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Abstract
 Host-derived (LL-37) and synthetic (WLBU-2) cationicBackground:

antimicrobial peptides (CAPs) are known for their membrane-active bactericidal
properties. LL-37 is an important mediator for immunomodulation, while the
mechanism of action of WLBU-2 remains unclear.

 To determine if WLBU-2 induces an early proinflammatoryObjective:
response that facilitates bacterial clearance in cystic fibrosis (CF).

 C57BL6 mice were given intranasal or intraperitoneal 1×10  cfu/mLMethods:
 (PA) and observed for 2h, followed by instillation ofPseudomonas aeruginosa

LL-37 or WLBU-2 (2-4mg/kg) with subsequent tissue collection at 24h for
determination of bacterial colony counts and quantitative RT-PCR
measurement of cytokine transcripts. CF airway epithelial cells (IB3-1,
ΔF508/W1282X) were cultured in appropriate media with supplements.
WLBU-2 (25μM) was added to the media with RT-PCR measurement of TNF-α
and IL-1β transcripts after 20, 30, and 60min. Flow cytometry was used to
determine if WLBU-2 assists in cellular uptake of Alexa 488-labeled LPS.

 In murine lung exposed to intranasal or intraperitoneal WLBU-2, thereResults:
was a reduction in the number of surviving PA colonies compared to controls.
Murine lung exposed to intraperitoneal WLBU-2 showed fewer PA colonies
compared to LL-37. After 24h WLBU-2 exposure, PA-induced IL-1β transcripts
from lungs showed a twofold decrease (p<0.05), while TNF-α levels were
unchanged. LL-37 did not significantly change transcript levels. In IB3-1 cells,
WLBU-2 exposure resulted in increased TNF-α and IL-1β transcripts that
decreased by 60min. WLBU-2 treatment of IB3-1 cells displayed increased
LPS uptake, suggesting a potential role for CAPs in inducing protective
proinflammatory responses. Taken together, the cytokine response, LPS
uptake, and established antimicrobial activity of WLBU-2 demonstrate its ability
to modulate proinflammatory signaling as a protective mechanism to clear
infection.

 The immunomodulatory properties of WLBU-2 reveal a potentialConclusions:
mechanism of its broad-spectrum antibacterial activity and warrant further
preclinical evaluation to study bacterial clearance and rescue of chronic
inflammation.
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Introduction
Cationic antimicrobial peptides (CAPs) are one effector of the innate 
immune response, the “first line of defense” against a pathogenic 
insult. They are ancient, structurally diverse elements of the 
immune responses of all living species. These molecules typically 
have broad-spectrum antimicrobial activity with conserved recog-
nition patterns to molecules such as lipopolysaccharide (LPS) and 
lipoteichoic acid. They are rapidly induced on the order of minutes 
to hours. Their amphipathic structures facilitate their antimicrobial 
killing activity at the level of the bacterial membrane. It has become 
increasingly apparent that CAPs also play key roles in inflammatory 
responses and in orchestrating the mechanisms of innate immunity1.

LL-37, or human cathelicidin, is a CAP that has been localized to airway 
epithelium. In its mature form, it is an α-helical peptide made up of 37 
residues that has been shown to possess broad spectrum antibacterial 
activity as well as other host defense functions such as chemotaxis, 
LPS neutralization, angiogenesis, and wound healing. First cloned 
from a bone marrow library, the expression of this peptide has been 
detected in many epithelial tissues, including the testes, epidermis, 
and the gastrointestinal and respiratory tracts2. The antibacterial and 
immunomodulatory roles of the cathelicidins are currently under 
intense investigation and appropriate models of infection are required 
for understanding their contribution to host defense.

LL-37 is also an important modulator of the human immune  
response. This host-derived CAP is an antiseptic agent with the 
ability to inhibit macrophage stimulation by bacterial components 
such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan3. 
Using gene expression profiling to identify potential LL-37-modulat-
ed macrophage functions, LL-37 directly upregulated 29 genes and 
downregulated another 20 genes. Among the genes predicted to 
be upregulated by LL-37 were those encoding chemokines and 
chemokine receptors. Consistent with this, LL-37 upregulated the 
expression of chemokines in macrophages and the mouse lung 
(monocyte chemoattractant protein 1), human A549 epithelial cells 
(IL-8), and whole human blood (monocyte chemoattractant pro-
tein-1 and IL-8), without stimulating the proinflammatory cytokine 
TNF-α. LL-37 also upregulated the chemokine receptors CXCR-4, 
CCR2, and IL-8RB. It appears that LL-37 contributes to the 
immune response by limiting the damage caused by bacterial prod-
ucts and recruiting immune cells to the site of infection4. 

WLBU-2, by comparison, is a completely synthetic α-helical,  
engineered CAP (eCAP) made up of a repeating sequence of Arg, 
Lys, and Trp residues5–7. Previous work has demonstrated this 
compound’s broad spectrum antibacterial activity against bacterial 
pathogens in both in vivo and in vitro systems5,6,8. Among the many 
antimicrobial peptides currently described in the literature, eCAPs 
are most chemically and structurally homologous to the magainins9 
and LL-37. They are peptides of approximately 30 residues that, 
when modeled as an α-helix, demonstrate amphipathic character 
with defined cationic and hydrophobic faces. The selectivity of the 
eCAPs for bacterial membranes, like other host-derived CAPs, 
presumably results from their affinity for negatively charged lipids 
found on the bacterial surface. The high-energy potential of the 
bacterial membrane facilitates self-promoted CAP uptake, thus 
compromising the integrity of the bacterial cell by disrupting the 

lipid bilayer10 and suggests that these α-helical peptides11 may be 
suitable agents for treating bacterial airway infections.

Despite extensive characterization of the antimicrobial activity of the 
eCAPs, little is known about their immunomodulatory properties5,6. 
The purpose of this study was to determine if WLBU-2 modulates an 
early proinflammatory response to facilitate Pseudomonas aeruginosa 
(PA) clearance using both in vivo and in vitro models. The in vivo 
model partially replicates some of the phenotypic lung disease of CF 
in mice that resemble wild-type animals in size and survival. Devel-
opment of a murine model of lung inflammation is highly desirable 
to accelerate pre-clinical testing of novel anti-inflammatory therapeu-
tics. These studies demonstrate the immunomodulatory properties of 
an engineered, synthetic compound not only for the purpose of its 
potential development as a novel antibacterial agent, but also for its 
contribution to study the role of α-helical peptides in the processes 
of host defense.

Methods
Cell culture and treatments 
For the in vitro studies, CF airway epithelial cells (IB3-1, ΔF508/
W1282X, American Type Culture Collection (ATCC), Manassas, 
VA) were cultured and maintained in LHC-8 medium containing 
10% FBS, 100 units/mL penicillin, and 100 μg/mL streptomycin. 
WLBU-2 (25μM) was added to the media with qRT-PCR meas-
urement of TNF-α and IL-1β transcripts after 20, 30, and 60min. 
IB3-1 cells were used for flow cytometry12 and measurement of 
proinflammatory cytokine activity. Transfected cells containing a 
wild-type or NFκB mutant-IL-8 promoter gene13 were treated with 
WLBU-2 followed by measurement of IL-8 reporter activity.

IL-8 promoter activity studies 
These studies used CF IB3-1 (ΔF508/W1282X) cells, transiently 
transfected with α 5’ firefly luciferase gene (Clontech Labora-
tories, Inc, Mountain View, CA) flanking a wild type- or NFκB 
mutant-IL-8 promoter, using Lipofectamine 2000 (Invitrogen, 
Carlsbad, CA) for 24h as previously described13,14. The CAP LL-37 
(25μM) or the eCAP WLBU-2 (25μM) was added to the media for 
30min-4h. The Dual-Luciferase® Reporter (DLRTM) Assay Sys-
tem (Clontech Laboratories, Inc, Mountain View, CA) was used 
to measure IL-8 reporter activity in IB3-1 cells. Renilla luciferase 
(Clontech Laboratories, Inc, Mountain View, CA) was used as 
an internal control to normalize changes in IL-8 promoter-driven  
firefly luciferase activity across the samples. 

Flow cytometry
IB3-1 cells were incubated overnight at 37°C with LPS-Alexa Fluor 
488 (Invitrogen, Carlsbad, CA) and Lipofectamine 2000. PBS or 
WLBU-2 (25mM) was added to the flask for 24h. After the addi-
tion of Cell Dissociation Buffer (Invitrogen, Carlsbad, CA), cells 
were collected, centrifuged, and rinsed with PBS. Finally, cells 
were treated with FIX & PERM (Invitrogen, Carlsbad, CA) per 
the manufacturer’s directions. Flow cytometry was done on a BD 
FACS can fow cytometer and data were analyzed using CellQuest.

Murine studies
This protocol was approved by the institutional Animal Care and 
Use Committee (ACUC). Animals used in this study were fol-
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lowed for 1–5 days (4 animals per cage) in approved satellite hous-
ing to allow close observation from the beginning to end of each 
experiment. Feeding practices, light cycle, and temperature and 
humidity, and cage and room cleaning procedures were identical to 
those of this institution’s central animal facility in accordance with 
ACUC recommendations. Animals were studied in four groups of 
four animals per experiment. The groups consisted of a) control  
C57/BL6 wild-type mice; b) C57/BL6 wild-type mice receiv-
ing bacteria (positive control); c) the eCAP WLBU-2 or the CAP  
LL-37 (test agents); or d) the combination of bacteria and WLBU-
2 or LL-37. Animals in the experimental groups received the test 
agents, while control animals received sterile phosphate-buffered 
saline via the trachea using the posterior pharyngeal approach. 
These studies were carried out in the presence or absence of a  
proinflammatory stimulus (bacterial exposure).

Mice were anesthetized using a vaporizer set to deliver a mixture 
of 3% isoflurane and oxygen in preparation for the instillation of 
control or test agents into the respiratory tree. Complete anesthe-
sia was determined by visual confirmation of a slowed respiration 
rate and the animal’s response to other clinical tests such as leg 
withdrawal and tail pinch. Animals were weighed prior to the pro-
cedure. The method is based on a published study15. Once anes-
thetized, the tongue was gently extruded using padded forceps and 
the control and/or test agents (volume 50μL) were pipetted into the 
posterior section of the oral cavity. The positive control was 1) 
P. aeruginosa (ATCC type strain, 1×106 cfu/mL); the negative con-
trol was PBS. The test agents were the host-derived CAP LL-37 or 
the engineered CAP WLBU-2 (dose 1mg/kg). Following aspiration 
of the test agent, 100% O

2
 was given until the animal awakened. 

Animals were then placed into a 37°C chamber until completely 
recovered.

Intraperitoneal PA infection in age (8 weeks) and sex-matched 
C57BL/6 mice was established16 followed by WLBU-2 (4mg/kg), 
LL-37 (4mg/kg), or PBS treatment5, followed by collection at 24h 
of bronchoalveolar lavage (BAL) samples and lung tissue for bacte-
rial culture on trypticase soy agar plates, quantitative RT-PCR, ELISA, 
and microscopy12. Mice were anesthetized with 3% isoflurane before 
and during treatment. After 24h, mice were sacrificed for sample 
collection.

At the endpoint of the experiments mice were anesthetized using a 
vaporizer set to deliver a mixture of 3% isoflurane and oxygen and 
weighed. Once completely anesthetized, animals were euthanized 
by cervical dislocation followed by collection of BAL samples 
from within an exposed thorax using sterile phosphate-buffered 
saline (PBS) through a cannula inserted in the trachea. BAL samples 
were used for protein analysis as well as leukocyte differentiation. 
Lungs were excised and then stored in buffers or preservatives for 
protein analysis or histologic examination. 

Mouse lungs were homogenized in TRIzol (Invitrogen, Carlsbad, 
CA) and processed for isolation of total RNA according to the man-
ufacturer’s instructions. The Super Script III First-Strand Synthesis 
System (Invitrogen, Carlsbad, CA) was used to catalyze the reverse 
transcription reaction from 1μg of total RNA. Quantitative RT-PCR 

(qRT-PCR) was performed using TaqMan Gene Expression Master 
Mix and TaqMan Gene Expression Assays (Applied Biosystems, 
Foster City, CA) for GAPDH (control reagent), IL-1β, and TNF-α 
(4352932, Mm01336189_m1, Mm99999068_m1, respectively). 
The qRT-PCR reactions were amplified using an ABI PRISM 
7700 Sequence Detection System. Relative gene expression was  
determined using ∆∆Ct calculations.

ELISA and immunohistology
ELISA kits for IL-1β and IL-6 were obtained from R&D Systems 
(Minneapolis, MN). The manufacturer’s protocol was followed for 
the detection of each cytokine in 10mL of BAL fluid as well as in 
standardized samples provided in the kit. SoftMax Pro (Molecular 
Devices, Sunnyvale, CA) was used to read the 96-well plates in a 
Molecular Devices VersaMax microplate reader. A plot of the stand-
ardized samples was used to calculate cytokine expression in the 
BAL samples. For histologic examination, lungs were fixed over-
night in 4% paraformaldehyde at 4°C and subsequently embedded 
in paraffin. Tissue sections (5μm thickness) were deparaffinized and 
rehydrated with xylenes and a series of decreasing ethanol concen-
trations, respectively. Hematoxylin and eosin were used to stain the 
sections prior to microscopic examination. 

Results
CAPs modulate proinflammatory cytokine activity in vitro in 
the absence of bacteria
IB3-1 cells were used to examine proinflammatory cytokine effects 
after WLBU-2 exposure. IL-8 promoter activity was significantly 
increased compared to control in both WLBU-2-exposed IB3-1 
cells after 4h (mean±SD 1.14±0.0004 vs. 0.67±0.0002, p<0.005, 
Figure 1) and LL-37-exposed cells (mean±SD 1.04±0.0006 vs. 
0.67±0.0002, Figure 1). WLBU-2-exposed cells showed signifi-
cantly less IL-8 promoter activity compared to LL-37-exposed 
cells (p<0.005). IB3-1 cells with an NFκB mutant IL-8 promoter 
exposed to either peptide showed minimal reporter activity at 4h 
(Figure 1), suggesting that both WLBU-2 and LL-37 influence IL-8 
secretion through NFκB. Exposure to either WLBU-2 (25μM) or 
LL-37 (25μM) for 30min (Figure 2) resulted in increased transcript 
levels of IL-1β (mean±SD fold-change WLBU-2 1.59±0.12; LL-37 
1.47±0.12, p<0.005) and TNF-α (mean±SD fold-change WLBU-2 
5.74±1.83; LL-37 4.11±1.07, p<0.005) compared to control and 
decreased by 60min toward baseline (see raw data file).

Using equimolar (25μM) peptide concentrations in LPS-stimulated 
cells, WLBU-2 showed less LPS-induced IL-8 reporter activity com-
pared to LL-37 after 4h (mean±SD 1.82±0.0034 vs. 2.93±0.0009, 
p<0.005, Figure 3). By flow cytometry, WLBU-2-exposed cells 
showed 91% uptake of fluorescently labeled LPS after 24h compared 
to 75% of control cells. These results suggest that WLBU-2 induces 
a protective inflammatory response through interaction with LPS  
(T. Mietzner, unpublished observation) and exhibits an initial  
protective effect against epithelial inflammatory challenges.

Proinflammatory cytokine measurements in IB3-1 cells 
following cationic antimicrobial peptide exposure

http://dx.doi.org/10.6084/m9.figshare.155305
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Figure 1. WLBU-2 increases IL-8 promoter activity in CF  
IB3-1 cells. CF IB3-1 (ΔF508/W1282X) cells transiently transfected 
with a 5’ firefly luciferase gene flanking a 200bp wild type- (solid 
lines) or NFκB mutant-IL-8 promoter (dashed lines) were treated 
with 25µM WLBU-2 (solid circles) or 25µM LL-37 (solid squares) 
followed by measurement of IL-8 promoter activity at time points 
ranging from 30min-4h by Dual-Luciferase Reporter assay. There 
was a significant increase in IL-8 promoter activity in cells exposed 
to either peptide compared to control (asterisks, p<0.005). In cells 
lacking the NFκB site (dashed lines), there was little IL-8 promoter 
activity, suggesting that both WLBU-2 (open circles) and LL-37 
(open squares) may influence IL-8 secretion through the NFκB 
pathway.

Figure 2. CAPs modulate proinflammatory cytokine activity in vitro 
in the absence of bacteria. CF IB3-1 cells were cultured in LHC-8 
media with supplements, followed by treatment with PBS (black 
bars), LL-37 (25µM, light grey bars) or WLBU-2 (25µM, dark grey 
bars) and measurement of the levels of the proinflammatory cytokines 
IL-1β and TNF-α by quantitative RT-PCR at time points varying from 
0–60min. Data represent fold-change in relative transcript levels of 
proinflammatory cytokines obtained 30min after peptide exposure; 
both IL-1β and TNF-α showed significant increases in relative 
transcript levels that decreased by 60min (see raw data file). CAPs, 
as effector molecules of the innate immune response, may exert an 
initial protective effect at the level of the epithelial surface against a 
potential pathogenic or inflammatory challenge.

Figure 3. eCAPs show decreased in vitro IL-8 promoter activity 
in LPS-stimulated cells. CF IB3-1 (ΔF508/W1282X) cells were 
transiently transfected with a 5’ firefly luciferase gene flanking a 
200bp wild type-IL-8 promoter. After application of Pseudomonas 
aeruginosa LPS, WLBU-2 (25µM, circles) or LL-37 (25µM, squares) 
was added to the plate followed by measurement of IL-8 promoter 
activity at time points ranging from 30min-4h by Dual-Luciferase 
Reporter assay. Promoter activity is plotted for both peptides with an 
LPS-stimulated control. Both peptides showed a significant decrease 
in LPS-induced IL-8 promoter activity (asterisks, p<0.005); the eCAP 
WLBU-2 showed a sustained decrease over 4h while LL-37 showed 
an increasing trend, suggesting that eCAPs may be beneficial as 
immunomodulators as well as antibacterial agents.

IL-8 Reporter Assay in LPS-stimulated and unstimulated cystic 
fibrosis airway cells treated with WLBU-2 or LL-37

http://dx.doi.org/10.6084/m9.figshare.155304

Discussion
Previous CAP studies have demonstrated a dose-dependent decrease 
in LPS-activated neutrophilic proinflammatory cytokine release 
by LL-3717. Neutrophils stimulated by heat-inactivated bacteria 
showed a decrease in TNF-α after LL-37 exposure, whereas those 
from cathelicidin-deficient mice showed less antimicrobial activ-
ity and increased proinflammatory cytokine release, suggesting that 
endogenous cathelicidin modulates the neutrophilic innate immune 
response. Since Toll-like receptor signaling effects in macrophages 
differ depending on exogenous or endogenous peptide origin and 
cellular activation state, exogenous cathelicidin application resulted in 
blunted activation of p38 and ERK MAPKs and decreased TNF-α 
release in macrophages exposed to LPS and reversed diminished 
MAPK activation associated with LPS tolerance. Endogenous 
cathelicidin release from macrophages in cathelicidin-deficient 
animals neither inhibited LPS MAPK and cytokine activation nor 
rendered animals more susceptible to lethal LPS challenges18. Other 
studies demonstrated that LL-37 and LPS interactions alter endo-
toxin aggregation, which may explain the observed inhibition of 
proinflammatory activity19–21.

eCAPs represent a novel class of effective antimicrobial peptides6,22–25 
that demonstrate broad-spectrum activity against highly resistant 
bacterial strains22. The antibacterial efficacy of WLBU-2 using murine 
models of intraperitoneal infection and bacteremia has been described5,6. 
Intravenous WLBU-2 effectively treated systemic PA infection and 
was protective when administered 1h prior to establishing bacteremia. 
Animals treated with subtherapeutic doses of WLBU-2 showed lower 

Modulation of P. aeruginosa-induced proinflammatory 
cytokine responses by WLBU-2
WLBU-2 treatment of animals (n=5/group) with intraperitoneal 
PA infection showed more IL-1β suppression compared to LL-37 
(mean±SD fold-change 37.6±9.7 vs. 105.9±30.9, p<0.005, Figure 4). 
There was no effect on TNF-α (data not shown). Consistent with 
prior efficacy studies comparing the bactericidal activities of 
WLBU-2 and LL-375,6, bacterial cultures of lung homogenates 
from WLBU-2-treated animals showed no growth compared to 
those given LL-37 after 24h (0 cfu/mL vs. 5800 cfu/mL).
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killing activity and proinflammatory cytokine suppression, further 
work examining CAPs in innate immune responses will assist in 
defining the roles of CAPs in host defense and of eCAPs in the 
development of novel antibacterial and immunomodulatory therapies.
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Figure 4. Intraperitoneal WLBU-2 suppresses IL-1β in lungs systemically exposed to P. aeruginosa (PA). Wild-type C57BL/6 animals 
(n=5/group) received intraperitoneal injections of PBS or PA (1×106 cfu/mL), followed by intraperitoneal injections after 2h of PBS (black 
bars), LL-37 (4mg/kg, light grey bars), or WLBU-2 (4mg/kg, dark grey bars), with subsequent measurement by quantitative RT-PCR of  
IL-1β transcripts (y axis, fold change in relative transcript level) from lung tissue harvested 24h post exposure. Data represent measurements 
performed in triplicate. In groups not receiving bacteria, LL-37 and WLBU-2-exposed animals showed an increase in IL-1β transcripts 
compared to PBS controls. In groups receiving PA, WLBU-2-exposed animals showed significant suppression of IL-1β (p<0.005) compared 
to LL-37. These data suggest that the eCAP WLBU-2 may modulate proinflammatory cytokine release in the setting of acute infection.

IL-1β and TNF-α levels after 3–5h compared to animals exposed to 
heat killed bacteria (T. Mietzner, unpublished observation). Despite 
demonstration of in vivo efficacy, further studies are needed to define 
the immunomodulatory properties of WLBU-2 in the setting of res-
piratory infection.

This paper advances previous work on WLBU-2 by defining its anti-
bacterial and immunomodulatory activities in vivo and in vitro. The 
in vitro studies demonstrate constitutive changes in proinflamma-
tory signaling in the absence of bacteria. The increased LPS uptake 
in CF epithelial cells indicates the possibility of an LPS interaction 
as an immunomodulatory function but may have been limited by 
cellular toxicity resulting from prolonged peptide exposure8. 
Because peptide inactivation through interaction with LPS may affect 
cellular uptake26, the optimized hydrophobicity of WLBU-2 could 
contribute to more effective LPS neutralization27.

The cytokine response, LPS uptake, and established antimicrobial 
activity of WLBU-2 demonstrate modulation of proinflammatory 
signaling as a protective mechanism to clear infection. Because 
in vivo studies of WLBU-2 have demonstrated effective bacterial 
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This manuscript makes a correlation between the antibacterial and immunomodulatory effects of LL-37
and the synthetic antimicrobial peptide WLBU-2. The authors find that WLBU-2 stimulates cytokine (IL-8)
production, which is likely to impact bacterial clearance. This observation implies that the WLBU-2 is
interacting comparably with receptors that respond to the presence of LL-37. Overall, the manuscript is
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The study presents novel and convincing data for immunomodulatory activity of synthetic cationic peptide
WLBU-2. Specifically, the authors demonstrate that WLBU-2 induces IL-8 promoter activity and
stimulates TNFa and IL1b gene expression in the IB3-1 cystic fibrosis (CF) airway epithelial cells. Several
questions remain to be addressed. In particular, given that TNFa and IL1b production is regulated at
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in the  studies, it is important to address whether the induction of inflammatory cytokines could bein vitro
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