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Rhythmic behaviors such as breathing, walking, and scratching are vital to many species.

Such behaviors can emerge from groups of neurons, called central pattern generators (CPGs),

in the absence of rhythmic inputs. In vertebrates, the identification of the cells that consti-

tute the CPG for particular rhythmic behaviors is difficult, and often, its existence has only

been inferred. In the second and third chapters of this thesis, we use two reduced mathemat-

ical models to investigate the capability of a proposed network to generate multiple scratch

rhythms observed in turtles. Under experimental conditions, intact turtles generate sev-

eral rhythmic scratch motor patterns corresponding to non-rhythmic stimulation of different

body regions. These patterns feature alternating phases of motoneuron activation that occur

repeatedly, with different patterns distinguished by the relative timing and duration of activ-

ity of hip extensor, hip flexor, and knee extensor motoneurons. We show through simulation

that the proposed network can achieve the desired multi-functionality, even though it relies

on hip unit generators to recruit appropriately timed knee extensor motoneuron activity.

We develop a phase space representation which we use to derive sufficient conditions for the

network to realize each rhythm and which illustrates the role of a saddle-node bifurcation in

achieving the knee extensor delay. This framework is harnessed to consider bistability and

to make predictions about the responses of the scratch rhythms to input changes for future

experimental testing. We also consider a stochastic spiking model to reproduce firing rate

changes observed in experiment, explore the relative contributions of different parameters

in the model to the observed changes, support our collaborators’ hypothesis regarding these
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changes, and provide our collaborators with predictions for future experiments. In the fourth

chapter of this thesis, we present a theoretical study examining whether three mechanisms

suggested by deletion experiments can operate in the same CPG for an extensor-flexor pair

in the mammalian central nervous system during locomotion. We arrive at unique solution

properties produced by each of the three mechanisms for use in future experiments. Our

findings propose explanations for the coexistence of the three experimentally suggested yet

seemingly contradictory mechanisms for rhythmogenesis.
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1.0 INTRODUCTION

Research showing that the mammalian spinal cord can generate rhythmic stepping patterns

without rhythmic input dates back to the work of T. G. Brown in the early twentieth century

[10, 11]. This work contains the initial proposal of the half-center oscillator model of the

spinal locomotor network: a motor pattern is generated by rhythmic alternation of flexor and

extensor muscle activity in the absence of sensory afferents or rhythmic inputs. This approach

was supported in experiments (largely recording from muscle nerves) throughout the next

100+ years: crayfish, newts, leeches, cockroaches, turtles, and cats have all been found to

produce rhythmic motor patterns in the absence of sensory input [50, 46]. These experiments

across a wide variety of species support the hypothesis that alternating flexor and extensor

activity can be generated solely by the central nervous system without rhythmic inputs.

These networks of neurons which produce rhythmic output in the absence of rhythmic input

are referred to as central pattern generators (CPGs). CPGs are responsible for a variety of

rhythmic behaviors such as walking, digesting, breathing, swimming, and scratching [1, 28,

27, 29].

Brown’s half-center model has been implemented in many ways. In A. Lundberg’s Half-

Center hypothesis, two excitatory interneuron populations excite flexor and extensor mo-

toneuron populations, and inhibit each other through excitation of inhibitory interneurons

[40]. All flexor neurons at hip, knee, and ankle belong to the same flexor half-center, and

all extensor neurons at those degrees of freedom belong to the same extensor half-center,

thus fine details of many behaviors are lost. The Half-Center hypothesis predicts that there

cannot be rhythmic activity of an agonist without alternating rhythmic activity of its antag-

onist; it also fails to explain motor patterns with mixed synergies such as the rostral scratch

in turtle and the paw shake in cat [61].
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A slightly different, yet still traditional network for a motor behavior hypothesizes that

each major muscle group (knee, hip, etc.) is controlled by its own populations of flexor and

extensor motoneurons. A network involving, for example, the hip and knee, would consist of

four motoneuron populations corresponding to hip extensor, hip flexor, knee extensor, and

knee flexor. Each of those populations would be activated by its own excitatory interneu-

ron population, and those interneuron populations would interact with each other through

inhibitory sub-populations. The nature of these interactions is currently unknown: due to

the complexity of the vertebrate spinal cord, identifying all interneuron populations relevant

to a given motor pattern (much less their interactions) is a difficult task for motor pattern

physiologists [41]. An example of such an approach is the Unit-Burst-Generator (UBG)

(sometimes referred to as Unit Pattern Generator or UPG) hypothesis for control of cat

hindlimb stepping [28, 27]: each UBG is a module of neurons that control musculature for

each possible direction of limb motion possible in an associated antagonist muscle pair. In

the above example, there would be a hip extensor module consisting of motoneurons, ex-

citatory interneurons, and inhibitory interneurons; there would be similar modules for hip

flexor, knee extensor, and knee flexor. These modules would then interact with each other

in generating a rhythm. This modular approach has been used in studying other systems

such as stick insect, turtles, and lamprey [13, 51, 26].

In contrast to the alternating relationship between excitation and inhibition described

above, concurrent excitation and inhibition is also an important feature of neuronal net-

works seen in experiments in lamprey, embryonic frogs, adult turtle, and neonatal rats

[37, 19, 51, 3, 48], in addition to the cat. During some rhythms (e.g. during rostral scratching

in turtle [51, 3]), each motoneuron receives concurrent excitation and inhibition, rather than

alternating as above. One interpretation of this contrast is that the alternating/reciprocal

and concurrent views of excitatory and inhibitory inputs to motoneurons represent features

that do not coexist in the same network. There is, however, ample experimental evidence

demonstrating both alternating and concurrent excitation and inhibition: some inhibition

alternates with excitation, and other inhibition is concurrent with excitation during different

phases of a motoneuron’s activity. Additional experimental and theoretical work featuring

both alternating and concurrent excitation and inhibition present in a single network are de-
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scribed in studies of the CPGs for sea slug feeding, lamprey, zebrafish and tadpole swimming,

turtle scratching, and rodent locomotion [55, 37, 12, 25, 19, 51, 48, 47].

Additionally, the question of network multi-functionality must be considered: is a net-

work capable of generating more than one motor pattern from the same muscles and mo-

toneurons, or is there a unique CPG for each motor pattern an animal can generate? The

latter seems inefficient and is not entirely supported by experimental evidence. Recordings

in both invertebrate and vertebrate systems find that some interneurons are active in mul-

tiple rhythms generated by the same sets of muscles and motoneurons. Examples include

tadpole swimming and struggling, mollusk withdrawal and escape swimming, cat scratching

and walking, and in multiple forms of scratching in the turtle [32, 9, 45]. This evidence

suggests that a single network of neurons can produce distinct motor patterns involving the

same muscles under varying inputs. For invertebrate networks where complete connectivity

diagrams have been produced (e.g. crustacean stomatogastric system), the nature of multi-

functional networks can be fully understood [70]. However, the vertebrate nervous system

is sufficiently large that the structure of the spinal network cannot easily be deduced from

individual neuron recordings [41, 31].

Past theoretical research has focused on several different aspects that arise in multi-

functionality, including the general organizing principles governing CPGs [39, 29], and the

notion that an organism may exhibit different motor patterns by selecting different CPGs

[34], which in turn may be collections of burst-capable unit CPGs that each control a set of

synergistic muscles [27]. Synchronization ([58, 24]) and near-synchronization [8] in networks

of planar neuron models with strong synaptic coupling have been well studied. However,

distinct delays in onset of activity of one motoneuron population relative to another (such as

are present in rostral scratch in turtles [50, 5, 51]) do not appear to be as well-examined. More

quantitative approaches in deriving optimal CPG network structures [15, 2] and determining

parameter values necessary to coordinate multiple CPGs to generate multiple rhythms [34]

have been undertaken in systems with features amenable to use of an objective cost function.

Previous study of transitions between neurons during antiphase rhythm generation clas-

sified them by the “escape” and “release” mechanisms [20, 56, 69]; previous modeling efforts

in the turtle found, among other results, that escape from reciprocal inhibition transitions
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were key in correctly generating the caudal scratch and forward swim movements [31]. The

escape mechanism occurs when the silent cell is able to overcome the inhibition it receives

and enter the active phase. In the case of differential equations resulting in cubic voltage

nullclines, this happens when the silent neuron has access to or gets above (in the case of

persistent sodium currents) the left knee of its cubic nullcline. Whether this access is in-

trinsic to the neuron or arises as a result of inhibition to the silent cell decaying depends on

the parameters used in a given model. The release mechanism occurs when the active cell

transitions from the active to the silent phase and releases the inhibited cell. In the case

of differential equations resulting in cubic voltage nullclines, this happens when the active

neuron has access to or gets below (in the case of persistent sodium currents) the right knee

of its cubic nullcline. Again, this access may be either intrinsic to the active neuron or may

be the result of synaptic interactions. Examples of these transitions are given in a variety

of different nullcline configurations throughout this thesis and are shaped by the model pa-

rameters implemented. Individually, when transitions occur by escape, increased excitatory

drive leads to an increase in frequency of the resulting oscillation; when transitions occur by

release, increased excitatory drive leads to a decrease in frequency of the resulting oscilla-

tion. When a combination of escape and release is involved, the effect of excitatory drive on

oscillation frequency is more difficult to predict.

We examine the capabilities of reduced, mathematical models of vertebrate motor cir-

cuits that incorporate may of these features to display multi-functionality. In Chapter 2,

we will examine the capability of a reduced, hip-dominated neuronal network to generate

two distinct scratching rhythms in the adult red-eared turtle. Our experimental collabo-

rators proposed a network in which hip-related interneurons also project to knee extensor

motoneurons to explain their experimental findings of individual interneurons activating in

both pocket and rostral scratching behaviors [5]. In previous work [57], we presented a model

of this network, demonstrated that it was capable of producing multi-functional outputs in

response to differing inputs, and we derived sufficient conditions for rhythm selection. We

developed a slow phase plane framework that we used to make additional predictions for

our experimental collaborators, and that can be used to analyze similar problems. We also

indicate some limitations of our relaxation oscillator modeling approach and directions for
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future research. These published results are included here. In Chapter 3, we will address

some of the limitations of the model in Chapter 2. We will introduce a stochastic spiking

model that imposes fewer requirements on interneuron populations in the network architec-

ture introduced in [5]. We will use this model to reproduce firing rate changes observed in

experiment, explore the relative contributions of different parameters in the model to the ob-

served changes, support our collaborators’ hypothesis regarding these changes, and provide

our collaborators with predictions for future experiments. We will finish with a discussion

of this approach’s shortcomings, and the mathematical methods we use in our parameter

explorations.

One of the interesting features seen in vertebrate motor patterns is deletions: one exten-

sor or flexor population ceases for a period during normal rhythm generation before returning

to activity. During a variety of deletions during rostral scratch in turtle and during step-

ping in cats [16, 61, 11, 54, 42], when either the extensor or flexor motoneuron ceases for

a period, the other becomes tonically active. This suggests that tonic activity may be the

intrinsic behavior of an isolated motoneuron, and that it is the inhibitory interaction be-

tween the extensor and flexor related interneurons that generate rhythmic activity. In other

words, these experimental findings support the traditional half-center oscillator approach

developed by Brown [11] and provide experimental support that rhythmic spinal CPGs have

modular organization. Other experimental findings seem to indicate that some CPGs or

CPG modules are actually intrinsically rhythmogenic. Studies in mouse spinal cord and in

cat suggest a flexor-dominated CPG organization in which the flexor module has intrinsic

rhythmic capabilities and the extensor module is intrinsically tonic [71, 21]. Finally, some

recent optogenetic experiments in mice in which excitatory and inhibitory interneurons are

genetically targeted for controlled activation have suggested that both the extensor and flexor

modules possess intrinsic rhythmic properties. This local rhythmic activity is hypothesized

to be recruited during motor behaviors to form a network of rhythm generators [30].

To study this phenomenon, we extend our focus beyond turtle results to examine more

general behavior of extensor-flexor pairs. In Chapter 4, we will present a theoretical study

examining whether all three of the mechanisms suggested by deletion experiments can op-

erate in the same CPG, and arrive at unique solution properties produced by each of the
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three mechanisms for use in future experiments. We will introduce a reduced mathematical

model in which both extensor and flexor neurons are represented by single non-spiking neu-

rons coupled by mutual inhibition for qualitative analysis of system dynamics. This reduced

model produces stable rhythmic patterns in both symmetric and asymmetric network struc-

tures, and we examine frequency modulation as external drive to one or both half-centers in

this model varies. Our findings suggest different regimes in locomotor CPG operation and

proposes explanation for the coexistence of the three experimentally suggested yet seem-

ingly contradictory mechanisms for rhythmogenesis. We will finish with a discussion of this

approach’s shortcomings and directions for future study.
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2.0 CONDITIONS FOR MULTI-FUNCTIONALITY IN A RHYTHM

GENERATING NETWORK INSPIRED BY TURTLE SCRATCHING

In this chapter, we employ mathematical modeling to explore the multi-functionality of a

single neuronal network underlying two distinct scratching rhythms in turtles. Under exper-

imental conditions, intact red-eared turtles are observed to generate a variety of rhythmic

motor patterns corresponding to stimulation of different body regions (including caudal

scratch, rostral scratch, pocket scratch, and forward swim; see Figure 1) [4]. All of these

patterns feature alternating phases of motoneuron activation that occur repeatedly, while

different patterns are distinguished by the relative timing and duration of activity of hip ex-

tensor motoneurons, hip flexor motoneurons and knee extensor motoneurons. Notably, these

stable, rhythmic behaviors arise in the absence of rhythmic stimulation, suggesting that a

central pattern generator (CPG) may be responsible. Spinalized turtles, in which motor

pathways from higher brain areas have been cut, display corresponding fictive behaviors in

response to the same forms of stimulation, which suggests that necessary components for

rhythm generation are present in the brain stem and spinal cord [50, 51, 5, 4]. However,

even with restriction to these areas, the complexity of the neuronal networks in turtle have

made it impractical to locate the relevant CPG neurons experimentally.

As an alternative, researchers have, on theoretical grounds, proposed structures that may

represent important components or principles involved in the function of the relevant CPGs

[5]. Computational methods offer a natural means to investigate these structures’ properties

and generate predictions about them that may guide future experimental investigations. In

this work, we use computational methods to study turtle pocket scratch (pocket) and rostral

scratch (rostral) motor pattern generation.

Previous theoretical work on motor pattern generation in turtles ([31, 59]) focused on
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the generation of caudal scratch and forward swim rhythms from a variety of network archi-

tectures, testing their compatibility with several observed experimental characteristics. In

contrast, we test whether a specific proposed network architecture [5] is capable of robustly

generating both pocket and rostral scratch rhythms via only a change in inputs. Common

to both works is the notion of eliciting multiple rhythms from a fixed network. Indeed, both

approaches depart from the traditional unit burst generator framework (in which there exist

specific excitatory and inhibitory populations dedicated to controlling the activity of mo-

toneurons associated with each joint, [27]). The models in the earlier paper included distinct

interneurons projecting to each motoneuron (MN), but these could interact directly in the

rhythm generation process; furthermore, inhibition was restricted to interactions shaping

the interneuron outputs, rather than impinging on MNs directly [31]. Here, we do not main-

tain a complete segregation of projection targets and instead show that by considering only

hip-related pools of excitatory and inhibitory interneurons, each projecting to both hip and

knee MNs, appropriate knee-hip timing relations can be produced.

While the specific network architecture that we consider is motivated by findings from

experiments in turtles, our model has a variety of features that are interesting from a math-

ematical point of view and that may be of use in other modeling work. Wherever possible,

we use a general framework and mathematical approach to gain insight into the mechanisms

underlying our key results: a single network can (in a nontrivial way) produce two distinct

rhythms selected by constant input levels, the timing of activation of a neuron receiving

concurrent excitation and inhibition at all times can be controlled by different inputs under

different conditions, and a delay in the onset of activity of one neuron relative to another can

arise robustly in a model network lacking any explicit inclusion of delay. Our general math-

ematical approach will allow our findings, while made in a model for turtle motor rhythm

generation, to be extensible to other networks with fairly general features.

In Section 2.1, we provide an overview of past experimental results, and synthesize these

results into a series of key features our model must produce. An introduction to the network

architecture we model, the structural features we impose on it, the fast/slow decomposition

we use in analysis, and some of our basic parameter sets is given in Section 2.2. In Section

2.3, we present baseline results showing that a change in input can give distinct output
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patterns. In Section 2.4, we construct a slow phase plane framework and use it to derive

sufficient conditions on inputs for distinct rhythm generation; we also use this framework to

identify a key differentiator in inputs that will lead to different rhythms. We reproduce the

results of dual-stimulation experiments and use them to provide a negative criterion to rule

out different parameter sets for our collaborators in Section 2.5. In Section 2.6, we use our

model to make additional predictions and suggestions for experiments our collaborators have

interest in performing. In the discussion, we summarize our findings and indicate limitations,

with a focus on avenues for future work. A variety of notation is used in this chapter, which

we summarize in Table 1. This work has been published in [57] but has been modified for

readability.

2.1 EXPERIMENTAL BACKGROUND

Under experimental conditions, intact turtles generate a variety of rhythmic motor patterns

corresponding to stimulation of different body regions (including caudal scratch, rostral

scratch, pocket scratch, and forward swim; see Figure 1) [4]. All of these patterns feature

alternating phases of motoneuron activation that occur repeatedly, while different patterns

are distinguished by the relative timing and duration of activity of hip extensor motoneurons,

hip flexor motoneurons and knee extensor motoneurons.

Previous theoretical work examined eliciting both caudal scratch and forward swim from

the same network [31]. In this chapter, we investigate whether a single network is capable of

generating both the pocket and rostral scratching behaviors observed in the turtle hindlimb.

Motoneuron behavior identifies each rhythm, shown in Figure 1. Specifically, hip flexor

(HF ) and hip extensor (HE) motoneuron populations activate in antiphase and do not

receive temporally overlapping excitation and inhibition [50, 51, 5]. Hip flexor is activated

longer than hip extensor in rostral, and the reverse holds in pocket. Finally, knee extensor

(KE) is activated with hip extensor in pocket. Knee extensor is activated with hip flexor

with a delay in onset in rostral.
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Figure 1: Illustration of how stimulation of different sites, via an electrode for swim or body

surface contact for scratch, elicits different patterns of activity in motoneuron recordings from

turtle. The scratching rhythms refer to muscle activation in the hindlimb. Figure source:

Berkowitz, A.: Physiology and morphology of shared and specialized spinal interneurons for

locomotion and scratching. J Neurophysiol. 99(6), 2887–2901 (2008). [4].

Much of the experimental work in turtle has demonstrated that knee extensor MNs re-

ceive temporally overlapping excitation and inhibition and that the time courses of the inputs

to knee extensor MNs are similar to those of inputs to hip flexor MNs in rostral and to hip

extensor MNs in pocket [5, 50, 51, 3]. Berkowitz and Stein argued that an architecture fea-

turing excitatory and inhibitory pools of interneurons for each of hip extensor and hip flexor

(with each MN population active in synchrony with its respective excitatory pool), which

10



also project to knee extensor MNs, could be more consistent with experimental findings than

other architectures [5]. The idea that different rhythm generators can control knee extensor

MN timing in different rhythms also fits in with recent observations from experiments in the

mouse hindlimb locomotor network, which suggest that intrinsically rhythmic interneuron

modules can be flexibly recruited to drive MN pools [30].

To summarize the experimental features we wish to reproduce:

• HF and HE activate in antiphase and do not receive temporally overlapping excitation

and inhibition [50, 51, 5].

• HF is activated longer than HE in rostral (Figure 1, reversed in pocket).

• KE is activated and terminates activity with HE in pocket. KE is activated and

terminates with HF , with a delay in onset in rostral.

These features will serve as benchmarks as we evaluate the success or failure of our

simulations. In the next section, we will present the architecture we implement, provide a

mathematical description of neurons in our model, and we will describe the structural as-

sumptions we are making, the fast/slow decomposition we use in analysis, and the parameter

sets we implement.

2.2 NETWORK ARCHITECTURE AND MODEL

A possible motor CPG architecture differing from the traditional UPG view was proposed

based on experimental results on turtle scratching rhythms [5] (Figure 2, left). EP is the

excitatory motor pool that drives HE, with the P denoting that it is the hip muscle with

greater active duration in pocket; IP is the corresponding inhibitory interneuron population

for HE. Similarly, ER is the excitatory motor pool that drives HF , with the R denoting

that it is the hip muscle with greater active duration in rostral; IR is the corresponding

inhibitory interneuron population for HF . Departing from the traditional UPG approach,

there are no dedicated excitatory and inhibitory interneuron pools corresponding to knee

extensor. Rather, all four of the hip-related motor pools project to knee extensor as well.
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As has been well established, however, drawing a plausible wiring diagram for a rhythmic

circuit does not allow the immediate inference of actual circuit activity patterns [1]. To

explore network dynamics, we implement a simplified version of the proposed architecture,

featuring a layer of interneuron pools indexed by labels i ∈ {IP,EP,ER, IR} interacting

with each other and feeding forward to a layer of MNs indexed by labels i ∈ {HE,KE,HF}

that do not interact. In lieu of an excitatory pool exciting an inhibitory sub-population

that in turn inhibits or disinhibits inhibitory pools as originally proposed (e.g. EP excites

a sub-population that inhibits IP and disinhibits IR, Figure 2, left), in our model E and I

pools are linked, for simplicity, via direct synaptic connections (Figure 2, right). A variety

of notation is used throughout this chapter and is detailed in Table 1.

EP ER IR 

HE KE HF 

IP 

Figure 2: Proposed (left,[5]) and implemented (right) network architectures. Solid circles

correspond to inhibitory synaptic connections, open triangles (left) and dashed arrows (right)

to excitatory ones. Figure source for proposed architecture: Berkowitz, A., Stein, P.: Activity

of descending propriospinal axons in the turtle hindlimb enlargement during two forms of

fictive scratching: phase analyses. J Neurosci. 14(8), 5105–5119 (1994).
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Table 1: Variables and notation used in Chapter 2

Vi membrane potential for population i

hi deinactivation of persistent sodium current for population i

si slow synaptic gating variable for population i

INaP persistent sodium current

Isyn synaptic input from the network

Iext external synaptic input

F (Vi, hi, si) right hand side of the voltage differential equation

gi(Vi, hi) right hands side of the persistent sodium differential equation

gi,jsyn synaptic weight of the synapse from population j to population i

iexti weight of external drive to population i

s vector of all synaptic variables in the network

Vi,X(h, s) left (X = L), middle (X = M) or right (X = R) branch of the cubic

voltage nullcline for population i

pi,X(s) fixed point located on the X ∈ {L,M,R} branch of the voltage nullcline

for population i

(V JU
i (s), hJUi (s)) jump up curve, curve in slow phase space from which population i may

enter the active phase

(V JD
i (s), hJDi (s)) jump down curve, curve in slow phase space from which population i may

enter the silent phase

smax maximum value achieved by synaptic gating variable

sdynamic synaptic gating variable evolving in time for a given portion of the rhythm,

while the other synaptic

13



gating variable is fixed

I = {iextIP .i
ext
EP , i

ext
ER, i

ext
IR} set of external drives to populations of interneurons

T jactive(I) length of time population j is active for a given I

sSN value of s at which saddle node bifurcation occurs

sminER (I) minimum value achieved by sER for a given I

Is = [sminER (I), sSN ] values of sER from which KE can enter the active phase

hmax hJDEP (smax) = hJDER(smax), the largest hKE value at which KE can enter the

silent phase

hmin(I) hJDER(sminER (I)), the value of hKE on the ER curve of jump down knees

corresponding to sminER (I)

Ih = [hmin(I), hmax] values of hKE at which KE can enter the silent phase

LKIs the part of the curve of jump up knees corresponding to s ∈ Is

T (I) time for s to decay from sSN to sminER (I)

h(a; b, c) hKE value at time a for a trajectory that started at time 0 with initial

condition (hKE, s) = (b, c)

hminER (I) h value on the ER jump up curve given by sminER (I)

h+SN forward flow of (hSN , sSN) for time T (I)

h−SN backward flow of (hSN , sSN) to the line s = smax

h−smin backward flow of (hJUER(sminER (I)), sminER (I)) to the line s = smax

t∗ minimal time spent in the silent phase by KE

Based on the experimental recordings shown in Figure 1 and the architecture in Figure

2, the parsimonious assumptions are that HE activates in synchrony with its excitatory

interneuron population EP , which activates in antiphase with the inhibitory interneuron

population IP , while HF activates in synchrony with its excitatory interneuron population

ER, which activates in antiphase with the inhibitory interneuron population IR. The nature
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of the rhythms (Figure 1) indicates additionally that HE and HF must activate in antiphase

for both rhythms, with HF activated longer in rostral and HE activated longer in pocket. It

was hypothesized that KE receives inputs that are similar to those received by HF in rostral

and similar to those received by HE in pocket [51]. The subsequently proposed architecture

in Figure 2, however, suggests that the inputs to KE are proportional to those to both HE

and HF , which makes it less clear why KE synchronizes with HF , after some delay, in

rostral and with HE in pocket (Figure 1), which is what we seek to explain.

Since we seek to assess the basic rhythm generating capabilities of the proposed archi-

tecture, we model each neuronal population in the network as a single cell, leaving issues

of heterogeneity for future investigation; we nonetheless refer to each as a “population” in

the remainder of the paper (cf. [53]). Inasmuch as the relevant rhythm generating neurons

in turtle have not been identified, the specific currents that are central to their rhythmic-

ity are not known. Given this situation, it makes sense to avoid overly specific assumptions

about the dynamics of model components. The dynamically simple Wilson-Cowan equations

were used in related previous work [31] to model forward swim and caudal scratch rhythms.

However, there is a delay in the onset of knee extensor activity relative to hip extensor in

caudal scratch that was not modeled in the earlier study. Since the delay of knee extensor

onset in rostral scratch is one of the key features that we seek to model, and phase plane

considerations suggest that the monotone nullclines of a Wilson-Cowan system cannot give

a significant delay, the Wilson-Cowan framework does not appear to be appropriate for our

study.

As an alternative, we use a minimal Hodgkin-Huxley type model for each population.

We chose an inward, slowly deinactivating persistent sodium current (INaP ) as the primary

current controlling oscillations in our model. This current has been used in previous CPG

modeling studies [20, 14, 54, 53], has been observed experimentally in neurons in other CPGs

[68], and is well suited to supply the voltage plateaus underlying bursts of spikes. Since

past computational and mathematical work has established that certain classes of currents

endow models with similar properties, this specific current choice is not critical for qualitative

aspects of our model’s behavior, and our results will apply immediately to networks featuring

other inward, slowly deinactivating currents [35, 20]. We omit the details of actual spikes in
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our model, since the relative durations of active periods, not specific spiking dynamics, are

the primary results that we seek to reproduce and since plateau potentials are observed in

turtle motoneurons[33, 7]. As a result, we obtain an analytically tractable framework, which

would not be possible from incorporation of detailed models for turtle motoneuron dynamics

[7, 6].

Given these considerations, our model for each interneuron population takes the form

CmV̇i = −INaP (Vi, hi)− IL(Vi)−
∑

j 6=i Isyn(Vi, sj)− Iext(Vi)

≡ Fi(Vi, hi, s)

ḣi = (h∞(Vi)− hi)τh(Vi) ≡ gi(Vi, hi)

ṡi = α(1− si)s∞(Vi)− βsi

(2.1)

where Vi denotes voltage, hi the inactivation of the persistent sodium current INaP , si the

fraction of the maximal synaptic conductance that is induced by the population’s activ-

ity, and s the vector of s variables of all populations in the network (although the evolu-

tion of Vi is independent of si). In the voltage equation for population i, INaP (Vi, hi) =

gNaPm∞h(Vi − eNa), IL(Vi) = gL(Vi − eL) is a leak current, Isyn(Vi, sj) = gijsynsj(Vi −

esyn) for esyn ∈ {eexcsyn, e
inh
syn} denotes synaptic current induced by population j, Iext(Vi) =

(iexti )(Vi − eexcsyn) denotes excitatory synaptic current with conductance iexti from a source

outside the network, m∞, h∞ and s∞ are monotone sigmoidal functions given by x∞(v) =

(1+exp((v−xhalf )/θx))−1, x ∈ {m,h, s} with m∞ and s∞ increasing and h∞ decreasing, and

τh(v) = ε cosh((v − hhalf )/2θh) for 0 < ε� 1. All synaptic inputs are defined with gijsyn > 0;

whether a synaptic input is excitatory or inhibitory is determined by its reversal potential

esyn. Default parameter values used in simulations are listed in Table 2; values of iexti are

varied and are discussed as they arise in our analysis.
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Table 2: Model Parameters for Chapter 2

parameter units

Cm 0.21 pF

gNaP 10 nS

eNa 50 mV

gL 2.8 nS

eL -65 mV

mhalf -37 mV

θm -6 mV

hhalf -30 mV

θh 6 mV

ε 0.01 ms−1

shalf -43 mV

θs -0.1 mV

einhsyn -80 mV

eexcsyn 0 mV

α 1

β 0.08

2.2.1 Structural hypotheses

With these parameter values, our model equations satisfy several structural hypotheses. We

base our analytical arguments on these hypotheses, so that our results extend beyond our

specific choices of model functions and parameter values.

(H1) For each population i, for all relevant synaptic inputs s, the Vi nullcline, {(Vi, hi) :

Fi(Vi, hi, s) = 0}, is cubic in the (Vi, hi) phase plane. This nullcline includes left, middle,

and right branches, denoted respectively by V = Vi,L(h, s), V = Vi,M(h, s), and V =

Vi,R(h, s) with Vi,L < Vi,M < Vi,R for each (h, s) for which all three exist. For our choice
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of model, for fixed s, Vi,L and Vi,R increase as a function of h and Vi,M decreases as a

function of h, so this will henceforth be assumed as well, although it is not required

for our results to hold. Figure 3 illustrates these structures and those introduced in

subsequent hypotheses.

(H2) For each population i, the hi nullcline, {(Vi, hi) : gi(Vi, hi) = 0}, is monotone decreas-

ing.

(H3) In the absence of synaptic coupling (gsyn = 0), each population has a unique fixed

point, pFPi,R (0) = (V FP
i,R (0), hFPi,R (0)), on the right branch of the Vi nullcline for a range of

input conductances, iexti .

(H4) In the presence of coupling (gsyn > 0) and with input strength iexti fixed within the

range we consider, the right fixed point is retained and left pFPi,L (s) = (V FP
i,L (s), hFPi,L (s))

and middle pFPi,M(s) = (V FP
i,M (s), hFPi,M(s)) fixed points are gained and lost via saddle-node

bifurcations that occur for some nonzero choices of the synaptic input s (for example,

see Figure 4).

These hypotheses restrict the system to have between one and three fixed points for all

relevant inputs and coupling strengths. Fixed points on the right branch of the Vi nullcline

correspond to tonic spiking behavior (since the model lacks spike generating currents), while

fixed points on the left branch of the Vi nullcline correspond to a relatively constant low volt-

age. Therefore, hypothesis 3 means each population is intrinsically tonically active (Figure

3, right fixed point). In our desired network activity, bursting behavior in a population of

neurons consists of regular alternations between states of low voltage near some family of left

nullcline branches V FP
i,L (s) (silent phase) and states of tonic spiking (i.e., elevated voltage)

near some family of right nullcline branches V FP
i,R (s) (active phase), linked via abrupt voltage

transitions of significant amplitude, corresponding to jumps between branches.
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Figure 3: Nullcline configurations for varying values of θh (shifting the h-nullcline, red) to

illustrate key structures in phase space.
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Figure 4: Rostral delay mechanism for KE. Saddle node bifurcation in the (VKE, hKE)

phase plane. The red curve is the hKE-nullcline, while the black curves are VKE-nullclines

for differing combinations of synaptic input. The change between these two combinations

induces a saddle node bifurcation.

19



A key point is that hypotheses 3 and 4 together imply that transitions from the silent

to the active phase must occur by escape. Given a mutually inhibitory pair of populations

where one is active and the other is silent, the silent population may become active by

reaching the jump up (left) knee of its V nullcline (i.e., left fold of its family of V -nullclines,

parameterized by the synaptic strength s controlled by the other population). Doing so

allows it to jump to the active phase, inhibiting the other population and, for sufficiently

large gsyn, relegating the other population to the silent phase. When these conditions are

met, the two populations form a half-center oscillator in which switches between phases are

controlled by the silent population [69, 56]. This occurs even though the active population

still maintains its right fixed point because the network is tuned for transitions by the

escape mechanism. Thus, in addition to the surfaces of fixed points for each population,

pFPi,X (s) = (V FP
i,X (s), hFPi,X (s)), X ∈ {L,M,R}, of mathematical importance are also the surfaces

of jump up and jump down V -nullcline folds, or knees, for each population: (V JU
i (s), hJUi (s))

and (V JD
i (s), hJDi (s)). For fixed levels of external and synaptic inputs, the jump up (down)

knee corresponds to a local maximum (minimum) of the Vi nullcline. A surface of knees is

then the surface of these local extrema, parameterized by the values of the synaptic input

variables, for a fixed external input strength.

2.2.2 Fast/slow decomposition

Based on our parameter choices (Table 2), for each i, we consider that jumps between

branches of a V -nullcline occur instantaneously relative to the rate of INaP (de)inactivation

and relative to the slow decay of si (set by the small value of β) in the silent phase. Further-

more, we have performed simulations with a very steep synaptic activation function s∞(v),

since θs is quite small. Thus, for purposes of analysis, we write β = εβ̃, define τ = εt, and

let prime denote differentiation with respect to τ . We then extract from system (2.1) in the

ε→ 0 limit a fast subsystem governing jumps between phases:

CmV̇i = Fi(Vi, hi, s), j 6= i

ḣi = 0

ṡi = α(1− si)s∞(Vi),

(2.2)
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a slow subsystem governing evolution within the silent phase:

h′i = gi(Vi,L(hi, s), hi),

s′i = −β̃si,
(2.3)

and a slow subsystem governing evolution within the active phase

h′i = gi(Vi,R(hi, s), hi),

si = 1.
(2.4)

At any time when there is no population making a fast jump, the collection of populations

evolves in a high-dimensional slow phase space with governing equations given by making

an appropriate choice of either equations (2.3) or equations (2.4) for each population.

Suppose we consider a collection of N interacting populations. Since si does not affect

Vi, hi directly, it is useful to project the trajectory to an N -dimensional slow phase space for

each population, with dimensions corresponding to that population’s h variable along with

the s variables for the other N − 1 populations. The population’s jump up and jump down

knees, (V JU
i (s), hJUi (s)) and(V JD

i (s), hJDi (s)), are then given by surfaces in its slow phase

space (e.g. [24, 52]).

2.2.3 Parameter sets

We simulated system (2.1) using XPPAUT [23] to find parameter values for which the net-

work (Figure 2, right) would generate a rostral scratch rhythm under one set of constant

external input strengths, {iexti }R, and a pocket scratch rhythm under a different set of con-

stant external input strengths, {iexti }P (see Figure 1). We required that synaptic weights,

{gijsyn}, were fixed at the same values for both rhythms, such that our results would represent

activation of a fixed network by two different forms of stimulation, presumably representing

effects of body surface stimulation in two different regions (Figure 1).
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Figure 5: Synaptic weights. Two different sets of synaptic weights gijsyn and external

input strengths iexti used in our simulations of system (2.1), with units (mS) omitted.

Top:“standard” weights; bottom: “strong cross-excitation” weights. Solid lines ending in

circles denote inhibitory connections; dashed lines ending in arrows represent excitatory

ones. Both sets of weights include certain symmetries but the activity they support is ro-

bust to asymmetric perturbations.
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Two distinct classes of synaptic weights were implemented in the network, standard (S)

and strong cross-excitation (SCE) (Figure 5). The S class is based on the idea that a rostral-

inducing stimulus should strongly recruit the excitatory ER pool responsible for driving

HF and less strongly recruit the inhibitory IR pool that blocks this action, and similarly

for pocket. These input levels can also be interpreted as all four interneuron populations

receiving a baseline level of input, with ER, IP receiving additional input in rostral and

EP, IR receiving additional input in pocket. The synaptic outputs from the interneuron

populations are given in Figure 6.

Figure 6: Interneuron synaptic outputs in pocket (left) and rostral (right) in the S parameter

set. The plateau of values of si(t) near 1 correspond to the active phase of population i.

During the silent phase of population i, si(t) is decaying.

The SCE class is based on the reasoning that the entire rostral pool, including both ER

and IR, should be most strongly stimulated by rostral-inducing stimuli, and similarly for

pocket. We call this weight class SCE because a stronger cross-excitation from ER to IP

and from EP to IR (0.8 nS versus 0.5 nS) was used to promote synchrony between these

pairs of populations in this case. Here, all four interneuron populations can be viewed as

receiving a baseline level of input, but with an additional input boost to the “active side”.

The synaptic outputs from the interneuron populations are given in Figure 7.
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Figure 7: Interneuron synaptic outputs in pocket (left) and rostral (right) in the SCE param-

eter set. The plateau of values of si(t) near 1 correspond to the active phase of population

i. During the silent phase of population i, si(t) is decaying.

In both cases, the synaptic weights at the interneuron level (not to the MNs) are just a

minimal combination that allows oscillations to occur; that is, decreasing any of the weights

appreciably without changing others to compensate leads to loss of all oscillations. The

baseline input strengths (0.17 nS in S and 0.16 nS in SCE) were chosen such that no os-

cillations are elicited when no interneuron populations receive additional drive. The S and

SCE weights are similar in the sense that they result in qualitatively similar interneuron

dynamics and output from the interneurons to the MNs. This output is largely constrained

by the required behavior of HF and HE:

• HF and HE activate in antiphase and do not receive temporally overlapping excitation

and inhibition [50, 51, 5] meaning that IP must be in antiphase with EP and IR in

antiphase with ER (Figure 2 right panel).

• In light of these antiphase relations, it is natural for EP , IR to activate in synchrony

and ER, IP to activate in synchrony.

• HF is activated longer than HE in rostral (Figure 1, Figure 2 right panel, Figure 5),

hence ER must receive more input than EP in rostral (reversed in pocket).
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Any synaptic weights selected must satisfy these constraints. Furthermore, as will be seen

in the next section, a certain general relationship among the synaptic weights to KE must

be satisfied to allow both rhythms to be elicited from the network.

In this section, we presented the architecture implemented, a mathematical description

of neurons in our model, and we described the structural assumptions, the fast/slow decom-

position, and the parameter sets we use. We also introduced definitions of key quantities

that arise in our analysis. In the next section, we will present baseline simulations that

show our model is capable of producing both the pocket and the rostral scratch rhythms via

changing inputs.

2.3 BASELINE SIMULATION RESULTS

With the S and SCE weights, the network can generate both rostral and pocket rhythms,

selected by the external input strengths {iexti } as shown in Figure 5; see Figure 8 for an

example simulation with the S class. Thus, we have confirmed the conjecture that the archi-

tecture illustrated in Figure 2 is capable of such multi-functionality, suggesting its viability

as a building block of circuits generating multiple output rhythms from a single set of MNs

and muscles. Naturally, for both the S and SCE weights, there is a range of each input

parameter {iexti } over which each rhythm persists. As mentioned previously, the reason that

both architectures work is because they produce qualitatively similar interneuron activity

patterns and corresponding outputs from the interneurons to the MNs; note that the con-

nections from the interneurons to the MNs are weighted the same across both weight classes.

The mathematical analysis done in the next section shows that sufficient changes in these

interneuron-to-MN weights would cause the network to lose the desired behavior.
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Figure 8: Basic simulation results. Example voltage traces for MN populations resulting from

simulation of system (2.1) with the S weights. Note that the relative timing and durations

of activity in the simulation match the recordings in Figure 1. The SCE weights produce

the desired relative timing and durations as well (not shown).

In this section, we presented baseline simulations that show our model is capable of

producing both the pocket and the rostral scratch rhythms via changing inputs. In the next

section, we will describe the slow phase plane framework we developed for this system, and

then we will use this framework to derive and illustrate the sufficient conditions on inputs

in both pocket and rostral.
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2.4 SUFFICIENT CONDITIONS FOR RHYTHMS

Because hip extensor and hip flexor each only receive antiphase excitation and inhibition

and maintain the same antiphase relationship with each other across both rhythms, it seems

reasonable to choose comparable synaptic weights from the interneuron populations to HE

and HF . We henceforth assume that these weights and the weights within the interneu-

ron network are fixed such that this antiphase behavior, with appropriate relative phase

durations, occurs. Because KE receives temporally overlapping excitation and inhibition,

synchronizes with a different hip component in each rhythm, and exhibits a delay in onset

relative to its hip partner in rostral and not pocket, the synaptic weights to KE are much

more constrained. We will consider dynamics in certain slow phase spaces to derive con-

ditions on these weights that yield multi-functionality of the networks shown in Figure 5,

which generalize to any model with a qualitatively similar structure.

2.4.1 Reduction of slow phase space dimension

To focus on KE, we need consider only a subset of the slow variables in the model. KE

receives four synaptic inputs with conductance variables {sEP , sER, sIP , sIR}, which activate

on the fast time scale (equation (2.2)) and decay on the slow time scale (equation (2.3)).

Additionally, the inactivation of persistent sodium for KE, hKE, evolves on the same slow

time scale. Therefore, there is a five-dimensional slow phase space for KE. Analyzing

dynamics in this full, five-dimensional space is impractical.

To reduce dimension further, we identify the interneuron pairs that activate together,

(EP, IR) and (ER, IP ), to form a single half-center oscillator and we consider a reduced

model to describe KE activity, illustrated in Figure 9. With this reduction, using eexcsyn = 0,

sER = sIP , and sEP = sIR, the synaptic input for knee extensor becomes

IKEsyn = sER[(gIP + gER)VKE − gIP einhsyn] + sEP [(gIR + gEP )VKE − gIReinhsyn].
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Figure 9: Reduced knee extensor module. Reduced module controlling knee extensor activ-

ity. Two interneuron units form a half-center oscillator, linked by mutual inhibition (thick

solid lines). Each unit recruits a corresponding hip MN (thin solid lines) and supplies a

hybrid excitatory and inhibitory input to KE (dot dashed lines with squares), with a single

corresponding synaptic conductance variable.

This step reduces our phase space from five dimensions to three, with variables

(hKE, sEP , sER). The projection of the periodic pocket trajectory of the reduced model to

(hKE, sEP , sER) space is shown in the top left of Figure 10, along with several curves that

are important for understanding KE dynamics. These plots are critical to our analysis.

When ER is active, sER ≈ smax, so the corresponding part of the trajectory, color coded

red, lies approximately on the {sER = smax} plane within phase space, which is the back

right face of the cube shown. Similarly, the epoch with EP active has sEP ≈ smax and yields

a trajectory, color coded black, near the back left face of the cube. As an alternative to

considering a three-dimensional phase space, however, it is convenient to switch between a

pair of two-dimensional slow phase planes, corresponding to the back two faces in the top

left of Figure 10, as EP and ER alternate between periods of silence and activity. These

are shown in the top right of Figure 10. For example, while EP is active, sER evolves and

the projection of the trajectory to the (hKE, sER) plane is shown as the thick black curve.

Of course, even after EP switches from active to silent, the projection of the trajectory to
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the (hKE, sER) plane still exists; the projected trajectory segment after the switch is shown

as the thin black curve. Using similar considerations for the projection to (hKE, sEP ), we

in fact plot two copies of the full trajectory, each in its own two-dimensional phase plane,

one with the trajectory shown thick while EP is active and thin while ER is active, and

the other the opposite. The switch from EP active to ER active occurs abruptly when sEP

begins its slow decay from smax and sER increases very rapidly (instantly in the singular

limit) to smax, and we switch each curve from thick to thin when sEP = sER occurs.

Finally, since the values over which sER and sEP vary over each period are similar, both

slow phase planes can be compressed to a single plot. Again, when this plot is displayed in

the bottom part of Figure 10, we show two copies of the trajectory. For the black (red) copy,

sdynamic should be interpreted as sER (sEP ), with thick and thin parts as in the separate

two-dimensional plots (thick black when EP is active such that sER decays gradually, thick

red when ER is active such that sEP decays gradually).

For fixed input levels (sEP , sER), the VKE-nullcline has one or more fixed points, a jump

up knee, and a jump down knee. These become two-dimensional surfaces under variation of

both inputs, while fixing one input at smax selects a one-dimensional curve. In Figure 10,

the curves of fixed points for sEP = smax are shown in green and for sER = smax in magenta;

both show up in the bottom plot, but it is important to keep in mind that each is only

meaningful when sdynamic has the correct interpretation. Similarly, the curves of knees are

shown in dark blue and cyan. There are two cyan curves, with smaller hKE values for jump

down knees than for jump up. There is only one dark blue curve because the curve of jump

up knees is outside of the relevant range of (hKE, s) values when EP is active.
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Figure 10: Reduction of knee extensor slow phase space dimension. Phase space views for the

KE dynamics in the reduced module shown in Figure 9 during the pocket rhythm. Top left:

full three-dimensional slow phase space. Top right: projections onto the two two-dimensional

planes where the trajectory lies. Bottom: single, combined two-dimensional representation.

In all plots, black and red curves are projections of parts or all of the trajectory of a periodic

pocket scratch solution, with bold black and thin red denoting times when EP is active and

bold red and thin black times when ER is active. Green curves denote the fixed point curves

pFPKE,R(s) (stable, solid), pFPKE,M(s) (unstable, dashed), and pFPKE,L(s) (stable, solid) (in order

of increasing hKE) while EP is active. Magenta curves denote the analogous curves of fixed

points while ER is active. The dark blue curve is the curve of jump down knees while EP is

active; cyan curves are jump down knees and jump up knees (larger hKE values) while ER

is active. Finally, dashed black curves in the top right indicate points on the two projections

that correspond to the same times, when the switches between the EP active phase and the

ER active phase occur.
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2.4.2 Scratch trajectories and weights of synapses onto KE

To generate pocket and rostral scratch rhythms in our model, we had to select values for

synaptic connections in the model network, which remain the same for both rhythms, and

strengths of external inputs to the network, which differ between the rhythms. As mentioned

previously, fixing the weights of synapses to the HE and HF MNs is not particularly interest-

ing, since the desired antiphase activation patterns for each rhythm are set at the interneuron

level in the full or reduced model. For convenience, we simply choose gHE,EPsyn = gHF,ERsyn and

gHE,IPsyn = gHF,IRsyn .

The weights of synapses onto KE are more interesting. To understand how these are con-

strained, we can focus on the reduced model, which maintains four distinct synaptic weights

from the interneurons onto KE. With the convenient viewpoint that we have established, it

is now helpful to consider the details of the trajectories for pocket scratch (Figure 10) and

rostral scratch (shown in Figure 11 in a two-dimensional view analogous to the bottom panel

of Figure 10) for our baseline parameter choices.

Recall that in the pocket rhythm, KE activates with HE, here represented by the

activation of EP . When EP becomes active and the thick black part of the trajectory

starts, hKE decreases, corresponding to the trajectory being in the active phase for KE,

near a right branch of the VKE-nullcline. The trajectory cannot cross the curve of jump

down knees (dark blue) with sdynamic decreasing, because it is blocked by the green fixed

point curve (which almost coincides with the dark blue one in Figures 10, 11). The switch

of sdynamic from decreasing to increasing corresponds to the activation of ER (and hence

HF ). The rise in sdynamic pulls the trajectory across the curve of jump down knees of

the VKE-nullcline (dark blue), terminating the active phase of KE. We then switch our

view to the thick red trajectory, along which hKE increases (and sdynamic = sEP decreases),

corresponding to the trajectory being in the silent phase for KE, near a left branch of the

VKE-nullcline. The trajectory actually reaches the curve of jump up knees (cyan), and hence

KE activates before the activation of EP and HE cause sdynamic = sEP to increase. But

shortly after this switch, EP itself activates, yielding a rise in sdynamic, and we switch back to

the thick black trajectory, where we started. In fact, experiments reveal a natural variability
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in pocket scratch patterns. There are many experimental examples of pocket rhythms in

which knee extensor becomes active just before hip extensor, at the final moments of hip

flexor activity, and indeed a mean pocket rhythm computed from experimentation has this

property [22]. Hence, this result provides validation that the solution that we have obtained

provides a reasonable reduced representation of a pocket rhythm.
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Figure 11: Rostral slow phase plane. Trajectory for KE for rostral scratch projected to a

single slow phase plane. Coloring of curves is identical to Figure 10. Bottom: Zoomed view

near the saddle-node bifurcation where the fold in the magenta fixed point curve intersects

the cyan jump up knee curve for ER/HF active.
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In the rostral rhythm, KE activation follows that of HF , here represented by the activa-

tion of ER, with a delay. When ER becomes active, and the thick red part of the trajectory

starts, KE is still in the silent phase, with a fixed point on the left branch of the VKE-

nullcline (solid magenta line at the far right of Figure 11, see especially Figure 11 bottom.).

As sdynamic decreases, the trajectory approaches the corresponding branch of fixed points,

and KE cannot activate until this branch undergoes a saddle node bifurcation (meeting the

dashed fixed point branch in the figure) at the curve of jump up knees of the VKE-nullcline

(lower right cyan curve; also see Figure 4). At the bifurcation, KE activates and hKE starts

to decay, with the trajectory heading toward the magenta curve of fixed points in the left

part of the Figure. When the activity of ER terminates, sdynamic increases, which pulls the

trajectory through the curve of jump down knees (cyan) and hence switches KE to the

silent phase. With EP now activated (thick black part of the trajectory) and KE silent,

hKE increases, but there is no curve of jump up knees available to reach over the relevant

range of (hKE, sdynamic) (note the absence of a dark blue curve in the lower right of Figure

11, analogous to its absence in Figure 10). Thus KE remains silent until the active phase of

EP ends, sdynamic rises, and ER activates at the transition from the thick black to the thick

red part of the trajectory, where we started.

From our investigations, it appears that obtaining both pocket and rostral scratch

rhythms with the same set of synaptic weights through the dynamic mechanisms we have

described requires certain phase plane features and timing relations, which arise in the tra-

jectory descriptions we have provided. Classifying these in terms of particular phases of

rhythms, the requirements on the trajectory projected to KE space are as follows:

(i) pocket, EP active: trajectory must not reach the curve of jump down knees as sdynamic

decreases yet must cross it as sdynamic rises.

(ii) pocket, ER active: trajectory must reach the curve of jump up knees as sdynamic

decreases, but only sufficiently late in the phase.

(iii) rostral, ER active: trajectory must follow a curve of fixed points to a saddle node

bifurcation at the curve of jump up knees, must subsequently not reach the curve of

jump down knees as sdynamic decreases, and must cross the jump down knees as sdynamic

rises.
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(iv) rostral, EP active: trajectory must not reach the curve of jump up knees as sdynamic

decreases.

The first part of requirement (iii) is critical for imposing a delay between ER activation

and KE activation. Requirement (iv) goes together with (iii); certainly no delay would be

possible if the trajectory reached a curve for the activation of KE even before ER activated

at all! To achieve requirements (iii) and (iv), we find that it is necessary but not sufficient

for gKE,EPsyn , gKE,IPsyn , gKE,ERsyn , gKE,IRsyn to be such that that the ER/IP active pair has an overall

more excitatory effect on KE than the EP/IR active pair. Once these requirements are

imposed, we find that KE also activates while ER is still active in the pocket rhythm;

requirement (ii) constrains weights so that this happens as late as possible, providing a

realistic pocket rhythm. Finally, both requirements (i) and (iii) are partially trivial, since

the trajectory is blocked from reaching jump down knees by the location of fixed point curves.

Nonetheless, they do constrain weights to ensure that hKE decays sufficiently during each

active phase such that subsequent rises in sdynamic can pull the trajectory across the curves

of jump down knees, transitioning KE to the silent phase along with its interneuron partner,

as desired.

2.4.3 Conditions for rhythm selection and slow phase plane analysis/contraction

arguments

With our synaptic weights onto KE and slow phase plane structure fixed to satisfy the

requirements described in the previous subsections, for each rhythm, we now derive certain

conditions on the set of inputs I = {iextIP , i
ext
EP , i

ext
ER, i

ext
IR}, which ensure that that rhythm will

be selected. Some of these conditions are necessary, while together the collection is sufficient,

although we cannot rule out that there may be different necessary and sufficient conditions

elsewhere in parameter space. At a minimum, it is always necessary that the inputs actually

elicit oscillations, both at the interneuron and the motoneuron levels. For convenience in

what follows, define T jactive(I) as the length of time for which population j is active for a

given set of input parameters I as above.

Recall that we have defined a slow phase plane structure in which activation occurs by
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gaining access to the curve of jump up knees with ER active (as discussed in the previous

subsection). For simplicity, we henceforth refer to sdynamic as s. We define the interval

Is = [sminER (I), sSN ]. sSN is defined as the value of s at which the saddle-node bifurcation of

fast subsystem critical points occurs with ER active (Figures 10,11), and sminER (I) is simply

the minimum value to which sER decays. The dependence of sminER on input arises because

the set I determines how long ER is active and hence how far sER decays from smax. The

interval Is is illustrated for a particular input set I in Figure 10.

We note that in the singular limit, s jumps to smax at the instant (with respect to the

slow time scale) of the switch between EP active and ER active. (In our simulations, such

as Figures 10 and 11, we are away from the singular limit and hence the switch occurs at

some s∗ < smax. The value of s∗ can be easily approximated as s∗ ≈ smaxe
−βt where, using

the differential equation for s in (2.1), t satisfies smaxe
−βt = (smin(I)− smax)e−(α+β)t + smax

given the minimal value of sdynamic is smin(I). This equality illustrates how t → 0 and

hence s∗ → smax as α → ∞, corresponding to a complete separation of time scales.) We

assume that hJDEP (smax) = hJDER(smax) and denote this h-value by hJD, since we observe this

convergence of right knee curves numerically. We define a second interval Ih = [hmin(I), hJD],

where hmin(I) is the value of hKE along the ER curve of jump down knees at s = sminER (I).

This interval specifies the full set of hKE values from which a jump down will yield a crossing

of the curve of knees. The interval Ih is illustrated for a particular input set I in Figure 11.

2.4.4 Pocket

Recall the form of the pocket rhythm, illustrated in Figure 10 and Figure 12. Since HE

is active longer than HF in this rhythm, we take iextER < iextEP , which leads to TERactive(I) <

TEPactive(I). In a successful pocket rhythm, KE activation can occur at any value of sdynamic =

sER ∈ Is. The closer to sminER (I) that activation occurs, the less the overlap of KE and HF

activations. With the above constraints and definitions, the pocket rhythm will exist for any

set of inputs for which Is is mapped to int(Is) under the slow flow pieced together by
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appropriate selection of (2.3) and (2.4). By continuity, it is sufficient for the existence of a

stable pocket rhythm to find conditions on I under which the endpoints sSN and sminER (I) are

mapped into the interior of Is. We use slow phase plane arguments to do so.

KE 

HF 

HE 

Model Berkowitz, J 
Neurophys 2008 Figure 12: Pocket rhythm. Pocket rhythm: duration and timing of MN activations in

simulations (left) and experimental recordings from MNs (right). Recall that HF activates

with ER and HE with EP .

Fix input set I. Note that there is an ordering of trajectories starting from the relevant

part of the cyan curve of jump up knees corresponding to ER active, given by LKIs :=

{(hKE, s) : s ∈ Is, hKE = hJUER(s)}. That is, suppose (h1, s1), (h2, s2) ∈ LKIs with h1 > h2

and hence s1 > s2. Flow (h1, s1) forward under (2.3), obtaining a trajectory (h1(t), s1(t)),

until s1(t) = s2. Similarly, denote the forward flow from (h2, s2) as (h2(t), s2(t)). If h1(t) > h2

(h1(t) < h2), then h1(t + τ) > h2(τ) (h1(t + τ) < h2(τ)) for all τ until s1(t + τ) = s2(τ) =

sminER (I) and the ER active phase ends. Moreover, by continuity, all points on LKIs are

ordered in this sense. Thus, the trajectory from LKIs that attains the minimal h value when

s = sminER (I) is either the one starting from s = sSN (corresponding to < in the statements

above) or that from s = sminER (I) (corresponding to >). It turns out that the more interesting

case, for which our argument yields one additional sufficient condition, occurs when the

minimal h corresponds to the initial condition s = sSN , with the initial value of h given by

hSN := hJUER(sSN), so without loss of generality we henceforth assume that this orientation

holds (Figure 13).
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Figure 13: Contraction argument for pocket rhythm. Useful trajectories for deriving suffi-

cient conditions for a stable pocket rhythm. Solid black lines are flows forward from a known

point. Dotted black lines represent backward flows. Left: The conditions that arise when

a flow is initiated from sSN . Right: The conditions that arise when a flow is initiated from

sminER (I).

Now, let T (I) = (1/β) ln(sSN/s
min
ER (I)) denote the time for s to decay from sSN to

sminER (I). Suppose we choose an initial condition such that KE activation occurs at s = sSN

during the ER active phase. We introduce the notation h(a; b, c) to denote the hKE value

at time a for a trajectory that started at time 0 with initial condition (hKE, s) = (b, c). The

first sufficient condition that we include is that the resulting KE trajectory does not cross

a curve of jump down knees when EP takes over from ER:

(P1) h+SN := h(T (I);hSN , sSN) > hmax,

Condition (P1) ensures that the KE active phase overlaps with the active phase of EP and

hence HE, as desired; in other words, TKEactive(I) > T (I) (Figure 13, left).

Next, we impose a condition to ensure that KE activation ends when EP activation

does. This condition forces the KE trajectory with largest h value to lie in Ih at the end of

the EP active phase. This trajectory has initial condition (hminER (I), smax) at the start of the
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EP active phase, where hminER (I) := hJUER(sminER (I)), and evolves under (2.3) with EP active

for time TEPactive(I) (to {s = sminEP (I)}). The condition (Figure 13, right) is:

(P2) h(TEPactive(I);hminER (I), smax) < hmax.

Next, we obtain two conditions that are sufficient to ensure that the flow of LKIs yields

trajectories that return to int(LKIs) and that do so while ER is active. To state these

conditions, we need to make use of the backwards flow of the endpoints (hSN , sSN) and

(hJUER(sminER (I)), sminER (I)) back to the line {s = smax} under system (2.3) with ER active.

Denote the h-coordinates of these intersections by h−SN and h−smin , respectively, with h−smin <

h−SN by continuity. Recall that the forward trajectory from the endpoint (hSN , sSN) has

h = h+SN := h(T (I);hSN , sSN) when EP becomes active (see Condition (P1) and Figure 13,

left). With these definitions, the final sufficient conditions, which guarantee that the next

KE activation occurs from int(LKIs), read

(P3) h(TEPactive(I);hminER (I), smax) < h−SN ,

(P4) h(TEPactive(I);h+SN , smax) > h−smin .

(P1)−(P4) are conditions on relative orderings of points in the slow phase space that may

result under certain choices of I. To appreciate that when I is chosen to satisfy Conditions

(P1) − (P4), together with the earlier condition that TERactive(I) < TEPactive(I), it follows that

LKIs is mapped into its own interior under the flow and there exists a stable periodic pocket

rhythm, note that the time of evolution from s = smax down to s = sminER (I) under (2.3)

with EP active is exactly time TEPactive(I). Conditions (P3)− (P4) ensure that all trajectories

emanating from LKIs end up with h ∈ (h−min, h
−
SN) when ER first activates. From the time

of ER activation, these trajectories all evolve under (2.3) from s = smax, and Conditions

(P3) − (P4) imply that they reach int(LKIs). In particular, they arrive with s > sminER (I)

and hence they do so after times that are less than TERactive(I), before the end of the ER active

phase, as desired.

In summary, we conclude that for a choice of synaptic weights such that our earlier

assumptions on the structure of phase space are satisfied, for any choice of I such that

(P1)− (P4) hold, there exists an open set of initial conditions supporting a stable, periodic
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pocket rhythm. Choices of weights that shrink sSN toward sminER (I), narrowing Is, yield

less overlap between the phases when KE and HF are active at the end of the ER active

phase, and hence more experimentally realistic solutions. This change can be achieved, for

example, by weakening the excitation from ER to KE relative to the inhibition from IP

to KE; however, making this excitation too weak will prevent KE activation entirely and

destroy the rhythm.

2.4.5 Rostral

Next, recall the form of the rostral rhythm, illustrated in Figure 11. Since HF is active

longer than HE in this rhythm, we take iextEP < iextER, which leads to TEPactive(I) < TERactive(I). In

the rostral rhythms that we seek, we assume that KE activation occurs with sdynamic = sSN

with ER (and thus HF ) active, in order to achieve the delay with respect to HF activation

in a robust way, keeping the same synaptic weights as in the pocket case. We also require

that KE activation ends at the same time as ER activation. We now use slow phase plane

arguments to derive sufficient conditions for the existence of a stable rostral rhythm that

meets these constraints.
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Figure 14: Contraction argument for rostral rhythm. Useful trajectories for deriving suffi-

cient conditions for a stable rostral rhythm. The solid black line denotes the flow forward

from (hSN , sSN). Dashed black lines indicate flows forward from two points (hmax, sSN) and

(hmin(I), sSN). The dotted black line represents a backward flow.
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The trajectory for the desired rhythm should reach the curve of jump up knees with

s = sSN and ER active and flow from there to the interval Ih. Using our previous definitions

of T (I) and hSN , a sufficient condition to achieve this requirement is simply (Figure 14):

(R1) h(T (I);hSN , sSN) ∈ Ih.

Next, it suffices to impose conditions under which the flow maps the interval Ih back

to the curve of jump up knees where it intersects {s = sSN} at some time after ER has

already activated but while ER is still active. To derive these, it suffices to consider the

trajectories generated by the forward flow from the endpoints of Ih, namely (hmin(I), sminER (I))

and (hmax, s
min
ER (I)). There are two aspects to this mapping requirement. One is that all

trajectories have time to reach {s = sSN} from {s = smax} (Figure 14), a condition for which

can be written in two equivalent forms using the notation we have introduced:

(R2) sSN > sminER (I) ⇔ TERactive(I) > (1/β) ln(smax/sSN).

The other aspect is that even the trajectory with minimal h value, which originates from

(hmin(I), sminER (I)) just before EP activates, must be able to reach (hSN , sSN) while ER is

active. This trajectory flows forward from (hmin(I), smax) under (2.3) with EP active, say to

(hEP , sEP ), and then continues forward under (2.3) with ER active from (hEP , smax) (Figure

14). Our additional sufficient condition is therefore

(R3) hEP > h−SN ,

where h−SN is derived from the backwards flow of (2.3) with ER active as in the previous

subsection.

Conditions (R1)−(R3), together with the earlier condition that TEPactive(I) < TERactive(I), are

sufficient for all initial conditions within Ih to pass through (hSN , sSN), in the singular limit,

albeit at different times, and reach the interior of Ih with ER active, which guarantees a

stable rostral rhythm. We observe that our strong structural requirement that KE activation

occurs at a saddle-node bifurcation of fast subsystem equilibria, which ensures a robust delay

of KE activation relative to ER (and hence HF ) activation as seen in the rostral rhythm,

makes our remaining sufficient conditions for the existence of a stable rostral rhythm milder

than those we invoked to ensure the existence of a stable pocket rhythm.
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2.4.6 Key differentiator between rhythms

The work in this section supplies a variety of conditions on the relative positions of various

trajectories such that when a set of inputs allows an appropriate collection of conditions

to be satisfied, a pocket or rostral rhythm results. From this analysis and our numerical

simulations, we can extract a key factor that distinguishes whether a rhythm generated by

an input set is likely to be a pocket rhythm or a rostral rhythm. Given an initial condition

on LKIs with ER active,

• inputs that lead to hKE > hmax at the termination of ER activity push the solution

toward pocket.

• inputs that lead to hKE < hmax at the termination of ER activity push the solution

toward rostral.

In other words, roughly speaking, the rhythm is selected based on whether or not the KE

trajectory has access to a curve of jump down knees from which to enter the silent phase

at the switch from ER activity to EP activity (Figure 15). Of course, this access depends

on the time remaining with ER active after KE activates, which in turn depends on all

relationships presented in the previous two subsections. Nonetheless, a numerical exploration

of this timing issue can give a quick, rough idea of which solutions will be favored for a given

input set, an option that would not have been obvious without our analysis. Further, this

analysis provides a framework in which features can be examined thoroughly, which we

harness in the next section.
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Figure 15: Key differentiator. The location of a trajectory at the end of the ER active phase,

relative to hmax, ends up being the key separator in the slow phase plane between inputs

that elicit rostral and those that elicit pocket.

In this section, we derived sufficient conditions on inputs for rostral versus pocket rhythm

selections. We described the slow phase plane framework we developed for this system, and

then we used this framework to derive and illustrate the sufficient conditions on inputs in

both pocket and rostral. We also found a key differentiator between inputs that generate each

rhythm. In the next section, we will reproduce dual-stimulation experiments [16], expand

upon these to make predictions, and provide negative criteria that our collaborators can use

to differentiate between parameter sets in practice.
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2.5 EXPERIMENTS AND SIMULATIONS WITH INPUT SWITCHING

We can test the experimental relevance of our model by trying to simulate some additional

experiments that have been performed involving the rostral and pocket rhythms. Further-

more, now that we understand the dynamic mechanisms underlying each rhythm and the

rhythm selection process, we can understand the outcomes of simulations in these scenarios.

In their 1988 work seeking to further typify scratch and swim behavior, Currie and

Stein [16] explored the presentation of rhythm-specific stimulation during ongoing scratch

activity. For example, while the turtle was exhibiting the rostral scratch pattern (following

stimulation in the rostral body region), stimulation was provided in the pocket body region,

which could eventually lead to a period of blended rhythm, followed by the pocket scratch

(Figure 1, Figure 16).

2134 S. N. CURRIE AND P. S. G. STEIN 

STIM. VPP NERVE WITH 10 Hz TRAINS 

‘I 
STIM- , , ,  

,L --- 
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AM-KE 4 A 

B 

FT-KE 
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HR-KF 

ROSTRAL SCRATCH FOLLOWED BY STIM. VPP NERVE WITH 10 Hz TRAINS 

1 set 

FIG. 10. A VPP stimulus that elicited a pocket scratch in the rested preparation reinitiated rostra1 scratch motor 
output following a naturally elicited rostra1 scratch. A: each of 2 stimulus trains to the VPP nerve (3 pulses, 10 Hz, 5 
V; indicated by inverted triangles) elicited a pocket scratch response in the rested preparation. B: when delivered 
- 1.5 s after a rostra1 scratch evoked by mechanical stimulation of SP2, a VPP stimulus train with the same parameters 
evoked 1 cycle of pure rostra1 scratch. A second VPP train (5 s later) evoked 1 cycle of rostral-pocket scratch blend 
followed by a cycle of pocket scratch, and a third train (after another 6 s) evoked 2 cycles of pocket scratch. 

maximal VPP pulse within 2 s after the cessa- 
tion of the rostra1 scratch motor pattern did 
not evoke any further motor activity. 

Our result with a single maximal VPP 
pulse following a rostra1 scratch motor pat- 
tern differed from results we obtained using 
trains of maximal VPP pulses. These trains 
evoked pocket scratch motor patterns when 
delivered in a preparation that was rested for 
> 1 min (Fig. 1 OA). When such a train of max- 
imal VPP pulses was delivered - 1.5 s after a 
naturally-evoked rostra1 motor pattern, it 
elicited an additional cycle of a rostra1 scratch 
pattern (Fig. 1OB). We observed this in all 
three turtles specifically tested for this effect. 
An additional VPP stimulus train delivered 5 
s later evoked two cycles: the first cycle 
blended characteristics of both the rostra1 
scratch motor pattern and the pocket scratch 
motor pattern and the second cycle displayed 
only the pocket scratch motor pattern. A 
third VPP stimulus train, delivered after an- 
other 6 s, evoked two cycles of pocket scratch 
motor patterns similar to the control re- 
sponses illustrated in Fig. 1 OA. 

DISCUSSION 

Processing of tactile information and cal- 
culation of motor decisions in the spinal cord 
utilize multisecond excitability changes in 
the neuronal circuitry intrinsic to the cord. 
We revealed the time course of these changes 
using single pulses to the VPP cutaneous 

nerve in an immobilized turtle with a transec- 
tion of the spinal cord (Figs. 5-9). Sherring- 
ton (25, 26) obtained similar results in his 
work with electrical stimulation of the scratch 
reflex in the spinal dog. There are many possi- 
ble mechanisms that may contribute to these 
observations, e.g., the single pulse delivered 
in the resting preparation 1) may activate pre- 
synaptic facilitatory processes in the spinal 
pathways that last for several seconds so that 
the effect of the second pulse is to activate 
more neurotransmitter release onto postsyn- 
aptic elements; 2) may activate postsynaptic 
processes, e.g., conductance changes, that de- 
cay over the time course of several seconds 
and summate with the excitability evoked by 
the second pulse; 3) may activate increases in 
the impulse frequency of spinal interneurons 
that last for several seconds. Further work 
with single spinal neuron recordings is re- 
quired to determine which of these mecha- 
nisms are utilized in the sensorimotor con- 
versions of cutaneous inputs into scratch mo- 
tor outputs in both reptilian and mammalian 
spinal cords. 

A second experimental strategy that re- 
vealed multisecond changes in the excitabil- 
ity of spinal cord pathways was the delivery of 
a single maximal pulse to the VPP cutaneous 
nerve within a few seconds after the cessation 
of a pocket scratch motor pattern. Stimulus 
delivery in that time period elicited an addi- 
tional cycle or two of a pocket scratch motor 
response. In contrast, stimulus delivery of the 

Figure 16: Currie and Stein 1988 experiments. Converting a rostral rhythm to a pocket

rhythm. Bottom three traces show MN activity corresponding to KE, HF , and HE, respec-

tively. Initial bouts of activity represent a rostral rhythm with large delay of KE activation

relative to HF . Transient pulse stimulation of the VPP nerve (inverted triangles) eventually

switches the network into a pocket rhythm. Figure source: Currie, S.N., Stein, P.: Electrical

activation of the pocket scratch central pattern generator in the turtle. J Neurophysiol. 60,

2122–2137 (1988) [16]

To reproduce this experiment, we consider the result of an instantaneous switch of inputs.

That is, a rostral input set, Irostral, is given to the system. After several periods, at the end of

a phase of HE activity (as in the experiment), the inputs are switched to a pocket input set,

Ipocket. With both the Standard and Strong Cross-Excitation synaptic weights, this change
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in inputs leads to a similar transition to pocket as seen in the experiment (Figure 17).
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Figure 17: Simulation of Currie and Stein 1988 experiments. A switch from rostral inputs to

pocket inputs, at the time indicated by the arrow, causes the model behavior to transition

from rostral to blended output to pocket. Standard weights were used, with similar results

obtained for SCE weights (not shown). Inputs: Irostral = {iIP = 0.19, iEP = 0.17, iER =

0.19, iIR = 0.17}, Ipocket = {iIP = 0.17, iEP = 0.19, iER = 0.17, iIR = 0.19}.

Our phase plane analysis makes it easy to understand the switch in dynamics. Once

pocket inputs are applied, KE still reaches the SN bifurcation and activates while EP and

HF are active, as in rostral. But the pocket inputs shorten TERactive(I), allowing EP and

hence HE to take over before hKE decays down to hmax. Thus KE remains active when

EP/HE activates, yielding a cycle that blends features of rostral and pocket followed by

rapid convergence to a pocket rhythm.

We also consider the reverse scenario of applying rostral inputs during an ongoing pocket

rhythm. Interestingly, simulations of this manipulation yield different results depending on

whether we use our Standard or SCE synaptic weights. In the Standard set up, interrupting

pocket at the end of an HE cycle with two different input sets, each of which yields a

rostral rhythm when applied to the model in a rest state, induces two qualitatively different

behaviors. In one case, even with the rostral inputs, a rhythm that can be classified as

pocket persists, although HF is active slightly longer than HE, unlike the prototypical

pocket rhythm (Figure 18, top). In the other case, the rostral inputs cause a switch to the

rostral rhythm (Figure 18, bottom).
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Figure 18: Pocket to rostral simulations. Applying rostral inputs during a pocket rhythm

may or may not induce a switch to rostral. A pocket rhythm was induced using Ipocket =

{iIP = 0.17, iEP = 0.19, iER = 0.17, iIR = 0.19}. Inputs were switched at the time indicated

by the arrows to one of two different input sets, each of which evoked rostral from rest. Top:

I1rostral = {iIP = 0.19, iEP = 0.18, iER = 0.19, iIR = 0.18} maintains the pocket rhythm, and

hence uncovers bistability in the system. Bottom: I2rostral = {iIP = 0.19, iEP = 0.17, iER =

0.19, iIR = 0.17} leads to switching behavior as seen in experiments [16].

In the case where pocket persists, we conclude that the rostral inputs that are applied

render the system bistable. These inputs are closer to Ipocket than are other rostral inputs

that do not reveal bistability. In particular, the stronger inputs to IR and EP in the former

case cause an earlier switch from HF to HE, allowing pocket dynamics to be maintained.

In the SCE set up, we only observe bistability when biologically unrealistic inputs are given

to the interneurons and it occurs at fewer input sets than is the cases in the S case. In other

words, the SCE set up suppresses bistability.
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2.5.1 Explanation of bistability (and lack thereof)

The analysis presented in this subsection relies on the framework we develop in Section 2.4.

The selection between the two cases illustrated in Figure 18 essentially comes down to a race

between EP (corresponding to HE) and KE: from the activation of ER/HF , does EP

reach the jump up knee before hKE is able to decay to reach hmax? If EP does activate first,

then the rhythm remains in pocket. If KE reaches hmax first, then a switch to rostral can

occur. The data used to generate Figure 18 indicates that a decrease in iEP promotes this

switch. This idea can be investigated more closely through a series of numerical calculations

of these quantities, with a few approximations motivated by the framework that the slow

phase plane analysis provides.

Heuristically, we can see why SCE would tend to suppress bistability, based on the SCE

synaptic weights (Figure 5). For a pocket rhythm to persist despite rostral inputs, the ER

active phase must remain sufficiently short that EP can activate before hKE drops to hmax

(Figure 15). Because transitions in our networks occur by escape, this requirement means

that EP or IR must be able to activate before the ER stays active too long. In SCE,

however, the weights of synaptic inhibition from ER to IR and excitation from ER to IP

are strong, relative to the S case. These synaptic connections are exactly the ones that would

suppress the activation of EP and IR and thus prolong the ER active phase, causing KE

to jump down with ER and inducing a switch from pocket to rostral.

We next considered a homotopy between the input sets within each parameter regime.

In both the S and SCE parameter cases, λ = 0 corresponds to the pocket inputs and

λ = 1 corresponds to the rostral inputs. In Figure 19, we plot the activation delay of knee

extensor (red) and hip extensor (blue) relative to the activation of hip flexor. Delays that

have negative values correspond to knee extensor synchronizing with hip extensor (pocket),

delays that have positive values correspond to rostral synchrony, and delays that have a 0

value correspond to steady state, non-rhythmic solutions. This helps explain the existence of

bistability in the S case: inputs that lead to rostral synchrony from rest occur at λ = 0.1, 0.2,

and 0.3, very close to the pocket inputs. When these inputs are given to a system already in

pocket, the pocket rhythm may persist. In the SCE case, one may expect similar bistability
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to occur at inputs given by λ = 0.3, and indeed this is seen in simulation. However, such

input values correspond to biologically unrealistic inputs, emphasizing that the existence

of bistability in experiment corresponds to an unrealistic assumption in the set up of our

model. Finally, it is worth noting that the bistability occurs in a much smaller range of inputs

in the SCE case than in the S case, supporting that the SCE setup suppresses bistability.

Additional parameter tuning may be able to eliminate the possibility of bistability entirely,

while still maintaining biologically realistic inputs.

Figure 19: The activation delay of knee extensor (red) and hip extensor (blue) relative to

the activation of hip flexor, as the homotopy parameter λ varies between pocket inputs

(λ = 0) and rostral inputs (λ = 1) in each parameter set S and SCE. Delays that have

negative values correspond to knee extensor synchronizing with hip extensor (pocket), delays

that have positive values correspond to rostral synchrony, and delays that have a 0 value

correspond to steady state, non-rhythmic solutions.

In this section, we reproduced dual-stimulation experiments [16], expanded upon these to

make predictions, and provide negative criteria that our collaborators can use to differentiate

between parameter sets in practice. In the next section, we consider input scaling simulations

to make additional predictions about the relative contributions of excitation and inhibition

to motoneuron duty cycle.
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2.6 PREDICTIONS

The observation that some weight and input parameter sets yield bistability and others do

not offers some potential for making predictions. That is, if bistability is observed experimen-

tally, then we can conservatively state that it should rule out certain parameter combinations

within the underlying rhythm generating circuit, if indeed that circuit is qualitatively repre-

sented by our model. For example, although our simulations were not exhaustive, together

with the heuristic arguments we have provided they suggest that an observation of bistability

of pocket and rostral rhythms in response rostral inputs would represent evidence against

SCE weights, in which both the excitatory and the inhibitory interneurons projecting to HF

are more strongly recruited by rostral stimulation than are the corresponding HE-projecting

interneurons.

More generally, we can also observe that if a single circuit generates both pocket and

rostral rhythms, then one rhythm may be more resistant to input-induced switching than the

other, as we have seen by introducing rostral input during an ongoing pocket rhythm. This is

an important observation: Suppose that two separate modules generated pocket and rostral

rhythms. In that case, introducing a rostral input during ongoing pocket would necessarily

recruit the rostral module, likely perturbing the pocket rhythm in some way that is more

significant than seen in our simulations. Hence, bistability may be used to help distinguish

between these possible rhythm generation frameworks (see also [31]).

Additionally, we can consider the effect of scaling inputs to the interneurons. We consider

what happens in the SCE regime when all four inputs are scaled by the same factor, only

the E inputs (to EP,ER) are scaled by the same factor, or only the I inputs (to IP, IR)

are scaled by the same factor (Figure 20). In the first case (Figure 20, left), we see that

increasing inputs (black to gray) leads to a decrease in active phase length for both KE

and the dominant IN population (namely HE in pocket and HF in rostral) with almost

no change in phase duration for the other population. This result, which is consistent with

the stipulation that phase transitions occur by escape and also with past work exploring

asymmetries in persistent sodium half-center oscillator models [56], [20], represents a testable

prediction. Next, we find that scaling only the inputs to the excitatory INs leads to almost

48



the same changes in active phase durations as occur when all inputs are scaled (Figure 20,

left versus middle), while there is virtually no change in active phase length across different

scalings of the inputs to the inhibitory INs (Figure 20, right). These results indicate that the

escape of the excitatory INs from the silent phase largely controls rhythm frequencies. In

fact, we find that the external input to the inhibitory interneurons can be removed and the

synchrony patterns of the rhythms (but not the delay in rostral) can be maintained (data not

shown), because the excitatory INs still recruit the inhibitory populations to become active.

These predictions are more difficult to test, given that these populations of interneurons have

not yet been identified, but remain for future experimental consideration.
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Figure 20: SCE duty cycles. Effect of input scaling on phase durations in SCE regime.

The black bars represent the durations of the active phases of HE, KE, and HF when the

indicated inputs are uniformly decreased by multiplication by a scaling factor less than one,

just large enough to maintain each rhythm. The gray bars represent the durations of the

active phases of HE, KE, and HF when the scaling factor is greater than one, near the

upper bound for maintaining each rhythm.
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We repeat this experiment with the S regime (Figure 21) and find generally very similar

results. However, it is worth noting that, in the S regime, the changes in active phase

durations across similar scaling is much less than in the SCE regime. Additionally, there is a

much greater change in active phase durations in rostral than in pocket. These differences,

in addition to the bistability observed, may serve to differentiate the S regime from the SCE

regime in practice.
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Figure 21: S duty cycles. Effect of input scaling on phase durations in S regime. The black

bars represent the durations of the active phases of HE, KE, and HF when the indicated

inputs are uniformly decreased by multiplication by a scaling factor less than one, just large

enough to maintain each rhythm. The gray bars represent the durations of the active phases

of HE, KE, and HF when the scaling factor is greater than one, near the upper bound for

maintaining each rhythm.

In this section, we considered input scaling simulations to make additional predictions

about the relative contributions of excitation and inhibition to motoneuron duty cycle.
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2.7 DISCUSSION

It has been postulated that turtle scratching and swimming arise when “behavioral modules”

interact and combine to control “muscle synergies” producing appropriately coordinated mo-

tor outputs [9], but there is a large gap between such an abstract statement and concrete

hypotheses about the neuronal networks involved. While a specific wiring diagram for a

single circuit that could parsimoniously drive both pocket and rostral scratching has been

proposed [5], it is well known that connectivity diagrams alone do not uniquely map to out-

put patterns [1]. We have performed a computational and mathematical study to investigate

whether the proposed unified CPG network, which features only hip-related populations of

interneurons, could indeed be responsible for the generation of two different turtle scratch

rhythms with distinct knee-hip synchrony patterns. Importantly, these patterns are selected

by changing external inputs to the interneurons, with the same synaptic weights between

interneurons, and from interneurons to motoneurons, preserved for both. Through the use of

slow phase plane arguments, we were able to explain how particular phase space and bifurca-

tion structures underlie the generation of the rhythms and to derive sufficient conditions on

these structures that guarantee the existence of stable rhythms. This analysis was possible

due to time scale decomposition and certain model reductions, despite the relative high-

dimensionality of the model system; because our conditions are stated in terms of dynamic

structures, they apply beyond the particular model features, such as a slowly inactivating

persistent sodium current, used in our simulations. Even with model reductions, the synap-

tic variables evolving during each stage of each rhythm were hybrid variables, representing

combined effects of excitatory and inhibitory inputs, which was one unusual aspect of our

analysis.

Past research has focused on several different aspects that arise in multi-functionality,

including the general organizing principles governing CPGs [39, 29], and the notion that

an organism exhibits different motor patterns by selecting different CPGs [34], which may

be collections of burst-capable unit CPGs that each control a set of synergistic muscles

[27]. Similarly, recent experimental work in mice [30] found that the hindlimb locomotor

network is composed of intrinsically rhythmic modules that each drive a pool of motoneurons.
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Consistent with the unit CPG framework, the model that we consider includes separate hip

extensor and hip flexor interneuron pairs (EP and IP , ER and IR); although each individual

population is tonically active in the absence on inputs, each pair can generate bursts through

a mechanism of escape from reciprocal inhibition, consistent with previous related work [31].

Our interneuron network includes fixed interconnections and projections both to antagonist

hip interneurons and to hip motoneurons and is able to generate multiple rhythms under

changes in inputs that alter the relative durations of the unit CPGs, without changing

network connections. In contrast to the unit CPG idea, however, the hip interneurons also

control knee extensor motoneurons in the model. Despite the multi-tasking demanded of

the unit CPGs, we find that the network can generate multiple motor patterns, selected

by tuning the relative strengths of their tonic inputs. That networks of unit CPGs can be

influenced to demonstrate different activity patterns is not surprising, given the wide variety

of activity patterns that can be elicited from a single neuron [17, 18], but the idea that CPGs

for one unit can also be harnessed to control the timing of another joint is relatively novel.

Although this idea makes sense in terms of efficient use of neuronal resources, evolutionary

principles, and the observation that individual interneurons are active during multiple forms

of activity [4], it remains to be determined whether this framework offers enough robustness

for functional rhythm generation.

A distinctive feature of one of the rhythms considered, the rostral scratch, is a delay in the

onset of KE motoneuron activity relative to HF onset. While synchronization ([58, 24]) and

near-synchronization [8] in networks of planar neuron models with strong synaptic coupling

has been well studied, the delay we consider appears to be novel. This delay significantly

restricts the choices of synaptic weights to KE for which both rhythms can be elicited. The

resulting phase plane structure leads us to observe that, given that the sufficient conditions

on synaptic weights hold, the rhythm selected by a particular input set is largely determined

by the position of the slow variable coordinate of a particular trajectory segment relative to

a key value hmax at the termination of ER activity (Figure 15).

Unfortunately, from an experimental point of view, the specific rhythm generation con-

ditions in our model are not accessible for many reasons, starting with the fact that the

interneuron populations in the CPG have not been identified. However, our analysis yields
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the observation that in the framework we have considered, the KE motoneuron must acti-

vate slightly before the HE during the pocket rhythm, and this is exactly what is observed

experimentally [22], which offers some validation for our approach. Furthermore, simulation

of the model can help guide future experiments. In particular, the model network can exhibit

bistability to rostral scratch inputs for some of the parameter values considered, which seems

unlikely to arise with separate pocket and rostral generation modules (see also [31]). Thus,

future experiments to explore this form of bistability could be useful. The slow phase plane

approach that we have presented provides a framework that can be used to make predictions

about specific experiments and to explain the mechanisms underlying observed outcomes.

Our simulations also predict that changes in inputs to the CPG that are not strong enough

to destroy an ongoing rhythm will alter the active phase durations of the hip MN that is

dominant in that rhythm and of the knee extensor MN while leaving the other hip MN

activity period almost entirely unchanged, and that these changes are controlled by the ex-

citatory INs in the CPG. These outcomes likely result from the underlying assumption that

activity transitions in our model occur through escape [69, 56], based on past experimentally

constrained work modeling turtle motor CPGs [31], and alternative transition mechanisms

should be considered if these predictions are falsified in future experiments.

During rostral scratching, hip extensor deletions can occur [66, 62]. In these deletions,

hip extensor is silent while knee extensor behavior is entirely preserved (synchrony with hip

flexor after a delay, periods of full activity and full quiescence); hip flexor fails to shut down

fully during its quiescent period, as during normal rostral. This lack of quiescence presumably

results from the absence of inhibition from hip extensor related motor pools. These deletions

occur unpredictably in some preparations, although the frequency can be increased through

particular experimental techniques [62]. Due to a combination of the proposed architecture

and the use of deterministic differential equations to describe population behavior, it is not

possible to reproduce this behavior fully in our model. The only way to shut down hip

extensor behavior in both the standard and strong cross-excitation architectures, by only

changing inputs and without changing synaptic weights from interneuron motor pools to the

hip extensor (which would be a trivial but non-biological solution), is by decreasing input

to IR and EP until oscillations are lost (Figure 2). While this does lead to tonic activity
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in hip flexor as desired, it also leads to tonic activity in knee extensor. One possible way

to resolve this issue is to suppose that an additional source of inputs, not included in our

model, provides enough inhibition to shut down knee extensor motoneurons while ER input

is low. A need to invoke additional inputs to explain deletions suggests that hip-related

motor pools may account for synchrony and relative timing of scratch rhythms but may not

be sufficient to fully capture all motor behaviors observed. Although experiments suggest

that inputs to knee extensor motoneurons are hip-related, it may be that knee motor pools

(as in the standard UPG approach to rhythm generation) are present in a secondary role

and that interneurons related to knee flexor activity provide inhibition that contributes to

the termination of knee extensor activity. Alternatively, stochasticity may need to be taken

into account to capture the full range of scratch rhythm phenomenology [38, 36]. Certainly,

our model could be expanded to include additional neuron pools or stochastic mechanisms.

Additional experimental work to constrain the mechanisms underlying deletions would be

beneficial to help guide efforts in this direction.

It has been suggested that oscillations underlying turtle motor rhythms may be driven by

concurrent excitation and inhibition, based on analysis of data showing that the estimated

synaptic conductances for excitation and inhibition to turtle motoneurons oscillate in phase

[3]. It is worth noting, however, that for the most part, neither the type (hip extensor, hip

flexor, and so on) of motoneurons from which recordings were obtained nor the source of

synaptic inputs was identified, so it is hard to know how to interpret these results. Past

reviews [29] hypothesize that this may be an artifact of the experimental setup or a feature

unique to motor pattern generation in turtles (as opposed to say mammals). These find-

ings contrast with the traditional reciprocal model in which motoneurons receive synaptic

excitation and inhibition in antiphase [56, 62], as imposed by the mutual inhibition between

EP and IP and between ER and IR in our model network. Note that we chose this mu-

tually inhibitory structure on experimental grounds: It has long been established that HE

is active together with its excitatory motor pool of interneurons, EP ; additionally, HE and

HF activate in antiphase (Figure 1)[50]. The simplest way to meet these benchmarks is for

EP to be active with IR and ER with IP , as imposed by mutual inhibition. Nonetheless,

it would be interesting to explore how stochastic effects might allow multi-functionality of
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a rhythm generating circuit despite less segregated excitatory and inhibitory inputs to its

motoneurons, especially since rhythm generation in several other CPG circuits involves some

mixture of reciprocal and concurrent excitation and inhibition (see references in [62]).

Another important future challenge will be to bring this work together with other previ-

ous modeling efforts [31] to develop a system capable of generating all four observed motor

patterns, forward swim and rostral, pocket, and caudal scratch. One possible approach

would be the use of genetic algorithms to derive optimal CPG network structures [15, 2] or

to determine parameter values necessary to coordinate multiple CPGs to generate multiple

rhythms [34]. It is not clear what would constitute a practically useful objective function for

a genetic algorithm approach, however. Including more of the known details about the ionic

currents in turtle motoneurons [7] would be another way to tie our modeling more closely to

the biology of turtle motor rhythms in future works.
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3.0 STOCHASTIC SIMULATIONS OF TURTLE SCRATCH RHYTHMS

In the previous chapter, we introduced a deterministic relaxation oscillator based model for

generating two different turtle scratch rhythms. We used dynamical systems tools to derive

sufficient conditions for rhythm selection by inputs to a single network. Using insights from

this analysis, we were able to make several testable predictions for use by experimentalists.

The deterministic approach allowed the use of a well-established mathematical framework

to derive sufficient conditions on parameters for the generation of multiple rhythms. How-

ever, due to the difficulty of identifying the interneurons involved in rhythm generation

in vertebrates, the significant assumptions underlying the architecture used are potentially

unrealistic. In particular, for the sake of tractability, strict antiphase relationships in the

activity patterns of excitatory and inhibitory interneurons in the CPG were assumed in

the analysis presented in Chapter 2. Some experimental results have proposed that such

relationships are not the case during rostral scratching [51].

In this chapter, we present simulations from a second model of turtle scratching be-

havior. Experimental results regarding changes in the firing rate of motoneurons cannot

be reproduced by a relaxation oscillator model, and these experimental findings motivate

the introduction of a spiking model with stochasticity [5]. Previous authors (Figure 2 [5])

proposed that hip-related interneurons also provide input (or even control) knee extensor

motoneurons. Using this stochastic spiking model, we explore the transformation of hip in-

terneuron signals with prescribed properties into knee extensor motoneuron output signals.

Non-exhaustive simulations exploring the relative roles of different parameters in the model

are presented as well.

In Section 3.1, we provide an overview of experimental results that motivate our stochas-

tic spiking model, and we summarize the features we our model must reproduce. The details
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of our model and the parameter regimes we consider are presented in Section 3.2. In Section

3.3, we show that our model produces rhythms that meet our experimental benchmarks from

Section 3.1, and we show by example that the inclusion of noise improves the rhythms our

model produces. In Section 3.4, we use our model to make predictions about the relative

importance of excitation and inhibition to rhythm generation. We explore the impact of

different model parameters in Section 3.5 and use these explorations to make suggestions

for future avenues for experimentalists. In the discussion, Section 3.6, we summarize our

results and provide future avenues for research. We end in Section 3.7 with a summary of

the mathematical methods used in this chapter.

3.1 EXPERIMENTAL BACKGROUND

The relaxation oscillator model introduced in Chapter 2 can only reproduce experimental

results regarding active versus silent behavior. A different model must be used to investigate

rate changes in motoneuron spiking under different conditions. For example, research per-

formed by Berkowitz and Stein in 1994 [5] demonstrates that most motoneurons ‘generated

spikes at a higher rate when they were active with weaker rhythmic modulation.’ Their

figure demonstrating this is reproduced here, Figure 22. “Unit” refers to a descending pro-

priospinal axon. “VP-HP” is the ipsilateral hip flexor muscle nerve. When the unit fires at

a higher frequency (Unit Freq. Aa in Figure 22), its activity is less modulated (Unit number

1 Aa). The hip muscle nerve, VP-HP is still rhythmic and would correspond to the activity

of HF in our simulations. As the frequency of the unit decreases (Ab, Ac), the activity

of the unit becomes more modulated, and the hip muscle nerve experiences shorter active

durations. Berkowitz and Stein propose two different reasons for this result:

(E1) The activity of the observed neurons had saturated at peak firing rate and additional

rhythmic depolarization would not affect the firing rate.

(E2) Rhythmic inhibition is more important than rhythmic excitation in generating the

turtle scratch rhythms and thus whenever a motoneuron receives ‘a greater proportion

of inhibition, it fires at a lower rate but with stronger rhythmic modulation.’
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Testing this result motivates the introduction of a second stochastic spiking model so

that rate differences of motoneuron spiking can be better understood. In such a framework,

the relative contribution of the rhythmicity of excitatory and inhibitory inputs to motoneu-

rons can be explored. Additionally, the relaxation oscillator model presented in Chapter 2

relies very heavily on the assumption of strict antiphase relationships in the activity patterns

of excitatory and inhibitory interneurons in the CPG. While this is a traditional simplifying

assumption that does not necessarily contradict experimental observations, there is signifi-

cant early work [50, 51] suggesting that there may be temporal overlap during some (but not

all) of the rhythm period, see Figure 23. In particular, it was observed that in rostral, knee

extensor may receive contemporary excitation and inhibition prior to activation, excitation

during the active phase, and inhibition following the active phase. Pocket is characterized

by the traditional antiphase relationships between excitation and inhibition used previously.

Some more recent work [3] has found that motoneurons may actually experience concurrent

excitation and inhibition throughout scratch rhythms, although the motoneurons in this

work were not type-identified.

To summarize the experimental features we wish to reproduce:

• Motoneurons experience lower firing rates but increased rhythmic modulation in the

presence of a greater proportion of inhibitory inputs, Figure 22.

• HF and HE activate in antiphase and do not receive temporally overlapping excita-

tion and inhibition in pocket. They do receive temporally overlapping excitation and

inhibition in rostral, Figure 23.

• KE is activated and terminates with HE in pocket. KE is activated and terminates

with HF with a delay in onset in rostral.

Therefore, in this chapter, we use computational methods and numerical simulations to

examine possible patterns of interneuron activity to the knee extensor motoneurons that are

consistent with timing of knee extensor activation in pocket and rostral rhythms. We also

consider the potential roles of stochasticity and the question of whether noise is required to

achieve the pocket and rostral rhythms with overlapping excitatory and inhibitory inputs to

motoneurons.
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Figure 8. Relationship between a unit’s mean firing rate and the strength of rhythmic modulation of the unit’s activity for different sites of 
stimulation. A, Concurrent recordings of a descending propriospinal axon and the ipsilateral VP-HP muscle nerve, showing the association between 
lower unit firing rates and stronger rhythmic modulation of the unit’s activity, for three stimulation sites: a, SP2; 6, femoral 0; c, femoral 8. UNIT 
FREQ.. instantaneous firing rate of recorded unit. B, Relationship between unit mean firing rate and unit mean vector length at all sites of 
stimulation, for the unit shown in A; points labeled u-c indicate the values for the sites stimulated in Aa-Ac, respectively. W, ipsilateral sites; 0, 
contralateral sites. The correlation coefficient was -0.80. C-E, Relationship between unit mean firing rate and unit mean vector length at all sites 
of stimulation, for three other descending propriospinal neurons. The correlation coefficients for C, D. and E, respectively, were -0.77, -0.98, 
and -0.84. Error bars in B-E indicate the SEM. See Berkowitz and Stein (1994b) for description of mean firing rate calculation. 

generation of these two forms of scratching also may be largely findings and shows how hip control-related neurons alone could 
overlapping. In fact, since the same recorded neurons were create appropriate knee-hip synergies during these two forms 
broadly tuned to regions of the body surface and were rhyth- of fictive scratching. The key elements of this model are four 
mically activated during the two forms of fictive scratching, sets of propriospinal neurons: “excitatory pocket scratch neu- 
single propriospinal neurons may contribute to both selection rons” (EPs), “inhibitory pocket scratch neurons” (IPs), “excit- 
and generation of both rostra1 scratching and pocket scratching. atory rostra1 scratch neurons” (ERs), and “inhibitory rostra1 

The model illustrated in Figure 9B incorporates both of these scratch neurons” (IRS). (The model also includes several sets of 

Figure 22: Relationship between a motoneuron unit’s mean firing rate and the strength of

rhythmic modulation of the unit’s activity for different sites of stimulation. A, Concurrent

recordings of a descending propriospinal axon and the ipsilateral VP-HP (hip flexor) muscle

nerve, showing the association between lower unit firing rates and stronger rhythmic mod-

ulation of the unit’s activity, for three stimulation sites: a, SP2; b, femoral 0; c, femoral

8. UNIT FREQ. instantaneous firing rate of recorded unit. Figure source: Berkowitz, A.,

Stein, P.: Activity of descending propriospinal axons in the turtle hindlimb enlargement

during two forms of fictive scratching: phase analyses. J Neurosci. 14(8), 5105–5119 (1994)

[5]
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Figure 23: Schematic comparing voltage changes in knee extensor (KE), hip flexor (HF), and

hip extensor (HE) motoneurons during rostral and pocket scratch. Motor pattern depicting

timing of corresponding motor pool is shown at the bottom of each panel. Firing thresholds

are shown as dotted horizontal line. I and E indicate synaptic inputs to motoneurons derived

from data. Letters in parentheses indicate sign of synaptic drive predicted from preliminary

observations. A, voltage changes during rostral scratch show similarity in quality of knee

extensor and hip flexor voltage trajectories with difference in onset of firing. Hip flexor and

hip extensor traces shown as near-mirror images. Prior to knee extensor activation, knee

extensor and hip flexor are found to receive contemporary excitation and inhibition. The

cessation of inhibition theoretically allows knee extensor to fire with a delay in onset. B,

voltage changes during pocket scratch show synergy between knee extensor and hip extensor

motoneurons, with antagonist drive to hip flexor motoneuron. Figure source: Stein, P.,

Robertson, G.: Synaptic control of hindlimb motoneurones during three forms of the fictive

scratch reflex in the turtle. J Physiol. 404(1), 101-128 (1988) [51]
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In this section, we summarized experimental results that motivated our implementation

of a stochastic spiking model for turtle scratching, and we identified a series of features that

a successful model will reproduce. In the next section, we will present the architecture we

implement, provide a mathematical description of neurons in our model, and describe the

parameter sets we use in simulations.

3.2 MODEL DESCRIPTION

A possible motor CPG architecture differing from the traditional unit burst generator view

was proposed based on experimental results on turtle scratching rhythms [5]. Our implemen-

tation of their architecture for this model is given in Figure 24. Each hip motoneuron has its

own excitatory and inhibitory pools of interneurons: hip flexor corresponds to ER (excita-

tory) and IR (inhibitory), hip extensor to EP (excitatory) and IP (inhibitory). Berkowitz

and Stein [5] found strong experimental justification for a network that uses only hip-related

interneuron populations to generate the correct knee-hip synchrony patterns found in rostral

and pocket scratch (supported by our findings outlined in Chapter 2). Based on experimental

findings, some preliminary assumptions are: hip extensor activates during activation of its

excitatory motor pool EP and terminates during activation of its inhibitory motor pool IP ,

and hip flexor activates during activation of its excitatory motor pool ER and terminates

during activation of its inhibitory motor pool IR [50, 51].

Rather than implement all connections among the interneurons in this model (grey con-

nections in Figure 24), we prescribe their outputs and model their connections to the mo-

toneurons (black connections). This allows exploration of more general synchronization

properties and requirements rather than modeling the strong internal dynamics of popula-

tions. This also leads to the possibility of more experimentally tractable findings: many

of our conclusions will focus strictly on inputs to the motoneurons, rather than the inputs

to the hypothetical (and as yet unidentified) interneurons used in the model in Chapter 2.

Indeed, this is in keeping with recent work [38] demonstrating that in a simplified setting,
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strong synaptic correlations may play a larger role in turtle scratch rhythm generation than

strong intrinsic dynamics.

EP ER IR 

HE KE HF 

IP 

Figure 24: Architecture for the stochastic spiking model. The gray connections among

the interneurons represent those implemented in the previous chapter. In this model, only

the output from the interneuron layer to the motoneurons is implemented, shown as black

connections.

We model the interneuron output as follows. In a particular rhythm (rostral or pocket),

one side of the network (ER/IR or EP/IP ) would be more strongly stimulated than the

other; for example, ER and IR in rostral. The synaptic output of the stimulated side is

modeled as a sine wave - the output is waxing and waning periodically to be consistent with

some of the gradual changes in hypothesized inputs to motoneurons shown in Figure 23. The

results from this choice are similar to those obtained when the stimulated side is modeled

as a series of spikes arriving deterministically at a rate given by a sine wave. Modeling the

synaptic output as a sine wave directly (instead of such a spike train) is more analytically

tractable. The motivation is that the stimulated side is bursting strongly, overcoming any

natural noise in the synapse. We will often refer to the stimulated side as the deterministic

side. The non-stimulated side (or stochastic side) is modeled as a series of pulses, arriving in

time as an inhomogeneous Poisson process with a rate λ(t), also a sine wave. (See equations

(3.1), (3.2), (3.3)). The non-stimulated side fires more sporadically than the stimulated side,

but its output still presumably varies periodically over time since the non-stimulated hip
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motoneuron still exhibits rhythmic activity. Because hip extensor and hip flexor must be in

antiphase, we do consider EP and ER to be in antiphase with each other. Similarly, IP

and IR are in antiphase with each other. We introduce a parameter to represent the phase

shift between IR and ER, φ. An example of such interneuron output is shown in Figure 25,

top. The averages over 5000 trials for sIP (t) and sEP (t) are given in Figure 25, bottom.

Figure 25: Top: Typical interneuron output for the rostral case with φ = π/2 for clear visual

separation. The traces labeled ER, IR, EP , IP are sER(t), sIR(t), sEP (t), sIP (t) in equation

(3.2). The peaks of excitation are in antiphase and the peaks of inhibition are in antiphase.

Bottom: The average over 5000 trials for sIP (t) and sEP (t), labeled IP and EP respectively.

.
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Mathematically, the motoneurons are modeled as leaky integrate-and-fire (LIF) neurons:

τKE ˙VKE = µ− VKE + (gIP sIP + gIRsIR)(Vinh − VKE)

+(gEP sEP + gERsER)(Vexc − VKE)

τHE ˙VHE = µ− VHE + gIP sIP (Vinh − VHE) + gEP sEP (Vexc − VHE)

τHF ˙VHF = µ− VHF + gIRsIR(Vinh − VHF ) + gERsER(Vexc − VHF )

Vt− = 1 =⇒ Vt+ = −1

(3.1)

where τi is the time constant for population i, Vi denotes population activity for popu-

lation i, µ is the leak reversal activity, gj denotes synaptic weight from population j, and sj

denotes synaptic output from population j as described in Figure 25. All synaptic inputs are

defined with gj > 0; whether a synaptic input is excitatory or inhibitory is determined by

its reversal potential Vinh, Vexc. There are times when it is more convenient to indicate the

synaptic weight from the excitatory stochastic population more generally, gstochE, meaning

gER in pocket and gEP in rostral. Similarly, gstochI is a convenient term for gIR in pocket

and gIP in rostral, gdetE for gEP in pocket and gER in rostral, and gdetI for gIP in pocket and

gIR in rostral. Values of gj are varied and are discussed as they arise in our analysis.

For rostral:

sIP (t) =
∑

ti
δ(t− ti)

sEP (t) =
∑

te
δ(t− te)

sIR(t) = λmidI + λmidI sin(2πft+ φ)

sER(t) = λmidE + λmidE sin(2πft)

λI(t) = λmidI + λmidI sin(2πft+ π + φ)

λE(t) = λmidE + λmidE sin(2πft+ π)

φ = π/2

(3.2)

where ti (te) are the spike times of the inhibitory (excitatory) inhomogeneous Poisson process,

arriving at a rate λI(t) (λE(t)). λmidE,I are the parameters used to control the total amplitude

of the sine waves. λmidE,I vary and are discussed throughout our analysis.
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For pocket:

sIP (t) = λmidI + λmidI sin(2πft+ φ)

sEP (t) = λmidE + λmidE sin(2πft)

sIR(t) =
∑

ti
δ(t− ti)

sER(t) =
∑

te
δ(t− te)

λI(t) = λmidI + λmidI sin(2πft+ π + φ)

λE(t) = λmidE + λmidE sin(2πft+ π)

φ = π

(3.3)

Handling the Poisson spikes takes some care, due to the required integration of δ(t)V (t)

terms on the right hand side of equation (3.1). δ spikes are treated as short rectangular

pulses to be integrated over. This translates to a voltage change from V to V + ∆V on a

time step during which a stochastic arrival time t occurs.

To calculate ∆V , consider the arrival of a single rectangular pulse of height g at time

t, lasting from time t to time t + t̂. Then the differential equation τV ′ = g(Vrev − V )

is integrated to examine the effect of the pulse on voltage. Solving this first order linear

differential equation gives ∆V = V (t + t̂) − V (t) = (1 − e− gt̂τ )(Vrev − V ). Taking the limit

as t̂ → τ to represent a δ function, we get that the effect of a single pulse has the effect

of changing the voltage from V to V + ∆V on a time step during the pulse occurs, for

∆V = (1− e−g)(Vrev − V ).

3.2.1 Synaptic parameter regimes

We consider two qualitatively different parameter regimes: a Symmetric regime in which

multi-functionality can be examined, and an Asymmetric regime in which recruitment of

knee extensor can be more broadly explored. Special focus is given to the behavior of knee

extensor because it is more complicated than either hip motoneuron, receiving four over-

lapping synaptic inputs rather than two. Rostral is taken as a starting point over pocket

because the relationship among the interneurons appears more complicated due to the exci-

tation and inhibition overlap suggested by Figure 23, and because the delay in knee extensor

onset relative to hip flexor has historically been a more difficult feature to capture [31, 57].
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To switch between pocket and rostral rhythms in either regime, synaptic weights are not

changed; rather, it is only the phase relationship of the interneurons φ, and the pair classi-

fied as deterministic or stochastic that changes: ER and IR are considered deterministic in

rostral with φ = π/2, and EP and IP are considered deterministic in pocket with φ = π

(equations (3.2) and (3.3)). The effects of phase are examined in section 3.5.2.

Symmetric regime First, assume the connections in the network are symmetric (synap-

tic parameters from ER/IR are the same as from EP/IP ) and do not change when the

animal switches between pocket or rostral rhythms. The synaptic weights to knee exten-

sor are gER = gEP = 0.8, gIR = gIP = 0.2, with λE,I(t) oscillating between 0 and 1. The

synaptic weights are chosen such that for the rostral shift used, φ = π/2, the deterministic

inputs alone (ER and IR) are not sufficient to allow knee extensor to spike. This case uses

τKE = τHE = τHF = 1.7. The time constant can be decreased to 1 in the case of higher

frequency input signals to the motoneurons.

To thoroughly examine the role of noise, we also consider the following scenario: the

spike rate of the stochastically modeled side is switched on from 0 at a set time, after which

spikes are generated by a homogeneous Poisson process with constant rate λE,I(t) = λmidE,I .

This is demonstrated in Figure 32.

Asymmetric regime Second is the case of an asymmetric network. This has very

low synaptic weights to KE from the stochastic pair gstochE = 0.026, gstochI = 0.0026, with

λE,I(t), oscillating between 0 and 10. The synaptic weights from the deterministic pair

are selected so that KE is as close as possible to the spiking threshold in rostral, but not

able to cross in the absence of stochastic inputs, gdetE = 0.827, gdetI = 0.199. That is, in

rostral gER = 0.827, and in pocket gER = 0.026. The weights from the other populations of

interneurons to knee extensor also change between the two rhythms. Therefore, the network

is not the same for each rhythm. However, we include this case because it is also capable of

generating correct pocket and rostral rhythms. We use τKE = τHE = τHF = 1, although the

time constants used in the Symmetric case do give reasonable rhythms. Finally, stochastic

inhibition plays a relatively weaker role than in the Symmetric, although it is possible to

raise its impact and still find successful parameters (see section 3.5.1).
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In this section, we presented the architecture we implement, provided a mathematical

description of neurons in our model, and described the parameter sets we use in simulations.

In the next section, we will present baseline simulations that show our model is capable of

producing both the pocket and the rostral scratch rhythms, and that the inclusion of noise

in our model improves the quality of rhythms produced.

3.3 NOISE IMPROVES QUALITY OF RHYTHM GENERATION

We show by direct comparison that not only is this model capable of producing the pocket

and rostral rhythms, but also that the inclusion of noise improves the quality of such rhythms.

Recall, the experimentally derived benchmarks for successful rhythms are:

• HF and HE activate in antiphase and do not receive temporally overlapping excita-

tion and inhibition in pocket. They do receive temporally overlapping excitation and

inhibition in rostral, Figure 23.

• KE is activated with HE in pocket. KE is activated with HF with a delay in onset in

rostral.

. We no longer require that HE and HF have the relative durations shown in Figure 1.

We examine qualitatively different types of noise (homogeneous and inhomogeneous Poisson

processes), as well as the effects of removing the stochasticity from the spike trains of the

stochastic side.

Symmetric regime Successful examples of the pocket and rostral rhythms can be

seen in Figure 26. In subsequent numerical experiments, lower frequency inputs to the

motoneurons are considered in order to make the system more amenable to analysis. The

effects of frequency are detailed further in section 3.5.3.

Beginning with the pocket rhythm (EP, IP deterministic, ER, IR stochastic, equation

(3.3)), the strongly antiphase nature of the interneurons means the deterministic populations

dominate the stochastic, and KE displays synchrony with HE with no delays, as desired

(Figures 1, 26 top, and 27). Rostral, (ER, IR deterministic, EP, IP stochastic, equation
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(3.2)) exhibits more interesting behavior. Recall, the deterministic synaptic weights of gER =

0.8, gIR = 0.2 are not sufficient to elicit firing without additional stochastic inputs. The early

spiking (beginning around t = 600ms) of EP allows robust, early firing from knee extensor,

giving a rostral rhythm with a delay (Figure 28). There is one notable issue in these and

subsequent figures: in pocket, HF is active longer than HE; in rostral HE is active longer

than HF . This could likely be improved with different modulation of inputs.

Figure 26: Basic simulation results of equation (3.1) and: equation (3.3) for pocket (top),

equation (3.2) for rostral (bottom) with the Symmetric parameter regime. Note that the

relative timing and durations of activity in the simulation match the recordings in Figure 1,

with the exception of HE and HF relative durations.
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Figure 27: Simulation results of equations (3.1) and: (3.3) for pocket rhythm at a lower

frequency than in Figure 26 in the Symmetric parameter regime.

Figure 28: Simulation results of equation (3.1) and (3.2) for rostral rhythm at a lower

frequency than in Figure 26 in the Symmetric parameter regime.
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Stochasticity plays a key role in the rhythm generation when the motoneurons are mod-

eled as leaky integrate-and-fire neurons rather than as the relaxation oscillators used in

Chapter 2. To compare, the inhomogeneous Poisson process generating the stochastic spike

trains is replaced with deterministic sinusoidal interspike intervals. In pocket (Figure 29 left),

this leads to slightly delayed onset of KE with respect to HE, early termination of KE with

respect to HE, and an incredibly short active phase of HF . In rostral (Figure 29 right), this

change leads to termination of KE activity early relative to HF , no delay in onset of KE

with respect to HF , and an incredibly short active phase of HE. In both rhythms, there is

also an undesirably long period of complete motoneuron quiescence between the termination

of hip flexor and the start of hip extensor activity.

Figure 29: Impact of removing noise from spike trains of stochastic interneuron populations.

Simulation results of equation (3.1) and: equation (3.3) for pocket (left), equation (3.2) for

rostral (right) in the Symmetric parameter regime. The stochastic interneuron populations

in each rhythm have deterministic sinusoidal interspike intervals in this simulation.

We quantify the improvement that the inclusion of noise provides in Figure 30: his-

tograms over 10000 trials for knee extensor activation (left) and termination (right). Figure

30 also includes labels of the times of activation and termination for hip flexor, activation

and termination for knee extensor when noise is removed from the spike trains of stochastic

interneuron populations (Figure 29, right), and the mean time of knee extensor activation

and termination in the presence of noise. The inclusion of noise increases the delay in knee
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extensor activity relative to hip flexor. More notably, the inclusion of noise causes knee

extensor to terminate activity both later and closer to the termination of hip flexor activity.

Figure 30: Impact of removing noise from spike trains of stochastic interneuron populations

during the rostral rhythm. Left: histogram over 10000 trials for knee extensor activation.

The mean activation time of knee extensor is labeled in black. The activation times for

hip flexor and for knee extensor when noise is removed from the spike trains of stochastic

interneuron populations (Figure 29, right) are labeled in red. Right: histogram over 10000

trials for knee extensor termination. The mean termination time of knee extensor is labeled

in black. The termination times for hip flexor and for knee extensor when noise is removed

from the spike trains of stochastic interneuron populations (Figure 29, right) are labeled in

red.

We also consider the case of completely deterministic inputs: four sine waves with synap-

tic weights and amplitudes as in the symmetric parameter regime. This case is shown for

pocket (top) and rostral (bottom) in Figure 31; note that knee extensor does not fire in

either. It is possible to tune the amplitudes of the sine waves and the synaptic weights such

that knee extensor fires. However, in these cases, at least one of the hip motoneurons fails to

fire. Therefore, it does not appear that strictly deterministic inputs such as these are capable

of producing motoneuron rhythms that meet the features of a successful rhythm outlined in

Section 3.1.
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Figure 31: Impact of removing noise from spike trains of stochastic interneuron populations.

The stochastic interneuron populations in each rhythm havebeen replaced with strictly de-

terministic sine waves.

We now consider the case of a step homogeneous Poisson process. In this scenario, the

spike rate of the synaptic drive from the stochastic side is switched on from 0 at a set

time, after which spikes are generated by a homogeneous Poisson process with constant rate

λE,I(t) = λmidE,I . In rostral there are only KE spikes once the stochastic excitation (EP )

has turned on (Figure 32, left). That is, the deterministic inputs are sufficient to get knee

extensor close to the firing threshold, but the step of stochastic excitation is necessary to

fire. The delay in onset of knee extensor relative to hip flexor is too long, and the firing
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of hip extensor is too sparse. Pocket displays both a delay in onset and early termination

for knee extensor, making this an undesirable rhythm (Figure 32, right). Similarly to the

inhomogeneous Poisson process case, removing noise and modeling the interneurons as spike

trains with deterministic interspike intervals fails to generate correct rhythms.

Figure 32: Effect of a step homogeneous Poisson process. Simulation results of equation

(3.1) and: equation (3.3) for pocket (left), equation (3.2) for rostral (right) in the Symmetric

parameter regime. The stochastic interneuron populations in each rhythm have spike times

generated by a homogeneous Poisson process of rate λmidE , λmidI .

Asymmetric case This case shows that several qualitatively different regimes of in-

terneuron output can produce the rhythms without having to adjust φ. Hence, it is the

general features of the interneuron outputs that lead to rhythm generation, rather than a

special set of parameters. Specifically, it is the relative phase of the outputs φ that dictates

rhythm selection.

As in the symmetric network case, inhomogeneous Poisson processes lead to the most

successful pocket and rostral rhythms, Figure 33. In pocket (top), the durations of HE and

KE are shorter and the duration of HF is longer in this case than in the Symmetric case.

In rostral (bottom), the durations of HF and KE are shorter and the duration of HE is

longer in this case than in the Symmetric case. Both of these impacts are due to the higher

values achieved by λI(t) in the Asymmetric case.
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Figure 33: Basic simulation results of equation (3.1) and: equation (3.3) for pocket (top),

equation (3.2) for rostral (bottom) with the Asymmetric parameter regime. Note that the

relative timing and durations of activity in the simulation match the recordings in Figure 1

with the exception of HE and HF relative durations.

Replacing the inhomogeneous Poisson process generating the stochastic spike trains with

simply sinusoidal interspike intervals (with no noise) leads to failures similar to those observed

in the Symmetric case. Step homogeneous Poisson processes are more successful in the

asymmetric network case than they were in the symmetric case. However, there are still
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issues with the rhythms generated: undesirably long periods of total motoneuron quiescence

and the activity of knee extensor is shortened too much.

In this section, we presented baseline simulations that show our model is capable of

producing both the pocket and the rostral scratch rhythms, and that the inclusion of noise

in this spiking model improves the quality of rhythms produced. The choice of the spiking

model used in this chapter, rather than the relaxation oscillator model used in Chapter 2,

allows the investigation of experimental results that the relaxation oscillator model was ill-

suited for, such as those depicted in Figures 22 and 23. In the next section, we will analyze

our model’s capability of reproducing the results depicted in Figure 22, and we will explore

biological explanations for our findings.

3.4 PREDICTIONS

The rhythmic modulation of motoneurons results shown in Figure 22 were a key part of our

choice to implement a stochastic spiking model. Recall, research performed by Berkowitz

and Stein [5] found that motoneurons display a lower firing rate in response to inputs with

greater rhythmic modulation. They proposed two different reasons for this result:

(E1) The activity of the observed neurons had saturated at peak firing rate and additional

rhythmic depolarization would not affect the firing rate.

(E2) Rhythmic inhibition is more important than rhythmic excitation in generating the

turtle scratch rhythms and thus whenever a motoneuron receives ‘a greater proportion

of inhibition, it fires at a lower rate but with stronger rhythmic modulation.’

Our results to this point have had λmidE = λmidI , equal modulation of excitation and inhibition.

We investigate (E1) as a possible explanation by increasing λmidE while λmidI = 0.5 remains

fixed. As λmidE varies, we average over 1000 trials to calculate both the active duration and the

average firing rate while active for knee extensor and the hip motoneurons in each of pocket

and rostral. The results for knee extensor in rostral are shown in Figure 34 (top). The firing

rate increases without saturating. The same behavior is observed for both hip motoneurons
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in rostral and in pocket. By λmidE = 1.5 the rhythm is no longer successful, shown in Figure

34 (bottom): KE activates before HF rather than with a delay, KE terminates after HF

terminates, and HE activates during HF ’s active phase rather than in antiphase. Therefore,

(E1) is not supported by this model: as λmidE is increased, the model produces rhythms that

do not meet all of the features required for success (outlined in Section 3.1) before firing

rates saturate. This lack of saturation is a prediction of the model as it is posed here.

Figure 34: Impact of varying excitatory modulation on knee extensor in rostral. Top:

Changes in knee extensor active duration as λmidE is increased, averaged over 1000 trials.

Middle: Average firing rate of knee extensor while active as λmidE is increased, averaged over

1000 trials. Note that the firing rate does not saturate. Bottom: A simulation of the rostral

rhythm with λmidE = 1.5.
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We examine (E2), the impact of a motoneuron receiving a greater proportion of inhibition

than of excitation, in the same way. λmidI is increased while λmidE = 0.5 remains fixed. We

again measure active duration and average firing rate while active for each motoneuron,

each averaged over 1000 trials. The results for knee extensor in rostral are shown in Figure

35 (top). The results for all other cases are qualitatively similar. As λmidI increases, the

active duration and average firing rate both decrease as they did in experiment, Figure 22.

We also show activity traces for rostral in the original λmidI = λmidE = 0.5 case and for

λmidI = 1, λmidE = 0.5 in Figure 35 (bottom left and right, respectively) to further illustrate

this phenomena. Therefore, we find that explanation (E2) is the one supported by this

work: rhythmic inhibition is more important than rhythmic excitation in generating the

turtle scratch rhythms. Berkowitz and Stein [5] also hypothesized that explanation (E2) was

more likely than explanation (E1) to cause the results in Figure 22. That is, we predict that

whenever a motoneuron receives a greater proportion of inhibition, it should fire at a lower

rate but with stronger rhythmic modulation, and that whenever a motoneuron receives

additional rhythmic depolarization, its firing rate should increase. This could be further

verified with intracellular recordings.

In this section, we showed our model was capable of reproducing the results depicted in

Figure 22, and we explored biological explanations for our findings. In the next section, we

will explore how different parameters in the model affect rhythm generation.
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Figure 35: Impact of varying inhibitory modulation on knee extensor in rostral. Top:

Changes in knee extensor active duration as λmidI is increased, averaged over 1000 trials.

Middle: Average firing rate of knee extensor while active as λmidI is increased, averaged over

1000 trials. Bottom left: Simulation of the rostral rhythm with original λmidE = λmidI 0.5.

Bottom right: Simulation of the rostral rhythm for λmidI = 1, λmidE = 0.5 demonstrating the

decrease in firing rate and increase in modulation of motoneurons.
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3.5 ADDITIONAL PARAMETER EXPLORATIONS

In this section, we perform a systematic but non-exhaustive computational exploration of

the impact of different model parameters. First, we examine the interaction of stochastic

synaptic weights and arrival rates to achieve successful rhythms. Second, we examine the role

of phase shift φ in rhythm selection. Finally, we consider the role of input signal frequency

on rhythm success.

3.5.1 KE on/off behavior as function of synaptic weights and rate

Because rostral is the more challenging rhythm to achieve, we have used it as the standard

to select parameters throughout this chapter and the previous chapter. Therefore, our ex-

ploration here is restricted to the rostral case. We find that relatively stronger inhibition

(as seen in the Symmetric regime compared to the Asymmetric) greatly restricts the rates

of stochastic spike arrivals that allow for successful rostral rhythms.

We make three basic assumptions:

1. the ratio of gEP to gIP will be fixed as gEP is varied. We consider gIP = gEP/4 (as used

in the Symmetric regime) and gIP = gEP/10 (as used in the Asymmetric regime).

2. the modulation of stochastic excitation and inhibition will be the same as λmaxE is varied:

λmaxE = λmaxI .

3. gER = 0.8, gIR = 0.2 throughout.

We construct a chart detailing where knee extensor correctly activates and terminates in

the rostral rhythm based on simulations as λmidE and gEP vary. Details of the construction are

provided in Section 3.7.1. We identify five ways in which knee extensor may fail to activate

and terminate at the correct time:

(F1) knee extensor may activate too early in the active phase of hip flexor.

(F2) knee extensor may activate too late in the active phase of hip flexor.

(F3) knee extensor may terminate too early relative to hip flexor.

(F4) knee extensor may terminate too late relative to hip flexor.

(F5) knee extensor may fire too sparsely for the rhythm to be reasonable.
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The simulation based chart is shown in Figure 36 for the Symmetric regime (left) and the

Asymmetric regime (right). In each parameter regime, at larger values of λmidE = λmidI (e.g.

λmidE = 5 in the Symmetric regime and λmidE = 10 in the Asymmetric regime), increasingly

large values of gEP are necessary for a successful rhythm. We hypothesize that this is due

to the peak of stochastic inhibition occurring in rostral, and excitatory spikes needing to

have more strength to compensate for the more frequent arrivals of inhibitory spikes. This

is, again, consistent with explanation (E2) of the modulation results shown in Section 3.4,

Figures 22 and 35: inhibition matters more than excitation in turtle scratch rhythm genera-

tion. We find that in the weaker inhibition case (right), successful rhythms are possible at a

wider range of λmidE than seen in the stronger inhibition case (left). This is an additional area

of exploration possible in intracellular recordings: the maximum modulation of excitatory

and inhibitory inputs to motoneurons at which rhythms are successful may lead to insights

about the relative strength of excitation versus inhibition.

Figure 36: Simulation based regions of successful rhythm generation as gEP and λmidE vary.

Common failure types in other regions are given as well. Left: Regions for gIP = gEP/4

(Symmetric case). Right: Regions for gIP = gEP/10 (Asymmetric case). Only the weaker

inhibition case (bottom) is capable of producing successful rhythms at large values of λmidE .
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A similar chart based on firing rate theory can be constructed for each case. This

theoretical chart is constructed in several steps (details in Sections 3.7.3 and 3.7.2) and

shown in Figure 37. Many qualitative features are shared between theory and simulation in

the gIP = gEP/4 case (Figures 37, 36 top): there are no successful rostral rhythms at higher

values of λmidE and the successful region is steeply increasing in gEP for increasing λmidE . The

general shape of the successful region is very similar between theory and simulation, with

theory appearing to compress the region from simulation to smaller values of both gEP and

λmidE . There is less agreement between theory and simulation in the gIP = gEP/10 case

(Figures 37, 36 bottom).

The theory does not see the dramatic increase in gEP needed for success at high values

of λmaxE seen in simulation. We hypothesize that compensating for inhibition is the cause of

this increase. We verify this hypothesis by increasing the role of inhibition in the calculations

using theory. Interestingly, simply increasing λI when λE is fixed (breaking assumption 2

above, and increasing the proportion of inhibition received by a motoneuron as explored in

Section 3.4), only introduces the increase in the upper boundary of the successful rostral

region. In order to see both the upper and lower boundaries increase, gIP must be increased

(breaking assumption 1). That is, it is not sufficient for inhibitory spikes to arrive more

frequently, they must also be stronger individual spikes. This once again supports the hy-

pothesis that rhythmic inhibition is more important than rhythmic excitation in successfully

generating turtle scratching rhythms.
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Figure 37: Theory based regions of successful rhythm generation as gEP and λmidE vary.

Top: Region of success for gIP = gEP/4 (Symmetric case). This region is a reasonable

qualitative match for the region found by simulation, in Figure 36. Bottom: Regions for

gIP = gEP/10 (Asymmetric case). This case does not agree as closely with the region found

by simulation, in Figure 36. Again, only the weaker inhibition case (bottom) is capable of

producing successful rhythms at large values of λmidE .
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Finally, there are qualitatively different phenomena observed outside of this region in

parameter space. As gEP is increased beyond 0.1, knee extensor undergoes a period of

behavior with two peaks of activity, Figure 38, top. The second peak is earlier and due to

the additional input from EP. The termination between the peaks comes from the cessation

of EP activity. Increasing gEP further leads to the stochastic inputs overwhelming knee

extensor, Figure 38, bottom.

Figure 38: Impact of large excitatory spikes. In the rostral case with Symmetric parameter

regime, gEP is increased to gEP = 0.2 (top) and gEP = 0.4 (bottom). All other parameters

remain as described in Section 3.2. In particular, gIP remains proportionally to gIP = gEP/4.

Similar results are seen in the Asymmetric regime.
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In this section, we examined the impact of changing stochastic synaptic weights and the

arrival rate of stochastic spikes on the on/off behavior of knee extensor. In the next section,

we will examine the role of varying φ in rhythm selection.

3.5.2 Examination of phase shift φ in rhythm selection

For a fixed set of synaptic weights (e.g. the Symmetric regime), the rostral delay lasts for

shifts of φ = π/3 to φ = 0.8π. Pocket requires φ between 0.8π and π.

For gER = 0.8, gIR = gER/4, the weights used until now, knee extensor can fire in

the absence of any stochastic input (gEP = gIP = 0) for φ = 3π/4 for a rostral rhythm,

Figure 39, top. There are issues with the pattern (early termination of knee extensor).

Including noise symmetrically (gEP = 0.8, gIP = gEP/4), gives the correct rhythm, Figure

39, bottom. Therefore, noise still plays a key role in rhythm generation even in regimes where

deterministically-driven spiking is possible. Overall, as φ is decreased from 0.8π to π/3, knee

extensor experiences both a greater delay in onset relative to hip flexor and decreasing firing

rate.

For shifts φ < π/3, qualitatively different behavior begins to emerge. We consider

specifically the case of concurrent excitation and inhibition to all motoneuron populations

[3]: φ = 0.1. In general, knee extensor synchronizes with stochastic excitation rather than

deterministic, because the phase shift between deterministic excitation and inhibition is

small enough that the inputs essentially cancel each other. The Asymmetric case (gDetE =

0.827, gDetI = 0.199, gStochI = 0.0026) is shown in Figure 40. More spiking is seen as the

excitatory stochastic synaptic weight is increased, while the synaptic inhibition remains

fixed, Figure 40 top to bottom. Note that the deterministic hip population is not firing,

due to the cancellation of deterministic excitation and inhibition. This behavior holds as

φ is increased, gradually breaking down until approximately φ = π/3, at which point knee

extensor synchrony is primarily with deterministic excitation.
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Figure 39: Impact of noise in regime where deterministically driven spiking is possible,

φ = 3π/4 in the Symmetric regime. Top: Only deterministic inputs to knee extensor are

included, gEP = gIP = 0. Bottom: Stochastic inputs to knee extensor are included.The

additional input improve the rostral rhythm, indicating knee extensor does require input

from all four interneurons.
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Figure 40: Effects of in phase stimuli, φ = 0.1. We replace our previous neuron population

labeling in this figure: StochE and StochI (DetE and DetI) are the excitatory and inhibitory

stochastic (deterministic) interneuron populations. Stoch Hip (Det Hip) receives only these

as inputs. KE still receives inputs from all four interneuron populations. Top: gStochE =

0.07 instead of 0.026 to get spiking, gDetE = 0.827. Middle: Only gStochE is increased, to

gStochE = 0.09. Bottom: Only gStochE is increased, to gStochE = 0.14.
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In this section, we examined the role of varying φ in rhythm selection. In the next

section, we will investigate the range of frequencies that may generate successful rhythms.

3.5.3 Frequency of stimulus

The frequency of the inputs to knee extensor may be increased by several factors and the

rhythms are maintained. This is shown for rostral rhythms in Figure 41, and is true in pocket

rhythms as well. However, once the input signals to knee extensor become sufficiently fast,

the likelihood of several stochastic inhibitory spikes occurring in quick succession increases.

These blocks of inhibition can keep knee extensor from activating, and cycles of KE activity

begin to be lost (Figure 42, red circles). While this is certainly explainable from a numerical

point of view, it may also prove useful in understanding the knee extensor deletion variation

of rostral scratch [61, 62].

Figure 41: Increasing frequency of input signals. Left: two periods in two seconds. Right:

sixteen periods in two seconds. In each, the relative timing and durations of activity in the

simulation match the recordings in Figure 1, with the exception of HE and HF relative

durations.
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Figure 42: Thirty-two periods in two seconds. Cycles of knee extensor activity are lost at

sufficiently high frequency, as indicated in the red circles.

3.6 DISCUSSION

Our motivation for a second model of the turtle system was to explain results not well-

handled by the model in Chapter 2, namely results relating to changes in firing rate of the

motoneurons [5] and the experimental observation of temporally overlapping excitatory and

inhibitory inputs to motoneurons during rostral scratching [51]. We introduced a stochastic

spiking model, and, because we omitted the connections at the interneuron level, we were able
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to consider a model that is more directly testable by intracellular recordings of motoneurons.

We demonstrated that noise improved the quality of rhythm generation in our model,

in a variety of distinct parameter regimes. We showed that it is possible to generate both

the rostral rhythm with non-antiphase relations among interneuron inputs and the pocket

rhythm with antiphase relations among the interneuron inputs from the same network. We

then used this successful model to investigate two experimentally proposed [5] explanations

for motoneurons displaying a lower firing rate in the presence of inputs with greater rhythmic

modulation. Our analysis supported the explanation that Berkowitz and Stein seemed to

find more plausible in their paper [5] - that inhibition matters more than excitation in

rhythm generation. We also performed a systematic (though non-exhaustive) computational

exploration of the impact of different model parameters. By examining the interaction of

stochastic synaptic weights and arrival rates, we were able to further support our hypothesis

that inhibition matters more than excitation. We also found that it was possible to produce

successful pocket and rostral rhythms over a range of phase relations and several factors of

input frequencies.

To fully model the network underlying turtle scratching with all observed behaviors

requires significantly more populations of neurons than we considered in Chapters 2 and

3. As was the case with our model in the previous chapter, this spiking approach cannot

correctly reproduce behaviors seen during hip extensor deletions in rostral scratch. At very

high frequency inputs, knee extensor begins to undergo deletions while hip extensor and hip

flexor continue to burst in antiphase. This has been observed in experiments [65], although

without a knee flexor population it is difficult to assert that this is a true knee extensor

deletion. To continue bursting during a hip extensor deletions in rostral, KE would either

have to be intrinsically rhythmogenic, as was found in some extensor populations in mice [30],

or KE would have to receive inputs from populations not considered in this model. More

recent experimental work has included recordings from knee flexor motoneurons, in addition

to the three populations considered here. These findings suggest more complex architectures

akin to the Unit-Burst-Generator Model [63, 64, 65]. We have, however, shown that a hip-

dominated architecture can account for the relative durations and timing of motoneuron

activity in pocket and rostral scratching.
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3.7 METHODS

3.7.1 Construction of simulation based success chart

In order to characterize the relationship between the synaptic weights of the stochastic spike

trains and the amplitude of the sine wave driving the process generating those trains, it is

necessary to approach the many parameters in this system in an organized way. Therefore,

restricting to the rostral case, the following assumptions are made:

1. the ratio of gEP to gIP will be fixed as gEP is varied. We consider gIP = gEP/4 (as used

in the Symmetric regime) and gIP = gEP/10 (as used in the Asymmetric regime).

2. the modulation of stochastic excitation and inhibition will be the same as λmaxE is varied:

λmaxE = λmaxI .

3. gER = 0.8, gIR = 0.2 throughout.

Therefore the times at which HF activity begins (tonHF ) and ends (toffHF ) are fixed, since hip

flexor only receives these deterministic inputs during rostral. With these times for reference,

we define acceptable windows in which knee extensor may begin to fire, [tonmin, t
on
max], and in

which knee extensor must cease firing, [toffmin, t
off
max]. Figure 36 is then constructed by varying

λmidE and gEP and examining whether or not a rhythm is falling successfully within these

windows. There are several core ways in which a rhythm can fail:

(F1) knee extensor may activate too early in the active phase of hip flexor: tonmin ≤ tonHF + τ1,

for some acceptable minimum delay τ1.

(F2) knee extensor may activate too late in the active phase of hip flexor: tonmax ≥ tonHF + τ2,

for some acceptable maximum delay τ2.

(F3) knee extensor may terminate too early relative to hip flexor: toffmin ≤ toffHF − τ3.

(F4) knee extensor may terminate too late relative to hip flexor: toffmax ≥ toffHF + τ4.

(F5) knee extensor may fire too sparsely for the rhythm to be reasonable.

The inclusion of τ ’s accounts for the fact that, in practice, there is of course some

variability trial to trial in the times at which knee extensor begins and ends, but that overall

the rhythm is qualitatively correct.
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3.7.2 Construction of theory success chart

Analytically, stochastic synaptic weight and amplitude of stochastic rate both appear in

the calculation of theoretical firing rate estimates in Section 3.7.3, equations (3.4)-(3.6).

Therefore, these firing rate estimates will be the primary criteria used in the construction of

a theoretical chart similar to the simulation based chart.

For a fixed tonKE ∈ [tonmin, t
on
max], λE can be fixed, and gEP can be varied to find the minimum

value gminEP (λE; on) and maximum value gmaxEP (λE; on) for which knee extensor can begin firing

at this specific tonKE. To do so, we return to our homogeneous approximations described in

Section 3.7.3, Figure 46. A small window is taken before tonKE, and a small window is taken

after. The steady state firing rate, r0 is calculated in each window for varying gEP , and the

smallest value of gEP for which r0 ≤ rmin kHz in the first window and r0 > rmin kHz in the

second is gminEP (λE; on). The largest value of gEP for which this holds is gmaxEP (λE; on). The

region constructed by this method for a particular tonKE is shown in Figure 43. The figures

that follow are for rmin = 0. Figure 37 in Section 3.5.1 uses the criteria of rmin = 0.02 kHz

due to our findings in Section 3.7.3. However, the construction of the figures are the same.

Figure 43: The curves gminEP (λE; on) and gmaxEP (λE; on), defining a region in λE − gEP space

where knee extensor activates as desired, are shown for the cases: gIP = gEP/4 (Left) and

gIP = gEP/10 (Right).
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For a fixed toffKE ∈ [toffmin, t
off
max], a similar λE − gEP region of successful termination can be

generated. For a particular toffKE, such a region is shown in Figure 44.

Figure 44: The curves gminEP (λE; off) and gmaxEP (λE; off), defining a region in λE− gEP space

where knee extensor terminates as desired, are shown for the cases: gIP = gEP/4 (Left) and

gIP = gEP/10 (Right).

By ranging over the interval [tonmin, t
on
max] and taking the ensemble of successful onset

regions, a new λE − gEP region can be constructed for any tonKE ∈ [tonmin, t
on
max]. The upper

boundary of this region is the curve gmaxEP (λE; on) generated for tonmin, and the lower boundary

is gminEP (λE; on) generated for tonmax (solid lines in Figure 45). Then, any (λE, gEP ) pairing in

this ensemble region will give an acceptable onset of activity of knee extensor.

A similar ensemble can be taken for the interval [toffmin, t
off
max], with the effect that the upper

boundary is gmaxEP (λE; off) generated for toffmax, and the lower boundary by gminEP (λE; off)

generated for toffmin (dashed lines in Figure 45). The overlap of these two ensemble regions,

shown in Figure 45, is then the region of successful rostral rhythms.
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Figure 45: The overlap of successful termination regions from Figure 44 (dashed lines) and

activation regions from Figure 43 (solid lines) give the region in parameter space for which

successful rostral rhythms may occur. Left: gIP = gEP/4. Right: gIP = gEP/10.

3.7.3 Firing rate estimates

In order to have some measure of firing rate throughout a rhythm, we perform Fokker-Planck

analysis following the numerical scheme set forth in [49]. This does require the case of very

low synaptic weights with high Poisson process rates (the Asymmetric regime). Similar

agreement can be achieved in other parameter regimes with lower rates for the Poisson

process. The approach outlined here can quickly test sets of parameters, resulting in general

regimes of activity versus non-activity for a given set of parameters.

We use the usual conservation equation to relate probability P of finding a neuron near

voltage V to the current J of neurons whose dynamics bring them past a voltage V at

time t: ∂P
∂t

+ ∂J
∂V

= 0. Synaptic drive is treated in the diffusion approximation. The spike-

reset mechanism used in integrate and fire models is implemented as boundary conditions:

J(Vth−, t) = J(Vre+, t) − J(Vre−, t) = r(t). This describes the current just below threshold,

setting it equivalent to the firing rate, r(t). Taking into account spike reset, we rewrite the

Fokker-Planck conservation equation as

∂P

∂t
+
∂J

∂V
= r(t)(δ(V − Vre)− δ(V − Vth))
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.

Hence the Fokker-Planck equation is

∂P

∂t
=

∂2

∂V 2

(
σ2(V )

τ
P (V )

)
+

∂

∂V

(
V − E
τ

P (V )

)
,

with associated current operator

J =
E − V
τ
− ∂

∂V

σ2

τ

satisfying JP = J .

To use this formulation, which finds steady state solutions, we must make a few assump-

tions. We subdivide the run time into small bins. In each bin, the deterministic synapses are

held constant at the average value in the bin rather than time varying, and our stochastic

spike trains are homogeneous Poisson process with rate λI,E = the average of λI,E(t) for the

bin. An example of a few of these bins in the rostral rhythm are shown in Figure 46.

Figure 46: A rostral rhythm in the Asymmetric parameter regime is simulated. The dashed

vertical lines represent a few of the time bins used for firing rate estimates.

With this assumption, the constant deterministic synaptic inputs can be absorbed into

an effective leak current with reversal, EL = µ+gdetEsdetEVexc+gdetIsdetIVinh
1+gdetEsdetE+gdetIsdetI

and time constant

τL = C
1+gdetEsdetE+gdetIsdetI

.
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Recalling that the amplitude of each Poisson spike in our formulation is 1− e−gstochE,I ≡

bstochE,I , we can now define the values used in the Fokker-Planck equation and current oper-

ator:
σ2(V )
τ

= 1
2

(λEb
2
stochE(V − Vexc)2 + λIb

2
stochI(V − Vinh)2)

V−E
τ

= V−EL
τL

+ λEbstochE(V − Vexc) + λIbstochI(V − Vinh)
(3.4)

Solving the latter for τ, E gives:

E = EL+τLλEbstochEVexc+τLλIbstochIVinh
1+τLλEbstochE+τLλIbstochI

τ = τL
1+τLλEbstochE+τLλIbstochI

(3.5)

The steady state solution takes ∂P
∂t

= 0, therefore quantities with a 0 subscript denote

quantities at steady state. We relabel V−E0

τ0
+ ∂

∂V

σ2
0

τ0
≡ (V−E0′)

τ0′ . Then we can rewrite the

Fokker-Planck conservation equation as

−∂J0
∂V

= r0(δ(V − Vth)− δ(V − Vre))

−∂P0

∂V
= τ0

σ2
0

(
(V−E0′)

τ0′ P0 + J0

) (3.6)

which is suitable for solving numerically via integrating backwards from threshold, as de-

scribed in [49], for each bin.

We can compare the firing rate of knee extensor predicted by this theory in assorted

time bins with the firing rate from simulation, see Table 3 and Figure 47. The simulation

values shown in Table 3 are the average of 5000 runs of the asymmetric case with rostral

inputs. Figure 47 displays this data. The theory and simulation do not match. During knee

extensor activity (t = 840− 980ms), the spike rates seen in simulation are higher than those

predicted by the theory, and the total period of activity appears shorter in simulation than

predicted by theory. We hypothesize that the mismatch is due to the homogeneous being

an insufficient estimate in each bin. Considering more slowly varying synaptic inputs to the

motoneurons may improve the match.
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Table 3: Firing rate estimates, theory versus simulation

Time (ms) Theory (kHz) Simulation (kHz)

620-640 0.000 0

640-660 0.000 0

660-680 0.000 0

680-700 0.000 0

700-720 0.000 0

720-740 0.0002 0

740-760 0.0012 0

760-780 0.0042 0

780-800 0.0104 0

800-820 0.0199 0.0002

820-840 0.0311 0.1997

840-860 0.0420 0.2496

860-880 0.0505 0.2997

880-900 0.0557 0.2498

900-920 0.0570 0.1499

920-940 0.0544 0.0001

940-960 0.0485 0.0001

960-980 0.0399 0.0001

980-1000 0.0300 0.0001

1000-1020 0.0201 0.0001

1020-1040 0.0117 0

1040-1060 0.0058 0

1060-1080 0.0024 0

1080-1100 0.0008 0

1100-1120 0.0002 0

1120-1140 0.0000 0
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Figure 47: Firing rate estimates, theory versus simulation. Blue: plot of trial-averaged firing

rate data. Red: plot of theory-based firing rate data. All data taken from Table 3.

The windows in which theory predicts a non-zero rate while the simulations fail to fire are

an effect of our approximation. A rate of 0.0002 kHz translates to 1 spike occurring at some

point in a 5 second window, or a spike having a 1 in 5 chance of occurring a 1 second window.

However, the windows being considered are only 20 milliseconds. Therefore, an expected rate

less than 0.05 kHz means there is no guarantee of a spike at all in the 20 millisecond window.

We do, however, find that once theory predicts firing rates approximately ≥ 0.02 kHz, knee

extensor does indeed fire in simulation. Therefore, this is a useful criteria for determining

the time bins in which knee extensor will begin and cease activity. For times not included

in this table, both theory and simulation find a firing rate of 0 kHz.
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4.0 ALTERNATIVE APPROACHES TO EXTENSOR-FLEXOR CENTRAL

PATTERN GENERATORS

In Chapters 2 and 3, we examined some of the rhythm generating properties of the turtle

spinal cord. In this chapter, we investigate results not restricted to the turtle. The spinal

locomotor central pattern generator can autonomously generate rhythmic activity with alter-

nating flexion and extension phases over a wide range of frequencies. Due to the complexity

of the spinal cord and the difficulty in identifying neurons, the organization of this CPG

and the neural mechanisms involved in rhythmogenesis remain largely unknown [41]. It is

commonly accepted that many of the rhythmic motor patterns observed in vertebrates, such

as walking and scratching, involve inhibitory interactions between two neural populations

representing flexor and extensor half-centers [10, 11, 40]. The classical half-center concept

assumes a symmetrical organization in regard to cellular properties, operational regimes, and

synaptic interactions between the half-centers [11, 42]. More contemporary study of deletions

of one population or the other during animal activity has suggested alternative approaches.

One such approach suggests an asymmetric, flexor-dominated CPG organization in which

only the flexor half-center has intrinsic rhythmic capabilities. This suggestion comes from

deletion experiments in which extensor activity completely ceases while the flexor continues

to burst rhythmically [21, 71]. Other deletion experiments suggest the possibility that both

populations can autonomously generate rhythmic activity [30].

We present a theoretical study examining whether all three mechanisms can operate in

the same CPG depending on the methods used to produce the rhythm. A reduced mathemat-

ical model in which both extensor and flexor neurons are represented by single non-spiking

neurons coupled by mutual inhibition is used for qualitative analysis of system dynamics.

Stable rhythmic patterns occurred in both symmetric and asymmetric network structures.
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Frequency modulation as external drive to one or both half-centers varies is dependent on

the underlying rhythm-generating mechanisms and flexor-extensor symmetry. Our findings

propose explanations for the coexistence of the three experimentally suggested yet seemingly

contradictory mechanisms for rhythmogenesis. This work is ongoing in collaboration with

the Rybak group at Drexel University, who are developing a large scale model of the same

phenomena.

In Section 4.1, we will provide an overview of findings in deletion experiments, and

we define the three CPG mechanisms we wish to investigate. We will define a reduced

mathematical model in Section 4.2, and summarize the intrinsic behavior of an isolated model

neuron. We will vary external drives to both extensor and flexor with fixed inhibition strength

in Section 4.3; the bifurcation diagrams produced by this are a first step in categorizing the

solution types each mechanism is capable of generating. We also explore the frequency

modulations each mechanism is capable of producing in this regime. In Section 4.4, we will

vary the external drive to extensor and the strength of inhibition for different fixed intrinsic

behaviors of flexor. Doing so allows us to identify additional behaviors that each mechanism

is capable of generating. We also explore frequency control and the roles of escape and release.

In Section 4.5, we vary an equal external drive to both extensor and flexor and strength of

inhibition in representative combinations of intrinsic extensor and flexor behavior, and again

explore frequency control. In the discussion, we summarize our findings (including the unique

properties we identified for each mechanism) and suggest future directions for research.

4.1 EXPERIMENTAL BACKGROUND

A wide variety of deletions are observed in vertebrates such as cats [21], turtles [61], and

mice [71, 30]. Some of these variations suggest that non-traditional CPG organization may

exist. Specifically, three mechanisms are considered, as discussed above:

(M1) The classical half-center concept assumes a symmetrical organization between the

half-centers. Both extensor and flexor are tonic in isolation. This is the mechanism that

would be suggested by hip extensor deletions during rostral scratch in turtle [61] and in
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several experiments in cat [10, 11].

(M2) An asymmetric, flexor-dominated CPG organization in which only the flexor half-

center has intrinsic rhythmic capabilities. Extensor is tonic in isolation and flexor is

bursting. This is observed during deletion experiments in cats and mice [21, 71].

(M3) Both populations can autonomously generate rhythmic activity and are bursting in

isolation. This was found in mice by Hagglund et al [30].

Our goal is to characterize the types of behavior each mechanism may generate. We also

seek to examine the frequencies of bursting solutions each mechanism can generate. Any

distinctions we can identify among the three mechanisms may be useful in guiding future

experiments.

In this section, we summarized three different potential mechanisms for rhythmogenesis

in an extensor-flexor CPG that have been suggested by deletion experiments in a variety of

vertebrates. In the next section, we will present the architecture we implement, provide a

mathematical description of neurons in our model, and describe the intrinsic behavior of an

isolated model neuron.

4.2 MODEL

We consider a pair (extensor E and flexor F) of mutually inhibitory neurons modeled with

a persistent sodium current and driven by an external, excitatory conductance, shown in

Figure 48. The persistent sodium current has been used in previous CPG modeling studies

[20, 14, 54, 53], has been observed experimentally in neurons in other CPGs [68], and is

well suited to supply the voltage plateaus underlying bursts of spikes. Due to this intrinsic

mechanism, an increase of excitatory drive to each isolated half-center causes a transition

from silence to rhythmic bursting to tonic activity. In this chapter, we define “bursting”

here as an oscillating solution and “tonic activity” as convergence to a depolarized fixed

point. By manipulating drives to each half-center, we can induce systematic transitions

between all three half-center mechanisms described in the previous section. We analyze
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the bifurcations involved in transitions between them, the emergence of bistability, and the

control of oscillation frequency in each regime.

Figure 48: Architecture for reduced extensor-flexor model. The red connections are mutual

inhibition of strength α between extensor E and flexor F. E has leak reversal potential eEL

and receives external excitatory drive iE (blue). F has leak reversal potential eFL and receives

external excitatory drive iF (blue).

The neurons obey the following equations with parameters listed in Table 4:

CmV̇i = −INaP (Vi, hi)− IL(Vi)− Isyn(Vi, Vj)− Iext(Vi) ≡ Fi(Vi, hi, Vj)

ḣi = (h∞(Vi)− hi)τh(Vi) ≡ gi(Vi, hi)
(4.1)

where, for i ∈ {E,F}, Vi denotes voltage and hi denotes the inactivation of the persistent

sodium current, INaP .
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In the differential equation for evolution of the voltage for population i:

INaP (Vi, hi) = −gNaPm∞hi(Vi − eNa)

m∞(Vi) = (1 + exp((Vi −mhalf )/θm))−1

IL(Vi) = gL(Vi − eiL)

Isyn(Vi, Vj) = αf(Vj)(Vi − einhsyn)

f(Vj) = (1 + exp(−(Vj − Vavg)/Vdiff ))−1

Vavg = ((vmax + vmin)/2)

Vdiff = ((vmax − vmin)/10)

Iext(Vi) = ii(Vi − eexcsyn)

(4.2)

In the differential equation describing the evolution of the persistent sodium current for

population i:

h∞(Vi) = (1 + exp((Vi − hhalf )/θh))−1

τh(Vi) = cosh((Vi − VτNaP )/kτNaP )/τNaP
(4.3)

The synaptic output from neuron j to neuron i, f(Vj), is non-instantaneous and is

shown in Figure 49. The persistent sodium current allows a neuron’s intrinsic behavior

(silent, oscillatory, or tonic) to be set using a combination of external drive and leak reversal.

The details of this are given below. Therefore, exploring the transitions between the three

mechanisms (M1)-(M3) comes down to varying: the intrinsic behavior of E (the values of iE

and/or eEL ), the intrinsic behavior of F (iF and/or eFL), and the strength of inhibition (α).

These parameters are discussed as they arise in our analysis.
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Figure 49: The non-instantaneous synaptic output function used, f(V ).

Table 4: Model Parameters

Parameter Value

Cm 20 pF

gNaP 5 nS

eNa 50 mV

mhalf -40 mV

θm -6 mV

gL 2.8 nS

einhsyn -75 mV

vmax 0 mV

vmin -50 mV

eexcsyn 0 mV

hhalf -55 mV

θh 12 mV

VτNaP -55 mV

kτNaP 24 mV

τNaP 4000 ms
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Intrinsic behavior. In the absence of mutual inhibition (α = 0), the intrinsic behavior

of a model population, i, is determined by a combination of leak reversal (eiL) and applied

external drive. Figure 50 is an example phase plane of such an isolated model neuron. The

red curves are the V-nullclines for different levels of external drive, and the green curve is

the h-nullcline for the given cell. We fix eiL = −63mV . Then, in the absence of external

drive, the neuron has a stable fixed point on the left branch of the cubic V-nullcline (labeled

‘1’ in Figure 50) and so the neuron remains at a silent steady state solution. When external

drive is applied, the V-nullcline is lowered. Eventually, the stable fixed point on the left

branch of the V-nullcline is lost, and an unstable fixed point on the middle branch of the

V-nullcline (labeled ‘2’) is gained. In this case, the neuron has access to both a left knee to

transition from silent to active and a right knee to transition from active to silent. There is

also no stable fixed point corresponding to steady state behavior present, and so the neuron

is intrinsically bursting. Finally, with additional external drive, the unstable middle fixed

point is lost, and a stable fixed point on the right branch of the V-nullcline labeled ‘3’ is

gained. This corresponds to a tonically active, steady state solution. Note that, due to the

parameters used in this model, there is only one fixed point at any given time.

Figure 50: Nullclines depicting intrinsic behavior of an isolated model neuron. The red

curves are the V-nullcline for different levels of external drive, and the green curve is the

h-nullcline for the given cell. The V-nullcline labeled ‘1’ is the case no external drive. The

V-nullclines labeled ‘2’ and ‘3’ are cases as increasing external drive is added, showing how

a fixed point can change from left, to middle, to right.
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The intrinsic behavior can be further explored in a two-parameter bifurcation diagram.

Figure 51 is the two parameter bifurcation diagram produced by AUTO [23] for this model.

Beginning with neuron j in the silent state, increasing either ejL or ij progresses the intrinsic

activity from silent to bursting to tonic via Hopf bifurcations (the blue curves in Figure 51

and subsequent figures). The curves of Hopf bifurcations are straight lines in ij − ejL space

because each parameter only appears in equations (4.1)-(4.2) as constant terms. Therefore,

the overall input to neuron j is gLe
j
L + ij and behavior remains qualitatively the same

whenever this quantity is constant.

Figure 51: Intrinsic behavior of an isolated model neuron. When α = 0, the intrinsic behavior

of model neuron j is presented as a function of ij and ejL via a two-parameter bifurcation

diagram. The blue curves are Hopf bifurcations.

In our analysis, we vary intrinsic behavior of population j by varying either ij or ejL

as convenient. In this section, we presented the architecture we implement, provided a

mathematical description of neurons in our model, and described the intrinsic behavior of

an isolated model neuron. In the next section, we will examine how varying external drives

to E and F impact the solution types and frequency changes each mechanism can produce.

105



4.3 FIXED α RESULTS

We begin our analysis by fixing inhibition strength at α = 1, and leak reversal at eEL = eFL =

−62.5. In the absence of external drive, E and F are each intrinsically silent but very close

to the bursting region in Figure 51. In the absence of inhibition, neuron j is intrinsically

silent for 0 < ij < 0.023; intrinsically bursting for 0.023 < ij < 0.393; and intrinsically tonic

for ij > 0.393. These values of iE, iF are depicted in Figure 52 as light gray, dashed lines.

Figure 52 is a two-parameter bifurcation diagram depicting regimes of behavior for E

and F as iE and iF vary. Fixing either iE or iF and allowing the other to vary in AUTO

generates a 1-parameter bifurcation diagram. Hopf bifurcations, fold bifurcations, and limit

points of period cycles can all be easily grabbed in the 1-parameter figures, and continued

in AUTO as both parameters vary. The results of this are the two-parameter bifurcation

diagram shown in Figure 52. There is a small region where both E and F are silent, at

values of ij < 0.0174. As iE, iF are increased, curves of Hopf bifurcations (blue) signal the

transition among different regimes of activity as labeled. There are two regions of bursting

separated by a curve of Hopf bifurcations: bursting I and bursting II. In bursting I, the

inputs to E and F are sufficiently low that both have an unstable fixed point on the middle

branch of its V-nullcline. Thus transition mechanisms between E active and F active (and

vice versa) such as intrinsic escape and intrinsic release [56] are more likely in bursting I.

Additionally, pauses between E and F bursts are possible in bursting I. The curve of Hopf

bifurcations that separates bursting I from bursting II indicates a change in fixed points: in

bursting II, at least one of the neurons has a stable fixed point on the right branch of its

V-nullcline (at least one neuron is intrinsically tonic).

In Figure 52, the regions of parameter space corresponding to (M1), (M2), and (M3) are

defined by light gray dashed lines, and color coded in purple, green, and orange. (M1) is the

region where E and F are both intrinsically tonic, iE, iF > 0.393. (M2) is the region where E is

intrinsically tonic and F is intrinsically bursting, iE > 0.393 and 0.023 < iF < 0.393. Finally,

(M3) is the region where both E and F are intrinsically bursting, 0.023 < iE, iF < 0.393.

For fixed α = 1, we see that the (M1) region only admits bursting solutions and solutions

where E and F are both tonic. Mechanism (M2) admits both bursting solutions and solutions
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where E is tonic and F is silent. Mechanism (M3) admits both bursting solutions and non-

biological periodic solutions. All three mechanisms, then, are certainly capable of coexisting

in the same mathematical model and the differences in permitted solution types provides a

possible avenue for experimental validation of this model. It is noteworthy that mechanism

(M3) is not capable of producing any tonic solutions. Therefore, tonic behavior observed in

experiment would most likely be due to either (M1) or (M2).

Figure 52: Two-parameter bifurcation diagram for fixed α = 1 as iE and iF vary. Solution

types are labeled in black and apply to regions defined by the blue curves of Hopf bifurcations.

Light gray dashed lines correspond to different intrinsic behaviors of E and F in isolation

(α = 0). These intrinsic behaviors (gray dashed lines) define the regimes of behavior for

each mechanism, which are color coded with outlined boxes.

Frequency control. Figure 53 depicts the frequency of oscillations for E as iE and

iF are varied. The voltage threshold used for spike detection was -30mV in this and in

all subsequent figures. Reflecting the body of the figure across the line iE = iF gives the
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frequencies for F (because eEL = eFL and the mutual inhibition is equally strong in both

directions). Within Figure 53, there is significant symmetry across the diagonal iE = iF . Of

note are the regions labeled n:1 and 1:n. In these regions, E experiences n active phases for

every active phase of F (n:1) or vice versa. These are non-biological oscillations, and they

account for a significant portion of the bursting I region. For values of iE, iF outside of this

region, the bursting solutions are biologically relevant and diagonal symmetry is present.

We do not consider cases in which E or F is intrinsically silent. Such a case is not seen

in experiments, and our model produces biologically unrealistic bursting solutions in these

regimes.

It is noteworthy that mechanism (M1) accounts for the highest frequency oscillations in

this slice through parameter space. Mechanism (M2) displays the widest range of frequencies,

and mechanism (M3) produces the lowest frequency bursting solutions.

Figure 53: Frequency changes of E for fixed α = 1 as iE and iF vary. Regimes of oscillation

where E and F bursts do not occur in a 1:1 ratio are labeled. Reflecting across the iE = iF

diagonal line gives the frequency changes for F. The voltage threshold for spike detection is

-30mV. The intrinsic behaviors (white dashed lines) define the regimes of behavior for each

mechanism, as the gray dashed lines did in Figure 52.
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In this section, we examined how varying external drives to E and F impact the solution

types and frequency changes each mechanism can produce. In the next two sections, we

consider how varying α impacts the solution behaviors possible from each mechanism (M1)-

(M3). In Section 4.4, we will consider varying α and drive to E in a pair of cases in which F

has prescribed intrinsic behavior. We will consider the impact of these variations on solution

type and frequency control, and we will examine the relative contribution of escape and

release transition mechanisms to frequency.

4.4 ASYMMETRIC DRIVE RESULTS

In this section, we examine the impacts of varying inhibition strength on the solution types

each mechanism (M1)-(M3) can generate. To do so, we cannot simultaneously vary the

behavior of E and F as we did in the previous section. Instead, we explore horizontal slices

of Figure 52: the behavior of F is fixed to be either intrinsically bursting or tonic, and in the

absence of inhibition, E is transitioned from silent to bursting to tonic by varying iE. The

behavior of F is fixed with eFL rather than iF but Figure 51 shows these are interchangeable

control mechanisms. In this approach, E and F receive equal strength mutual inhibition α,

but only E receives external excitatory drive iE. Examples of the horizontal slices we take

through Figure 52 are sketched in Figure 54.

We use the intrinsic behavior of F (tonic or bursting) to define cases. In each case, E

is intrinsically silent (eEL = −65mV ) and iE is increased from 0 so that E progresses from

silent to bursting to tonically active without changing eEL . It is necessary to know where a

neuron transitions from silent to bursting to tonic in the absence of inhibition so that we

may correctly identify parameter regions corresponding to each CPG mechanism. Figure 55

displays the iE one parameter bifurcation curve when α = 0, eEL = −65. The transitions

occur via Hopf bifurcations at iE = 0.152 (silent to bursting) and at iE = 0.5566 (bursting

to tonic). Again, bifurcations in a 1-parameter diagram such as Figure 55 can be followed

in AUTO to generate 2-parameter diagrams as iE and α vary.

109



Figure 54: Two-parameter bifurcation diagram for fixed α = 1 as iE and iF vary. Solution

types are labeled in black and apply to regions defined by the blue curves of Hopf bifurcations.

Dashed dark red horizontal lines represent the cases we consider.

Figure 55: Transitions of intrinsic behavior for neuron j as ij is varied. α = 0 and ejL =

−65mV . Stable steady state solutions are given in red. Unstable steady state solutions

corresponding to bursting behavior are given in black.
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The case where F is intrinsically tonic allows exploration of the impact of varying α on

the behaviors possible from mechanism (M1). The case where F is intrinsically bursting

allows exploration of the impact of varying α on the behaviors possible from (M2) and (M3).

We first consider the case where F is intrinsically tonic (eFL = −53mV ). The 2-parameter

bifurcation diagram for drive to E (iE) versus inhibition strength (α) is given in Figure 56.

The region to the right of the dashed gray line correspond to values of iE > 0.5566, where

E is tonic in the absence of inhibition (Figure 55). Therefore, the region to the right of the

gray line corresponds to mechanism (M1) being responsible for oscillations and is labeled in

light gray.

Figure 56: Two-parameter bifurcation diagram for iF = 0, eFL = −53mV as iE and α vary.

Solution types are labeled in black and apply to regions defined by the blue curves of Hopf

bifurcations. The red curve is a curve of fold bifurcations in the steady state (SS) solutions.

Light gray dashed lines correspond to different intrinsic behaviors of E and F in isolation

(α = 0). These intrinsic behaviors (gray lines) define the regimes of behavior for each

mechanism, which are color coded with outlined boxes.
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In addition to the region of bursting solutions and the region where E and F are both

tonically active present in Figure 52, there are additional regimes of solution behavior once

α is allowed to vary from 1. For stronger mutual inhibition, there are regimes of solutions

where E is tonic and F is silent, F is tonic and E is silent, and a winner take all (WTA)

regime. We define a winner take all regime to be a region of parameter space in which two

stable steady state solutions coexist, and the ultimate solution is determined by the initial

conditions used to solve the system of differential equations. Mechanism (M1) is the only

case with WTA in this asymmetric drive approach, and this may be a useful benchmark

for experiments. We find that this observation holds in the symmetrically driven cases we

consider in Section 4.5.

The WTA regime is able to arise because the curves of Hopf bifurcations cross and are

enveloped by curves of fold bifurcations. To demonstrate this, we fix α = 30 and examine

the 1-parameter bifurcation diagram generated as iE varies. This is shown in Figure 57.

Note that in the region labeled WTA, two stable steady state solutions coexist. Diagrams

for other values of α in the WTA regime in Figure 56 are similar to Figure 57. Prior to

this crossing of Hopf bifurcation curves, no such regime may arise. This is demonstrated in

Figure 58: we fix α = 12 and examine the 1-parameter bifurcation diagram generated as

iE varies. Because the Hopf bifurcation curves have not crossed and the fold bifurcations

occur between them, a stable bursting solution may still be produced, rather than a WTA

regime. The maximum and minimum voltages achieved during the burst are plotted in green

in Figure 58.
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Figure 57: Transitions of intrinsic behavior for E as iE is varied with α = 30 fixed, in the

region labeled WTA in Figure 56. Stable steady state solutions are given in red. Unstable

steady state solutions are given in black. Fold and subcritical Hopf bifurcations in the steady

state solution are labeled. The region in which both a tonic and a silent stable steady state

solution exist is defined by dashed vertical lines, and labeled WTA.
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Figure 58: Transitions of intrinsic behavior for E as iE is varied with α = 12 fixed, in the

region labeled WTA in Figure 56. Stable steady state solutions are given in red. Unstable

steady state solutions are given in black. Fold and subcritical Hopf bifurcations in the steady

state solution are labeled. The maximum and minimum voltages achieved during bursting

are plotted in green.

We next consider the case where F is intrinsically bursting (eFL = −59mV ) so that we

may explore mechanisms (M2) and (M3) further. The 2-parameter bifurcation diagram for

external drive to E (iE) versus inhibition strength (α) is given in Figure 59.

At low values of α and iE, E transitions from displaying subthreshold periodic oscillations

to a biological bursting solution. This transition is not structural; it occurs once E receives

enough external drive to escape oscillating between two left fixed points. This transition is

consistent the one seen in Figure 53 in which E moves from n:1 (1:n) solutions to biologically

reasonable solutions.
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Figure 59: Two-parameter bifurcation diagram for iF = 0, eFL = −59mV as iE and α vary.

Solution types are labeled in black and apply to regions defined by the blue curves of Hopf

bifurcations. The red curve is a curve of fold bifurcations in the steady state (SS) solutions.

Light gray dashed lines correspond to different intrinsic behaviors of E and F in isolation

(α = 0). These intrinsic behaviors define the regimes of behavior for each mechanism, which

are color coded and labeled.

There is no WTA regime as was seen in the (M1) case, despite the presence of a Fold

bifurcation enveloping crossed Hopf bifurcations. This is due to the additional Hopf curve

occurring at larger values of iE. Stable, biologically realistic oscillations emanate from this

Hopf, backwards towards smaller iE. The Hopf curves between the folds generate unstable

orbits, and so there is no stable steady state between them for winner take all to be possible.

Although the (M1) case has a greater variety of solution types, the regime corresponding

to (M3) has the largest region of biological oscillations, persisting over similar excitatory
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drives for a much larger range of inhibition strengths than considered here. The region

corresponding to (M2) finds a very narrow iE-band of biologically reasonable oscillations

persisting to large values of α. However, much of the (M2) region consists of non-biological

oscillations. In these non-biological oscillations, the large external drive to E, iE, raises the

voltage to non-realistic values rather than any structural change occurring.

4.4.1 Frequency control

In this section we examine frequency changes within the bursting regions in Figures 56 and

59. Figure 60 corresponds directly to Figure 56, and Figure 61 corresponds directly to Figure

59.

Figure 60 displays frequency changes of E in the F tonic case, as the parameters α and

iE are varied. The regions of oscillations in this figure do match those bounded by the Hopf

bifurcation curves in the two-parameter Figure 56. In this case, the greatest frequency for

each value of iE occurs at small α. Mechanism (M1), then, is not capable of producing large

frequency bursting solutions (or indeed, any bursting solutions) at very large values of α.

Oscillations in the presence of very strong inhibition are likely due to either (M2) or (M3).

Figure 60: Frequency changes of E for iF = 0, eFL = −53mV as iE and α vary. The values

of iE at which the intrinsic state of E changes as in Figure 55 are labeled. The voltage

threshold for spike detection is -30mV.
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Figure 61 displays frequency changes of E in the F bursting (M2), (M3) cases as the

parameters α and iE are varied. The regions of bursting in the frequency figure do match

those bounded by the Hopf bifurcation curves in the two-parameter Figure 59. In the F

bursting case, oscillations persist to large α, and the frequency decreases more gradually as

α is increased than was the case for (M1). It is, however, worth noting that the maximum

frequency achieved by mechanism (M1) is about twice as high as that achieved by either

(M2) or (M3). Finally, the frequency of solutions produced by mechanisms (M2) and (M3)

is far less variable than those solutions produced by (M1). These frequency differences, in

addition to the dramatic solution differences at large α, provide a possible future avenue for

experiment.

Figure 61: Frequency changes of E for iF = 0, eFL = −59mV as iE and α vary. The values

of iE at which the intrinsic state of E changes as in Figure 55 are labeled. The voltage

threshold for spike detection is -30mV.
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The clear regions of increasing and decreasing frequency shown in Figures 60 and 61

suggest that an examination of the role escape versus release is worthwhile. Classically,

escape is associated with increasing frequency as drive is increased, and release is associated

with decreasing frequency as drive is increased. This is systematically examined in the next

section.

4.4.2 Escape versus release

In this section, we consider the roles escape and release play in the frequency changes ob-

served in the previous section. Classical frequency criteria for determining escape versus

release can be helpful in our investigation, but are not the entire story. Escape is typically

characterized by increasing frequency with increasing external drive. Release is typically

characterized by decreasing frequency with increasing external drive. In Skinner et al [56],

four escape/release mechanisms are identified with the following caveat: “The synaptic cou-

pling is assumed to have a sharp threshold and a fast time constant... If some of these as-

sumptions are relaxed, the qualitative behavior remains similar, but the distinction between

the four mechanisms becomes less sharp.” We certainly have relaxed these assumptions:

Skinner et al use a Heaviside function as opposed to our sigmoid f(V ). Therefore, there is

a lack of sharp distinction in transition mechanisms in our results.

In each F case, we examine the regions of parameter space where frequency is increasing

and where frequency is decreasing. Within each of those regions, we examine the transition

from E active to F active and the transition from F active to E active separately, since

they may be controlled by different mechanisms. Table 5 summarizes the basic mechanisms

responsible for transitions in these different cases. The column “Freq” refers to the parameter

regions labeled as “inc freq” or “dec freq” in Figures 62 and 65. We use the abbreviation

“Es” for escape and “Re” for release. What we label as “escape mediated by release” in

Table 5 is similar to what Skinner et al [56] referred to as “Synaptic release,” Similarly, what

we label as “release mediated by escape” is comparable to Skinner’s “Synaptic escape.”

Details of these mechanisms are provided in our analysis below. There are often competing

mechanisms between the two transitions in the rhythm.
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Table 5: Summary of basic transition mechanisms for the Asymmetrically driven approach

to extensor-flexor CPGs.

F Freq α E to F mechanism F to E mechanism CPG Mechanism

Tonic inc very small Es mediated by Re intrinsic Es (M1)

inc larger Es mediated by Re Es mediated by Re (M1)

dec any Es mediated by Re Re mediated by Es (M1)

Burst inc any intrinsic Re intrinsic Es (M3)

dec any, iE ≤ 0.7 intrinsic Re Re mediated by Es (M2) or (M3)

dec small w/ large iE intrinsic Es Re mediated by Es (M2)

We first consider the case when F is tonic, mechanism (M1). Figure 62 outlines the

region of increasing frequency versus decreasing frequency for the E cell.

Figure 62: Frequency changes of E from Figure 60 are reproduced. The regions in which

frequency increases as iE increases for fixed α, and in which frequency decreases as iE

increases for fixed α are labeled.
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The region of increasing frequency corresponds to rows 1 and 2 of Table 5. For both

E to F and F to E transitions, the inhibited cell gets above the left knee of its V-nullcline

and escapes, suppressing the free cell. In the case of E activating, this is through intrinsic

escape. However, in the case of F activating, this is only possible because the inhibition

from the free cell to the inhibited cell has sufficiently decayed, lowering the left knee. This

is illustrated in Figure 63. Hence, escape is the mechanism for transition, but it is only

possible because some release has occurred. The frequency increases in this region because

the escape has a stronger impact than the release. For example, at α = 3, increasing iE from

0.4 to 0.6 results in the active phase of E being largely unchanged, and the active phase of

F shortening, explaining the increasing frequency. Carefully tracking the trajectories of E

and F in V − h phase space verifies that E begins to activate and is on the fast portion of

its trajectory while F is still on slow (active) branch of its trajectory indicating escape is

the primary transition mechanism. The story is the same as F approaches activation from

the silent phase. Behavior is similar at other parameter values in the increasing frequency

region.

The region of decreasing frequency in Figure 62 corresponds to row 3 of Table 5. Here,

the E to F transition is due to escape of F made possible by decaying inhibition from E,

as in the increasing frequency regime. The transition from F to E, however, is via release

mediated by escape: once VE > Vmin = −50, f(VE) increases and this slight increase in

inhibition to F raises its V-nullcline, allowing F to be below the right knee of its V-nullcline

and transition to the silent phase. This occurs while E is still on the slow portion of its

trajectory in the silent phase. Once F has transitioned to silent, E is released and able to

activate. This mechanism is depicted in Figure 64. The frequency decreases in this region

because an increase in iE moves the E fixed point further right to a higher voltage. Voltages

are all still less than Vmax = 0mV , so synaptic output f(V ) has not saturated. This shift in

E fixed point therefore leads to stronger inhibition from E to F, raising the left knee of the

V-nullcline of F, and extending the time F spends in the silent phase (and E in the active

phase) before reaching the knee and escaping. The active duration of F is largely unchanged.

A study of E and F duty cycles in addition to frequency would likely be very useful in the

future.
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Figure 63: The escape mediated by release mechanism is demonstrated. Each row is a pair

of V − h phase planes for the Inhibited Cell (Left) and the Free Cell (Right) at a certain

point in time. The red curve is the V-nullcline and the green curve is the h-nullcline for the

given cell. The black curve is a portion of the trajectory. As time increases (going down),

the inhibition from the Free Cell to the Inhibited Cell wears off, lowering the V-nullcline of

the Inhibited Cell. The V-nullcline is lowered sufficiently, the Inhibited Cell rises above the

left knee and escapes, row two. The Inhibited Cell is on the fast transition to the active

phase while the Free Cell is still on the slow portion of its trajectory, row three. Finally, as

time progresses and the Inhibited Cell is sufficiently far in its fast transition to active, the

Free Cell begins its fast transition to silent, row four.
121



Figure 64: The release mediated by escape mechanism is demonstrated. Each row is a pair

of V − h phase planes for the Inhibited Cell (Left) and the Free Cell (Right) at a certain

point in time. The red curve is the V-nullcline and the green curve is the h-nullcline for

the given cell. The black curve is a portion of the trajectory. As time increases (going

down), the Inhibited Cell crosses Vmin = −50 and begins to slightly inhibit the Free Cell.

This occurs before the Free Cell has reached the right knee of its V-nullcline, row two. The

V-nullcline of the Free Cell is raised sufficiently by this additional inhibition that the Free

Cell is now below the right knee of its V-nullcline and begins its fast transition to the silent

phase, row three. This occurs while the Inhibited Cell still has not reached the left knee of

its V-nullcline to activate. Once the Free Cell has progressed sufficiently on the transition

to silent, the Inhibited Cell is released and will begin its fast transition to active, row four.
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We next consider the case of F intrinsically bursting, mechanisms (M2), (M3). Figure 65

outlines the region of increasing frequency versus decreasing frequency for the E cell. Figure

65 suggests that mechanism (M2), where iE > 0.55, can only display bursting solutions of

decreasing frequency as more external drive is given to E. This is not actually the case.

In Figure 52, the region corresponding to mechanism (M2) displays both increasing and

decreasing frequencies as iE is increased for fixed values of iF . This illustrates one of the

challenges of tackling this three-parameter system: by taking two-parameter slices, it is very

possible to miss information and make incorrect conclusions. It is true that in this two-

parameter slice, (M2) is only capable of producing bursting solutions of decreasing frequency

as more external drive is given to E. But across the entire three-parameter space, this does

not hold and therefore is not a useful identifying feature of solutions produced by mechanism

(M2).

Figure 65: Frequency changes of E from Figure 61 are reproduced. The regions in which

frequency increases as iE increases for fixed α, and in which frequency decreases as iE

increases for fixed α are labeled.
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For small α, as iE is increased beyond 0.7, there is a switch from F activating by intrinsic

release to F activating by intrinsic escape (row 6 of Table 5). This is because F maintains a

middle fixed point while in the silent phase, and E is trapped at a stable right fixed point

with a non-cubic V-nullcline due to the high iE. E has no right knee to fall below and release

F. Therefore, transition does not occur until F reaches the left knee of its V-nullcline and

escapes. The mechanism by which E activates in this case is more nuanced. The combination

of α and iE means the V-nullcline for E is monotonic even when E is in the silent phase.

Therefore, while it appears to follow the same pattern of release mediated by escape, it is

difficult to say with certainty. E gets to approximately −40mV on its slow trajectory before

F is inhibited enough to fall below a right knee and release E. Once α grows sufficiently large

at large iE, the V-nullcline of F is raised to have a left fixed point (rather than middle) and

F can no longer escape. E is still trapped at the same right fixed point with a non-cubic

V-nullcline prohibiting release, and so oscillations cease.

Just as in the F tonic case, the frequency decreases because an increase in iE moves the

E fixed point further right to a higher voltage. Voltages are all still less than Vmax = 0mV ,

so f(V ) has not saturated. This shift in E fixed point therefore has a stronger inhibitory

effect on F, raising its left knee and extending the time F spends in the silent phase (and

E in the active phase) before reaching the knee and escaping. The active duration of F is

largely unchanged.

For smaller values of iE (rows 4 and 5 of Table 5), the V-nullcline for E is still cubic and

examining the transition mechanisms is relatively straightforward. The region of increasing

frequency is due to the intrinsic escape in the F to E transition dominating the intrinsic re-

lease in the E to F transition. The region of decreasing frequency sees the F to E transition

occur by release mediated by escape. The intrinsic release in the E to F mechanism domi-

nates the frequency changes, leading to the decrease. Across both increasing and decreasing

frequency regimes, for fixed iE ≤ 0.7, the frequency increases as α is decreased because the

lower α facilitates E escape.

In this section, we’ve systematically explored the role of escape and release mechanisms in

frequency changes. We’ve considered an asymmetric set up in which only E receives external

drive and the intrinsic state of F is fixed so that we could explore the regimes of behaviors
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each mechanism (M1)-(M3) can create as α varies. However, we had to consider mechanism

(M1), with F tonic, separately from mechanisms (M2) and (M3) with F bursting. In the

next section, we explore a symmetrically driven approach to explore the three mechanisms

more coherently.

4.5 SYMMETRIC DRIVE RESULTS

The previous section used an asymmetrically driven approach to analyze the properties of

mechanisms (M1)-(M3) as strength of inhibition, α, varies. This amounted to essentially

taking horizontal slices through Figure 52 and then varying α. While this did lead to

finding additional regimes of behavior not found in Figure 52, the approach required exam-

ining mechanism (M1) separately from mechanisms (M2) and (M3). In this section, we will

consider diagonal slices through Figure 52 so that the mechanisms can be examined more

cohesively. Examples of the diagonal slices we take through Figure 52 are sketched in Figure

66.

Figure 66: Two-parameter bifurcation diagram for fixed α = 1 as iE and iF vary. Solution

types are labeled in black and apply to regions defined by the blue curves of Hopf bifurcations.

Dark red horizontal lines represent the cases we consider.
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We consider 3 cases. First we consider F intrinsically bursting (eFL = −60mV ) and E

intrinsically tonic (eEL = −50mV ) so that we may explore how mechanism (M2) transitions to

mechanism (M1). Second, we consider E and F intrinsically bursting (eEL = eFL = −60mV ),

so that we may consider how mechanism (M3) transitions to mechanism (M1). Finally, we

consider E and F intrinsically bursting, but with different leak reversals (eEL = −60mV, eFL =

−62mV ) so that we may consider (M3) to (M2) to (M1) in one figure. In each case, E and F

will receive equal external excitatory drive, iF = iE. As iE and α vary, we examine different

solution behaviors possible from the different mechanisms.

In the absence of inhibition, a neuron with eL = −60mV will transition from bursting

to tonic behavior at iF = iE = 0.2654. A neuron with eL = −62mV will transition from

bursting to tonic behavior at iF = iE = 0.39. In Figures 67, 68, and 69, these values of iE

are denoted by dashed gray lines, and the resulting regions corresponding to (M1), (M2),

and (M3) are marked with light gray labels.

We first consider the case of F intrinsically bursting (eFL = −60mV ) and E intrinsically

tonic (eEL = −50mV ) so that we may explore how mechanism (M2) transitions to mechanism

(M1). The two-parameter bifurcation diagram as iE and α vary is given in Figure 67. We

find that mechanism (M2) admits the following solution types: E tonic and F silent and both

E and F bursting. This is consistent with the behaviors observed in Figure 59. Mechanism

(M1) admits many of the same solution types identified in Figure 56. However, in this slice,

there is no regime of WTA behavior. Additionally, a new regime of behavior is found: for

both (M1) and (M2) bistability between solutions where E and F are bursting and where

E is tonic and F is silent, defined by the (blue) curve of subcritical Hopf bifurcations and

the (dark gray) curve of limit points of periodic orbits. The bistability region for (M1) is,

however, significantly larger in iE −α space than the bistability region for (M2). The region

for (M2) is so small that (M1) would almost certainly be responsible for the observance of

bistability between tonic and bursting solutions in experiment.

126



Figure 67: Two-parameter bifurcation diagram for eEL = −50mV, eFL = −60mV as iE(= iF )

and α vary. Solution types are labeled in black and apply to regions defined by the blue

curves of Hopf bifurcations. The dark gray curve is a curve of limit points of periodic orbits.

This curve defines a region of bistability between solutions in which E and F burst and

solutions in which E is tonic and F is silent. Light gray dashed lines correspond to different

intrinsic behaviors of E and F in isolation (α = 0). These intrinsic behaviors define the

regimes of behavior for each mechanism, which are color coded and labeled.

We next consider E and F intrinsically bursting (eEL = eFL = −60mV ), so that we

may consider how mechanism (M3) transitions to mechanism (M1). The two-parameter

bifurcation diagram as iE and α vary is given in Figure 68. We find that mechanism (M3)
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admits only bursting solutions, as was the case in the previous section. Mechanism (M1)

admits the same solutions identified in Figure 56, and a new region of bistability between E

and F bursting solutions and WTA solutions is present.

Figure 68: Two-parameter bifurcation diagram for eEL = eFL = −60mV as iE(= iF ) and α

vary. Solution types are labeled in black and apply to regions defined by the blue curves of

Hopf bifurcations. The dark gray curve is a curve of limit points of periodic orbits. This curve

defines a region of bistability between solutions in which E and F burst and WTA solutions.

Light gray dashed lines correspond to different intrinsic behaviors of E and F in isolation

(α = 0). These intrinsic behaviors define the regimes of behavior for each mechanism, which

are color coded and labeled. Left is the full two-parameter bifurcation diagram for a wide

range of iE values, including those that produce biologically unrealistic oscillatory solutions.

Right is the same diagram restricted to smaller values of iE, where bursting solutions are

biologically relevant.
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Finally, we consider E and F intrinsically bursting, but with different leak reversals

(eEL = −60mV, eFL = −62mV ) so that we may consider (M3) to (M2) to (M1) in one figure,

Figure 69. The solution types admitted by (M1) and (M2) are consistent with those depicted

in Figure 67. The solutions types admitted by (M3) are consistent with those depicted in

Figure 68. Thus, no new information is found in this case.

Figure 69: Two-parameter bifurcation diagram for eEL = −60mV, eFL = −62mV as iE(= iF )

and α vary. Solution types are labeled in black and apply to regions defined by the blue

curves of Hopf bifurcations. The dark gray curve is a curve of limit points of periodic orbits.

This curve defines a region of bistability between solutions in which E and F burst and

solutions in which E is tonic and F is silent. Light gray dashed lines correspond to different

intrinsic behaviors of E and F in isolation (α = 0). These intrinsic behaviors define the

regimes of behavior for each mechanism, which are color coded and labeled. Left is the full

two-parameter bifurcation diagram for a wide range of iE values. Right is the same diagram

restricted to smaller values of iE.
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Frequency control. The frequencies as iE and α vary corresponding to each two

parameter bifurcation diagram are given below: Figure 70 is the case where E is intrinsically

tonic and F is intrinsically bursting, and corresponds to Figure 67; Figure 71 is the case

where E and F are intrinsically bursting with the same leak reversal, and corresponds to

Figure 68; and Figure 72 is the case where E and F are intrinsically bursting with different

leak reversals, and corresponds to Figure 69.

The frequencies achieved with symmetric drive are greater than those found in Sections

4.3 and 4.4. Once again the maximum frequency is produced by mechanism (M1), with

mechanism (M3) producing the lowest frequency bursting solutions. Overall, there is greater

heterogeneity in the patterns of frequency change than were observed in Section 4.4, partic-

ularly in the cases where E and F are both intrinsically bursting. These differences again

emphasize the issues with taking two-dimensional slices through a three-dimensional param-

eter space. In the future, a more rigorous method for sampling iE, iF and α must be found

so that the properties of solutions generated by each mechanism can be more confidently

stated.

Figure 70: Frequency changes of E (Left) and F (Right) for eEL = −50mV, eFL = −60mV as

iE(= iF ) and α vary. The voltage threshold for spike detection is -30mV.

The cases where E and F are both intrinsically bursting (Figures 71 and 72) display a

new trend in frequency changes. For fixed values of α ranging from approximately 3 to 11,
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the frequency decreases, increases, and decreases again as iE is increased. This was not seen

in the cases examined in Section 4.4. This is likely due to changes in the roles of escape and

release in the E to F and F to E transition mechanisms. We are currently performing the

same systematic analysis done in Section 4.4.2 to better understand this observation.

Figure 71: Frequency changes of E for eEL = eFL = −60mV as iE(= iF ) and α vary. The

voltage threshold for spike detection is -30mV. The frequency changes for F are identical for

those of E. Top is for the full two parameter region shown in Figure 68. Bottom is for the

range of iE in which biologically realistic bursting solutions are produced.
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Figure 72: Frequency changes of E for eEL = −60mV, eFL = −62mV as iE(= iF ) and α vary.

The voltage threshold for spike detection is -30mV. Top is for the full two parameter region

shown in Figure 69. Bottom is for the range of iE in which biologically realistic bursting

solutions are produced.
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4.6 DISCUSSION

In normal vertebrate motor function, deletions can occur. Experimental investigation has

proposed at least three distinct mechanisms in extensor-flexor CPGs: (M1), the classical

half-center concept assumes a symmetrical organization between the half-centers with both

extensor and flexor are tonic in isolation [61, 10, 11]. (M2), an asymmetric, flexor-dominated

CPG organization in which only the flexor half-center has intrinsic rhythmic capabilities.

Extensor is tonic in isolation and flexor is bursting [21, 71]. (M3), both populations can

autonomously generate rhythmic activity and are bursting in isolation [30].

Computational model simulations support the hypothesis that all three of these mech-

anisms can coexist in the same CPG model. We simulated a reduced model based on the

persistent sodium current. By manipulating three major parameters (the intrinsic state of

E, the intrinsic state of F, and the strength of inhibition) we were able to find all three

mechanisms in the same model. The transitions between these mechanisms are the Hopf

bifurcations in this model: when a population is isolated, Hopf bifurcations occur at the

transition from silent to bursting and at the transition from bursting to tonic activity, as

external drive is varied. These isolated behaviors are what define each CPG mechanism.

By taking tractable two-dimensional slices through our three-dimensional parameter

space, we were able to use bifurcation theory to observe unique features of each mecha-

nism. Mechanism (M1) is capable of producing the following solution types: both E and

F tonic, E and F bursting, E tonic and F silent, E silent and F tonic, and winner take all

depending on initial conditions. Solutions in which both E and F are tonically active, E

silent and F tonic, and winner take all appear to be unique to mechanism (M1), based on

our analysis so far. In general, it would be dangerous to over-generalize the trends we have

observed in two-parameter slices, and so it is difficult to state with confidence that these

are truly unique to (M1). Mechanism (M1) also displays bistability between bursting solu-

tions and tonic solutions in many regimes. Additionally, mechanism (M1) cannot produce

oscillations at strong levels of inhibition. (M1) generates the highest frequency bursting

solutions seen, with the largest frequency occurring at low α and a dramatic decrease in

frequency occurring as α increases. In many of our cases, (M1) generates bursting solutions

133



of approximately double the frequency of (M2) or (M3).

Mechanism (M2) is capable of producing the following solution types: E and F bursting

and E tonic and F silent. (M2) displays small regions of bistability in some parameter

regimes, but these are generally negligible relative to the bistability displayed by (M1). (M2)

generally produces the second highest frequency burst solutions of the three mechanisms,

and maintains bursting solutions to large α with significantly less decrease in frequency than

(M1) displays.

Mechanism (M3) is capable of producing the following solution types: biologically unre-

alistic oscillations and E and F both bursting. Therefore, any steady state solutions must be

generated by either mechanism (M1) or (M2). (M3) produces the lowest burst frequencies

of the three mechanisms, and maintains bursting solutions to large α with less decrease in

frequency than (M1) displays. Therefore, bursting behavior observed at strong inhibition in

experiment is likely due to either (M2) or (M3).

This list of features for each mechanism can help guide future experiments. However, to

be more confident that these features are accurate, an analysis of the full three dimensional

parameter space must be undertaken. It may be possible to develop a quantitative cost

function and use sampling methods to explore the space more fully. Another avenue for

research would be to take a (perhaps larger than considered here) collection of more carefully

chosen two-dimensional slices to insure the entire parameter space is represented. It may even

be possible to develop a three-parameter bifurcation diagram for the problem, given enough

time. In an asymmetrically driven setup, we analyzed the role escape and release transitions

[69, 56] played in determining frequency in certain regimes of all three mechanisms. This

analysis can, and should, be repeated in other approaches (such as fixing inhibition or a

symmetrically driven approach, as we generated frequencies for here). However, it is time

consuming to do and it would ultimately be more efficient to deal with the three-dimensional

parameter space issue first so that work is not wasted. A more thorough study of the relative

contributions of escape and release to rhythm generation by each of the three mechanisms

would be valuable. Finally, the question of duty cycle was not examined in depth here.

Analyzing duty cycle, in addition to frequency information, would likely provide additional

unique features for each mechanism that may be useful in future experiments.
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Recent experimental and theoretical work studying left-right leg coordination during lo-

comotor gait in limbed animals has found that certain deletions of interneuron populations

connecting a left extensor-flexor pair and a right extensor-flexor pair can cause an animal

to switch from a normal left-right alternating activity to a left-right synchronized “hop-

ping” pattern [67, 43, 44]. Specifically, coordination between left and right neural activities

in the spinal cord controlling left and right legs is provided by commissural interneurons

(CINs). Several CIN types have been genetically identified, including both excitatory and

inhibitory types. Recent studies demonstrated that genetic elimination of all CINs caused

switching from a normal left-right alternating activity to a left-right synchronized hopping

pattern. Interestingly, removal of only the inhibitory CINs resulted in hopping at low lo-

comotor frequencies and normal left-right alternation at high frequencies, whereas removal

of certain subpopulations of excitatory CINs maintained the left–right alternation at low

frequencies and switched to hopping at high frequencies [67]. Theoretical examination of

these observations was undertaken in first a large, biologically detailed computational model

[43], and then in a a simplified mathematical model more amenable to analysis [44]. The

simplified mathematical model demonstrated all of the experimentally observed behaviors:

normal left-right alternation under control conditions, switching to a hopping activity at any

frequency after removing both CIN connections, a synchronized pattern at low frequencies

with alternation at high frequencies after removing only inhibitory CIN connections, and an

alternating pattern at low frequencies with hopping at high frequencies after removing only

excitatory CIN connections. A key hypothesis of their work was that the flexor populations

had to be intrinsically bursting while the extensor populations had to be intrinsically tonic

(our mechanism (M2)) in order for their model to reproduce the observed behaviors. Our

work identifying solution types that each extensor-flexor CPG mechanism is capable of pro-

ducing may allow a relaxation of this requirement in certain parameter regimes, allowing

further study and predictions.
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5.0 CONCLUSIONS

In this thesis, we used reduced mathematical models to investigate motor pattern generation

in vertebrates. In Chapters 2 and 3, we proposed two different models for a single network to

generate two distinct scratch rhythms in turtle (rostral and pocket). With our relaxation os-

cillator based model in Chapter 2, we performed a computational and mathematical study to

investigate whether a proposed, unified CPG network, which features only hip-related popu-

lations of interneurons, could indeed be responsible for the generation of two different turtle

scratch rhythms with distinct knee-hip synchrony patterns. In the model, these patterns are

selected by changing external inputs to the interneurons, with the same synaptic weights be-

tween interneurons, and from interneurons to motoneurons, preserved for both. We showed

through simulation that the proposed network can achieve the desired multi-functionality,

even though it relies solely on hip unit generators to recruit appropriately timed knee ex-

tensor motoneuron activity, including the delay relative to hip flexor activation in rostral

scratch. We also developed a phase space representation, focusing on the inputs to and the

intrinsic slow variable of the knee extensor motoneuron. Through the use of slow phase plane

arguments, we were able to explain how particular phase space and bifurcation structures

underlie the generation of the rhythms and to derive sufficient conditions on these structures

that guarantee the existence of stable rhythms. This analysis was possible due to time scale

decomposition and certain model reductions, despite the relative high-dimensionality of the

model system. Our slow phase plane framework also illustrated that a saddle-node bifur-

cation is a robust method for achieving the knee extensor delay in rostral, and produced a

key differentiator that can be used in future experiments. The slow phase space framework

also produced conditions stated in terms of dynamic structures, meaning our representation

could be adapted to analyze other models that include slow, inactivating currents. Due to
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this more general nature, the slow phase space framework may be useful in predicting the

impact of a therapeutic drug on motor patterns generated in the spinal cord. We reproduced

dual-stimulation experimental results, and used our slow phase space framework to provide

our collaborators with negative criteria to rule out certain parameter sets. We also predicted

the effects of input scaling on motoneuron duty cycles, for future experimental testing. This

work has been published in [57].

In our stochastic spiking model in Chapter 3, we investigated changes in the firing rate

of motoneurons in response to modulation of excitatory and inhibitory inputs. In partic-

ular, we explored the transformation of hip interneuron signals with prescribed properties

into knee extensor motoneuron output signals. We successfully produced the pocket and

rostral rhythms when time-varying noise was included in the model, and we reproduced

experimental results regarding input modulation and supported our collaborator’s hypoth-

esis. By exploring the roles of different model parameters, we were also able to suggest

additional tests for investigating the impact of input modulation. The results in Chapters 2

and 3 are very different approaches to the same system. Both models found that inhibition

was fundamental to the successful generation of multiple rhythms from the same model:

the relaxation oscillator model relied on carefully structured model neuron behavior so that

inhibition controlled the delay of knee extensor activity in rostral through a saddle-node

bifurcation without causing issues in pocket. The stochastic spiking model supported the

hypothesis that rhythmic inhibition was more important than rhythmic excitation in gen-

erating the turtle scratch rhythms through the investigation of input modulation. As more

experimental work identifying the network architecture in turtle spinal cord and testing the

predictions of each model is performed, the modeling approach that appears more accurate

could be expanded upon. A stochastic component could be introduced to the relaxation os-

cillator model. It is incredibly difficult to get a phase shift such as that described in Figure

23 [51] to emerge from the interneuron architecture we have implemented (rather than being

prescribed as in Chapter 3), but it may be possible with the addition of synaptic depression

and all of the connections proposed in Figure 2, left. The stochastic spiking model could be

more rigorously analyzed, if it proves to be the more promising modeling approach.

Our finding that hip related controls are sufficient to produce multiple knee-hip syn-
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chrony patterns may be useful in other areas, since it is essentially a statement that multiple

patterns of synchrony involving multiple joints can be controlled with fewer inputs than

may be expected. Additional populations could be added to this model to describe limb

dynamics and feedback, as in [60]. If the model still produces multiple knee-hip synchrony

patterns with these additions, this may be useful in designing more efficient control of walk-

ing robots. Finally, chapter 2 does not address many of the deletions that have been studied

experimentally in turtle [5, 63, 64, 65]. Chapter 3 only finds knee extensor deletions for high

frequency rhythms, but deletions are nonetheless seen experimentally and provide valuable

information about underlying CPG architecture. This motivates our transition to an even

simpler modeling framework in Chapter 4 to study the issues deletions raise.

In Chapter 4, we turned our attention to deletions seen during vertebrate motor func-

tion. In collaboration with the Rybak group at Drexel University, we developed a reduced

mathematical model of an extensor-flexor pair in mammalian spinal cord that is capable of

producing three distinct CPG mechanisms suggested by deletion experiments. Both exten-

sor and flexor neurons were represented by single non-spiking neurons coupled by mutual

inhibition. Neuronal oscillations were based on the slowly inactivating persistent sodium cur-

rent. This current allowed us to induce systematic transitions between all three half-center

mechanisms by manipulating external drives to each half-center. We identified three key

parameters (the intrinsic state of extensor, the intrinsic state of flexor, and the strength of

mutual inhibition) to vary in order to investigate the solution behaviors and frequency con-

trol that each mechanism can produce. By using a variety of two-parameter slices through

this three-parameter space and exploiting the two-parameter bifurcation capabilities of XP-

PAUT [23], we identified several unique features of each mechanism. We also examined

frequency in each of these two parameter slices, adding to our understanding of solution

features produced by each mechanism. In some cases, we were able to investigate through

nullcline arguments the role of escape and release transition mechanisms in producing some

of these frequency results. A final note is that, in experiment and in the models presented

in this thesis, the frequency of fictive rhythms is often much slower than that of intact be-

haviors. In the case of turtles, this is likely due to the experiemental preparation, in which

turtles are anesthetized by an ice bath for several hours, lowering their temperature and
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slowing neuronal activity. In other animals, such as cats and mice, this of course may not

be the explanation. There are a variety of constants in each model presented in this thesis

that can increase the frequency of the resulting motor rhythms: the model in Chapter 2 is

tuned for transitions by escape and so increasing external excitatory drive will increase the

frequency of the resulting rhythm; the model in Chapter 3 is capable of tracking relatively

high frequency inputs well, producing rhythms that are more on the time scale of intact be-

havior; and finally, the time constants used in Chapter 4 are particularly slow and come from

our experimental collaborators. Changing these time constants would certainly increase the

frequency of the output rhythm; whether that is biologically justified is a question for future

study.

We are currently extending the extensor-flexor CPG results. We intend to further ex-

amine the three-parameter space by repeating our escape and release transition mechanism

analysis in additional carefully chosen two-parameter slices. Other future approaches could

include developing a quantitative cost function and sampling the three-parameter space or

attempting a three-parameter bifurcation diagram. Future work investigating in a more

quantifiable way how the relative contributions of escape mechanisms and release mecha-

nisms change as parameters vary, and examining duty cycle changes in addition to frequency

would also be valuable. Finally, it may be possible to apply our findings to the relaxation

oscillator model of turtle scratching in Chapter 2 to account for the variety of motoneuron

deletions that have been studied during turtle rostral scratching [63, 64, 65]. This may lead

to changing the intrinsic nature of the motoneuron populations, or including knee-related

motor pools.
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