
 2

8,
 2

01
4

A
LS

−I
−0

09

12
8

13
0

13
2

13
4

13
6

pp
m127.761

127.813
128.300
128.604
128.768
129.971

133.111
133.567

135.295
135.879
136.051

O

O

O
TB

DP
S

O

O
Bn
O

O

B
n-
LG
L-
TB
D
PS



 133 
 5
00

 M
H

z;
 C

D
C

l3
A

LS
−1

04
5,

 B
n−

LG
L−

TB
D

P
S

pp
m

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

pp
m

18
0

16
0

14
0

12
0

10
080604020

H
S

Q
C

 s
pe

ct
ru

m

O

O

O
O

O
O

O

B
n-
LG
L-
Si

a

Si
b

c
d
e

f
g h

i
j

k
l

m

n
op

q

r
s

H
SQ

C
 

a,
b,
c,
d

o,
q

p
j

j
l

s

s

r

l

j

h m

e
g g

e

j
j l

h
m

h m
s

e g

a,
b,
c,
o

q

i f k

p



 134 

50
0 

M
H

z;
 C

D
C

l3
A

LS
−1

04
5,

 B
n−

LG
L−

TB
D

P
S

pp
m

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

pp
m

18
0

16
0

14
0

12
0

10
080604020

H
S

Q
C

 s
pe

ct
ru

m
O

O

O
O

O
O

O

B
n-
LG
L-
Si

a

Si
b

c
d
e

f
g h

i
j

k
l

m

n
op

q

r
s

H
M

B
C

 
s

j
j
l

p
g

h r m

s

j
e gl

i

e
h

m

g-
h

l-m

l-m
g-
h

f k
k-
m

f-h

i-j
i-j j-k

j-k
k-
l

f-g

r-
s

s-
s’
-s
’’

e-
c

e-
d

q-
p

p-
p’

p-
q
n,
n’
-o
,o
’

qab
co

a-
b-
c

o-
q



 135 
 

50
0 

M
H

z;
 C

D
C

l3
A

LS
−1

04
5,

 B
n−

LG
L−

TB
D

P
S

pp
m

5.
2

5.
4

5.
6

5.
8

6.
0

6.
2

6.
4

6.
6

6.
8

7.
0

7.
2

7.
4

7.
6

pp
m

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

H
S

Q
C

 s
pe

ct
ru

m O

O

O
O

O
O

O

B
n-
LG
L-
Si

a

Si
b

c
d
e

f
g h

i
j

k
l

m

n
op

q

r
s

H
M

B
C

 
g

e

e-
d

e-
c

d

n,
n’

n,
n’

 - 
o,

o’

a,
b,

c,
o a,

b, c

q-
p

q

a
c b p,
p’

p

o,
o’

q

p-
p’

p-
(q

,o
’)

o-
(q

,o
’)

(1
26

-1
37

 p
pm

)



 136 
 

O

O

O
TB

DP
S

O

O
HO

O

LG
L-
TB
D
PS

R
ef

. 2
1 

10
9

8
7

6
5

4
3

2
1

pp
m

1.071
1.222
1.239
1.257
1.394
1.411
1.491
1.509
2.029

4.079
4.097
4.114
4.132
4.338
4.355
4.372
4.389
4.403
4.443
4.630
4.670
5.130
5.148
5.166
5.184

7.240
7.317
7.335
7.356
7.376
7.395
7.415
7.433
7.636
7.648
7.652
7.664

9.13
3.63
3.04
3.02

3.48

2.31
1.02
0.96
0.98

1.00

6.04

4.04

40
0B

 
LG

L−
S

i �

x

x

x



 137 

O

O

O
TB

DP
S

O

O
HO

O

LG
L-
TB
D
PS

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

pp
m

14.166
16.673
19.197
21.033
21.256
26.773

60.234
60.463

68.591
68.698
76.681
76.999
77.316

127.601
127.654
129.820
132.928
133.375
135.716
135.886

166.822
171.344
173.080
174.955

40
0B

�
LG

L−
TB

D
P

S
�

x

x

x

R
ef

. 2
1 



 138 

10
9

8
7

6
5

4
3

2
1

pp
m

1.090
1.407
1.424
1.461
1.479

4.341
4.367
4.383
4.400
4.419
4.458
4.640
4.680
5.113
5.131
5.149
5.166
5.298

7.339
7.356
7.378
7.398
7.416
7.431
7.436
7.455
7.653
7.656
7.664
7.668
7.672
7.684

18.29
0.55
6.31
5.89

0.20

0.13
5.94
2.00
2.00

2.00
0.76

12.40

8.22

C
D

C
l3

, 4
00

A
; J

un
e 

2,
 2

01
4

A
LS

−I
−0

11
, f

. P
−U

O
O

O

O
TB

DP
S

O

O

O

Eg
-(L
G
L-
TB
D
PS
) 2

O

O

O
TB

DP
SO

O

O
O



 139 

2
1
0

2
0
0

1
9
0

1
8
0

1
7
0

1
6
0

1
5
0

1
4
0

1
3
0

1
2
0

1
1
0

1
0
0

9
0

8
0

7
0

6
0

5
0

4
0

3
0

2
0

1
0

0
p
p
m

14.18
16.70
19.20
21.03
21.26
26.77

60.24
60.36
62.69
68.58
69.09

127.59
127.65
129.81
132.95
133.38
135.71
135.88

166.82
169.75
171.10
172.98

4
0
0
B
 
6
0
0
 
s
c
a
n
s
 
2
/
1
0
/
1
4

r
m
w
v
−
2
5
b
 
E
G
−
(
L
G
L
−
S
i
)
2
 
1
3
C
 
C
D
C
l
3

x

x

x

x

O
O

O

O
TB

DP
S

O

O

O

Eg
-(L
G
L-
TB
D
PS
) 2

O

O

O
TB

DP
SO

O

O
O

R
ef

. 2
1 



 140 

10
9

8
7

6
5

4
3

2
1

pp
m

1.486
1.500
1.524
1.538

2.879
2.890
4.347
4.354
4.355
4.357
4.365
4.373
4.375
4.377
4.385
4.391
4.398
4.400
4.413
4.415
4.420
4.427
4.435
4.440
4.730
4.762
4.813
4.845
5.175
5.189
5.203
5.217

6.12
6.27

1.73

6.10

1.97
2.00

1.93

C
D

C
l3

, 5
00

 M
H

z;
 J

an
ua

ry
 4

, 2
01

5
A

LS
−2

09
7,

 E
g(

LG
L)

2 
   

f. 
89

−9
8

x

O
O

O

O
H

O

O

O

Eg
-(L
G
L)
2

O

O

O
HO

O

O
O



 141 

20
0

18
0

16
0

14
0

12
0

10
0

80
60

40
20

0
pp

m

16.869
20.398

61.018
62.956
66.910
69.575

166.903
169.885

175.005

C
D

C
l3

, 4
00

A
; S

ep
te

m
be

r 8
, 2

01
4

A
LS

−I
−0

57
, i

ce
 6

h 
an

d 
rt 

40
h;

 p
ur

ifi
ed

 f.
 3

0

O
O

O

O
H

O

O

O

Eg
-(L
G
L)
2

O

O

O
HO

O

O
O



 142 

10
9

8
7

6
5

4
3

2
1

pp
m

1.088
1.409
1.423
1.478
1.492
1.505
1.519
1.593

2.752
2.763

4.332
4.353
4.366
4.384
4.399
4.411
4.425
4.441
4.473
4.649
4.681
4.705
4.737
4.808
4.840
5.143
5.150
5.157
5.164
5.171
5.178
5.185
5.192
5.297
7.344
7.358
7.373
7.379
7.394
7.402
7.418
7.436
7.450
7.655
7.667
7.680

9.00
3.13
9.01
1.36

0.96

6.01
1.03
1.00
1.00
0.99
1.90
0.37

6.05

4.00

50
0 

M
H

z�
A

LS
−2

04
7 

S
M

 m
on

o−
de

pr
ot

ec
te

d:
 L

G
L−

E
g−

LG
L−

S
i�

x

O
O

O

HO
O

O

O
O

O

O

O
TB

DP
S

O

O

O

LG
L-
Eg
-L
G
L-
TB
D
PS



 143 

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

10
0

pp
m

16.862
19.367
20.462
21.420
26.937

60.437
61.010
62.886
62.929
66.857
68.758
69.271
69.534

127.763
127.824
129.983
133.138
133.554
135.878
136.049

166.779
167.039
169.816
169.986
173.171
175.071

50
0 

M
H

z
A

LS
−2

04
7 

m
on

o−
de

pr
ot

ec
te

d:
 L

G
L−

E
g−

LG
L−

S
i

O
O

O

HO
O

O

O
O

O

O

O
TB

DP
S

O

O

O

LG
L-
Eg
-L
G
L-
TB
D
PS



 144 

10
9

8
7

6
5

4
3

2
1

pp
m

1.088
1.410
1.423
1.477
1.492
1.494
1.510
1.556
1.571
1.581
3.135
3.150
3.180
3.208
3.222
4.328
4.355
4.369
4.383
4.396
4.432
4.464
4.610
4.643
4.648
4.681
4.842
4.874
5.130
5.143
5.156
5.170
5.182
5.198
5.217
5.886
5.899
5.906
5.920
5.934
5.947
5.954
5.967
7.343
7.358
7.378
7.393
7.418
7.434
7.449
7.655
7.667
7.680

9.12

13.63

1.97

4.95
1.09
0.98
1.04
1.00
4.78

0.88

6.01

4.00

50
0 

M
H

z;
 J

un
e 

11
, 2

01
5�

A
LS

−2
04

7,
 B

−L
G

L−
E

g−
LG

L 
as

ym
m

et
ric

 f.
 3

2−
33

�

x

x

O
O

O

O
O

O

O
O

O

O

O
TB

DP
S

O

O

O
O

B
-L
G
L-
Eg
-L
G
L-
TB
D
PS



 145 

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

10
0

pp
m

16.723
16.815
19.228
21.284
26.798

38.587

60.275
60.724
62.717
62.776
68.423
68.618
69.120
69.281
76.765
77.019
77.274

118.961
127.622
127.680
129.626
129.839
133.000
133.420
135.738
135.909

166.591
166.864
169.718
169.795
170.107
170.844
173.009

50
0 

M
H

z;
 J

un
e 

11
, 2

01
5�

A
LS

−2
04

7,
 a

sy
m

m
et

ric
 B

−L
G

L−
E

g−
LG

L−
S

i f
. 3

0−
40

�
O

O

O

O
O

O

O
O

O

O

O
TB

DP
S

O

O

O
O

B
-L
G
L-
Eg
-L
G
L-
TB
D
PS



 146 

O
O

O

O
O

O

O
O

O

O

O
TB

DP
S

O

O

O
a

de

f

gh

i

i'
O

b
c

h'g'
f'

d' e'
B

-L
G

L-
Eg

-L
G

L-
TB

D
PS

 

’

’
’

’

d/
e

g’
/h
’

g/
h

h/
h’
/e

C
O

SY
 



 147 

10
9

8
7

6
5

4
3

2
1

pp
m

1.511
1.528
1.599
1.617

4.337
4.364
4.369
4.398
4.636
4.676
4.854
4.894
5.151
5.168
5.186
5.204
5.217
5.235
5.253
5.270
5.894
5.896
5.920
5.922
6.150
6.176
6.193
6.219
6.463
6.465
6.506
6.509

1.29

3.16
6.38
6.10

4.17

2.00
2.00
2.06
1.97

2.03

1.95

2.05

C
D

C
l3

, 4
00

A
; N

ov
em

be
r 5

, 2
01

4
A

LS
−I

−0
68

, f
. 4

8−
65

x

x

O
O

O

O
O

O

O

O

O
O

O

O
O

O

O

O
Eg
-(L
G
L-
A
) 2



 148 

O
O

O

O
O

O

O

O

O
O

O

O
O

O

O

O
Eg
-(L
G
L-
A
) 2

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

pp
m

1.126

16.829
17.010

29.801

60.830
62.875
68.482
69.380

127.603

132.221

165.411
166.731
169.840
170.235

C
D

C
l3

, 4
00

B
; N

ov
em

be
r 1

2,
 2

01
4

A
LS

−I
−0

68

x



 149 

10
9

8
7

6
5

4
3

2
1

pp
m

1.507
1.525
1.557
1.575

3.125
3.143
3.170
3.185
3.214
3.231
4.333
4.359
4.367
4.394
4.614
4.654
4.846
4.886
5.149
5.163
5.167
5.177
5.180
5.184
5.199
5.202
5.219
5.222
5.873
5.891
5.899
5.908
5.916
5.933
5.941
5.950
5.959
5.976

6.14
6.20

4.23

4.38

2.00
1.97

8.18

2.00

C
D

C
l3

, 4
00

A
; J

ul
y 

29
, 2

01
4

A
LS

−I
−0

36
, E

g−
(L

G
L−

B
)2

, f
. 5

9−
71

O
O

O

O
O

O

O

O

O
O

O

O
O

O

O

O
Eg
-(L
G
L-
B
) 2



 150 

O
O

O

O
O

O

O

O

O
O

O

O
O

O

O

O
Eg
-(L
G
L-
B
) 2

2
1
0

2
0
0

1
9
0

1
8
0

1
7
0

1
6
0

1
5
0

1
4
0

1
3
0

1
2
0

1
1
0

1
0
0

9
0

8
0

7
0

6
0

5
0

4
0

3
0

2
0

1
0

0
p
p
m

16.69
16.78

24.87
25.55

33.82
38.55

60.69
62.73
68.38
69.24
76.68
77.00
77.32

118.94

129.59

166.57
169.69
170.08
170.82

4
0
0
B
 
5
7
5
 
s
c
a
n
s
 
5
/
6
/
1
4

r
m
w
v
−
4
1
b
 
E
g
−
(
L
G
L
B
)
2
 
1
3
C
 
C
D
C
l
3

x
x

R
ef

. 2
1 



 151 

10
9

8
7

6
5

4
3

2
1

pp
m

1.510
1.527
1.551
1.569
2.370
2.373
2.391
2.408
2.425
2.436
2.450
2.475
2.486
2.491
2.503
2.508
2.524
2.543
2.564
4.323
4.335
4.361
4.370
4.396
4.408
4.421
4.613
4.653
4.848
4.888
4.996
4.999
5.022
5.024
5.044
5.048
5.087
5.090
5.144
5.147
5.161
5.165
5.179
5.182
5.197
5.200
5.781
5.797
5.807
5.813
5.823
5.839
5.850
5.856
5.865
5.881

6.20
6.34

4.27
4.31

4.19
2.01
2.01
1.97
2.14
4.15

2.00

C
D

C
l3

, 4
00

A
; F

eb
ru

ar
y 

9,
 2

01
5�

A
LS

−1
08

4,
 f.

 3
6−

63
 h

ig
h 

va
c 

E
g(

LG
LP

)2
�

O
O

O

O
O

O

O

O

O
O

O

O
O

O

O

O

Eg
-(L
G
L-
P)
2



 152 

O
O

O

O
O

O

O

O

O
O

O

O
O

O

O

O

Eg
-(L
G
L-
P)
2

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

pp
m

16.865
17.004

28.776

33.231

60.822
62.903
68.321
69.397

115.775

136.553

166.767
169.871
170.393
172.506

C
D

C
l3

, 4
00

B
; N

ov
em

be
r 1

4,
 2

01
4

A
LS

−I
−0

70
, f

. 6
0−

93
: s

ta
rti

ng
 m

at
er

ia
l E

g(
LG

L−
P

)2



 153 

10
9

8
7

6
5

4
3

2
1

pp
m

1.484
1.498
1.514
1.528
1.555
1.569
2.045
2.134
2.379
2.382
2.385
2.396
2.409
2.422
2.431
2.447
2.460
2.478
2.492
2.506
2.509
2.523
2.538
2.540
2.555
4.114
4.129
4.332
4.341
4.361
4.365
4.371
4.373
4.394
4.404
4.620
4.652
4.669
4.701
4.853
4.885
5.001
5.004
5.022
5.024
5.048
5.051
5.054
5.058
5.071
5.074
5.082
5.085
5.089
5.092
5.105
5.152
5.156
5.166
5.170
5.180
5.184
5.194
5.198
5.793
5.806
5.814
5.819
5.827
5.840
5.848
5.853
5.861
5.873

0.31
5.62
6.00

7.81

3.75

1.80
1.80
3.77
3.54

1.79

50
0 

M
H

z;
 M

ar
ch

 2
6,

 2
01

6
A

LS
−t

es
t−

40
, J

A
N

−E
N

i−
03

9,
 E

g(
LG

LP
)2

 p
ur

ity
 te

st

x
x x

tr
an
s-
cy
cl
ic
-E
g-
(L
G
L-
P)
2

O
O O

O

O
O

O

O

O

O

O

O
O

O

O
O



 154 

tr
an
s-
cy
cl
ic
-E
g-
(L
G
L-
P)
2

O
O O

O

O
O

O

O

O

O

O

O
O

O

O
O

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

pp
m

16.851
17.017

27.718

33.789

60.938
62.870
68.264
69.518

129.140
129.491

166.767
169.916
170.345
172.369

40
0B

tra
ns

−R
C

M



 155 

10
9

8
7

6
5

4
3

2
1

pp
m

3.371
3.387
3.504
3.528
3.542
3.567
5.033
5.036
5.038
5.041
5.044
5.053
5.057
5.061
5.066
5.069
5.095
5.099
5.104
5.109
5.392
5.667
5.672
5.676
5.682
5.686
5.692
5.695
5.704
5.706
5.709
5.718
5.720
5.729
5.745
5.927
5.944
5.952
5.961
5.969
5.986
5.995
6.003
6.012
6.028
7.146
7.150
7.170
7.185
7.189
7.216
7.233
7.237
7.245
7.252
7.253
7.263
7.271
7.277
7.282
7.290

2.70
1.08

0.58
1.15
0.62
0.27

0.54

1.00

4.06
3.78

TH
F−

d6
, 4

00
A

; J
un

e 
3,

 2
01

4
A

LS
−I

−0
13

, 4
5 

m
in

1
1

1
2

2
2

2

et
hy
le
ne

x

2
1

+



 156 

10
9

8
7

6
5

4
3

2
1

pp
m

1.514
1.532
1.536
1.554
2.385
2.400
2.406
2.412
2.429
2.433
2.442
2.451
2.466
2.476
4.325
4.332
4.343
4.358
4.367
4.375
4.383
4.398
4.410
4.417
4.675
4.680
4.715
4.720
4.781
4.795
4.821
4.835
5.153
5.160
5.171
5.178
5.188
5.196
5.205
5.214
5.233
5.298
5.367
5.404
5.416
5.443
5.497
5.505
5.514

12.33

8.10

4.08

2.06
2.05
4.00
0.69
1.80
0.25

C
D

C
l3

, 4
00

A
; F

eb
ru

ar
y 

26
, 2

01
5

A
LS

−2
00

1,
 s

ta
rti

ng
 m

at
er

ia
l

O
O

O

O

O

O

O

O
O

O

O

O
O

O
O

O

ci
s-
cy
cl
ic
-E
g-
(L
G
L-
P)
2



 157 

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

10
0

pp
m

16.826
16.963

22.938

33.995

60.999
62.839
68.370
69.551

129.160

166.779
169.930
170.321
172.436

C
D

C
l3

, 5
00

; F
eb

ru
ar

y 
27

, 2
01

5�
A

LS
−2

00
1,

 c
is

−m
on

om
er

 s
ta

rti
ng

 m
at

er
ia

l�

O
O

O

O

O

O

O

O
O

O

O

O
O

O
O

O

ci
s-
cy
cl
ic
-E
g-
(L
G
L-
P)
2



 158 

10
9

8
7

6
5

4
3

2
1

pp
m

1.343
1.355
1.399
1.411
1.481
1.496
1.511
1.526
1.552
1.566
1.583
1.590
1.597
1.610
1.639
1.680
1.689
1.701
2.131
2.380
2.393
2.406
2.421
2.432
2.446
2.449
2.458
2.468
2.476
2.490
2.504
2.521
2.536
3.730
4.330
4.338
4.358
4.369
4.372
4.393
4.402
4.618
4.650
4.850
4.855
4.882
4.887
4.999
5.001
5.020
5.049
5.052
5.083
5.086
5.136
5.150
5.165
5.179
5.181
5.193
5.298
5.399
5.407
5.416
5.792
5.804
5.812
5.817
5.825
5.838
5.846
5.851
5.859
5.872

0.61
6.58
6.28

5.01
2.66

0.56

4.21
2.00
2.00
1.15
1.20
3.97
1.76
0.69
0.16
1.13

C
D

C
l3

; 5
00

 M
H

z;
 J

ul
y 

8,
 2

01
5

A
LS

−2
05

1,
 c

ru
de

 c
is

−c
yc

lic
−E

g(
LG

LP
)2

x

x

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO

ci
s-
P
p-
(L
G
L-
Eg
-L
G
L-
P)
2



 159 

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

10
0

pp
m

16.866
17.003
22.662

28.781
33.260
33.842

60.840
62.912
68.334
68.360
69.413

115.769

129.032
129.483

136.567

166.769
169.872
170.381
172.490

C
D

C
l3

; 5
00

 M
H

z;
 J

ul
y 

8,
 2

01
5

A
LS

−2
05

1,
 c

ru
de

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO

ci
s-
P
p-
(L
G
L-
Eg
-L
G
L-
P)
2



 160 

pp
m

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

pp
m

8.
0

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

A
LS

−2
05

1,
 d

im
er

C
O

S
Y

 s
pe

ct
ru

m

r

a(
tr)a(
ci
s)nk
/g
d sZ
sE

f,m
f,m

i,j
c,
p
b,
q

e,
o

h,
l

a/
b

r/q

d/
e,

g/
h,
k/
l,

n/
o

r/s

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO
a b

c

e d

f
g

h
i j

k
l

m
n o

p

q
rs E
s Z

t
u

v

w x

y
z

a'

ci
s-
P
p-
(L
G
L-
Eg
-L
G
L-
P)
2

C
O

SY
 



 161 

C
D

C
l3

; 5
00

 M
H

z;
 J

ul
y 

8,
 2

01
5

A
LS

−2
05

1,
 c

ru
de

pp
m

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

pp
m

14
0

12
0

10
0806040200

H
S

Q
C

 s
pe

ct
ru

m

r

a 
(tr

)

nk
/g

d sE
sZ

f,m
f,m

i,j
cp

bq

e,
o

h,
l

h,
l

e,
o

b
q

p
c

f, 
m

i, 
j dn

gk s

a 
(c

is
)

a 
(tr

an
s)

a 
(c

is
)

r
r

a

s

nk
gd

fm
fm

ij

cp

qb
eh

lo

H
SQ

C

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO
a b

c

e d

f
g

h
i j

k
l

m
n o

p

q
rs E
s Z

t
u

v

w x

y
z

a'

ci
s-
P
p-
(L
G
L-
Eg
-L
G
L-
P)
2



 162 

A
LS

−2
05

1 
ho

m
od

im
er

�

pp
m

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

pp
m

14
0

12
0

10
0806040200

H
M

B
C

 s
pe

ct
ru

m

r
a(

tr)a(
ci

s)nk
/g

d sZ
sE

f,m
f,m

i,j
c,

p
b,

q

e,
o

h,
l

h,
l

e,
o

b
q

p
c

f,m i,j d,
n

g,
k s

a 
(c

is
)

a 
(tr

an
s)

r

r/q
a/

b
q/

s

nk
gd

/e
hl

o
b/

c q/
p q/

p

i/j
d/

e
g/

h k/
l

n/
o

s/
q a/

b,
c

r/q
,p

H
M
B
C

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO
a b

c

e d

f
g

h
i j

k
l

m
n o

p

q
rs E
s Z

t
u

v

w x

y
z

a'

ci
s-
P
p-
(L
G
L-
Eg
-L
G
L-
P)
2



 163 

C
D

C
l3

; 5
00

 M
H

z;
 J

ul
y 

8,
 2

01
5

A
LS

−2
05

1,
 c

ru
de

pp
m

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

pp
m

16
0

16
5

17
0

17
5

18
0

H
M

B
C

 s
pe

ct
ru

m

r

sZ
sE

f,m
f,m

i,j
c,
p
b,
q

e,
o

h,
l

H
M

B
C

 (1
50

-1
90

 p
pm

)

i/w j/x

f/v m
/y

b,
c/
t

p,
q/
a’

e/
u,

o/
z

h/
l,

w
/x

w
,x u,
z

t,a
’

yv

f/u m
/z

nk
/g
d

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO

OO

O
O

O
O

O
O

O
O

O
O

O
O

OO
a b

c

e d

f
g

h
i j

k
l

m
n o

p

q
rs E
s Z

t
u

v

w x

y
z

a'

ci
s-
P
p-
(L
G
L-
Eg
-L
G
L-
P)
2



 164 

10
9

8
7

6
5

4
3

2
1

pp
m

1.512
1.527
1.548
1.562
2.309
2.324
2.333
2.339
2.345
2.376
2.388
2.401
2.419
2.433
2.448
2.464
2.480
2.496
4.328
4.337
4.343
4.356
4.363
4.370
4.375
4.389
4.396
4.405
4.614
4.646
4.858
4.891
5.133
5.147
5.151
5.153
5.162
5.167
5.176
5.181
5.196
5.401
5.409
5.417
5.477
5.484
5.491

6.29
6.84

3.39
4.72

4.08

2.00
1.99
3.98
0.07
0.28
1.66

50
0 

M
H

z;
 M

ar
ch

 2
6,

 2
01

6
A

LS
−3

07
3,

 G
ru

bb
s 

3r
d 

E
D

−R
O

M
P

 v
.2

 C
H

2C
l2

 q
ue

nc
h

O
O

O
O

O
O

O

O

O
O

O
O

O

O
O

O

P
ol

y 
(L

G
L-

E
g-

LG
L-

P
p
)



 165 

21
0

20
0

19
0

18
0

17
0

16
0

15
0

14
0

13
0

12
0

11
0

10
0

90
80

70
60

50
40

30
20

10
0

pp
m

16.742
16.883

27.582

33.689

60.686
62.786
68.167
69.267
76.705
77.023
77.227
77.341

129.345

166.658
169.745
170.268
172.385

40
0 

M
H

z;
 C

D
C

l3
; M

ay
 7

, 2
01

6
A

LS
−3

06
9−

tra
ns

 G
ru

bb
s 

3 
re

ac
tio

n 
v3

O
O

O
O

O
O

O

O

O
O

O
O

O

O
O

O

P
ol

y 
(L

G
L-

E
g-

LG
L-

P
p
)



 166 

7.
5

7.
0

6.
5

6.
0

5.
5

5.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

pp
m

1.515
1.529
1.532
1.546

2.324
2.330
2.378
2.387
2.404
2.435
2.449
2.462
2.478
2.495

4.337
4.347
4.367
4.394
4.624
4.645
4.656
4.679
4.685
4.699
4.711
4.717
4.756
4.761
4.768
4.782
4.795
4.808
4.814
4.827
4.838
4.845
4.853
4.870
4.877
4.885
5.097
5.104
5.152
5.166
5.171
5.179
5.186
5.198
5.200
5.212
5.226
5.403
5.441
5.446
5.497
5.503
5.510

11.83

3.19
4.27

0.14

0.27

0.53
0.56

4.00

2.07
1.90

0.24
3.69
0.25
0.10
1.23
0.11

50
0 

M
H

z;
 C

D
C

l3
; M

ar
ch

 2
1,

 2
01

6
A

LS
−3

05
1,

 h
ig

h 
va

c,
 c

ru
de

 c
yc

lo
de

po
ly

m
er

iz
at

io
n

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

pp
m

4.00

2.07

1.90

0.24

3.69

0.25
0.10
1.23
0.11

1.
6

1.
7

1.
8

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

pp
m

11.83

3.19

4.27

C
yc

lo
de

po
ly

m
er

iz
at

io
n 

of
po

ly
 (L

G
L-

Eg
-L

G
L-

Pp
)



 167 

HRMS (ESI) for cyclodepolymerization study. 

C:\Xcalibur\data\Meyer\75297ESIP 03/23/16 15:23:40 ALS-3051-cyclodepolymerization

75297ESIP #12-54 RT: 0.10-0.32 AV: 43 NL: 2.78E9
T: FTMS + p ESI Full ms [300.00-3000.00]
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