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notable signaling pathways
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Abstract

Background: A signal transduction pathway (STP) is a network of intercellular information flow initiated when
extracellular signaling molecules bind to cell-surface receptors. Many aberrant STPs have been associated with various
cancers. To develop optimal treatments for cancer patients, it is important to discover which STPs are implicated in a
cancer or cancer-subtype. The Cancer Genome Atlas (TCGA) makes available gene expression level data on cases and
controls in ten different types of cancer including breast cancer, colon adenocarcinoma, glioblastoma, kidney renal
papillary cell carcinoma, low grade glioma, lung adenocarcinoma, lung squamous cell carcinoma, ovarian carcinoma,
rectum adenocarcinoma, and uterine corpus endometriod carcinoma. Signaling Pathway Impact Analysis (SPIA) is a
software package that analyzes gene expression data to identify whether a pathway is relevant in a given condition.

Methods: We present the results of a study that uses SPIA to investigate all 157 signaling pathways in the KEGG
PATHWAY database. We analyzed each of the ten cancer types mentioned above separately, and we perform a
pan-cancer analysis by grouping the data for all the cancer types.

Results: In each analysis several pathways were found to be markedly more significant than all the other pathways.
We call them notable. Research has already established a connection between many of these pathways and the
corresponding cancer type. However, some of our discovered pathways appear to be new findings. Altogether there
were 37 notable findings in the separate analyses, 26 of them occurred in 7 pathways. These 7 pathways included the
4 notable pathways discovered in the pan-cancer analysis. So, our results suggest that these 7 pathways account for
much of the mechanisms of cancer. Furthermore, by looking at the overlap among pathways, we identified possible
regions on the pathways where the aberrant activity is occurring.

Conclusions: We obtained 37 notable findings concerning 18 pathways. Some of them appear to be new discoveries.
Furthermore, we identified regions on pathways where the aberrant activity might be occurring. We conclude that our
results will prove to be valuable to cancer researchers because they provide many opportunities for laboratory and
clinical follow-up studies.

Keywords: Pan-cancer, Breast cancer, Colon adenocarcinoma, Glioblastoma, Kidney renal papillary cell carcinoma, Low
grade glioma, Lung adenocarcinoma, Lung squamous cell carcinoma, Ovarian carcinoma, Rectum adenocarcinoma,
Uterine corpus endometriod carcinoma, Signal transduction pathway, Gene expression data, TCGA, SPIA

Background
A signal transduction pathway (STP) is a network of
intercellular information flow initiated when extracellular
signaling molecules bind to cell-surface receptors. The
signaling molecules become modified, causing a change in
their functional capability, affecting a change in the subse-
quent molecules in the network. This cascading process

culminates in a cellular response. Consensus pathways
have been developed based on the composite of studies
concerning individual pathway components. KEGG
PATHWAY [1] is a collection of manually drawn path-
ways representing our knowledge of the molecular inter-
action and reactions for about 157 signaling pathways.
Signaling pathways are not stand-alone, but rather it is
believed there is inter-pathway communication [2].
Many aberrant STPs have been associated with various

cancers [3–9]. To develop optimal treatments for cancer
patients, it is important to discover which STPs are
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implicated in a cancer or cancer-subtype. Microarray
technology is providing us with increasingly abundant
gene expression level datasets. For example, The Cancer
Genome Atlas (TCGA) makes available gene expression
level data on tumors and normal tissue in ten different
types of cancer including breast cancer, colon adenocarcin-
oma, glioblastoma, kidney renal papillary cell carcinoma,
low grade glioma, lung adenocarcinoma, lung squamous
cell carcinoma, ovarian carcinoma, rectum adenocar-
cinoma, and uterine corpus endometriod carcinoma.
Translating the information in these data into a better
understanding of underlying biological mechanisms is of
paramount importance to identifying therapeutic targets
for cancer. In particular, if the data can inform us as to
whether and how a signal transduction pathway is altered
in the cancer, we can investigate targets on that pathway.
In an effort to reveal pathways implicated using gene ex-

pression data from tumors and normal tissue, researchers
initially developed techniques such as over-representation
analysis [10–12]. However these techniques analyze each
gene separately rather than perform an analysis of the
pathway at a systems level. By ignoring the topology of the
network, they do not account for key biological informa-
tion. That is, if a pathway is activated through a single
receptor and that protein is not produced, the pathway
will be severely impacted. However, a protein that appears
downstream may have a limited effect on the pathway.
Recently, researchers have developed methods that
account for the topology.
Signaling Pathway Impact Analysis (SPIA) [13] is a soft-

ware package (http://www.bioconductor.org/packages/re-
lease/bioc/html/SPIA.html) that analyzes gene expression
data to identify whether a signaling network is relevant in
a given condition by combining over-representation ana-
lysis with a measurement of the perturbation measured in
a pathway. Neapolitan et al. [14] developed a method
called Causal Analysis of STP Aberrations (CASA) for ana-
lysing signal pathways which represents signal pathways as
causal Bayesian networks [15], and which also accounts for
the topology of the network.
Even though much effort has been put into the develop-

ment of these techniques for analyzing signaling pathways
using gene expression data, it was not clear that we could
get reliable results concerning signaling pathways by
analyzing such data. That is, phosphorylation activity state
of each protein in signaling pathway corresponds to the
information flow on the pathway. Protein expression level
(abundance) is correlated with activity, and gene expres-
sion level (mRNA abundance) is associated with protein
abundance (correlation coefficient of 0.4 to 0.6). So, it
seems gene expression data would be only loosely corre-
lated with activity.
To investigate this question of whether we could obtain

meaningful results using large-scale gene expression data,

Neapolitan et al. [14] analyzed the ovarian cancer TCGA
data using both SPIA and CASA. In their analysis, they in-
vestigated 20 signaling pathways believed to be implicated
in cancer and 6 randomly chosen pathways. They obtained
significant results that the cancers believed to be impli-
cated in cancer are the ones most likely to be implicated
in ovarian carcinoma.
The study in [14] was only a proof of principle study.

In this paper we present the results of a study that uses
SPIA to investigate all 157 signaling pathways in the
KEGG PATHWAY database.

Results and discussion
We analyzed all 157 signaling pathways in the KEGG
PATHWAY database using SPIA. We performed a pan-
cancer analysis that had all 2100 tumors, a breast cancer
analysis that had 466 tumors, a colon adenocarcinoma
analysis that had 143 tumors, a glioblastoma analysis that
had 567 tumors, a kidney renal papillary cell carcinoma
analysis that had 16 tumors, a low grade glioma analysis
that had 27 tumors, a lung adenocarcinoma analysis that
had 32 tumors, a lung squamous cancer analysis that had
154 tumors, an ovarian cancer analysis that had 572
tumors, a rectum adenocarcinoma analysis that had 69
tumors, and a uterine corpus endometriod carcinoma
analysis that had 54 tumors. For all the analyses, we
grouped the normal tissue samples from all the datasets,
making a total of 101 normal tissue samples.
In all our analyses several pathways were found to be

markedly more significant than the others, and also have
very small FDRs. We call a pathway notable if the p-value
is less than 0.0001 and the FDR is less than 0.01. We call a
pathway significant if the p-value is less than 0.05. Table 1
shows the pathways found to be notable in all 11 of our
analyses, and the most significant pathway that was not
notable. Additional file 1: Tables S1-S11 show all pathways
found to be significant (p-value < 0.05) in each of the
analyses.

Pan-cancer results
Table 1 reveals that the notable pathways in the pan-
cancer analysis are the focal adhesion pathway, P13k-Akt
pathway, Rap1 pathway, and calcium signaling pathways.
This result verifies previous research showing that three of
these four pathways are major players in cancer. The focal
adhesion pathway has been shown to be involved in inva-
sion, metastasis, angiogenesis, epithelial-mesenchymal
transition (EMT), maintenance of cancer stem cells, and
globally promoting tumor cell survival [16]. Furthermore,
the Focal Adhesion Kinase (FAK) gene is a non-receptor
tyrosine kinase that controls cellular processes such as
proliferation, adhesion, spreading, motility, and survival
[17–22]. FAK has been shown to be over-expressed in
many types of tumors [23–26]. Disruption of FAK and
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Table 1 The pathways found to be notable in the various analyses, and the most significant pathway that was not notable (listed last).
A pathway is notable if the p-value is less than 0.0001 and the FDR is less than 0.01. A pathway is significant if the p-value is less
than 0.05. The Status column gives the direction in which the pathway is found to be perturbed (activated or inhibited). The
Signfct column contains an entry if the pathway is significant in the pan-cancer analysis. The entry is “N” if it is one of the notable
pathways. Otherwise, it is “S”. A pathway has an asterisk if it is not notable in the pan-cancer analysis and previous studies have
not linked it to the particular cancer

Analysis Pathway p-value FDR Status Signfct

pan-cancer Focal adhesion 5.99E-06 0.000789 Activated N

PI3K-Akt signaling pathway 1.01E-05 0.000789 Activated N

Rap1 signaling pathway 3.71E-05 0.001939 Activated N

Calcium signaling pathway 4.95E-05 0.001942 Activated N

Systemic lupus erythematosus 0.001966 0.05302 Activated S

breast ECM-receptor interaction 5.71E-05 0.008967 Activated

Complement and coagulation cascades 0.003855 0.218606 Activated S

colon Adrenergic signaling in cardiomyocytes* 3.35E-05 0.001709 Inhibited S

Melanoma 3.68E-05 0.001709 Inhibited S

Focal adhesion 4.73E-05 0.001709 Inhibited N

Cytokine-cytokine receptor interaction 5.84E-05 0.001709 Activated S

Pathways in cancer* 6.21E-05 0.001709 Inhibited S

PI3K-Akt signaling pathway 6.53E-05 0.001709 Inhibited N

Rap1 signaling pathway 0.002919 0.065477 Inhibited N

glioblastoma Cytokine-cytokine receptor interaction 5.12E-07 8.04E-05 Inhibited S

Complement and coagulation cascades* 1.33E-05 0.000798 Inhibited S

Systemic lupus erythematosus 1.94E-05 0.000798 Inhibited S

PI3K-Akt signaling pathway 2.31E-05 0.000798 Inhibited N

Chemokine signaling pathway 2.54E-05 0.000798 Inhibited S

Vascular smooth muscle contraction 0.003076 0.069809 Inhibited

kidney Rap1 signaling pathway 3.30E-06 0.000518 Inhibited N

ECM-receptor interaction* 8.13E-06 0.000638 Inhibited

Colorectal cancer* 2.79E-05 0.001459 Inhibited

Focal adhesion 8.66E-05 0.0034 Inhibited N

Insulin signaling pathway 0.000557 0.015232 Inhibited

glioma Focal adhesion 4.94E-06 0.000674 Inhibited T

ECM-receptor interaction* 8.59E-06 0.000674 Inhibited

Chemokine signaling pathway 1.74E-05 0.00091 Inhibited S

Small cell lung cancer* 4.27E-05 0.001482 Inhibited S

Cytokine-cytokine receptor interaction 4.72E-05 0.001482 Inhibited S

Retrograde endocannabinoid signaling 0.000478 0.01252 Activated

Analysis Pathway p-value FDR Status Signfct

lung adeno. Chemokine signaling pathway 1.82E-08 2.86E-06 Activated S

Cytokine-cytokine receptor interaction 1.51E-05 0.001187 Activated S

Systemic lupus erythematosus 0.000108 0.005654 Activated S

lung squamous Chemokine signaling pathway 1.43E-05 0.002204 Activated S

Cytokine-cytokine receptor interaction 4.14E-05 0.002204 Activated S

Endocrine and other factor-reg. calcium reab.* 4.21E-05 0.002204 Inhibited

Amoebiasis 0.005649 0.221723 Inhibited S
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p53 interaction with small molecule compound R2 reacti-
vated p53 and blocked tumor growth [27]. The PI3K-Akt
signaling pathway has been shown to be the most
frequently altered pathway in human tumors. It controls
most hallmarks of cancer, including cell cycle, survival,
metabolism, motility and genomic instability; angiogenesis
and inflammatory cell recruitment [28]. The Calcium sig-
naling pathway has diverse functions in cellular regulation,
which was found previously (with cell adhesion) by path-
way analysis in breast cancer [29]. Yang et al. [30] discuss
regulation of calcium signaling in lung cancer. On the
other hand, much less is known about the Rap1 signaling
pathway and cancer. There are only 6 pubmed citations
concerning Rap1 and cancer. In particular, Bailey et al.
[31] provide evidence to support a role for aberrant Rap1
activation in prostate cancer progression. Our results indi-
cate Rap1 might be as big of a player in all cancers as the
other three pathways just discussed.

Individual cancer results
Next we discuss the individual cancer results. Each of
these discussions refers to information provided in
Table 1.
The only notable pathway in the breast cancer analysis

is the ECM-receptor interaction pathway. This pathway
was not found to be significant in the pan-cancer analysis,
much less notable. However, previous research links
changes in the extracellular matrix (ECM) to breast
cancer. Lu et al. [32] recently discuss how the ECM’s bio-
mechanical properties change under disease conditions. In

particular, tumor stroma is typically stiffer than normal
stroma; and in the case of breast cancer, diseased tissue
can be 10 times stiffer than normal breast tissue.
There are 7 notable pathways in the case of colon

adenocarcinoma, and all of them were found to be
significant in the pan-cancer analysis. The PI3k-Akt
signaling pathway and focal adhesion pathway were both
found to be notable in the pan-cancer analysis and were
discussed above. There are only 7 pubmed citations link-
ing the highest ranking pathway, adrenergic signaling in
cardiomyocytes, to cancer. The second pathway, namely
the melanoma pathway, is of course linked to cancer.
Furthermore, there is research substantiating that the
BRAF mutation is prominent in melanoma and colorec-
tal cancer [33]. BRAF is on the melanoma pathway. As
to the cytokine-cytokine receptor interaction pathway,
there has been research linking cytokine receptors to
colorectal cancer [34]. The pathway in cancer pathway is
of course linked to cancer. Our result substantiates its
role in colon cancer in particular.
The top ranking pathway in the case of glioblastoma is

the cytokine-cytokine receptor interaction pathway, whose
relevance to cancer we just discussed. The second path-
way is complement and coagulation cascades. Recent
research has suggested an essential role of this pathway in
multiple cancers [35], but not glioblastoma in particular.
Our results support that it is also has a role in glioblast-
oma. The third pathway, namely system lupus erythema-
tosus, has been linked to glioblastoma [36]. We have
already discussed the PI3K-Akt signalling pathway, as it

Table 1 The pathways found to be notable in the various analyses, and the most significant pathway that was not notable (listed last).
A pathway is notable if the p-value is less than 0.0001 and the FDR is less than 0.01. A pathway is significant if the p-value is less
than 0.05. The Status column gives the direction in which the pathway is found to be perturbed (activated or inhibited). The
Signfct column contains an entry if the pathway is significant in the pan-cancer analysis. The entry is “N” if it is one of the notable
pathways. Otherwise, it is “S”. A pathway has an asterisk if it is not notable in the pan-cancer analysis and previous studies have
not linked it to the particular cancer (Continued)

ovarian Rap1 signaling pathway 4.02E-05 0.002785 Inhibited N

PI3K-Akt signaling pathway 5.03E-05 0.002785 Inhibited N

Calcium signaling pathway 5.32E-05 0.002785 Inhibited N

Focal adhesion 0.000366 0.014354 Inhibited N

rectum Focal adhesion 3.63E-06 0.000342 Inhibited N

Rap1 signaling pathway 4.36E-06 0.000342 Inhibited N

Ras signaling pathway* 1.32E-05 0.000689 Inhibited S

PI3K-Akt signaling pathway 4.96E-05 0.001727 Inhibited N

Prostate cancer* 5.50E-05 0.001727 Inhibited S

Melanoma 0.001514 0.039609 Inhibited S

uterine Focal adhesion 7.50E-07 0.000118 Inhibited N

Maturity onset diabetes of the young 4.69E-05 0.003144 Activated S

Calcium signaling pathway 6.01E-05 0.003144 Inhibited N

Rap1 signaling pathway 0.005318 0.208728 Inhibited N
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was one of the notable pathways in the pan-cancer ana-
lysis. Finally, chemokine signaling has been associated
with a number of cancers including glioma [37].
The first and fourth pathways for kidney renal papillary

cell carcinoma are two of the notable pathways in the
pan-cancer analysis, and have already been discussed. The
second pathway, namely the ECM-receptor interaction
pathway was also discussed because it was the most sig-
nificant pathway in breast cancer. Finally, the colorectal
cancer pathway is of course linked to cancer, but we know
of no specific study implicating it in kidney renal papillary
cell carcinoma.
The chemokine signaling pathway and the cytokine-

cytokine receptor interaction pathway are both notable in
low grade glioma. These same two pathways were found
to be significant in glioblastoma and were discussed above.
The first pathway, namely focal adhesion, is one of the
notable pathways in our pan-cancer analysis. The second
pathway, ECM-receptor interaction, was previously dis-
cussed because it was the most notable pathway in breast
cancer. Finally, the small cell lung cancer pathway is con-
cerned with cancer, but a literature search did not reveal
any study linking it specifically to glioma.
The two notable pathways in the case of lung adenocar-

cinoma are also notable in glioblastoma, and were dis-
cussed when we discussed that cancer. The cytokine-
cytokine receptor interaction pathway has been implicated

specifically with lung cancer [38], as has chemokine
signaling [39].
The top two pathways in the case of lung squamous

cell carcinoma are the same as the top two in the case of
lung adenocarcinoma. Their relevance to lung cancer
was just discussed. A pubmed search does not show any
papers linking cancer with the third pathway, endocrine
and other factor-regulated calcium absorption.
The notable pathways in ovarian cancer are all notable

pathways in the pan-cancer analysis, and were previously
discussed.
Three of the notable pathways in the rectum adenocar-

cinoma analysis, are notable pathways in the pan-cancer
analysis. The third ranked pathway, RAS signaling, has
been associated with renal carcinoma [40]. As to the pros-
tate cancer pathway, prostate cancer and renal cell cancer
have been shown to have some commonality [41].
Two of the three notable pathways for uterine corpus

endometriod carcinoma are notable pathways in the pan-
cancer analysis. As to the third pathway, the connection
between maturity onset diabetes of the young and endo-
metrial cancer has been well-established [42].

Summary results
Out of 157 signaling pathways analyzed, only 18 were
found to be notable in at least one cancer. Table 2 lists
those pathways. Out of a total of 37 notable findings, 26

Table 2 The pathways that were found to be notable in at least one cancer analysis. The second column shows the number of
cancer types in which the pathway was found to be notable. The pathways are ranked by that column. The third column contains
an “N” if the pathway was found to be notable in the pan-cancer analysis and it contains an “S” if it was only found to be significant
in the pan-cancer analysis. The fourth column shows the p-value in the pan-cancer analysis

Rank Pathway # cancers Pan_cancer p-value

1 Focal Adhesion 5 N 5.99E-06

2 Cytokine-cytokine receptor interaction 5 S 0.006

3 PI3K-Akt signaling pathway 4 N 1.01E-05

4 Chemokine signaling pathway 4 S 0.007

5 Rap1 signaling pathway 3 N 3.71E-05

6 ECM-receptor interaction 3 0.472

7 Calcium signaling pathway 2 N 4.95E-05

8 Adrenergic signaling in cardiomyocytes 1 S 0.014

9 Melanoma 1 S 3.00E-03

10 Pathways in Cancer 1 S 0.002

11 Complement and coagulation cascades 1 S 0.005

12 Systemic lupus erythematosus 1 S 0.002

13 Colerectal cancer 1 0.531

14 Small cell lung cancer 1 S 0.015

15 Endocrine and other factor-regulated calcium reabsorption 1 0.183

16 Ras signal pathway 1 S 0.038

17 Prostate cancer 1 S 0.004

18 Maturity onset diabetes of the young 1 S 0.047
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occurred for the top 7 pathways. So, our results indicate
that relatively few pathways are responsible for much of
the aberrant activity in cancer. Of those 7 pathways, 4
were found to be notable in the pan-cancer analysis, and
2 others were fairly significant (p-values of 0.006 and
0.007). So these pathways may play roles in many differ-
ent cancers. However, the ECM-receptor interaction
pathway was not significant in the pan-cancer analysis
(p-value of 0.472), indicating that perhaps this pathway
is relevant only to the 3 cancers in which it was found to
be notable, namely breast cancer, kidney renal papillary
cell carcinoma, and low grade glioma.
To gain insight as to how much each particular cancer

has in common with all cancers, we computed the
Jaccard Index comparing the notable pathways in the
each cancer type to the notable pathways in the pan-
cancer analysis. If A and B are the two sets, the Jaccard
Index of A and B is given by

J A;Bð Þ ¼ A∩Bj j
A∪Bj j ;

where A is the number of items in A. The value of J(A, B)
is 0 if A and B have no items in common, and is 1 if A and
B are the same set.
Table 3 shows the Jaccard Indices. Ovarian carcinoma

is at the top with an index of 0.75. The index would have
been even higher, namely 1.0, if we had included the
fourth most significant pathway for Ovarian Cancer,
which is Focal adhesion and has a p-value of 0.000366.
At the bottom we have breast cancer and the two lung
cancers with Jaccard Indices equal to 0.

Pathway intersections
If we look at the pathway diagrams for our seven most
significant pathways appearing in Table 2, often different
signaling molecules bind to different receptors (integrin,

RTK, GPCR), but the responses converge on many of the
same proteins. For example, PI3K-Akt, Focal Adhesion,
and Rap1 all converge on protein PI3K. To gain insight as
to how much overlap there is among the seven most sig-
nificant pathways, we determined the number of proteins
each pathway pair has in common. The results appear in
Table 4. Two interesting relationships are discernable in
that table, and they are depicted in Fig. 1.
The first relationship is that PI3K-Akt has substantial

overlap will five of the other six pathways. This is shown
in Fig. 1a. PI3K-Akt is “probably one of the most import-
ant pathways in cancer metabolism and growth” [43].
The fact that it overlaps substantially will five other
significant pathways indicates that much of the aberrant
signaling in many cancers might be located in regions
where PI3K-Akt overlaps with other pathways.
The second interesting relationship is that the Calcium

pathway hardly overlaps with the other six pathways.
This is shown in Fig. 1b. The Calcium pathway was
found to be notable in only ovarian and uterine cancer
(Table 1). This result indicates that there might be a
common region of aberrant signaling in these two can-
cers, which does not overlap with regions of aberrant
signaling in other cancers.
To discover possible hotspots where other aberrant

signaling might occur, we looked at higher order inter-
sections. We discovered the intersections shown in Fig. 2.
In each of the diagrams in that figure, the intersection of
the pathways in the diagram includes essentially no pro-
teins from the other significant pathways.
Perhaps the most interesting relationship appears in

Fig. 2a, which shows that the majority of the proteins in
the ECM-receptor interaction pathway are located in the
intersection of the PI3K-Akt and Focal Adhesion path-
ways. The ECM-receptor interaction pathway was found
to be notable in breast cancer, kidney cancer, and gli-
oma. This result indicates that there may be a region of
aberrant signaling, located in the intersection of PI3K-
Akt and Focal Adhesion, in these cancers.
Figures 2b and c show other possible hot regions in

PI3K-Akt, while Fig. 2d and e show possible hot regions

Table 4 The number of proteins that the top 7 pathways have in
common with each other. The entry is the number of proteins
that are affiliated with both of the two indicated pathways

FA Cyt PI3k Chm Rap ECM Cal

FA 207 16 120 44 63 70 11

Cyt 16 265 62 64 21 0 3

PI3K 120 62 347 51 96 70 8

Chm 44 64 51 189 51 0 17

Rap 63 21 96 51 211 4 31

ECM 70 0 70 0 4 87 0

Cal 11 3 8 17 31 0 180

Table 3 The Jaccard Index for each cancer type. The index is
based on the number of notable pathways the cancer analysis
has in common with the pan-cancer analysis

Cancer type Jaccard index

Ovarian carcinoma 0.75

Rectum adenocarcinoma 0.6

Uterine corpus Endometriod carcinoma 0.4

Kidney renal papillary cell carcinoma 0.333

Colon adenocarcinoma 0.222

Glioblastoma 0.125

Low grade glioma 0.125

Breast cancer 0

Lung adenocarcinoma 0

lung squamous cell carcinoma 0
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not including PI3K-Akt. Of these figures, Fig. 2e is the
most compelling. The Cytokine-cytokine receptor inter-
action and Chemokine signaling pathways have a large
intersection that excludes other pathways. Both these
pathways were found to be notable in glioblastoma, gli-
oma, lung adenocarcinoma, and lung squamous cancer.
Only the Cytokine-cytokine receptor interaction path-
way was found to be notable in colon cancer. So there
may be a region of aberrant signaling, located in the
intersection of these pathways, in these cancers.

Cancer clusters
To investigate further how different cancers might share
common causal mechanisms, we developed a heat map,
based on hierarchical clustering, with cancer type on the
horizontal, the 18 notable pathways on the vertical, and
with the entry being p-value. Figure 3 shows the heat
map. Ovarian cancer and uterine cancer constitute a pri-
mary group. This is consistent with our result men-
tioned about that the calcium pathway was found to be
notable only in these two cancers. Furthermore, these
cancers are in close proximity. Rectum cancer and colon
cancer also constitute a primary group, which is consistent
with their close proximity.

Discussion
We performed a pan-cancer analysis by grouping the
TCGA data on 10 different cancer types. We identified 4
signaling pathways to be markedly more significant (which
we called notable) than the remaining 153 pathways. We
also did a separate analysis for each of the 10 types of can-
cers individually. In all 10 of the cancers, there were several
pathways that were found to be markedly more significant
than the others. Altogether there were 37 notable findings
in the separate analyses, and 26 of them occurred in 7
pathways. These 7 pathways included the 4 discovered in
the pan-cancer analysis. Our results suggest that these 7
pathways account for much of the mechanisms of cancer.
As we discussed, research has already established a con-

nection between many of the 18 pathway we discovered
and the corresponding cancer type. However, some of
them appear to be new discoveries. Furthermore, we have
identified regions on the pathways that might account for
the aberrant behaviour. So, we have both substantiated
previous knowledge, and provided researchers with ave-
nues for future investigations.
The PI3K-Akt pathway has long been recognized as an

aberrant pathway in breast cancer [43]. However, our
breast cancer analysis did not find it to be significant

Fig. 2 Venn diagrams showing number proteins pathway triplets have in common. a) PI3K-Akt, focal adhesion, and Rap1. b) P13K-Akt, focal
adhesion, and Rap1. c) P13K-Akt, chemokine signaling, and Rap1. d) chemokine signaling, focal adhesion, and Rap1. e) chemokine signaling, and
cytokine-cytokine receptor interaction. In each of the diagrams, the intersection of the pathways includes essentially no proteins from the other
significant pathways

Fig. 1 Venn diagrams showing number of proteins pathway pairs have in common. a) Intersection of PI3K-Akt with each of the other top 6
pathways. b) Intersection of calcium signalling pathway with each of the other top 6 pathways
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(p = 0.304). On the other hand, the ECM-receptor inter-
action pathway was the only notable pathway in the breast
cancer analysis, and we showed that 70 of its 87 proteins
are on the PI3K-Akt pathway. So, our results indicate that
the effect of PI3K-Akt on breast cancer might be localized
in this region of the PI3K-Akt pathway.
It likely that there are other known pathways that

affect various cancers, which we did not discover. The
analysis of gene expression alone may not account for
pathways that are activated by post-translational modifi-
cation (like phosphorylation/dephos) that could change
the pathway activation profile without altering mRNA
abundance. So, we should interpret our results only as
suggesting avenues of investigation, rather than as dis-
confirming any existing knowledge.
This in silico analysis of cancer patient signaling path-

ways provides many opportunities for laboratory and
clinical follow-up studies. We know of no dataset as
comprehensive as the TCGA datasets. However, there
are individual datasets for specific cancers that could be
investigated. For example, the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC)
dataset has data on 1981 breast cancer tumors, and
expression levels for 16,384 genes [44].

Conclusions
We presented the results of a study that analyzes all 157
signaling pathways in the KEGG PATHWAY database

using TCGA gene expression datasets concerning ten
types of cancer. We performed a pan-cancer analysis and
analyze each dataset separately. There were 37 notable
findings concerning 18 pathways. Research has already
established a connection between many of these pathways
and the corresponding cancer type. However, some of
them appear to be new discoveries. Furthermore, we iden-
tified regions on pathways where the aberrant activity
might be occurring. We conclude that our results will
prove to be valuable to cancer researchers because they

Table 5 The number of tumor samples and normal samples in
the TCGA cancer datasets

Cancer # tumors # normal

Breast cancer 466 61

Colon adenocarcinoma 143 19

Glioblastoma 567 10

Kidney renal papillary cell carcinoma 16 0

Low grade glioma 27 0

Lung adenocarcinoma 32 0

Lung squamous cell carcinoma 154 0

Ovarian carcinoma 572 8

Rectum adenocarcinoma 69 3

Uterine corpus endometriod carcinoma 54 0

Pan-cancer (total) 2100 101

Fig. 3 Heat map showing cancer and pathway clusters. The entries are standardized values of the p-value. The p-values are mapped to [−0.5, 0.5];
then standardization is done along the rows by the hierarchical clustering algorithm in MATLAB so that the mean values is 0 and the standard
deviation is 1. Abbreviations: LGG: low grade glioma; BRCA: breast; LUSC: lung squamous; GBM: glioblastoma; LUAD: lung adenocarcinoma;
OV: ovarian; UCEC: uterine; READ: rectum; COAD: colon; KIRP: kidney
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provide many opportunities for laboratory and clinical
follow-up studies.

Method
This research does not involve any human subjects. It uti-
lizes the publically available de-identified TCGA datasets.
The Cancer Genome Atlas (TCGA) makes available data-
sets concerning breast cancer, colon adenocarcinoma,
glioblastoma, kidney renal papillary cell carcinoma, low
grade glioma, lung adenocarcinoma, lung squamous cell
carcinoma, ovarian carcinoma, rectum adenocarcinoma,
and uterine corpus endometriod carcinoma. Each dataset
contains data on the expression levels of 17,814 genes in
tumorous tissue and in normal tissue. Table 5 shows the
number of tumor samples and non-tumor samples in each

of these datasets. Tables 6, 7, 8, 9, 10 shows demographic
information concerning the patients from which the sam-
ples were taken.
We did a pan-cancer analysis by grouping the ten dif-

ferent cancer datasets into one dataset, resulting in 2100
tumor samples and 101 normal samples.
KEGG (Kyoto Encyclopedia of Genes and Genomes) is

a database resource that integrates genomic, chemical and
systemic functional information. We chose KEGG because
it is widely used as a reference knowledge base for integra-
tion and interpretation of large-scale datasets generated
by genome sequencing and other high-throughput experi-
mental technologies. KEGG PATHWAY [1] is a collection
of manually drawn pathway maps representing our

Table 8 Race distribution of the patients from which the various samples were obtained. Ind: American indian or Alaska native;
Asn: Asian; Blk: Black or African American; Haw: Native Hawaiian or other Pacific islander; Wht: white; NA: Not available

Cancer Tumor samples Non-tumor samples

Ind. Asn. Blk. Haw. Wht. NA Ind. Asn. Blk. Haw. Wht. NA

Breast cancer 1 34 39 0 303 89 0 0 1 0 59 1

Colon adenocarcinoma 0 0 1 0 9 133 0 0 2 0 8 9

Glioblastoma 0 13 34 0 495 25 0 0 0 0 0 10

Kidney renal papillary cell carcinoma 0 0 0 0 9 7 0 0 0 0 0 0

Low grade glioma 0 0 2 0 25 0 0 0 0 0 0 0

Lung adenocarcinoma 0 2 1 0 26 3 0 0 0 0 0 0

Lung squamous cell carcinoma 0 3 7 0 91 53 0 0 0 0 0 0

Ovarian carcinoma 3 19 24 1 493 32 0 0 0 0 0 8

Rectum adenocarcinoma 0 0 1 0 4 64 0 0 0 0 3 0

Uterine corpus endometriod carcinoma 2 4 6 0 40 2 0 0 0 0 0 0

Pan-cancer (total) 6 75 115 1 1495 408 0 0 3 0 70 28

Table 7 Menopause status distribution of the patients from
which the various samples were obtained

Cancer Tumor samples Non-tumor
samples

Pre Peri Post NA Pre Peri Post NA

Breast cancer 104 16 297 49 19 2 28 12

Colon adenocarcinoma 0 0 0 143 0 0 0 19

Glioblastoma 0 0 0 567 0 0 0 10

Kidney renal papillary cell
carcinoma

0 0 0 16 0 0 0 0

Low grade glioma 0 0 0 27 0 0 0 0

Lung adenocarcinoma 0 0 0 32 0 0 0 0

Lung squamous cell
carcinoma

0 0 0 154 0 0 0 0

Ovarian carcinoma 0 0 0 572 0 0 0 8

Rectum adenocarcinoma 0 0 0 69 0 0 0 3

Uterine corpus
endometriod carcinoma

5 0 45 4 0 0 0 0

Pan cancer (total) 109 16 342 1633 19 2 28 52

Table 6 Gender distribution of the patients from which the
various samples were obtained

Cancer Tumor
samples

Non-tumor
samples

Female Male Female Male

Breast cancer 461 5 60 1

Colon adenocarcinoma 67 76 14 5

Glioblastoma 219 348 5 5

Kidney renal papillary cell carcinoma 4 12 0 0

Low grade glioma 9 18 0 0

Lung adenocarcinoma 18 14 0 0

Lung squamous cell carcinoma 44 110 00 0

Ovarian carcinoma 572 0 8 0

Rectum adenocarcinoma 31 38 3 0

Uterine corpus endometriod carcinoma 54 0 0 0

Pan-cancer (total) 1479 621 90 11
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knowledge on the molecular interaction and reaction net-
works for the following:

1. Metabolism
Global/overview, Carbohydrate, Energy, Lipid,
Nucleotide, Amino acid,
Other amino, Glycan, Cofactor/vitamin,
Terpenoid/PK,
Other secondary metabolite, Xenobiotics,
Chemical structure

2. Genetic Information Processing
3. Environmental Information Processing
4. Cellular Processes
5. Organismal Systems
6. Human Diseases

We investigated all 157 signaling pathways in the KEGG
databases. For each pathway, we identified all the genes
related to the pathways. We extracted gene expression
profiles for the 2100 tumor samples and 101 normal

samples in the TCGA database. By mapping the gene
names of the genes in the gene sets identified using KEGG
pathways and the gene names in TCGA data, we were able
to extract the gene expression profiles for each of the 157
pathways for the 2100 tumor samples and 101 normal
samples. The TCGA gene expression data is already proc-
essed and normalized.
We repeated this procedure for each of the ten cancer

datasets separately. Each dataset has the number of
tumor samples shown in Table 5. However, to achieve a
larger sample for the normal samples, we grouped the
normal samples in the ten datasets, making the number
of normal samples equal to 101.
Once these datasets were developed, we analysed each

dataset using the software package SPIA [13] (http://www.
bioconductor.org/packages/release/bioc/html/SPIA.html),
which analyzes gene expression data to identify whether
a signaling pathway is relevant in a given cancer by 1)
determining the overrepresentation of genes on the
pathway that are differentially expressed in tumor samples

Table 10 Age distribution of the patients from which the various samples were obtained

Cancer Tumor samples Non-tumor samples

0-20 21-40 41-60 61-80 81-100 NA 0-20 21-40 41-60 61-80 81-100 NA

Breast cancer 0 51 198 194 22 1 0 7 26 25 3 0

Colon adenocarcinoma 0 2 22 90 29 0 0 0 3 12 4 0

Glioblastoma 7 63 238 237 20 2 0 1 4 4 1 0

Kidney renal papillary cell carcinoma 0 0 11 5 0 0 0 0 0 0 0 0

Low grade glioma 1 15 10 1 0 0 0 0 0 0 0 0

Lung adenocarcinoma 0 1 9 20 2 0 0 0 0 0 0 0

Lung squamous cell carcinoma 0 2 31 112 7 2 0 0 0 0 0 0

Ovarian carcinoma 0 23 295 233 20 1 0 4 4 0 0 0

Rectum adenocarcinoma 0 1 14 47 7 0 0 0 1 2 0 0

Uterine corpus endometriod carcinoma 0 3 23 22 6 0 0 0 0 0 0 0

Pan-cancer (total) 8 161 851 961 113 6 0 12 38 43 8 0

Table 9 Ethnicity distribution of the patients from which the various samples were obtained

Cancer Tumor samples Non-tumor samples

Latino Not Latino NA Latino Not Latino NA

Breast cancer 7 336 123 0 36 25

Colon adenocarcinoma 0 10 133 0 10 9

Glioblastoma 12 465 90 0 0 10

Kidney renal papillary cell carcinoma 0 16 0 0 0 0

Low grade glioma 1 20 6 0 0 0

Lung adenocarcinoma 1 28 3 0 0 0

Lung squamous cell carcinoma 4 88 62 0 0 0

Ovarian carcinoma 11 330 231 0 0 8

Rectum adenocarcinoma 0 5 64 0 3 0

Uterine corpus endometriod carcinoma 2 24 28 0 0 0

Pan-cancer (total) 13 1322 740 0 49 52
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versus normal samples; and 2) investigating the abnormal
perturbation of the pathway, as measured by propagating
measured expression changes across the pathway top-
ology. SPIA produces a p-value showing the significance
level at which a pathway is found to be perturbed in can-
cerous tissue and a false discovery rate (FDR). We ran
SPIA using the recommended value of 2000 bootstrap it-
erations, and all parameters set to their default values.

Additional file

Additional file 1: These 11 tables show all pathways found to be
significant (p-value < 0.05) in each of the analyses. Table S1. The
pathways found to be significant in the pan-cancer analysis. Table S2.
The pathways found to be significant in the breast cancer analysis. The far
right column contains an entry if the pathway was found to be significant in
the pan-cancer analysis. The entry is “H” if it was one of the highly significant
pathways. Otherwise, it is “S”. Table S3. The pathways found to be significant
in colon adenocarcinoma analysis. The far right column contains an entry if
the pathway was found to be significant in the pan-cancer analysis. The entry
is “H” if it was one of the highly significant pathways. Otherwise, it is “S”.
Table S4. The pathways found to be significant in the glioblastoma analysis.
The far right column contains an entry if the pathway was found to be
significant in the pan-cancer analysis. The entry is “H” if it was one of the
highly significant pathways. Otherwise, it is “S”. Table S5. The pathways
found to be significant in the Kidney Renal Papillary Cell Carcinoma analysis.
The far right column contains an entry if the pathway was found to be
significant in the pan-cancer analysis. The entry is “H” if it was one of the
highly significant pathways. Otherwise, it is “S”. Table S6. The pathways
found to be significant in the Low Grade Glioma analysis. The far right
column contains an entry if the pathway was found to be significant in the
pan-cancer analysis. The entry is “H” if it was one of the highly significant
pathways. Otherwise, it is “S”. Table S7. The pathways found to be significant
in the Lung Adenocarcinoma analysis. The far right column contains an entry
if the pathway was found to be significant in the pan-cancer analysis. The
entry is “H” if it was one of the highly significant pathways. Otherwise, it is “S”.
Table S8. The pathways found to be significant in the lung squamous cell
carcinoma analysis. The far right column contains an entry if the pathway
was found to be significant in the pan-cancer analysis. The entry is “H” if it
was one of the highly significant pathways. Otherwise, it is “S”. Table S9. The
pathways found to be significant in the ovarian cancer analysis. The far right
column contains an entry if the pathway was found to be significant in the
pan-cancer analysis. The entry is “H” if it was one of the highly significant
pathways. Otherwise, it is “S”. Table S10. The pathways found to be
significant in the rectum adenocarcinoma analysis. The far right column
contains an entry if the pathway was found to be significant in the
pan-cancer analysis. The entry is “H” if it was one of the highly significant
pathways. Otherwise, it is “S”. Table S11. The pathways found to be
significant in the uterine corpus endometrioid carcinoma analysis. The far
right column contains an entry if the pathway was found to be significant in
the pan-cancer analysis. The entry is “H” if it was one of the highly significant
pathways. Otherwise, it is “S”.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
XJ developed the plan for conducting the analyses, and oversaw their
successful completion. RN analysed the results. CH looked at the analysis and
wrote the material concerning previous knowledge of the each discovered
pathway’s relevance in cancer. RN wrote the remainder of the first draft of
the paper. All authors reviewed and edited the final draft. All authors read
and approved the final manuscript.

Authors’ information
Richard E. Neapolitan is professor of biomedical informatics in the
Northwestern University Feinberg School of Medicine. He has published

numerous papers in the broad area of reasoning under uncertainty during
the past 25 years. Books he has written include Probabilistic Reasoning in
Expert Systems (1989); Learning Bayesian Networks (2004); Foundations of
Algorithms (1996, 1998, 2003, 2010, 2014), which has been translated into
three languages; Probabilistic Methods for Financial and Marketing Informatics
(2007); Probabilistic Methods for Bioinformatics (2009); and Contemporary
Artificial Intelligence (2012). His seminal 1989 text Probabilistic Reasoning in
Expert Systems, along with Judea Pearl’s text Probabilistic Reasoning in
Intelligent Systems, served to establish the field we now call Bayesian
networks.
Xia Jiang is assistant professor of biomedical informatics in the Department
of Biomedical Informatics at the University of Pittsburgh. She has a strong
background in applying the Bayesian network and machine learning
approaches to developing informatics tools that help solve problems in the
clinical and biomedical domains. Dr. Jiang was one of the major researchers
in the PANDA project led by Dr. Greg Cooper, which involved applying
Bayesian Network modeling and inference to biosurveillance. She is currently
the PI on an NIH/NLM funded K99/R00 project, which is developing efficient
Bayesian-network-based methods that use high dimensional genomic and
clinical data to discover complex genetic interactions in cancer. Her recent
research has resulted in five new algorithms that learn interaction sub-
networks from high-dimensional data; these methods are described and
evaluated in her six first-author papers in the area of computational
genomics.
Drs. Neapolitan and Jiang have co-authored two books concerning machine
learning, namely, Probabilistic Methods for Financial and Marketing Informatics
and Contemporary Artificial Intelligence, four papers concerning learning
epistatically interacting loci from high-dimensional datasets, and several very
recent papers in related areas of biomedical informatics.
Curt M. Horvath is a Professor of Molecular Biosciences at Northwestern
University, and co-directs the Signal Transduction in Cancer division of the
Robert H. Lurie Comprehensive Cancer Center. His lab has uncovered diverse
mechanisms of virus innate immune evasion aimed at RLR and JAK-STAT
pathways, and current research on signal transduction and gene regulation
includes investigation of virus-host interactions, protein-RNA interactions, the
molecular mechanisms underlying interferon production and cellular antiviral
responses, and bioinformatics approaches to understanding JAK-STAT signaling
pathways in human cancers.

Acknowledgements
We would like to thank Binghuang Cai for developing the heat maps
appearing in this paper.
This work was supported by National Library of Medicine grants number
R00LM010822 and R01LM011663.

Author details
1Department of Preventive Medicine, Northwestern University Feinberg
School of Medicine, Chicago, Il, USA. 2Department of Molecular Biosciences,
Northwestern University, Evanston, Illinois, USA. 3Department of Biomedical
Informatics, University of Pittsburgh, Pittsburgh, PA, USA.

Received: 29 December 2014 Accepted: 9 June 2015

References
1. KEGG PATHWAY: http://www.genome.jp/kegg/pathway.html.
2. Ideker T, Galitski T, Hood L. A new approach to decoding life: systems

biology. Annu Rev Genomics Human Gen. 2001;2:343–72.
3. Ciriello G, Cerami E, Sander C, Schultz N. Mutual exclusivity analysis

identifies oncogenic network modules. Genome Res. 2012;22(2):398–406.
4. Vandin F, Upfal E, Raphael BJ: De novo discovery of mutated driver

pathways in cancer. Genome Research 2011, 1–12: doi:10.1101/gr.120477.111.
5. Vandin F, Upfal E, Raphael BJ. Algorithms for detecting significantly mutated

pathways in cancer. J Comput Biol. 2011;18(3):507–22.
6. Zhao J, Zhang S, Wu L-Y, Zhang X-S. Efficient methods for identifying

mutated driver pathways in cancer. Bioinformatics. 2012;28(22):2940–7.
7. Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA.

FGFR3 and Ras gene mutations are mutually exclusive genetic events in
urothelial cell carcinoma. Oncogene. 2005;24(33):5218–25.

8. Kurose K et al. Frequent somatic mutations in PTEN and TP53 are mutually
exclusive in the stroma of breast carcinomas. Nat Genet. 2002;32(3):355–7.

Neapolitan et al. BMC Cancer  (2015) 15:516 Page 11 of 12

http://www.biomedcentral.com/content/supplementary/s12885-015-1484-6-s1.docx
http://www.genome.jp/kegg/pathway.html
http://dx.doi.org/10.1101/gr.120477.111


9. Xing M et al. Early occurrence of RASSF1A hypermethylation and its mutual
exclusion with BRAF mutation in thyroid tumorigenesis. Cancer Res.
2004;64(5):1664–8.

10. Drặghici S et al. Global functional profiling of gene expression. Genomics.
2003;81:98–104.

11. Subramanian A et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc Natl Acad
Sci U S A. 2005;102:15545–50.

12. Tian L et al. Discovering statistically significant pathways in expression
profiling studies. Proc Natl Acad Sci U S A. 2005;102:13544–9.

13. Tarca A et al. A novel signaling pathway impact analysis. Bioinformatics.
2009;25:75–82.

14. Neapolitan R, Jiang X. Inferring aberrant signal transduction pathways in
ovarian cancer from TCGA Data. Cancer Informat. 2014;1:29–36.

15. Neapolitan RE. Learning Bayesian Networks. Prentice Hall: Upper Saddle
River, NJ; 2003.

16. Cance WG, Kurenova E, Marlowe T, Golubovskaya V. Disrupting the scaffold
to improve focal adhesion kinase-targeted cancer therapeutics. Sci Signal.
2013;6(268):e10. doi:10.1126/scisignal.2004021.

17. Hanks SK, Polte TR. Signaling through focal adhesion kinase. Bioessays.
1997;19:137–45.

18. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and
cancer cells. Curr Opin Cell Biol. 2006;18:516–23.

19. McLean GW et al. The role of focal-adhesion kinase in cancer - a new
therapeutic opportunity. Nat Rev Cancer. 2005;5:505–15.

20. Schaller MD. Cellular functions of FAK kinases: insight into molecular
mechanisms and novel functions. J Cell Sci. 2010;123:1007–13.

21. Guan JL. Role of focal adhesion kinase in integrin signaling. Int J Biochem
Cell Biol. 1997;29:1085–96.

22. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell
migration and angiogenesis. Adv Drug Deliv Rev. 2011;63:610–5.

23. Cance WG et al. Immunohistochemical analyses of focal adhesion kinase
expression in benign and malignant human breast and colon tissues:
correlation with preinvasive and invasive phenotypes. Clin Cancer Res.
2000;6:2417–23.

24. Cance WG, Liu ET. Protein kinases in human breast cancer. Breast Cancer
Res Treat. 1995;35:105–14.

25. Owens LV et al. Overexpression of the focal adhesion kinase (p125FAK) in
invasive human tumors. Cancer Res. 1995;55:2752–5.

26. Lark AL et al. Overexpression of focal adhesion kinase in primary colorectal
carcinomas and colorectal liver metastases: immunohistochemistry and
real-time PCR analyses. Clin Cancer Res. 2003;9:215–22.

27. Golubovskaya V et al. Disruption of focal adhesion kinase and p53
interaction with small molecule compound R2 reactivated p53 and blocked
tumor growth. BMC Cancer. 2013;13:342. doi:10.1186/1471-2407-13-342.

28. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and
opportunities. Nat Rev Drug Discov. 2014;13(2):140–56.

29. Woltmann A, et al.: Systematic pathway enrichment analysis of a genome-
wide association study on breast cancer survival reveals an influence of
genes involved in cell adhesion and calcium signaling on the patients’
clinical outcome. PLoS One 2014, 9(6): doi:10.1371/journal.pone.0098229.

30. Yang H, Zhang Q, He J, Lu W. Regulation of calcium signaling in lung
cancer. J Thorac Dis. 2010;2(1):52–6.

31. Bailey C, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer
metastasis. Cancer Res. 2009;69(12):4962–8.

32. Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in
cancer progression. J Cell Biol. 2012;196(4):395–406.

33. Ardekani GS et al. The prognostic value of BRAF mutation in colorectal
cancer and melanoma: a systematic review and meta-analysis. PLoS One.
2012;7(10):e47054. doi:10.1371/journal.pone.0047054.

34. Ho GY et al. Circulating soluble cytokine receptors and colorectal cancer
risk. Cancer Epidemiol Biomarkers Prev. 2014;23(1):179–88.

35. Krupp M. et al.: The functional cancer map: A systems-level synopsis of
genetic deregulation in cancer. BMC Medical Genomics 2011, 4(53).
http://www.biomedcentral.com/1755-8794/4/53.

36. Muzaffer MA. Juvenile systemic lupus erythematosus and glioblastoma: a
case report and literature review. Journal of King Abdulaziz University -
Medical Sciences. 2013;20(4):111–8.

37. Kulbe H et al. The chemokine network in cancer - much more than
directing cell movement. Int J Dev Biol. 2004;48:489–96.

38. Van Dyke AL et al. Cytokine and cytokine receptor single-nucleotide
polymorphisms predict risk for non–small cell lung cancer among women.
Cancer Epidemiol Biomarkers Prev. 2013;18(6):1829–40.

39. Spano JP et al. Chemokine receptor CXCR4 and early-stage non-small cell
lung cancer: pattern of expression and correlation with outcome. Ann
Oncol. 2004;15(4):613–7.

40. Banumathy G, Cairns P. Signaling pathways in renal cell carcinoma. Cancer
Biol Ther. 2010;10(7):658–64.

41. Tang PA, Heng DY. Programmed death 1 pathway inhibition in metastatic
renal cell cancer and prostate cancer. Curr Oncol Re. 2013;15(2):98–104.

42. Spurdle AB et al. Genome-wide association study identifies a common
variant associated with risk of endometrial cancer. Nat Genet. 2011;43:451–4.

43. Baselga J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast
cancer. Oncologist. 2011;16(1):12–9.

44. METABRIC Data for Use in Independent Research: https://www.synapse.org/#!
Synapse:syn1688369.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Neapolitan et al. BMC Cancer  (2015) 15:516 Page 12 of 12

http://dx.doi.org/10.1126/scisignal.2004021
http://dx.doi.org/10.1186/1471-2407-13-342
http://dx.doi.org/10.1371/journal.pone.0098229
http://dx.doi.org/10.1371/journal.pone.0047054
http://www.biomedcentral.com/1755-8794/4/53
https://www.synapse.org/#!

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results and discussion
	Pan-cancer results
	Individual cancer results
	Summary results
	Pathway intersections
	Cancer clusters

	Discussion
	Conclusions
	Method
	Additional file
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References



