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Abstract

Background: Providing neurofeedback (NF) of motor-related brain activity in a biologically-relevant and intuitive
way could maximize the utility of a brain-computer interface (BCI) for promoting therapeutic plasticity. We present
a BCI capable of providing intuitive and direct control of a video-based grasp.

Methods: Utilizing magnetoencephalography’s (MEG) high temporal and spatial resolution, we recorded sensorimotor
rhythms (SMR) that were modulated by grasp or rest intentions. SMR modulation controlled the grasp aperture of a stop
motion video of a human hand. The displayed hand grasp position was driven incrementally towards a closed or opened
state and subjects were required to hold the targeted position for a time that was adjusted to change the task difficulty.

Results: We demonstrated that three individuals with complete hand paralysis due to spinal cord injury (SCI) were
able to maintain brain-control of closing and opening a virtual hand with an average of 63 % success which was
significantly above the average chance rate of 19 %. This level of performance was achieved without pre-training and
less than 4 min of calibration. In addition, successful grasp targets were reached in 1.96 ± 0.15 s. Subjects performed 200
brain-controlled trials in approximately 30 min excluding breaks. Two of the three participants showed a significant
improvement in SMR indicating that they had learned to change their brain activity within a single session of NF.

Conclusions: This study demonstrated the utility of a MEG-based BCI system to provide realistic, efficient, and focused NF
to individuals with paralysis with the goal of using NF to induce neuroplasticity.

Keywords: Brain-Computer Interface, Neurofeedback, Spinal Cord Injury, Magnetoencephalography, Neuroplasticity,
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Background
Typical rehabilitation strategies for people with paralysis
rely on residual physical function to drive motor recovery.
However, if injury prevents a person from generating
muscle activity, an alternative approach is to use a therapy
based on extracting information about motor intention dir-
ectly from the brain. Studies of individuals with spinal cord
injury (SCI) or hemiplegia due to stroke have shown that
functional recovery during the early stages of rehabilitation
is accompanied by a return to a more normal activation
pattern within the sensorimotor cortex [1–4]. In the case
of SCI, motor-related activity is often altered (see [5] for a
summary). Using brain computer interfaces (BCIs), people
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can learn to modulate their brain activity, which has the
potential to promote therapeutic neuroplasticity [6, 7].
BCIs record neural activity and allow for real-time
feedback of certain features of the brain signal in order
to facilitate learning through the principles of operant
conditioning. We expect that improving a person’s ability
to generate motor-related brain activity could strengthen
any remaining or repaired corticospinal connections, which
would better transmit intentions to the paralyzed muscles.
BCIs rely on volitional modulation of cortical activity,

often achieved through attempted and imagined move-
ments, and can form the basis of neurofeedback (NF) train-
ing paradigms. In particular, sensorimotor rhythms (SMR)
(8–30 Hz) have been used to control assistive devices and
are being investigated for rehabilitative NF [6, 8, 9]. While
most research to date has used electroencephalography
(EEG) or electrocorticography (ECoG) to record SMR
activity, magnetoencephalography (MEG) can also be used
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to detect and provide real-time feedback of SMRs [10–
15]. MEG has the advantage of non-invasively record-
ing across the whole scalp while maintaining high
spatial and temporal resolution. In addition, compared
to EEG, MEG allows for better source localization and
detection of higher frequencies because magnetic fields
are not attenuated by the skull as is the case for electric
fields [16]. Though not portable, MEG-based BCIs are
relevant for rehabilitation interventions.
BCI-based neurofeedback paradigms have recently been

investigated for restoration of motor function after stroke
using both EEG [17, 18] and MEG [11] with some success.
We present a novel MEG-based BCI system to deliver a
NF paradigm for promoting therapeutic neuroplasticity for
recovery of hand function. Our system utilizes anthropo-
morphic feedback to activate intact action-observation net-
works based on the same principles as mirror therapy for
stroke and phantom limb syndrome [19–22]. Another
novel feature is that subjects have proportional, continuous
control of the real-time display using cortical activity dir-
ectly associated with the intended movement. The goal
was to provide NF using an intuitive and natural control
signal based on cortical activity that typically occurs during
overt movement. Specifically, changes in SMR activity
resulting from attempted grasping drives the grasp-posture
of a stop motion video-based NF paradigm, which forms a
strong causal link between intention and action. Our sys-
tem was also designed to maximize the time participants
spent with the grasp-related NF task while maintaining pro-
ficient brain control. A short calibration period (<4 min)
with no pre-training was sufficient for effective BCI per-
formance. Lastly, task difficulty was adjusted during the ses-
sion in order to maintain motivation and maximize SMR
modulation. We evaluated our system with three partici-
pants who had complete hand paralysis due to SCI. We
show that in people with complete paralysis, SMR activity
can be recorded with MEG during attempted hand move-
ment to drive a real-time NF paradigm and that in some
participants (n = 2), SMR modulation significantly increased
over the course of a session.

Methods
Participants and data collection
Three individuals with SCI resulting in complete hand par-
alysis participated in this study. An occupational therapist
evaluated the participants’ injury classification using the
ASIA examination (Table 1) [23]. The occupational therapist
Table 1 Participant demographics and impairment

Subject Gender Age Injury Duration (yrs) Injury Level ASIA

S01 Male 31 7 C2 A

S02 Male 26 5 C5 A

S03 Male 27 9 C5 B
also confirmed that all participants had no grip strength
or active finger flexion or extension using a dynamometer.
The subjects all had chronic (i.e. over 1 year since injury)
SCI that occurred during adulthood. All subjects were self-
reported as right-handed before their injury. Subjects had
no previous training with the BCI task. All subjects gave
written informed consent and the study was conducted
with Institutional Review Board approval from the VA
Pittsburgh Healthcare System (VA 02830) and the Univer-
sity of Pittsburgh (PRO09120267).
MEG was recorded with a 306-channel whole-head

system (Elekta Neuromag Vectorview) having 102 sensor-
triplets each containing a magnetometer, longitudinal gradi-
ometer, and latitudinal gradiometer. MEG signals were
band-pass filtered between 0.1 and 330 Hz and then sam-
pled at 1000 Hz. Standard localization coils were used to
track head position relative to the MEG sensors [24]. Head
position was recorded after each BCI calibration period
(see “BCI calibration task” section below). Based on the re-
corded head position, each subject’s data was transformed
into a standardized sensor coordinate frame to compare be-
tween subjects [25].

BCI system
Experiments were controlled by a network of computers
running a MEG adaptation of our BCI software “Craniux”
[26]. Data from 18 sensor locations (i.e. 36 gradiometer
signals) over the left sensorimotor cortex (top-left of Fig. 1)
were broadcast from the MEG machine in 50 ms bins over
TCP/IP using the FieldTrip Buffer [12, 15, 27]. The BCI
software sent timestamps via parallel port to the MEG ac-
quisition computer so the full data set (i.e. 306 sensors)
could be aligned with the BCI performance information.
Spectral decomposition was then performed on data from
the 36 sensorimotor sensors using autoregressive func-
tions (25th order Maximum Entropy Method) on a sliding
300 ms bin updated every 50 ms (250 ms of overlap) pro-
ducing 6 Hz wide frequency bins centered at 9, 15, 21,
and 27 Hz (illustrated on the bottom-left of Fig. 1). The
window size was chosen in order to balance responsive-
ness with signal to noise (SNR) ratio.
The goal of the NF training was to promote SMR

desynchronization that occurs during overt movement.
Therefore, to focus the NF training on neural features that
represented SMR desynchronization (i.e. a decrease in
power compared to rest), a feature mask was automatically
calculated using data collected during calibration to remove
any features that showed an increase in SMR power during
movement compared to rest (illustrated on the bottom-
middle of Fig. 1). That is, any neural feature (four frequency
bands × 36 sensors) that did not show desynchronization
during calibration was excluded from the neural decoder
calculation. In addition, neural features that were unrelated
to the calibration task (e.g. noise) were masked if the



Fig. 1 Schematic of the BCI used to translate SMR into proportional control of grasping. Beginning in the upper left, first, the power spectrum of
data recorded from 36 sensorimotor MEG sensors (shown on a top-down view of the MEG helmet) are computed using 300 ms sliding windows.
A mask is applied to these features to remove any components that did not exhibit desynchronization during calibration. Then a linear decoder
applies weights (W) to the neural signal (N) to compute a hand velocity value (VH). The velocity output from the decoder is scaled (g) to ensure
movement speeds are appropriate for the task. The previous hand position (an image from the video sequence) is then updated more closed or
more opened within the ROM based on the scaled velocity command. The picture representing the desired aperture is chosen from 25 possible
images. A progressive change in the images appeared to participants as a grasping movie with a 76 ms refresh rate
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decoder model fit was below a R2 cutoff (either 0.05
or 0.01) for a given feature. After masking, 43 ± 17 %
(mean ± std across all calibrations) of the 144 neural fea-
tures remained for use in the neural decoder. The small
percentage of features retained was not surprising consider-
ing the large region of interest over the sensorimotor area
that was considered.
To proportionally control the hand, linear weights were

applied to the spectral power at each time step to move
the hand-aperture of the previous time step either more
closed or more opened (i.e. the decoder output is driving
the incremental displacement of the aperture). This pro-
vided an intuitive command strategy that drove the virtual
hand more closed during attempted grasp or more opened
during rest. Linear regression (minimum norm solution)
was used to compute decoder coefficients that related
neural features (4 frequency bands on 36 sensors) to the
calibration-trial movement states (i.e. +1 for grasp
trials, −1 for rest trials) (illustrated on the bottom-middle
of Fig. 1). This resulted in a decoder that output a propor-
tional velocity that could move the hand aperture from
fully opened to fully closed in 2 s given the SMR levels
during the calibration. However, the decoder would out-
put commands with higher speeds as participants learned
to better modulate their SMRs. Furthermore, during brain
control the grasp speed was scaled linearly to fit the par-
ticipants’ preference during the first block of the closed-
loop task (velocity gain on the bottom-right of Fig. 1).
Hand aperture was limited to fully-closed or opened; as
is the case with a real hand. The anthropomorphic
visualization of movement was created by iterating
through sequential images of a real hand grasping with
25 frames between closed and opened (i.e. 4 %-range of
motion (ROM) resolution between frames) (illustrated
on the top of Fig. 1).
BCI calibration task
MEG data were collected during attempted grasp and
rest periods in order to determine the weights of the lin-
ear decoder that translated SMR power into the propor-
tional control of grasp. During calibration, participants
were asked to attempt to grasp, or to rest, along with
videos of a hand performing the instructed task. 40 trials
of each were collected. We previously determined this
number of trials was sufficient for grasp decoding [28].
Each trial consisted of a 1.5 - 2 s inter-trial interval (ITI)
of a black screen, followed by 1.5 s of a static hand
image at rest, and then a “Close” or “Rest” cue with cor-
responding video (2 s). Participants were incapable of
making overt hand movements, but were asked to at-
tempt the movements during grasp-cues and rest with
eyes open at all other times. Subjects were instructed to
perform grasps focusing solely on their hand, keeping
their arm at rest. In addition, a cylindrical object was
used as a goal for grasping (seen in Fig. 2). To minimize
eye movements, subjects were instructed to fixate their
eyes in the center of the screen throughout each trial.
Calibration of the decoder required less than 4 min of

data calibration. Decoder weights were computed using
the spectral power in the SMR frequency band (8 –
30 Hz) averaged across each 2 s trial. Subject reaction



Fig. 2 Trial timing. Participants proportionally controlled the hand to an opened or closed target-state during the brain-control phase. A stop motion
video of grasping was progressed opened or closed based on brain activity. The full ROM spanned 25 frames of a stop-motion sequence (only 5
shown here). Trials were considered successful if the hand was held within 10 % of the target aperture for the given hold time (minimum of 500 ms)
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time was accounted for by removing the first 200 ms
after target-cues.

Brain control task
After calibration, the participants used their SMR activ-
ity to control the aperture of the hand in the NF task.
As with calibration, they were instructed to attempt to
grasp their own paralyzed hand to close the NF hand-
display, or to rest their own hand to open the NF hand-
display. In each trial, the brain-controlled hand started
at 75 % of the ROM away from fully-grasped to encour-
age more effort and time on the grasping task. Rest trials
were used as catch trials to ensure the decoder was not
biased towards grasp.
Trial progression was similar to calibration where trials

started after a 1.5 - 2 s ITI, which showed a black screen,
followed by a 1.5 s hand initialization, which showed a
static image of a hand at 75 % open, and a 5 s brain con-
trol phase (Fig. 2). The hand initialization phase was used
to prevent neural activity from movement-preparation
from driving the hand prematurely. Trials were considered
unsuccessful if the target was not obtained after the 5 s of
brain control or if the hand was held in the opposite target
for 3 s. Trials were considered successful if the hand was
held within 10 % of the cued closed or opened state for
the duration of a hold period. The required hold time was
adjusted to increase the difficulty as a way to encourage
stronger, sustained SMR modulation. Participants per-
formed 200 trials of closed-loop hand control during a
single session. Grasp and rest targets were presented in a
pseudorandom block design (20 trials/block) with grasp
trials represented more frequently to focus the training on
grasp (75 % grasp, 25 % rest trials).
Short breaks (<1 min) occurred every 20 trials during

which participants were informed of their performance
score and of any increase or decrease in difficulty (i.e. a
change in required hold time). Hold time was initially set
to 500 ms and was increased by 200 ms if success rates of
at least 80 % for grasp (12/15) and 60 % for rest (3/5) were
achieved in the 20-trial block. If success rate dropped
below 50 %, the hold time was decreased by 200 ms, but
limited to a 500 ms minimum. Two participants took ex-
tended breaks for pressure relief, which involved moving
the MEG chair resulting in a shift in head position. One
subject (S02) took an extended break for rest, but did not
move within the MEG scanner. The BCI system assumed
stationary head position, so the brief calibration process
was re-run after breaks involving subject repositioning.

BCI performance measures
Brain control performance was quantified by calculating
the percentage of successful trials. Success rate for only
the grasp trials was also reported, as grasp was the focus
of the potential intervention. The time required to reach
successful grasp-targets was also calculated (i.e. from the
end of the initialization phase to the beginning of a suc-
cessful hold period). False positive rates were assessed to
verify that grasp success was not due to a decoder bias.
Specifically, Grasp Error Rate was computed as the por-
tion of rest trials that ended with a grasp held for 3 s, indi-
cating that the subject could not prevent grasping. It
should be noted that subjects were not instructed to avoid
the incorrect target.
A conventional chance level based on the size and num-

ber of targets is not an appropriate comparison since the
task required a hold period and could end in a time-out.
Instead, bootstrapping was used to compute chance levels
for each subject based on the decoder outputs that actu-
ally occurred. Trial simulations were run for each subject
using randomly sampled decoder output values (aperture
velocity) that occurred during actual brain control. By
sampling from the actual decoder outputs any decoder
bias is accounted for. For each time point in the trial
simulation, the randomly chosen hand aperture velocity
signal was translated into hand movement in the same
way that occurred during the actual brain control (i.e.
scaled by the speed gain and limited to fully open or fully
closed aperture; see Fig. 2). The aperture velocity at each
time point was pulled from a grasp or rest trial with equal
likelihood. One hundred simulated sessions were gener-
ated (i.e. 100 randomizations * 200 trials per subject) and
evaluated for success or failure in the same way as actual
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sessions. Hold times were the same as that defined for
each actual trial, and simulated trials were considered
failed if the wrong target was held for 3 s. The mean
session-wide chance levels from these simulations are re-
ported as well as a breakdown by grasp-only and rest-only
trials. One-sided t-tests were used to evaluate if actual suc-
cess rates fell within the distribution of the simulated ses-
sions for each subject.

Offline analysis of SMR modulation
SMR modulation during grasp was computed offline to as-
sess if participants were able to alter their brain activity
with the NF. Data from all MEG sensors were prepro-
cessed with standard methods available with Neuromag
systems. Specifically, bad channels were manually removed
before temporal signal-space separation (tSSS) was per-
formed with a 4 s buffer [29]. The head positions for each
data set were used to transform sensor data into the default
coordinate frame to align sensors across subjects [25]. Data
were then resampled to 500 Hz and bandpass filtered be-
tween 4 and 120 Hz. The power spectrum of the prepro-
cessed data were computed in a similar manner as they
were for BCI, but with higher frequency resolution and
across all sensor locations. Specifically, for each trial, the
power spectrum was computed from 1 s windows using a
25th order autoregressive model (Burg method) with 1 Hz
resolution. Grasp power was calculated from a 1 s window
centered at 1.5 s after brain-control initialization to ac-
count for reaction time. Baseline rest power was calculated
from a 1 s window centered at 1 s before the end of the
ITI preceding the trial. SMR modulation was computed as
the percent change between grasp and baseline power
from 8 to 30 Hz.
The 150 BCI-controlled grasp trials were split into thirds

(i.e. first 50 grasps, middle 50, and end 50; deemed “ses-
sion-segments”) to determine changes in SMR modulation
over time. To evaluate the effect NF had on SMR, the max-
imum modulation magnitude was determined within each
gradiometer pair to obtain one modulation value per sen-
sor location in the helmet. It was not necessary that all lo-
cations on the left sensorimotor exhibit modulation since
spatially focused SMR activity would have been sufficient
to drive the neurofeedback. Therefore, the sensor location
with the strongest mean SMR modulation across a session
Table 2 BCI performance

Subject Success
(%)

Chance (% ±
SEM)

Grasp Success
(%)

Grasp Chance (%
± SEM)

R
(%

S01 64 31 ± .02 76 41 ± .03 2

S02 62.5 15 ± .02 66 16 ± .03 5

S03 63.5 12 ± 02 63.3 11 ± .02 6

Mean ±
STD

63.3 ±
0.8

19.3 ± 10.2 68.4 ± 6.7 22.7 ± 16.1 4
was used to evaluate the activity in the left sensorimotor
area sensors used for brain control. Repeated measures
ANOVA was used to assess the main effect of session-
segment, subject, and the interaction of subject and
session-segment on SMR modulation. The effect of
session-segment on SMR within each subject was assessed
with pairwise comparison between the first segment and
the subsequent segments (1–2 and 1–3) using Bonferroni
multiple comparisons correction.

Results
BCI performance
All subjects were able to control the hand-aperture of
the video-based BCI system using SMR activity. Table 2
summarizes the success rate in each session. Grasp suc-
cess rates varied between 63 and 76 % across subjects
while overall success rates varied between 62 and 64 %.
Success rate was significantly better than chance for
each participant (p < 0.001, t-test) with chance levels ran-
ging from 12 to 31 %. Success rate was also significant
for each subject when considering grasp-only and rest-
only trials (p < 0.001, t-test). S01 had a bias toward grasp
that was reflected as a higher chance level for grasp tri-
als than other subjects while resting was made more dif-
ficult by the bias, which was reflected as a very low
chance level for rest trials. To further quantify the effect
of a decoder bias towards grasp, Grasp Error Rate was
computed as the percent of rest trials that ended incor-
rectly as a held grasp (Table 2). Table 2 also shows the
time taken to reach successful grasps indicating that
these trials were performed quickly in 1.96 ± 0.15 s (plus
hold time). The time spent on the 200 NF trials was 30,
29, and 31 min (S01, S02, S03 respectively) excluding
breaks. Participants took a break for rest and/or pressure
relief after 22, 11, and 17 min (S01, S02, and S03 re-
spectively). S01 and S03 repeated the calibration task
following the break period to generate a new decoder to
account for changes in head position. Though BCI per-
formance improved after breaks for all participants
(Fig. 3), the success rate was not significantly higher in
the block following a break compared to the block be-
fore the break (p = 0.22; paired t-test). The slight im-
provement in performance could be due to a number of
factors including reduced fatigue, renewed motivation,
est Success
)

Rest Chance (% ±
SEM)

Grasp Error
Rate (%)

Time to Successful
Grasp (s)

8 1 ± .02 10 2.13 ± 1.16

2 9 ± .04 2 1.84 ± 1.22

4 14 ± .04 4 1.90 ± 1.17

8.0 ± 18.3 8.0 ± 6.6 5.3 ± 4.2 1.96 ± 0.15



Fig. 3 BCI performance across blocks. Mean success rate for each
block of 20 trials including 15 grasp and five rest trials. Horizontal
dashed lines indicate individual subject chance levels computed with
bootstrapping. Vertical dashed lines indicate when breaks happened. A
“c” indicates that the decoder was recalibrated during the break. Up
arrows indicate that the difficultly was increased by increasing the
required hold time from 500 ms to 700 ms. Down arrows indicate the
difficulty was decreased to a 500 ms hold time

Fig. 4 Example signals during brain control of grasp. Average SMR
modulation across 150 brain-controlled grasp trials in one sensorimotor
sensor for subject S03. This sensor is highlighted in red on a top-down
view of the MEG helmet on the right of this figure. At time zero the
participant is cued to close the virtual hand by decreasing their SMR,
i.e. desynchronization shown as blue. Trials began after an ITI, followed
by a hand initialization stage. Modulation is the percent change relative
to the SMR activity during the ITI
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or recalibration (for Subjects S01 and S03). Figure 3
shows the BCI success rate across each block of 20 trials
and indicates when recalibrations and breaks occurred.

Improvement in SMR modulation
All participants were able to modulate their SMRs using
attempted grasps even though they had complete hand
paralysis. As an example, Fig. 4 shows the average spectral
activity from a left-sensorimotor sensor during brain con-
trol of grasp generated by subject S03. During attempted
movement a decrease in SMR activity was observed soon
after the target cue was presented (time 0). This would be
the expected activation pattern for overt or imagined
movement [30, 31].
The trends in SMR modulation across the three session-

segments are shown in Fig. 5 and 6. When comparing
SMR modulation across session-segments with a repeated
measures ANOVA, the main effect of session-segment
and the interaction of subject and session-segment were
significant (p < 0.001). The average SMR across subjects
increased by 9.9 ± 6.9 pp from the first 50 grasp-trials to
the last. Two of the three participants showed a significant
increase in their ability to modulate SMRs by 14.9 pp
(S01) and 15.0 pp (S02) (p < 0.05 pairwise multiple com-
parisons test with Bonferroni correction). Subject S03 dis-
played a consistent SMR modulation with no significant
differences between session-segments. Figure 6 illustrates
the changes in SMR modulation across the whole
head. SMR modulation was pronounced in the left-
sensorimotor area for all subjects. S01 did not demon-
strate a focused desynchronization until the end of the
study. The middle session-segment for S01 showed an
increase in SMR around the edge of the helmet, which
was likely related to neck tension the participant re-
ported. Note that features with an increase in SMR dur-
ing grasp were masked during calibration of the neural
decoder. S02 showed an initial SMR that strengthened
as the session progressed while S03 maintained a con-
sistent SMR pattern.

Discussion
The origins of NF can be traced back many decades to ex-
periments where subjects learned to modulate the activity
of their neural oscillations [32] or even single cells re-
corded from motor cortex [33]. Early clinical applications
were focused on neurologic or behavioral conditions such
as epilepsy [34], anxiety [35], or attention deficit hyper-
activity disorder (ADHD) [36]. The goal of these NF appli-
cations was to teach participants to regulate specific brain
activity patterns with the goal of returning to a normal
baseline. Only recently has NF been applied to motor re-
habilitation. We present a novel NF paradigm that has
the potential to promote neuroplasticity for motor rehabili-
tation by utilizing feedback that is driven by neural activa-
tion patterns normally expected during movement, in



Fig. 5 Improvement in SMR modulation across sessions. S01 and S02 show a significant improvement in the ability to modulate SMR compared
to their first 50 trials, indicated by the * (p < 0.05; corrected for multiple comparisons). Error bars are the standard deviation across trials within
each session-segment
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combination with the potential facilitating involvement of
the mirror neuron system. Typically, the movement of a
cursor or bar is used for continuous feedback in a motor-
focused NF paradigm which may limit participant’s ability
to embody the NF [10, 11, 14, 37]. Conversely, our calibra-
tion and feedback employed anthropomorphic grasping to
engage mirror neuron and action observation networks
[19, 38], which may have led to stronger SMR
desynchronization and embodiment of the NF. We did not
explicitly compare anthropomorphic to non-biological
feedback, however previous work suggests that using
realistic feedback is important for activating the mirror
neuron and action observation networks [39–42]. How-
ever, future studies are needed to quantify the impact that
anthropomorphic feedback has on NF performance and
cortical oscillations, especially in a chronically paralyzed
population.
Furthermore, the presence of a goal-object (i.e. the

grasping bar) likely increased the SMR suppression com-
pared to a non-goal-directed action like simply opening
Fig. 6 Topography of SMR during the NF session. Changes in SMR
modulation across the whole head during the beginning (trials 1–50),
middle (trials 50–100), and end (trials 100–150) of NF training. Darker
blue indicates stronger desynchronization during BCI grasp control.
The location of the sensors used for NF are outlined in dotted lines on
a top-down view of the MEG helmet (same as previous figures)
and closing the hand [43]. During brain control, a de-
crease in SMR-power from attempted grasping of the par-
ticipant’s own impaired hand drove the stop-motion video
towards grasp. This natural and congruent command of
grasp was intended to strengthen the causal relationship
between intention and feedback. In our study, visual feed-
back of the realistic hand movement was presented with a
76 ms latency to further maintain a strong causal link be-
tween intention and feedback. Delays longer than 200 ms
between a person’s movement intention and a device’s
reaction is noticeable and can be distracting, leading to
degraded task performance [44]. Long delays often seen in
BCI-rehabilitation systems may limit their ability to pro-
mote plasticity or may make the systems more difficult to
control [45, 46]. Due to the limited time for rehabilitation
interventions, one of our goals was to minimize the amount
of time required for calibration. Quicker system calibration
means more time and energy can be devoted to the NF
task. Calibration and training time vary widely across other
NF studies, ranging from 30 min [37] to multiple training
sessions [10, 11] in order to achieve proficient brain con-
trol. Our system required less than 4 min of calibration data
and no pre-training of participants. Calibration duration
was determined based on our previous work which showed
that 60 trials (or less than 5 min) of calibration data was
needed to decode grasp-intention in able-bodied partici-
pants when using multiple frequency bands and sensors
from MEG [28]. The addition of our desynchronization fea-
ture mask presented here also helped utilize the calibration
data by constraining the neural signals to the appropriate
SMR modulation as would be expected during movement
[30, 31] and by removing noisy features that were inappro-
priately active during grasp trials. Fast calibration is espe-
cially important for MEG-BCI where changes in head
position can distort a neural decoder that typically assumes
stationary neural activity.
All three participants were able to control grasping and

closing of a virtual hand well above chance level, though
they were unable to move their own hand due to SCI. This
performance was comparable to other SMR-based BCI
studies. Similar success rates were found in a MEG-based
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BCI system for individuals with paralysis due to stroke
(between 65 and 90 %) [11]. However, this success rate re-
quired multiple sessions to achieve and the NF was a two-
choice cursor control task with a 50 % chance level. No
improvement in hand function were found after the 13–
22 sessions in Buch et al. who enrolled only individuals
with complete hand paralysis due to chronic stroke [11].
No changes in hand function were observed after a single
session in our study, however, we expect that long term
training would be required to achieve functional improve-
ments. Studies with able-bodied participants have shown
similar performance quality on a two-choice motor-
imagery BCI task demonstrating 74.4 ± 16.5 % accuracy
with EEG [37] and 71.74 ± 15.77 % accuracy with MEG
[10]. However, a direct comparison is difficult since our
study had a hold period and time-out period that made
the chance level much less than 50 % (between 12 and
31 %). The grasp error rate calculations indicate that the
decoder for subject S01 had a bias towards grasp making
it difficult to complete rest trials in spite of good grasp
performance. However, S01 did achieve control of both
grasp and rest individually that was significantly above
chance and had a significant improvement in SMR modu-
lation, which suggests the decoder bias may not have a
critical impact on NF.
Two of the three participants demonstrated improved

SMR modulation with one session of NF. The changes in
SMR occurred locally under the sensorimotor sensors as
seen in Fig. 6. The SMR for S03 did not improve sig-
nificantly, however S03 had stronger SMR modulation
during the first session-segment than either S01 (p < 0.001,
Bonferroni corrected t-test) or S02 (p < 0.001); which may
have limited the potential for large SMR improvements in
only one session.
Though participants demonstrated improved SMR

modulation, BCI performance did not improve through-
out the session, even when accounting for changes in task
difficulty. Though this seems counterintuitive since SMR
drove the BCI, a decrease in BCI performance is likely due
to decoupling between brain signals and the neural de-
coder as the session progressed. This change over time is
partly due to changes in SMR amplitude and possible
reorganization, but also largely due to changes in subject’s
head position and comfort. As sessions progressed the
participants (who all had had traumatic spinal cord injur-
ies) needed breaks to relax their neck. Fatigue and discom-
fort can lead to slow changes in head position across a
session. This is an important consideration for developing
a rehabilitation intervention where patients will have vary-
ing impairment. Because the neural decoders in the study
assumed a stationary brain within the MEG helmet, the
weights likely became sub-optimal in the presence of pos-
tural changes. We provided breaks for relaxation and re-
calibration, but this may not have been enough to mitigate
all changes in head-position and alleviate fatigue. In the
current study, we recalibrated the system when the par-
ticipant took a break that would lead to a large change in
head position (break timing is indicated in Fig. 3). How-
ever, online correction for head movement could poten-
tially eliminate the need to recalibrate and has been
demonstrated as feasible [47].

Conclusions
We present a BCI system that has the potential to promote
neuroplasticity for motor rehabilitation. We demonstrated
that three of three individuals with complete hand paralysis
due to SCI were able to successfully drive the grasping of a
virtual hand using SMR activity recorded with MEG. We
found that two out of three participants were able to sig-
nificantly strengthen their SMR activity within one session
of NF. This proof of concept study suggests that NF train-
ing has the potential to promote neuroplasticity, which
could be used for motor rehabilitation. A more extensive
study is needed to evaluate if the improvements in SMR
are retained and if long term NF training can provide
therapeutic benefits to people with different amounts of
paralysis. Incorporating design principles that take advan-
tage of biologically-relevant feedback and intuitive com-
mand strategies could improve future NF studies.
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