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As power systems throughout the world continue to utilize DC infrastructure within distributed 

generation solutions and microgrid designs, an effective DC-DC interfacing power electronic 

device must be developed for managing power flow and power quality levels between a system’s 

increasingly diversified array of sources and loads. DC-DC power electronic interfaces are 

continuing to gain increased attention throughout many distribution applications, including the 

information and communication technology (ICT), electric vehicle, and renewable generation 

industries.  

The research effort described herein explores the use of a multi-port DC-DC modular 

multilevel converter interfacing a dual-input connection of a 380 VDC system and a 42.9 VDC/ 40.7 

A photovoltaic panel with a 96 VDC output resistive load. Ultracapacitors are used to power-buffer 

the input signal and in this application, the inherently intermittent solar panel output. This 

technology represents the merits of utilizing a singular interfacing device to consolidate the flows 

between joint generation and load, while maintaining stable output power using a modular energy 

storage solution. 

This work details the operation and control of the DC-DC converter and its module-

interfaced power buffering solution, as well as provide design methodologies for the system 

described. 

POWER SOURCE BUFFERING USING A TRIANGULAR MODULAR  

MULTILEVEL CONVERTER WITH ENERGY STORAGE 
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1.0  INTRODUCTION – A CHANGING POWER LANDSCAPE 

As power systems throughout the world continue to utilize more distributed generation solutions 

and microgrid systems, an effective interfacing power electronic device must be developed for 

managing power flow and power quality levels throughout the system and the loads. Global 

demand for electricity increases annually and is expected to reach over 20 TWy by the end of the 

decade [1].  

 

Figure 1. U.S. Energy Information Administration’s Projection of World Energy Consumption 
Growth (Historical Data Up to 2013) 

 

 
The generation profile is diversifying to meet this growing demand as older power plants 

are being retired and renewable sources, such as wind and solar, are installed to fill the gap, as well 

as more efficient conventional plants, such as combined heat and power plants. Conventional 
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plants often serve loads by being few in number, spread out over large distances, and by having 

large generation capacities; renewable sources, on the other hand, are best utilized when placed in 

distributed networks throughout the load center and are typically many in number and dispersed 

strategically throughout the area with each unit being relatively small in generation capacity. An 

emphasis on improving distribution networks has become popular with research and functional 

examples of microgrids have been established in several regions of the developed world. 
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2.0  BACKGROUND – THE MODERN POWER DISTRIBUTION NETWORK, 

MICROGRIDS 

Microgrids are localized electric power systems that operate independent of the greater power grid 

during faulted or emergency events. Local renewable energy, energy storage, as well as more 

traditional forms of generation are commonly introduced via distributed generation into 

microgrids, which helps ensure a sustainable, islanded mode of operation. AC microgrids directly 

connected to a greater utility grid via a point of coupling (POC) are the most commonly 

implemented and studied form of microgrid structure; however, DC microgrids have recently 

gained more attention in the research world as DC generation, storage, and loads have become 

more prevalent throughout society. A DC system also benefits from a direct connection to energy 

storage devices such as batteries, ultracapacitors, and flywheels, which allow for active power 

smoothing and greater resilience to faulted conditions. By no longer operating a grid in AC, control 

strategies greatly simplify and methods for synchronizing with the AC grid are no longer 

necessary. Moreover, the lack of both frequency and reactive power components would enhance 

the system’s power quality and power density. DC systems can also easily be developed with 

parallel branches increasing resiliency through redundant and modular-stacked systems [2]. 

Additional benefits include: higher levels of efficiency due to fewer conversion steps throughout 

the system, and a built-in fault-ride-through capability during blackouts and/or voltage sags due to 

stored energy in DC capacitors and available converter voltage controls [3]. However, there are 
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inherent drawbacks to the system being all DC: the large capital costs associated with the 

installation of new DC distribution lines, undeveloped DC protection measures -- there are no zero-

crossings in a DC signal and therefore AC protection is not applicable --, and lastly, loads must be 

adapted to DC power supplies in order to ensure high efficiency [3]. A third type of microgrid 

concept exists that hybridizes the functionality of both AC and DC systems to accommodate both 

the existing AC infrastructure and the growing interest in DC systems. This hybrid microgrid helps 

to reduce multiple reverse conversions, for instance converting from AC to DC and back to AC, 

and helps to optimize the connection of various AC and DC renewable sources to AC and DC 

loads throughout the grid [4]. The operation and control of the hybrid model is significantly more 

complicated [5], and therefore is not be discussed any further in this thesis. Moving forward, the 

bulk of the remaining discussion focuses on DC systems, including power electronics, renewable 

generation, and energy storage – all within the context of integrating distributed forms of 

generation into an environment such as a microgrid. 
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3.0  THE IMPORTANCE OF POWER ELECTRONIC INTERFACES 

With the increased use of wind and solar generation in recent years, several methods of mitigating 

their inherent intermittency issues have been developed with power electronic devices being at the 

forefront of these solutions. Power electronic devices can enable generation-side and grid-side 

signal decoupling and reduction of total harmonic distortion and voltage flicker injected into the 

grid. Different combinations of inputs and outputs are necessary in order to adequately serve 

different types of loads, which call for a specific type of converter. For instance, in a distributed 

generation network, a home might be powered by a combination of grid-power, solar, wind, and 

energy storage; while in a hybrid electric vehicle, the vehicle could be powered by a combustion 

engine, an electric motor, and a battery system. These systems call for a specific family of 

converters containing multiple ports to coordinate the different generation and load pathways, 

some of which are unidirectional, while others, like for batteries, are often bidirectional [6]. These 

converters can adjust sources of different voltage and coordinate their functions to work together 

in a single system environment. Multi-port converters are classified into three main groups: Multi-

Input, Single-Output (MISO); Single-Input, Multi-Output (SIMO); and Multi-Input, Multi-Output 

(MIMO).  
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3.1 MICROGRID APPLICATIONS OF POWER ELECTRONICS 

The CERTS microgrid [7] is a good example of an AC system that can demonstrate the 

effectiveness of interfacing converter functionality. While some of the DC-DC system merits are 

lost with the addition of conversion to an AC system, there are still strong, published works 

demonstrating the proper management of inputs. The CERTS microgrid, according to [7], requires 

that all of its input sources maintain a plug-and-play functionality with a unified dynamic 

performance across all inputs regardless of generation type. Each of the sources connect to the grid 

via an interfacing converter, which adjusts the dynamics of each input. Since no two generators 

behave identically -- for instance, a photovoltaic (PV) array does not inherently operate like a gas 

turbine -- it is recommended that energy storage be added to the power electronic interface to help 

regulate and unify the load-following performance of all input sources at their POC with the 

microgrid. The addition of energy storage is especially important for converters interfaced with 

multiple inputs that respond to power changes according to time constants that are orders of 

magnitude different. During these time lapses, the energy storage injects instantaneous power until 

the source is able to adequately accommodate for the load step. This injection of power also helps 

to ease the strain placed on the source during large load steps. The energy storage module shown 

in the example is shown in Figure 2 and is represented by the Surge Module block [7]. 
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Figure 2. CERTS Microgrid Interfacing Converter Example Incorporating Energy Storage 
(Surge Module) [7] 

 
 
 
While power electronic interfaces are quite effective at minimizing components by 

connecting together multiple inputs and outputs in one design, this increased complexity could 

also be a source of power system instability. These interfaces can propagate any unaccounted 

instabilities such as voltage flicker from intermittent renewable sources or sudden load changes, 

which can negatively affect all connected systems. Since microgrid-based power electronics 

devices are tightly regulating several sources of varying voltage and consistently feeding a load 

with steady power levels, a point of load converter can be viewed as a constant power load (CPL). 

CPLs function with a negative incremental input impedance that can cause large voltage 

oscillations or voltage collapse in other system components upstream such as line regulating 

converters. These issues can be resolved by either altering component sizes -- increasing system 

capacitances or resistive loads, or by reducing system inductances, which are both typically 

deemed impractical -- or by implementing properly-tuned boundary and/or linear control schemes 

[8]. 
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3.2 TYPE OF INTERFACING CONVERTERS 

While multi-port converters can be created by connecting multiple single-input, single-output 

(SISO) converters together via a shared bus, they often result in an overly complex structure with 

a high associated cost, and suffer from control and stability issues. SISO converters often consist 

of known topologies such as the buck, boost, buck-boost, SEPIC, Cuk, H-bridge, flyback, and 

forward converters.  Due to the aforementioned issues with SISOs, single-stage multi-port systems 

(MISO, SIMO, and MIMO) are the preferred interfacing topologies.  

3.2.1 Multiple Input, Single Output Converters 

MISO converters, with an example shown in Figure 3, have received a great deal of research 

attention over the past two decades regarding their applications for microgrids and renewable 

generation integration. As an interface to microgrids, and grids in general, MISOs can help to 

reduce cost and simplify the integration of multiple input sources in lieu of using several separate 

SISO converters. Instead, a single MISO can gather each source in parallel and funnel it into a 

single output -- the desired grid point or end load -- without negatively affecting the system’s 

availability. Furthermore, MISOs could help to achieve greater levels of system availability since 

the converters can allow for a fuel-diverse collection of parallel input sources, which has been 

shown to benefit system availability [9]. Since energy storage and most renewable sources have 

DC outputs, these inherently DC converters would help streamline these sources’ integration into 

the microgrid. Methods of expanding basic SISO topologies into MISOs are discussed in [10].  
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Figure 3. Example Time-Multiplexing MISO Converter [11] 

 
 
 
Early MISO converters were constructed by stacking multiple SISO converters with their 

output capacitors connected in series and both converters sharing a lone output. Such an example 

was built by the University of Rome in 1996 with two inputs and a shared output [12]. This design, 

while novel for its time, struggles to regulate its output voltage effectively whenever one of the 

two input sources falls out of operation, which is due to large input voltage variation [13]. Several 

of the newer multiple-input converters rely on a time-multiplexing strategy for their source switch 

operation. These converters contain an active switch in series with the input sources that only 

allows one source to transfer energy to the load at any one time. These active switches utilize 

forward-conducting-bidirectional-blocking (FCBB) topologies comprised of a MOSFET in series 

with a diode, which tend to increase power losses in a time-multiplexing-based MISO [14]. All 

switching operations share one fixed time period; therefore, as the number of input legs increases, 

it becomes increasingly more difficult to generate and control switching signals to accurately 

represent each fraction of the period [11]. Concerning modeling and simulation, inputs of MISO 
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converters are systemically coupled through their topologies and their switching function control 

operations. For instance, a state variable from one input leg is dependent upon the state variables 

from the other input legs and their respective switching functions. This coupling of states can bring 

about moderate averaged-model simulation error as the number of input legs increases [15]. An 

alternative method of simulating time-multiplexing-based MISO converters is proposed in [15] 

using a multi-frequency approach derived from system-switched dynamic equations. A different 

MISO topology was proposed back in 2004 designed to overcome some of the switching and 

regulation issues related to the previous two designs. The topology was designed with input 

sources of an AC grid and a PV array -- ideally with both of these sources delivering constant 

power to the load. The design incorporates a 3-winding coupled transformer, additional full bridge 

DC-AC converters with reverse blocking diodes, and coupled inductors to reduce ripple on the 

input sources. Operation of this device allows energy sources to deliver power either individually 

or simultaneously, eliminating issues associated with voltage regulation from a faulty input or 

switching complexity associated with time-multiplexing MISOs. Instead of combining inputs 

electrically and sending them directly to the output, the converter combines input source magnetic 

flux terms and induces the magnetic core to provide a cleaner output. There are numerous benefits 

to this design including very high efficiency and reduced total harmonic distortion, however, these 

benefits come at the cost of using a large amount of components to assemble the design [13]. 

Inductors and/or transformers are typically the largest off-chip components and require additional 

integrated circuitry, ultimately increasing the cost. An updated summary of the latter two methods 

of synthesizing MISO operation can be found in [16]. 
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3.2.2 Single Input, Multiple Output Converters 

SIMO converters are useful for applications requiring multiple regulated supply voltages. Many 

of these applications are relevant for small-scale devices such as microprocessors and wireless 

transceivers [17]; however, some different grid-based applications are also being explored [18], 

[19]. These converters are grouped into two categories: isolated and non-isolated designs. Isolated 

topologies either utilize a transformer or coupled inductor with multiple secondary windings to 

interface the input and outputs. One method of operating this design actively regulates only the 

output port with the heaviest load, while the remainder of the ports rely on the turn ratios of the 

secondary windings to maintain regulation. Although this method simplifies basic controls, it 

complicates the ability to independently control each output without incurring large current ripple 

and peak inductor current levels with the system under heavy loading. Methods have been explored 

to overcome this limitation by modifying the operating continuous conduction mode (CCM) 

slightly into what is described as a pseudo CCM [17].  Non-isolated configurations come in two 

variations: independent output and series output. Independent output topologies have outputs 

sharing the same ground (Figure 4) and can help reduce cross regulation issues with both CCM 

and discontinuous conduction modes (DCM) from the previous design by implementing a digital 

control structure. This methodology uses control variables of common and differential modes as 

decoupling algorithms and is easily extended to an arbitrary number of outputs [20]. The one 

downside of implementing such a solution comes with the increased sophistication of 

implementing a nonlinear controller.  
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Figure 4. Examples of Non-isolated SIMO Converters with Independent Outputs (left) and 
Series Outputs (right) [19] 

 
 
 
On the other hand, series output configurations stack their outputs on top of each other in 

series with a path to ground as shown in Figure 4. This proposed topology could serve as an 

interfacing DC link between renewable sources and a microgrid when cascaded into a multi-level 

inverter [19]. This combination of systems allows for a lower harmonic distortion and lower 

switching frequency, which leads to lower losses as well. An ancillary applied benefit of this 

design is seen by placing this series output SIMO converter at the DC link terminal of a Diode-

Clamped inverter. This combination provides a solution for balancing DC link voltages and 

correcting potential capacitor voltage imbalance, which creates a simpler control scheme for 

implementation [19].  

3.2.3 Multiple Input, Multiple Output Converters 

The last general family of interfacing topologies to discuss is the MIMO converter. A MIMO 

converter should be able to take advantage of the benefits of both MISO and SIMO converters, 
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producing a more efficient and cost effective solution for interfacing microgrids with their 

generation and loads.  A few studies exist that demonstrate both low and high power applications 

[21] of the converter. In [22], a 0.1 W MIMO energy harvesting device is proposed offering 

maximum power point tracking (MPPT), multi-load regulation, and power management through 

the use of energy storage systems. This designed converter operates in DCM, which is beneficial 

in limiting the inductor current, but also limits any high power operation of the system. For a higher 

power example, [23], [24] discuss MIMOs that are designed with energy storage at their core and 

rebranded as active power distribution nodes (APDN). These nodes operate as a power buffer by 

utilizing a dynamic operation of energy storage to correct any power mismatch that may occur 

between connected sources and loads. Inspired by the need for a reconfigurable and modular 

MIMO device to interface an increasingly more complex generation and load landscape, the focus 

of this thesis work centers around a specific MIMO known as the Triangular Modular Multilevel 

Converter (TMMC) [25]. This architecture is expanded from its original design by directly 

implementing energy storage into its modular structure.    

 

Figure 5. Active Power Distribution Node Example of MIMO Converters[24] 
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4.0  MOTIVATION – A DC-DC CONVERTER WITH INTEGRATED ENERGY 

STORAGE 

As power systems throughout the world may continue to utilize DC infrastructure within 

distributed generation solutions and microgrid designs, an effective DC-DC interfacing power 

electronic device must be developed for managing power flow and power quality levels between 

a system’s increasingly diversified array of sources and loads [7]. DC-DC power electronic 

interfaces are continuing to gain increased attention throughout many distribution applications, 

including the information and communication technology (ICT) [26], electric vehicle [27], and 

renewable generation [28] industries.  

The research effort described herein explores the use of a multi-port DC-DC converter 

interfacing a dual-input connection of a 380 VDC idealized “grid” and a 42.9 VDC/ 40.7 A 

photovoltaic panel with a 96 VDC output resistive load (which can be divided in half to tap into the 

commonly used 48 V). Ultracapacitors, 83 F, are used to power-buffer the input signal and in this 

application, the inherently intermittent solar panel output. This technology represents the merits of 

utilizing a singular interfacing device to consolidate the flows between joint generation and load, 

while maintaining stable output power using a modular energy storage solution. 

The multi-port topology used in this work is called a triangular modular multilevel 

converter (TMMC), which utilizes stacked capacitor voltages from buck-boost derived modules 

in order to effectively step-up or step-down the voltage depending upon the direction of current 
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flow [25]. Input and output ports can be placed between any of the modules to meet source and/or 

load system requirements. This variant of the modular multilevel (MMC) family of converter 

topologies benefits from having a natural power sharing capability across modules for single-input, 

single-output applications due to its triangular structure. 

With the addition of a robust control system (a PI voltage controller fed into a current 

hysteresis controller, for each module) and an ultracapacitor-based power buffering solution, this 

power-sharing attribute can be maintained for multiple inputs and/or outputs. Applications that 

incorporate energy storage within MMC topologies for high power applications have already been 

explored [29], [30] in order to help meet a growing need for load leveling and power buffering. 

Within the proposed circuit design, power buffering is achieved by attaching an array of 

ultracapacitors to each of the TMMC’s modules via an interfacing dual-quadrant Type-C Chopper 

circuit. With the intermittency of renewable generation sources like solar, it would be preferred to 

utilize an energy storage solution that provides quick discharges of power while subsequently 

recharging quickly. Ultracapacitors are a good fit for such an application with a high power density 

profile to meet dips in power output, quick charge and discharge cycling, and a long lifespan.  
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5.0  THE TRIANGULAR MODULAR MULTILEVEL CONVERTER  

5.1 TOPOLOGY OVERVIEW 

Proposed out of the University of Toronto in [25], the TMMC utilizes stacked capacitor voltages 

from buck-boost converter derived modules with a unity designed conversion ratio in order to 

effectively step-up or step-down the voltage depending upon the direction of current flow. Voltage 

taps can be made on any of the modules’ input or output terminals, allowing for the possibility of 

creating multiple inputs and outputs based on source or load requirements of a system. This is very 

desirable for interfaces between building loads and the grid for instance, which may require 

multiple voltage level taps as well as multiple sources such as the grid and perhaps some local 

rooftop PV generation for example.  With its modular structure and bidirectional functionality, the 

TMMC can be modified to operate as a reconfigurable APDN and can be modified to act as a 

SISO, MISO, SIMO, or MIMO converter. Modules are stacked in a triangular fashion with the top 

most row containing a single module and subsequent rows beneath it containing a module directly 

underneath and one to the right. This pattern continues as shown in Figure 6. Furthermore, its 

modular design can be expanded for a wide range of conversion ratios with power sharing achieved 

across all modules and localized module-based control for increased dynamic performance. This 

power sharing capability indicates that each module handles roughly the same amount of voltage 

across its capacitor and similarly, roughly the same amount of current flowing through its inductor. 
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With respect to the shared ground on the low voltage side of the converter, the triangular 

configuration of the converter has its lowest row of modules processing the highest amount of 

current and the lowest amount of voltage. Working upwards through the rows towards the top most 

row’s singular module, each row collectively processes less current and more voltage (with respect 

to ground) the higher you climb up the architecture, further demonstrating the TMMC’s power 

sharing capability.  

 

It is worth pointing out however that since the TMMC is a transformer-less DC-DC 

converter design, it is not suitable for applications requiring isolation. Additionally, while the 

topology is inherently capable of handling both multiple inputs and multiple outputs, the control 

design would need to be overhauled beyond the basic SISO design for optimal performance. This 

thesis research effort focuses just on the simplified controller design, which is suitable for the 

dynamics introduced evenly across modules with the energy storage and a robustly designed PV 

secondary source design. Further description of this topology is discussed in the Modeling and 

Simulation section.  
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Figure 6. General TMMC Module Row Configuration Pattern 
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5.2 APPLICATION OF ENERGY STORAGE 

Renewable generation sources such as PV and wind naturally exhibit an intermittent supply of 

generated power. The impact of this intermittency upon the grid is typically reduced by grouping 

collections of PV or wind units together in large farms and utilizing some form of MPPT to ensure 

maximum production of electricity despite changing environmental conditions. Large collections 

of PV or wind help to aggregate the technologies’ intermittencies by summing together their 

generation; however, overall generation profiles of large plants can still be negatively impacted by 

meteorological effects creating large steps in generation that can have potentially damaging effects 

to the stability of the connected grid as well as its loads and equipment. As renewable generation 

installations are becoming increasingly distributed at localized portions of the grid closer to the 

load base, the potential impact for creating a large number of instabilities throughout the grid 

similarly grows. This greater potential for system instability is a problem that must be dealt with 

before penetration of these generation sources grows too large. Some methods of mitigating these 

instabilities have been explored as a means of implementing a more constant power generation out 

of these renewable sources. Examples of this include: integrating energy storage into the renewable 

system, implementing a defined power management controller to regulate active power on the 

secondary control level of a renewable system, and modifying the MPPT algorithm to increase 

controllability of active power [31]. 

 

This work focuses on the application of energy storage in order to resolve these issues 

regardless of the nature of the connected power source. Using an energy storage system to decouple 

renewable generation from its load helps to alleviate some of the intermittent stress placed grid 

equipment. Typical energy storage solutions include batteries, flywheels, and ultracapacitors. 
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Batteries are energy dense solutions offering hours of consistently discharged energy, but similarly 

require a long time to recharge. Therefore, with a low power density, they are not good for quick, 

deep discharge scenarios. Flywheels utilize the kinetic energy and inertia of large rotating masses 

to support power systems, and are best implemented for high-power, high energy demanding use 

cases (>100kW). Ultracapacitors are power dense solutions that are best utilized for quick charge 

and discharge scenarios, but have a relatively low energy density [32] Table 1, compiled by Tecate 

Group, details some performance characteristics of both batteries and ultracapacitors, 

demonstrating their capabilities for charge/discharge cycling as well as their energy/power density 

levels. Energy storage decoupling can be accomplished either by connecting large installations of 

energy storage that is directly charged by the renewable sources and then discharge into the grid 

when desired, or by directly affixing some kind of energy storage to the converter that is re-routing 

power to the grid for power buffering. 

 

Table 1. Charge and Discharge Characteristics of Batteries and Ultracapacitors [33] 
 

 

 

With the rapid fluctuations of PV generation, it would be preferable to utilize an energy 

storage solution that provides quick injections of discharged power while subsequently recharging 

quickly. Therefore, ultracapacitors would be the best fit for such an application with their power 

density, cycling capabilities, and long life span. 
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With the addition of energy storage shunt-connected to each module of a TMMC, the 

converter would gain the ability to power buffer any input signals from generation sources. This 

power buffering should improve the overall power profile of a renewable generation source like 

PV by smoothing out voltage and current irregularities. By having the ESS distributed across each 

individual module versus a lumped solution connected to an individual module port, a steadier 

injection of current supports the stability of the entire converter [29]. ESS redundancy is also 

achieved, by having a split accumulation of the ESS cascaded across each module. By interfacing 

the storage with the module via a non-isolated DC-DC converter, an additional degree of freedom 

is added to the system in terms of ensuring voltage stability for each module’s capacitor [29]. 

5.3 MODELING AND SIMULATION 

Preliminary simulation efforts began by modeling a simple two-row SISO TMMC converter 

design without any control system as seen in Figure 7 and Figure 8. Ansys Simplorer was used as 

the simulation testbed for the research. The TMMC buck-boost modules utilize two active switches 

to promote the bidirectional flow of power with each switch operating complementary of one 

another (when one is on, the other is off). These switches were triggered directly with PWM blocks 

with a switching frequency of 20 kHz and a constant duty cycle of 50%, in order to achieve a buck-

boost module unity conversion ratio. The output load for the converter was represented as a 

resistor. The TMMC conversion ratio is determined as an n+1 function, with n being equal to the 

number of rows. Therefore, a two-row system should step up or down the voltage by a factor of 

three. The converter component values were selected to recreate the results from the source work 
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and verify the operation of the topology. The simulated two-row SISO 1.7 kW TMMC has an input 

of 70 V with an expected output of 210 V. Output resistor values for both the step-up and step-

down configurations were calculated using the power formula (1). 

 

 𝑃𝑃 =
𝑉𝑉2

𝑅𝑅
. (1) 

 

Additionally, parallel filter capacitors are placed in between the lower most modules and 

their shared ground. A summary of system parameters is shown in Table 2.  

 

Table 2. Two-Row TMMC Parameters (Step-Up/Step-Down) 

System Parameter Value 
fs 20 kHz 
C 60 μF 
L 560 μH 

Ro 25.9 Ω (step-up) 
2.88 Ω (step-down) 

Vin 70 V/ 210 V 

Switches MOSFETs and 
Diodes 

 
 
 
The two-row system was first tested in the unidirectional step-up and step-down 

configurations by modulating one of the two active switches with a constant ON trigger depending 

upon the desired converter stepping direction as shown in Figure 7 and Figure 8 in order to meet 

the design criteria specified in Table 3 and Table 4, respectively. 
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Figure 7. Two-Row Step-Up TMMC with Output Voltage and Row Voltages 

Table 3. Two-Row Step-Up TMMC Design Parameters and Simulation Results 

Parameter Value 
Number of Rows 2 

Desired Input Voltage 70 V 
Desired Output Voltage 210 V 

Simulated Output Voltage 206.24 V 
Simulated Capacitor Voltage 69.73 V 

System Power 1.7 kW 
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Figure 8. Two-Row Step-Down TMMC with Output Voltage and Row Voltages 

Table 4. Two-Row Step-Down TMMC Design Parameters and Simulation Results 

Parameter      Value 
Number of Rows 2 

Desired Input Voltage 210 V 
Desired Output Voltage 70 V 

Simulated Output Voltage 68.22 V 
Simulated Capacitor Voltage 70.58 V 

System Power 1.7 kW 
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5.3.1 Module Controller Design 

After completing the previous simulations, a PI-based control system is derived based on the above 

system parameters. The designed PI controller can function for both step-up and step-down 

operations. The overall control system consists of a cascaded voltage controller fed into a current 

controller. For each row of the TMMC, only one voltage controller is necessary for all row modules 

to promote current sharing; however, an individual current controller must be created for each 

module of the converter. This one-to-one ratio of modules to current controllers is to ensure 

sufficient stability of each module in the face of transient events. During normal steady state 

operation, each current controller within a row should ideally operate identically. For rows 

containing multiple parallel modules, the P and I gain terms for that row must be multiplied by the 

number of parallel module capacitors to account for added capacitor dynamics. The voltage PI 

controller is fed by two voltages subtracted from one another: the first being a reference voltage 

that is set when designing the converter controller, and the second being a summation of voltages 

between a selected capacitor voltage from current row as well as a capacitor voltage from the 

previous row. It is important that the set reference voltages for each row be the same to ensure 

equal voltage and current sharing. The summed voltage between the current row and the previous 

row helps to establish an interdependency of voltage controllers helping to enhance the dynamic 

performance of the converter. The output of this PI block provides a reference inductor current 

value, which is then similarly subtracted by the actual inductor current of the module of interest. 

Based on the proposed TMMC paper, a second PI block would then process this current difference 

and provide an output switching signal for its respective module switches, with the design 

consideration that it must operate much faster (>10 times) than the voltage controller, so that 

inductor current dynamics are much faster than capacitor voltage dynamics. It is much more 
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desirable for the capacitor voltage to change more slowly than the current flowing across in the 

inductors to promote greater converter stability. For ease of implementation and to ensure fast 

current compensation performance, a hysteresis controller was chosen over a second PI block as 

shown below in Figure 9. 

 

 

Figure 9. Two-Row TMMC Controller  
(PI Voltage Controller fed into a Hysteresis Current Controller) 

 

 

Hysteresis current controllers are known for their robust stability, fast performance, and 

good accuracy; however, it is worth noting that they also can lend themselves to uneven switching 

frequencies that can potentially lead to acoustic harmonic noise [34]. By tuning the hysteresis 

threshold bandwidth experimentally, any negative effects from the switching frequency and noise 

can be mitigated. The basic functionality of the hysteresis loop-based controller is depicted in (2) 

and Figure 10. 
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Figure 10. Hysteresis Current Control Logic 

 

𝑦𝑦(𝑛𝑛) = 𝐴𝐴1, 𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛) < 𝑇𝑇1 
𝑦𝑦(𝑛𝑛) = 𝐴𝐴1, 𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛) < 𝑇𝑇2 𝑎𝑎𝑛𝑛𝑎𝑎 𝐴𝐴(𝑛𝑛 − 1) = 𝐴𝐴1  
𝑦𝑦(𝑛𝑛) = 𝐴𝐴2, 𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛) > 𝑇𝑇2 
𝑦𝑦(𝑛𝑛) = 𝐴𝐴2, 𝑖𝑖𝑖𝑖 𝑥𝑥(𝑛𝑛) > 𝑇𝑇1 𝑎𝑎𝑛𝑛𝑎𝑎 𝐴𝐴(𝑛𝑛 − 1) = 𝐴𝐴2 

 

(2) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦(𝑛𝑛) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 𝑎𝑎𝑛𝑛𝑎𝑎 𝑥𝑥(𝑛𝑛) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡 𝑎𝑎𝑡𝑡 𝑖𝑖𝑖𝑖𝑠𝑠𝑜𝑜𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑡𝑡𝑖𝑖𝑠𝑠𝑒𝑒 𝑖𝑖𝑡𝑡𝑒𝑒𝑜𝑜 𝑛𝑛 
𝑇𝑇1 𝑎𝑎𝑛𝑛𝑎𝑎 𝑇𝑇2 𝑎𝑎𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑖𝑖ℎ𝑜𝑜𝑠𝑠𝑎𝑎 𝑣𝑣𝑎𝑎𝑠𝑠𝑜𝑜𝑒𝑒𝑖𝑖 
𝐴𝐴1 𝑎𝑎𝑛𝑛𝑎𝑎 𝐴𝐴2 𝑎𝑎𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑜𝑜𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 𝑣𝑣𝑎𝑎𝑠𝑠𝑜𝑜𝑒𝑒𝑖𝑖 

   
 

   To begin determining both proportional and integral gain parameters, a mathematical 

representation of the system plant must be specified. With each of the modules being identical and 

each module maintaining equal power sharing, a single buck-boost converter is the focus of the 

plant design. The plant is designed so that it encompasses the operation of the current controller, 

meaning that the plant’s input is the reference inductor current coming out of the PI voltage 

controller, and the output is the new capacitor voltage after the hysteresis controller feeds the 

module’s switches with a new duty cycle value. With the plant input and output determined, a 

mathematical representation for the module plant can be calculated per (3), (4), (5), (6), and (7). 
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 𝐼𝐼𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑜𝑜 = 𝐼𝐼𝐿𝐿,𝑟𝑟𝑟𝑟𝑟𝑟 (3) 

 𝑂𝑂𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑦𝑦 = 𝑉𝑉𝐶𝐶 (4) 

 𝐼𝐼𝐿𝐿 =
𝐼𝐼𝑂𝑂

1 −𝐷𝐷
 (5) 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐼𝐼𝑂𝑂 =
𝑉𝑉𝑂𝑂
𝑍𝑍𝑂𝑂

=
𝑉𝑉𝐶𝐶
1
𝑖𝑖𝑠𝑠

= 𝑉𝑉𝐶𝐶𝑖𝑖𝑠𝑠 (6) 

 ∴
𝑦𝑦
𝑜𝑜

=
𝑉𝑉𝐶𝐶
𝐼𝐼𝐿𝐿,𝑟𝑟𝑟𝑟𝑟𝑟

=
𝑉𝑉𝐶𝐶
𝐼𝐼𝑂𝑂

1 − 𝐷𝐷
=

𝑉𝑉𝐶𝐶
𝑉𝑉𝐶𝐶𝑖𝑖𝑠𝑠
1 − 𝐷𝐷

=
1 −𝐷𝐷
𝑖𝑖𝑠𝑠

 (7) 

 

The simplified closed loop controller operation, as shown in Figure 11, consists of the PI 

voltage controller described above, the plant calculated above, and a feedback loop to update the 

voltage reference minus the capacitor voltage calculation feeding voltage controller. With this 

information, the closed loop transfer function can be determined providing us with a second order 

characteristic equation to derive proportional and integral gain parameters for the voltage 

controller per (8), (9), (10), (11), and (12). 

ILref
VrowcapVref - Vrowcap +

+

-

PI Control Plant

 

Figure 11. TMMC Closed Loop Control Diagram 

 

 

 
𝑆𝑆𝑖𝑖𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎 𝑃𝑃𝐼𝐼 = 𝐾𝐾𝑝𝑝 +

𝐾𝐾𝐼𝐼
𝑖𝑖

 (8) 
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 𝑆𝑆𝑖𝑖𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎 𝑃𝑃𝑠𝑠𝑎𝑎𝑛𝑛𝑡𝑡 =
1 − 𝐷𝐷
𝑖𝑖𝑠𝑠

=
𝐷𝐷′

𝑖𝑖𝑠𝑠
 (9) 

 𝑠𝑠𝑠𝑠𝑜𝑜𝑖𝑖𝑒𝑒𝑎𝑎𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇𝑒𝑒𝑎𝑎𝑛𝑛𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝐶𝐶𝑥𝑥𝑛𝑛 =
�𝐾𝐾𝑝𝑝 + 𝐾𝐾𝐼𝐼

𝑖𝑖 � �
𝐷𝐷′

𝑖𝑖𝑠𝑠�

1 + �𝐾𝐾𝑝𝑝 + 𝐾𝐾𝐼𝐼
𝑖𝑖 � �

𝐷𝐷′

𝑖𝑖𝑠𝑠�
=

�
𝐾𝐾𝑝𝑝𝑖𝑖 + 𝐾𝐾𝐼𝐼

𝑖𝑖 � �𝐷𝐷
′

𝑖𝑖𝑠𝑠�

1 + �
𝐾𝐾𝑝𝑝𝑖𝑖 + 𝐾𝐾𝐼𝐼

𝑖𝑖 � �𝐷𝐷
′

𝑖𝑖𝑠𝑠�
 (10) 

 =

𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′

𝑖𝑖2𝑠𝑠

1 + �
𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′

𝑖𝑖2𝑠𝑠 �
=

𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′

𝑖𝑖2𝑠𝑠
𝑖𝑖2𝑠𝑠
𝑖𝑖2𝑠𝑠 + �

𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′

𝑖𝑖2𝑠𝑠 �
=

𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′

𝑖𝑖2𝑠𝑠
𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′ + 𝑖𝑖2𝑠𝑠

𝑖𝑖2𝑠𝑠

 (11) 

 =
𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′

𝑖𝑖2𝑠𝑠 + 𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′ =
𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′ + 𝐾𝐾𝐼𝐼𝐷𝐷′

𝑖𝑖2 +
𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′

𝑠𝑠 + 𝐾𝐾𝐼𝐼𝐷𝐷′

𝑠𝑠

 (12) 

 

Since we are working with a second order system, we know that the denominator of the 

closed loop transfer function (characteristic equation) can be equated to (13). 

 

 𝑖𝑖2 + 2𝜁𝜁Ω0S + Ω0
2 = 0 (13) 

   

By equating the denominator of the closed loop function to the second order system 

equation, we are able to find the terms for the proportional and integral gain terms for the system. 

A settling time for the system is selected to be 25 ms based off of the TMMC’s origin paper [25] 

and the system is designed to be critically damped (𝜁𝜁 = 0.707), with a settling time tolerance 

fraction of 2%. With that information, the natural frequency was found using (14) and (15). 

 

 

 
𝑇𝑇𝑠𝑠 = 0.025 =

𝑠𝑠𝑛𝑛(𝑡𝑡𝑜𝑜𝑠𝑠𝑒𝑒𝑒𝑒𝑎𝑎𝑛𝑛𝑠𝑠𝑒𝑒 𝑖𝑖𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛)
𝜁𝜁𝜔𝜔𝑛𝑛

=
ln (0.02)
𝜁𝜁𝜔𝜔𝑛𝑛

≈
4

(0.707)𝜔𝜔𝑛𝑛
 (14) 
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 𝜔𝜔𝑛𝑛 =
4

(0.025)(0.707) = 226.31
𝑒𝑒𝑎𝑎𝑎𝑎
𝑖𝑖

 (15) 

With the natural frequency of the plant determined, the P and I gain terms for the top row 

are calculated in (16), (17), (18), (19), (20), (21), and (22). 

 𝑖𝑖2𝑠𝑠 +
𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′

𝑠𝑠
+
𝐾𝐾𝐼𝐼𝐷𝐷′

𝑠𝑠
= 𝑖𝑖2 + 2𝜁𝜁𝜔𝜔0𝑖𝑖 + 𝜔𝜔0

2 (16) 

 𝜔𝜔0
2 =

𝐾𝐾𝐼𝐼𝐷𝐷′

C
 (17) 

 𝐾𝐾𝐼𝐼 =
𝜔𝜔0
2𝑠𝑠
𝐷𝐷′ =

(226.31)2(60 ∗ 10−6)
0.50

= 6.146  (18) 

 2𝜁𝜁𝜔𝜔0𝑖𝑖 =
𝐾𝐾𝑝𝑝𝑖𝑖𝐷𝐷′

C
 (19) 

 2(0.707)(226.31) =
𝐾𝐾𝑝𝑝𝐷𝐷′

C
 (20) 

 𝐾𝐾𝑝𝑝 =
2(0.707)(226.31)(60 ∗ 10−6)

𝐷𝐷′  (21) 

𝐴𝐴𝑖𝑖𝑖𝑖𝑜𝑜𝑠𝑠𝑖𝑖𝑛𝑛𝐴𝐴 𝑎𝑎𝑛𝑛 𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑠𝑠 𝑜𝑜𝑛𝑛𝑖𝑖𝑡𝑡𝑦𝑦 𝑠𝑠𝑜𝑜𝑛𝑛𝑣𝑣𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜𝑛𝑛 𝑎𝑎𝑜𝑜𝑡𝑡𝑦𝑦 𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷 = 𝐷𝐷′ = 0.50 

 𝐾𝐾𝑝𝑝 =
2(0.707)(226.31)(60 ∗ 10−6)

0.50
= 0.0384  (22) 

 

As mentioned earlier, these KP and KI terms must be multiplied by the number of parallel 

modules in the row that they are controlling (i.e. times 1 for the top row, times 2 for the second 

row, etc.). Figure 12 shows the stable steady state voltage levels of each module row and the output 

resister of the two-row step-down TMMC. The achieved output of 68.147 V is satisfactorily close 

to the desired 70 V as are the row module voltages. 
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Figure 12. Two-Row TMMC with PI and Hysteresis Control - Capacitor Row Voltages and 
Output Voltage 

 
 
 
Now that the TMMC controller is operating properly and desired voltage levels are 

achieved at each level of the converter, steps must be taken in order to smoothly transition the 

design of the converter to reach a step down configuration with an input of 380 Vdc and an output 

of 95 Vdc -- half of which closely reaches the desired 48 Vdc level. This lower voltage level is 

useful for potential DC building applications such as homes and IT equipment within data centers. 
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The TMMC can be expanded infinitely in terms of number of rows, and could theoretically be 

extended to include seven rows, providing a conversion ratio of n+1 (or 8), allowing for a direct 

step down of voltages from a 380 Vdc input connection down to 47.5 Vdc at the lowest level. For 

ease of simulation, however, the converter is only extended to three rows, with the lowest row’s 

voltage able to be divided in half for the use of a 48 Vdc tap. 

To make the process of extending the number of rows easier, a sub-circuit of each buck-

boost module, Figure 14, was created with available taps to trigger both of its switches as well as 

with available ports for its capacitor voltage and inductor current levels. Input and output ports 

also extend out of the sub-circuit to attach the modules to one another. In addition to adding a third 

row of modules, a third level of controllers must be added to the system for this new row. The new 

converter design was also increased to process 4 kW of power, closer to that of a small building 

load. A simplified version of the three level TMMC incorporating sub-circuits is shown in Figure 

13. 
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Figure 14. Simplorer Model of TMMC Module Sub-Circuit 

 
 
 
The three-row step-down TMMC was simulated once more to evaluate for proper steady 

state performance. These results, shown in Figure 15 and summarized in Table 5, demonstrate the 

stability of the converter’s output and capacitor row voltages. It should be noted, that as the number 

of rows and the power level of the converter increases, a slight degradation of the voltage sharing 

between rows is visible. The degradation of the row voltage sharing is something that could be 

corrected with an overhauled control system, but is out of the scope of this work. 
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Figure 15. Three-Row TMMC with Hysteresis Controller  
Module Voltages and Output Voltage 

 
 
 
In order to achieve the increase in converter power, the output resistor of the converter 

needs to shrink and requires a redesign (23). With the steady state output voltage of the converter 

around 92 V, the resistor value for 4 kW is 2.12 Ω. 

 

 𝑅𝑅 =
𝑉𝑉2

𝑃𝑃
=

922

4000
= 2.12 Ω (23) 
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Table 5. Three-Row Step-Down TMMC Design Parameters and Simulation Results 

Parameter      Value 
Number of Rows 3 

Desired Input Voltage 380 V 
Desired Output Voltage 95 V 

Simulated Output Voltage 91.48 V 
Simulated Capacitor Voltages 96.41, 96.46, 94.82 V 

System Power 4 kW 
Output Resistor 2.12 Ω 

 

5.4 ANALYTICAL MODEL VERIFICATION OF SIMULATION 

With the simulation model results achieving stability with their steady state values, it is important 

to verify that those values mathematically make sense considering potential dynamics from each 

of the module converters. The following capacitor (24) and inductor (25) differential equations 

were evaluated in MATLAB Simulink for a two-row system for simplicity’s sake. Mathematically 

representing additional rows should not provide sufficient added dynamics since a heavy emphasis 

on interdependency between rows and power sharing is emphasized throughout the TMMC. 

Furthermore, only a single module per row is represented in the analytical model since parallel 

module all share identical dynamics. 

 

𝑠𝑠
𝑎𝑎𝑉𝑉𝐶𝐶[𝑘𝑘]

𝑎𝑎𝑡𝑡
=

= �
−𝑖𝑖𝐿𝐿[𝑘𝑘+1] + 𝑖𝑖𝐿𝐿[𝑘𝑘+2]𝑎𝑎[𝑘𝑘+2] + 𝑠𝑠�̇�𝑉𝐶𝐶[𝑘𝑘+1] − 𝑖𝑖[𝑘𝑘],   𝑘𝑘 = 0  

𝑖𝑖𝐿𝐿[𝑘𝑘]�1 − 𝑎𝑎[𝑘𝑘]� − 𝑖𝑖𝐿𝐿[𝑘𝑘+1] + 𝑖𝑖𝐿𝐿[𝑘𝑘+2]𝑎𝑎[𝑘𝑘+2] + 𝑠𝑠�̇�𝑉𝐶𝐶[𝑘𝑘+1] − 𝑖𝑖[𝑘𝑘],   𝑘𝑘 = 1, … ,𝑛𝑛 − 2
𝑖𝑖𝐿𝐿[𝑘𝑘]�1 − 𝑎𝑎[𝑘𝑘]� − 𝑖𝑖𝐿𝐿[𝑘𝑘+1] + 𝑠𝑠�̇�𝑉𝐶𝐶[𝑘𝑘+1] − 𝑖𝑖[𝑘𝑘],   𝑘𝑘 = 𝑛𝑛 − 1

 

(24) 

  𝐶𝐶
𝑎𝑎𝑖𝑖𝐿𝐿[𝑘𝑘]

𝑎𝑎𝑡𝑡
= 𝑉𝑉𝐶𝐶[𝑘𝑘−1]𝑎𝑎[𝑘𝑘]−𝑉𝑉𝐶𝐶[𝑘𝑘]�1 − 𝑎𝑎[𝑘𝑘]� − 𝑖𝑖𝐿𝐿[𝑘𝑘]𝑅𝑅𝐿𝐿 ,   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 = 1, … ,𝑛𝑛 (25) 
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Figure 16. Simplorer Capacitor Voltage Results of Two-Row TMMC 

 
 
 
Figure 16 highlights the three module capacitor voltages of a two-row step-down TMMC. 

Since both of the modules of the bottom-most row share dynamics, there are only two unique 

overlapped signals present in this diagram. These results are compared to the analytical results of 

Figure 17, with a goal for both of these simulations to achieve values present in summarized in 

Table 6. The simulation results of 127.02 V very closely match up to the desired 126.67 V as well 

as the analytical results of 130.50 V and 129.1 V. Furthermore, the settling times of both 

simulations achieve steady state roughly around 30 ms, demonstrating validation of the control 

functionality of the simulation. The Simulink Analytical model can be found in Appendix A. 
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Table 6. Two-Row Step-Down TMMC Analytical Verification of Simulation Results 

Parameter      Value 
Number of Rows 2 

Desired Input Voltage 380 V 
Desired Output Voltage 126.67 V 

Simulated Capacitor Voltage 127.02, 127.02 V 
Analytical Capacitor Voltages 130.50, 129.1 V 

System Power 4 kW 
 

 

Figure 17. Analytical Results of Two-Row TMMC Showing Capacitor Voltages for Rows One 
and Two 

 
 
 

With an extra degree of confidence in the performance of the two-row TMMC Simplorer 

simulation, work efforts could then be applied towards the integration of energy storage along each 

module of the converter. 
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6.0  ULTRACAPACITOR INTERFACE 

With the core of the converter modeling effort completed, research efforts were then refocused on 

implementing elements of energy storage throughout the TMMC topology. With the high power 

density ultracapacitor selected as the energy storage solution, an adequate non-isolated DC-DC 

interface between the ultracapacitors and the TMMC modules needed to be selected. This 

converter needs to be both a two-quadrant device with bi-directional current flow in order to both 

charge and discharge the ultracapacitor, as well as be easily controllable to allow for the simple 

selection between charging and discharging operations. A Type-C chopper DC-DC Converter, also 

referred to as a Buck and Boost converter, is able to achieve both of these functionalities and was 

selected as the interfacing topology between the ultracapacitor and the TMMC modules. Chopper 

circuits interface sources and loads and are static power electronic devices used to convert fixed 

DC power to variable DC power by means of high speed switches connecting and disconnecting 

from a specified load. Their operation allows for connected sources and loads to operate in both 

single-quadrant or multi-quadrant regions based on the configuration of switches and their impact 

on the flow of power. The four quadrants are denoted by voltage (y-axis), current (x-axis), and 

their respective polarities as shown in Figure 18, which ultimately dictate the directional flow of 

power. There are five types of choppers, labeled A through E, but the main focus of this research 

focuses on the Type-C chopper, which combines the functionality of both the Type-A chopper 

(unidirectional, first quadrant) and the Type-B chopper (unidirectional, second quadrant), in order 
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to achieve bi-directional, dual quadrant power flow (first and second quadrant). The Type-C 

chopper topology connected to an ultracapacitor is shown below in Figure 19. 

Sa,DSb      Sb,DSa
+Io-Io

+Vo

-Vo

0

 

Figure 18. First and Second Quadrant operation of the Type-C Chopper with Depicted 
Switching States of MOSFETs and Diodes 

 

 

 

Figure 19. Type-C Chopper Bidirectional DC-DC Converter  
connected to Ultracapacitor 
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6.1 MODES OF OPERATION 

For the Type-C chopper’s proper interfacing of the module and the ultracapacitor, the module 

capacitor voltage, VC, must always be greater than the voltage across the ultracapacitor, VUC. This 

voltage bias ensures the proper flow of current from high side to low side, and vice versa. As such, 

with an average module capacitor voltage of 95 V, the ultracapacitor voltage was designed for 48 

V – a roughly 2:1 ratio of voltages. The Type-C chopper can effectively operate as both a buck 

converter and a boost converter based on proper switching modulation. Each switch utilizes a 

freewheeling diode for when it is not actively in operation. By modulating the top switch, Sb, and 

keeping the bottom switch, Sa, open, the converter is in “buck” or “charging” mode with power 

flowing from the module to the ultracapacitor; conversely, by modulating the bottom switch, Sa, 

and keeping the top switch, Sb, open, the converter is in “boost” or “discharging” mode with power 

flowing from the ultracapacitor to the module. Both of these operating modes are depicted in 

Figure 20 and Figure 21. 

   

 

 



  

 40 

Imod[k,j]

+

Vuc[k,j]

-

Lf Rf

RESR

CUC

Sb[k,j]

active

Sa[k,j]

open

Charging

Iuc

 

Figure 20. Buck or Charging Mode Operation of the Type-C Chopper 
Red line: Switch Sb closed; Blue line: Switch Sb open 

 
 
 
When switch, Sb, is switched on, current flows from the positive terminal of the module 

capacitor, through the ultracapacitor loop of IUC, charging the inductor, Lf, and then flows out of 

the negative module terminal back into the TMMC. At this point, the ultracapacitor voltage VUC 

and current IUC are positive. When Sb is switched off, the inductor discharges with its current 

freewheeling through the ultracapacitor loop and Sa’s diode; current IUC flows in the same direction 

and zero voltage is held across the ultracapacitor. This buck mode operation, operating in the first 

quadrant with positive voltage and current, charges the ultracapacitor from the module and helps 

lower the voltage across the module capacitor. 
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Figure 21. Boost or Discharging Mode Operation of the Type-C Chopper 
Red line: Switch Sa open; Blue line: Switch Sa closed 

 
 
 
When switch, Sa, is on, current flows from the negative terminal of the module capacitor 

and into freewheeling loop of the ultracapacitor and the switch. The current is now forced to flow 

in the opposite direction and charges the inductor in the negative direction (-IUC). The voltage 

across the ultracapacitor is zero. When Sa is switched off, the current still flows from the negative 

terminal of the module and through the ultracapacitor loop in the negative IUC direction (via the 

negatively charged inductor), but now flows through switch Sb’s diode back into the positive 

module terminal. The ultracapacitor voltage is once again positive. This boost mode operation, 

operating in the second quadrant with positive voltage and negative current, discharges the 

ultracapacitor back into the module and helps raise the voltage across the module capacitor. 

During the transition between the buck and boost modes of operation, the current IUC flows 

around the ultracapacitor loop via switch Sa’s diode until the polarity of charged current across the 

inductor flips directions and the respective switch in the new mode of operation can conduct 

current. 
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6.2 ENERGY STORAGE COMPONENT SIZING 

Several component values need to be selected in order to fully realize each module’s energy 

storage stack. An ultracapacitor value must be selected, which must adhere to the Type-C chopper 

design choice of having a 48 V ultracapacitor; and an inductor and resistor value for the actual 

chopper circuit must be chosen, which minimizes current ripple and coordinate with the switching 

frequencies of the switches.  

6.2.1 Choosing an Ultracapacitor 

Two methods for selecting an ultracapacitor were available: 1) choose a bulk single unit 

ultracapacitor for each energy storage array that meets the voltage requirement or 2) chain multiple 

smaller rated ultracapacitors in series to achieve the adequate voltage rating. Both options have 

their downfalls. The first choice is the most straightforward; however, it is a much larger and more 

expensive unit to realistically implement in prototypical hardware. The second choice, suffers from 

a much smaller total capacitive rating due to the series connection of ultracapacitors. While the 

voltages are added in series to equal 48 V, the inverse of the capacitances are added together with 

this sum inverted once more to produce the new total capacitance. The following product 

comparisons were made of ultracapacitors from the manufacturer Maxwell in order to determine 

the most energy dense solution. Total energy stored within a capacitor is calculated via (25). 

 𝐸𝐸 =
1
2
𝑠𝑠𝑉𝑉2 (26) 



  

 43 

Preliminary calculations (27) and (28) were made for the bulk capacitor and then the 

procedure was repeated for two smaller ultracapacitor models with the compiled results presented 

in Table 7. 

 1
2
∗ 83 ∗ 482 = 95,616 𝐽𝐽 (27) 

 95,616 𝐽𝐽 ∗
1 𝐽𝐽

0.000277778 𝑊𝑊ℎ
= 26.56 𝑊𝑊ℎ (28) 

 
Table 7. Energy Comparison of Three Different Ultracapacitor Models 

Ultracapacitor 
Model Name 

Capacitance of 
Individual 

Ultracapacitors 

Voltage per 
Ultracapacitor 

Total 
Capacitance 

per ~48 V 
string 

Total Energy 
Rating 

BMOD0083 
P048 B01 

83 F 48 V 83 F 
95,616 J 

(26.56 Wh) 
BMOD0058 
E016 B02 

58 F 16 V 19.333 F 
22,272 J 

(6.187 Wh) 

BCAP0350 350 F 2.7 V 
19.444 F 
(48.6 V) 

22,399 J 
(6.222 Wh) 

 
 
 
The TMMC requires its energy storage to compensate for swings in connected intermittent 

generation sources with transient compensation lasting anywhere from the milliseconds to seconds 

range. The connected PV array ideally is able to inject as much as 1747 W, so it is necessary that 

the ultracapacitor array be able to compensate for a transient of such magnitude in the case of 

unexpected step changes up or down. All three ultracapacitors could potentially supply the amount 

of energy necessary to support the operation of the TMMC; however, the most energy dense ESS 

solution is the 83 F ultracapacitor, with more than four times the energy than both the 58 F and the 

350 F ultracapacitors. The unit of a Joule is equivalent to a Watt-second and therefore, the 83 F 
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ultracapacitor, with an energy store of 95,616 J is the most attractive choice for providing the 

desired module regulation. For future iterations of this work, a comprehensive comparison of the 

different ultracapacitors could be performed in order to find the most optimal ultracapacitor size 

for the application. 

6.2.2 Choosing a Type-C Chopper Inductor 

The selection of an appropriately sized inductor for the Type-C chopper is closely involved with 

the switching operation of the circuit and is a compromise between size, current ripple, and control 

performance. As seen in equation (29), current ripple in the chopper is proportional to the module 

voltage and can be reduced by increasing either the switching frequency or the inductor size. 

Current ripple is directly related to losses in the device, so it should ideally be kept as low as 

possible.  

 Δ𝐼𝐼 =
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑠𝑠𝐶𝐶

𝐷𝐷(1 − 𝐷𝐷) (29) 

It is also important to relate the size of the inductor and its time constant for charged current 

to the switching frequency of the MOSFET devices within the chopper. The time constant for the 

inductor can be found using (30) and (31). RL refers to the inductor resistance and RESR is the 

ultracapacitor equivalent series resistance. 

 𝜏𝜏 =
𝐶𝐶

𝑅𝑅𝐿𝐿 + 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸
 (30) 

 𝜏𝜏 =
0.001

2.990 + 0.010
= 0.000333 𝑖𝑖 (31) 
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The inductor time constant,𝜏𝜏, relates directly to the switching frequency via the following 

relationship (32), (33), and (34) in order to achieve stable current regulation. A summary of this 

design process can be found in [35]. 

 𝜏𝜏 >
1
2
𝑇𝑇𝑠𝑠 (32) 

 ∴ 𝑇𝑇𝑠𝑠 < 2𝜏𝜏 = 2 ∗ 3.33 ∗ 10−4 𝑖𝑖 = 6.66 ∗ 10−4 𝑖𝑖 (33) 

 ∴ 𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑜𝑜𝑠𝑠 𝑆𝑆𝑤𝑤𝑖𝑖𝑡𝑡𝑠𝑠ℎ𝑖𝑖𝑛𝑛𝐴𝐴 𝐶𝐶𝑒𝑒𝑒𝑒𝐹𝐹𝑜𝑜𝑒𝑒𝑛𝑛𝑠𝑠𝑦𝑦 =
1

6.66 ∗ 10−4 𝑖𝑖
=  1500 𝐻𝐻𝐻𝐻 (34) 

6.3 ENERGY STORAGE SYSTEM CONTROL 

There are several methodologies for designing a controller for the ESS including PI control and 

state machine control. It is very important to actively regulate the ultracapacitor current in order 

to protect the Type-C Chopper semiconductors from over-current and over-temperature damage, 

as well as to provide adequate energy storage support for the connected TMMC modules. 

Modulating the ultracapacitor current is also a suitable way to module the ultracapacitor voltage. 

While PI control would work sufficiently well, it is not necessary because the time constant of the 

ultracapacitors (35) is very large relative to the rest of the components within the overall system. 

 

 𝑈𝑈𝑠𝑠𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎𝑜𝑜𝑎𝑎𝑠𝑠𝑖𝑖𝑡𝑡𝑜𝑜𝑒𝑒 𝑇𝑇𝑖𝑖𝑠𝑠𝑒𝑒 𝑠𝑠𝑜𝑜𝑛𝑛𝑖𝑖𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡 = 𝜏𝜏 = 𝑅𝑅𝑠𝑠 = 0.010 Ω ∗ 83 𝐶𝐶 = 0.83 𝑖𝑖 (35) 

 

For comparison, the TMMC is designed to achieve steady state within 0.025 s. This large 

ultracapacitor time constant demonstrates that its voltage does not require dynamic regulation. 

Moreover, with the connected TMMC module’s own separate dedicated controller, the Type-C 
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chopper does not require its own dedicated PI regulator and a simpler control method can be 

explored. 

6.3.1 State Machine Type-C Chopper Control 

Since the voltage level of the ultracapacitor does not require any dedicated regulation, a simplified 

method of operating the Type-C chopper is used, which monitors the voltage level of its connected 

TMMC module capacitor. An upper and a lower voltage threshold is established that functions as 

the triggering points for a transition from an idle state to either a charging (buck) state or a 

discharging (boost) state. For reference, Figure 22, details the three different operating states of 

the controller with the blue dot representing the current state of operation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 22. Type-C Chopper State Machine Control Loop (left); Voltage Threshold Transition 
Requirements 
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Per the state machine diagram in Figure 22, the chopper circuit begins in an idle mode of 

operation with the voltage of the module capacitor falling in between the two defined thresholds 

of 91 V and 99 V, denoted by circle 3. Neither of the two switches in the chopper circuit are 

triggered in this state. In the event of a system perturbation leading to the module voltage crossing 

either threshold, the state machine shifts modes from the idle state to either the buck state or the 

boost state in order to regulate the voltage and bring it back between the thresholds more quickly. 

If the module voltage drops below the lower threshold, the chopper enters its discharging (boost) 

state, denoted by circle 1, effectively raising the voltage of the module capacitor. As mentioned 

before, the bottom switch of the chopper is triggered for this state. Similarly, if the voltage exceeds 

the upper threshold, the chopper enters its charging (buck) state, denoted by circle 2, effectively 

lowering the voltage of the module capacitor. The upper switch of the chopper is triggered for this 

state. The switching frequency for the chopper devices was determined earlier with the chopper 

inductor sizing and is 20,000 Hz.  
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7.0  PHOTOVOLTAIC ARRAY SYSTEM 

A photovoltaic array is used as the main vehicle for evaluating the transient resiliency of the 

TMMC enhanced with energy storage. The PV array, with its natural intermittencies throughout 

the course of a day, injects power into the power electronic interface with scheduled step changes 

in its output. This intermittency serves as a natural test bed for the energy storage to engage and 

counteract the transient spikes present throughout the TMMC rows. This PV system needs to be 

able to handle large steps in the solar irradiance (W/m2) to simulate the varying irradiance of a PV 

array mid-day. The output load is designed to receive around 4kW of power, and the PV array, 

connected directly to positive and negative terminals of one of the TMMC modules, was designed 

to be just under half of that total power capacity at 1747 W. The general design of the array includes 

a single diode PV model, a boost converter implementing MPPT, and a buck-boost regulator to 

achieve an output voltage as close to the connected module capacitor voltage, 95 V, as possible.  

7.1 PHOTOVOLTAIC ARRAY DESIGN 

In order to model the photovoltaic array component of the system, it is important to choose a 

simplified model that accurately recreates the dynamics of a PV array while minimizing 

simulation-processing demands. While the PV model is helpful for validating the operation of the 

ESS, it is not the focus of the research study and a high fidelity detailed model is not required. The 
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output power of a PV array is determined via inputs of temperature and irradiance, but for 

simplification, temperature is maintained at an ideal 25°C and only the irradiance levels are varied. 

Increased temperature can degrade the performance of the PV, limiting its potential output, but an 

additional layer of output variability does not improve the efficacy of this study. Irradiance levels 

directly affect the output power of the modules and/or arrays. Two different models were 

preliminarily chosen for investigation: a detailed single diode Matlab model and an approximated 

4-level piecewise linear model published by Sandia National Labs. Both models adequately allow 

for the variation of irradiance, however, the Matlab model utilizes an exhaustive database of actual 

manufacturer module/cell performance data, which helps to strengthen the validity of the model’s 

performance relative to a real installation. Therefore, the Matlab PV array model was chosen for 

this research. The general structure of the PV module uses the single diode model, which utilizes 

a controllable current source, a diode, a shunt resistor, and a series resistor as shown in Figure 23.  

 
Figure 23. Single Diode PV Array Model 

 
 
 
The current source shown in the single diode model is controlled by a mathematical 

relationship dependent upon irradiance and temperature (36), shown in Figure 24 in block form. 
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 𝐼𝐼𝐿𝐿 =
𝑆𝑆
𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

�𝐼𝐼𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛼𝛼𝑖𝑖𝑠𝑠𝑖𝑖�𝑇𝑇𝑖𝑖𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐�� (36) 

 

Figure 24. Calculation of PV Array Current Source Value using Temperature, Irradiance, and 
Module Current 

 
 
 
The Matlab single model was recreated in Simplorer in order to integrate directly into the 

TMMC model. Once the proper current, voltage, and power ratings were established for the PV 

array, the current-voltage (IV) and power-voltage (PV) curves for the array were compared 

between Matlab and Simplorer in order to verify proper operation of the recreated model. The 

single diode in the model was set to operate in exponential mode, with the saturation current 

component taken from the Matlab data and the thermal voltage parameter calculated using the data 

along the allotted number of series cells of the array. In order to more closely match output data 

between the two simulation software, the diode ideality factor was adjusted until satisfactory 

results were achieved in Simplorer. The diode within the PV array model uses equation (37) in 

order to determine the current that it passes through it. To solve this equation, the thermal voltage 

must be calculated using (38) several of the parameters that comprise the PV array, summarized 

in Table 8. 

 𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑂𝑂 �𝑒𝑒
𝑉𝑉𝑑𝑑
𝑉𝑉𝑇𝑇 − 1� (37) 
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  𝑉𝑉𝑇𝑇 =
𝑘𝑘𝑇𝑇
𝐹𝐹
∗ 𝑛𝑛𝐼𝐼 ∗ 𝑁𝑁𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 =

(1.3806 ∗ 10−23)(298.15)
1.6022 ∗ 10−19 

∗ 0.97 ∗ 80 = 1.9936 𝑉𝑉 (38) 

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐼𝐼𝑚𝑚 = 𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎𝑒𝑒 𝑠𝑠𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑡𝑡 (𝐴𝐴) 

𝑉𝑉𝑚𝑚 = 𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎𝑒𝑒 𝑣𝑣𝑜𝑜𝑠𝑠𝑡𝑡𝑎𝑎𝐴𝐴𝑒𝑒 (𝑉𝑉) 

𝐼𝐼𝑂𝑂 = 𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎𝑒𝑒 𝑖𝑖𝑎𝑎𝑡𝑡𝑜𝑜𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑠𝑠𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑡𝑡 (𝐴𝐴) 

𝑛𝑛𝐼𝐼 = 𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎𝑒𝑒 𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 𝑖𝑖𝑎𝑎𝑠𝑠𝑡𝑡𝑜𝑜𝑒𝑒, 𝑖𝑖𝑎𝑎𝑒𝑒𝑎𝑎𝑠𝑠𝑠𝑠𝑦𝑦 1, 𝑏𝑏𝑜𝑜𝑡𝑡 𝑒𝑒𝑎𝑎𝑛𝑛𝐴𝐴𝑒𝑒𝑖𝑖 𝑖𝑖𝑒𝑒𝑜𝑜𝑠𝑠 1 − 2 

𝑘𝑘 = 𝐵𝐵𝑜𝑜𝑠𝑠𝑡𝑡𝐻𝐻𝑠𝑠𝑎𝑎𝑛𝑛 𝑠𝑠𝑜𝑜𝑛𝑛𝑖𝑖𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡 = 1.3806 ∗ 10−23𝐽𝐽 ∗ 𝐾𝐾−1 

𝐹𝐹 = 𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑜𝑜𝑛𝑛 𝑠𝑠ℎ𝑎𝑎𝑒𝑒𝐴𝐴𝑒𝑒 = 1.6022 ∗ 10−19 𝑠𝑠 

𝑇𝑇 = 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 𝑡𝑡𝑒𝑒𝑠𝑠𝑜𝑜𝑒𝑒𝑒𝑒𝑎𝑎𝑡𝑡𝑜𝑜𝑒𝑒𝑒𝑒 (𝐾𝐾) 

𝑁𝑁𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑛𝑛𝑜𝑜𝑠𝑠𝑏𝑏𝑒𝑒𝑒𝑒 𝑜𝑜𝑖𝑖 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑖𝑖 𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑎𝑎 𝑖𝑖𝑛𝑛 𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖 𝑖𝑖𝑛𝑛 𝑎𝑎 𝑠𝑠𝑜𝑜𝑎𝑎𝑜𝑜𝑠𝑠𝑒𝑒 

 
Table 8. PV Array Parameter Specifications 

Parameter Value 
Number of Parallel Strings 5 

Number of Series Modules per String 1 
Number of Cells per Module 80 
Open Circuit Voltage (VOC) 51.5 V 
Short Circuit Current (ISC) 47 A 

Light-Generated Current (IL) 9.4447 A 
Diode Saturation Current (IO) 3.2328e-10 A 

Diode Ideality Factor (nI) 0.97 
Shunt Resistance (Rsh) 47.9694 Ω 
Series Resistance (Rs) 0.22828 Ω 

Irradiance 0-1000 W/m2 
Temperature 25°𝑠𝑠 (298.15 K) 

 
 
 
 
For the proper recreation of the IV and power curves for the array, the module was 

evaluated with an ideal load resistor of varying resistance from 0 ohms to a maximum value set by 

an IV value near open circuit voltage (39). The impedance swing shown in Figure 25 causes the 

PV array to generate the full IV and PV performance curves. 



  

 52 

 

 𝑅𝑅𝑐𝑐𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 =
~𝑉𝑉𝑂𝑂𝐶𝐶
~𝐼𝐼𝑂𝑂𝐶𝐶

=
50.92

0.9655
= 52.74 Ω (39) 

 

 

Figure 25. Varied Output Resistive Impedance for Creating IV and PV Curves 
 
 
 
Next, a sweep of irradiance values from 100 W/m2 to 1000 W/m2 is performed in order to 

gain a better understanding of how it affects the performance of the PV Array as shown by the IV 

and PV curves in Figure 26 and Figure 27. The top most curves represent the 1000 W/m2 input 

and as the irradiance is decreased, a steady drop in power and short circuit current is evident with 

a lesser impact in terms of a dropping open circuit voltage. The PV curve is a very useful reference 

for PV simulation testing; the maximum power points marked on this graph for each irradiance 

curve are used to fact check PV generation outputs in simulation efforts. Additionally, the series 

and shunt resistances of the PV array can be directly related to the slopes of the IV curve. The 
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series resistor relates to the pseudo horizontal component of the curve, and the shunt resistor relates 

to the pseudo vertical component of the curve. 

 

Figure 26. IV Curves with Parametric Sweep of Irradiances (0-1000 W/m2) 

 

 

Figure 27. PV Curves with Parametric Sweep of Irradiances (0-1000 W/m2) 
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7.2 MAXIMUM POWER POINT TRACKING 

To ensure that the maximum power was extracted from the PV array, an MPPT algorithm needs 

to be selected and implemented using an additional interfacing converter. MPPT algorithms utilize 

these converters to adjust the output impedance seen by the PV array, and in turn, adjust the array’s 

operating point along the IV and PV curves. There are several types of MPPT algorithms, primarily 

broken into two different categories: direct and indirect methods. 

7.2.1 Direct Methods 

Direct methods dynamically adjust the operating point of the PV array by comparing a specific 

measurement of voltage, current, and/or power with its previous measurement, and then adjusting 

the attached converter’s duty cycle accordingly. With a dynamic approach to MPPT, direct 

methods are able to adequately adapt for changing conditions of irradiance and temperature and 

still acquire the desired operating region with a high degree of accuracy. Three types of direct 

methods were explored: Perturb and Observe (P&O), Incremental Conductance (IC), and Ripple 

Correlation Control (RCC).  

7.2.1.1 Perturb and Observe 

Perturb and observe is one of the simplest and most commonly used MPPT algorithms for its ease 

of implementation. This method looks at the measurements of power and voltage to determine the 

operating point on the PV curve. First, a power reading is taken and compared to the previous 

value. Based on these results, the operating point could still be to the left or to the right of the 

maximum power point, so a voltage reading is also taken and compared to its previous value. So 
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for instance, if the power difference is negative, the operating point could be moving left when left 

of the maximum power point, or moving right to the right of the maximum power point. The 

voltage difference then clarifies whether we are looking at the right or left slopes of the PV curve. 

If operating to the left of the maximum power point, the duty cycle is increased to raise the voltage 

and subsequently the operating point towards the maximum power point. Conversely, if operating 

to the right of the maximum power point, the duty cycle is decreased to lower the voltage and 

subsequently the operating point towards the maximum power point. One downside to this method 

relates to its need to determine where it is on the PV curve each iteration. With rapid fluctuations 

in irradiation levels on the PV array, it may struggle to converge quickly due to comparing a 

present value on a new PV curve with a previous value from the old curve [36]. This algorithm is 

visually reinforced with the flow chart in Figure 28. 

7.2.1.2 Incremental Conductance 

Incremental conductance is also widely adopted by industry and similarly uses collected data of 

current and previous power and voltage measurements. This method determines the slope on which 

the operating point lies. If the slope is positive, the duty cycle is increased to raise the voltage and 

output power; and conversely, if the slope is negative, the duty cycle is decreased to lower the 

voltage and raise the output power. Ideally, the algorithm strives to achieve a slope of zero, which 

indicates that the maximum power point has been reached. Some of the same issues from P&O are 

shared with IC, although to a lesser extent, in the presence of a fast changing solar irradiance [36]. 

A flow chart of this algorithm can be found in Figure 29. 
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Figure 28. Perturb and Observe Algorithm 
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Figure 29. Incremental Conductance Algorithm 
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7.2.1.3 Ripple Correlation Control 

Ripple correlation control is a slightly more complicated and less adopted method of MPPT; 

however, it is the most robust of the three methods discussed so far. This method dynamically 

calculates the duty cycle necessary to achieve the maximum power point by analyzing the inherent 

switching ripple induced by the boost converter. By evaluating the derivative of power and voltage 

with respect to time, the algorithm is able to determine where the operating point sits on the PV 

curve. These derivate values are then plugged into a dedicated control loop in order to calculate a 

new duty cycle that converges at the maximum power point. The complex nature of the algorithm 

is what prevents this method from being widely adopted. While it accounts and mitigates some of 

the issues present with P&O and IC, these benefits do not outweigh the added complexity, and 

RCC is not considered for this research’s implementation of MPPT [36]. 

7.2.2 Indirect Methods 

Indirect methods establish set conditions for achieving maximum output power and do not 

dynamically chase after the maximum power point in the presence of changing system conditions, 

such as temperature and irradiance. However, for simple testing of PV near a design operating 

irradiance and temperature point, they work sufficiently well. Two types of indirect methods are 

the fractional open circuit voltage and fractional short circuit current methods. They establish a 

certain ratio relating either the open circuit voltage or the short circuit current to the maximum 

power point. For instance, if the established fractional setting were 95%, the maximum power 

point for the fractional short circuit current method, would be at 95% of the PV array’s short circuit 

current. These methods were not considered since the research conditions utilizes a changing 

irradiance term, effectively breaking the usefulness of these fractional settings [36]. 
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7.3 BOOST CONVERTER DESIGN 

While both the P&O and IC algorithms are promising, for the simplicity of implementation, the 

P&O algorithm was chosen. A boost converter was affixed to the PV’s output ports having its duty 

cycle regulated by the P&O algorithm to accommodate for the optimal operating point of the PV 

array. The algorithm implemented in Simplorer can be seen in Figure 30. For each adjustment of 

the P&O, the duty cycle is adjusted by 0.001. 

 

Figure 30. P&O Algorithm Function used in Simplorer 

 

Shown below in Figure 31, the single diode PV array attaches to the boost converter, which 

implements the MPPT. The boost converter was designed to operate in continuous conduction 

mode (CCM) with the parameters shown in Table 9. 

 

 

Figure 31. Boost Converter connected to PV Array 

 

IF (Time < 4E-5) {Dold:= 0.5; Pold:=1870; Vold:=47.5; Ctr1:=0; Ctr2:=0; Ctr3:=0; Ctr4:=0; Ctr5:=0;}
ELSE {Dnew:=Dold; }
IF (WM1.P<Pold && WM1.V<Vold )
{ Dnew:=Dold*0.999;  Dold:=Dnew; Pold:= WM1.P; Vold:=WM1.V; Ctr1:= Ctr1+1;}
ELSE IF (WM1.P<Pold && WM1.V>Vold){ Dnew:=Dold*1.001;  Dold:=Dnew; Pold:= WM1.P; Vold:=WM1.V; Ctr2:= Ctr2+1;}
ELSE IF (WM1.P>Pold && WM1.V<Vold){ Dnew:=Dold*1.001;  Dold:=Dnew; Pold:= WM1.P; Vold:=WM1.V; Ctr3:= Ctr3+1;}
ELSE IF (WM1.P>Pold && WM1.V>Vold){ Dnew:=Dold*0.999;  Dold:=Dnew; Pold:= WM1.P; Vold:=WM1.V; Ctr4:= Ctr4+1;}
ELSE  { Dold:=Dnew; Pold:= WM1.P; Vold:=WM1.V; Ctr5:=Ctr5+1;}
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Table 9. Boost Converter Parameters 

Parameter Value 
L 0.001 H 
C 0.002 F 
fs 70 kHz 
R 10 Ω 

 

Figure 32 displays the stable voltage output of the PV array – boost converter combined 

circuit with 1000 W/m2 irradiance, demonstrating a functional maximum power point tracking 

algorithm. The duty cycle in Figure 33 achieves steady state around 0.67 providing a very clean 

output waveform with minimal ripple. The output voltage of the PV array, 42.54 V, matches up 

closely with that of the PV curve for 1000 W/m2’s maximum power point voltage, 42.94 V. 

 

 

Figure 32. PV Array and Boost Converter Output Voltage 
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Figure 33. Boost Converter MPPT Duty Cycle 

7.4 BUCK-BOOST REGULATOR DESIGN 

The boost converter and the MPPT algorithm regulate the operation of the PV array, however, it 

does not take into account the regulation of its output voltage, which varies widely based on the 

solar irradiance. Therefore, an additional buck-boost regulator is added to the output of the boost 

converter in order to achieve a consistent and optimal output voltage of 95 V for the seamless 

connection to one of the TMMC modules. Similar to the boost converter, the buck-boost regulator 

was designed to operate in CCM with circuit parameters displayed in Table 10. 
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Table 10. Buck-Boost Regulator Parameters 

Parameter Value 
L 0.01 H 
C 0.0002 F 
fs 50 kHz 

R 
5.166

1.908 ∗ Irradiance − 169.51
1747

 Ω 

 

With a tightly regulated output voltage on the buck-boost regulator, it was necessary to 

vary the resistance on the output resistor relative to the irradiance level to achieve the desired 

output power levels. At full irradiance (1000 W/m2), the output resistance was found (40). 

 

 𝑅𝑅𝐿𝐿𝑚𝑚𝑙𝑙𝑚𝑚 =
𝑉𝑉𝑚𝑚𝑜𝑜𝑜𝑜2

𝑃𝑃𝑂𝑂𝑜𝑜𝑜𝑜
=

952

1747
= 5.16599 ≅ 5.166 Ω (40) 

 

Output power levels associated with irradiance values other than 1000 W/m2 are attained 

by varying the output resistor value. The lower the irradiance value, the higher the output 

resistance. A plot of the irradiance and maximum power point data in Figure 27 was created as 

shown in Figure 34 in order to determine how best to adjust this load resistance. Based on this 

information, it was found that the relationship between irradiance and its respective maximum 

power point is almost entirely linear per (41) with an R2 value of 0.9995. 

 

 𝑀𝑀𝑃𝑃𝑃𝑃 = 1.908 ∗ Irradiance − 169.51 (41) 
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Figure 34. Plot of Irradiance and Maximum Power Points based on PV Curve 

 

This linear relationship (41) is used as an adjustment factor for the output resistor relating the value 

(40) to the desired output power per operating irradiance levels. The equation for determining the 

new output resistor value is 

 

 𝑅𝑅𝑐𝑐𝑚𝑚𝑙𝑙𝑚𝑚,𝑙𝑙𝑚𝑚𝑎𝑎𝑜𝑜𝑠𝑠𝑜𝑜𝑟𝑟𝑚𝑚 = �
5.166

1.908 ∗ 𝐼𝐼𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑛𝑛𝑠𝑠𝑒𝑒 − 169.51
1747

� (42) 

 

The actual voltage regulation function is performed using PI control. Since the modules of 

the TMMC are also buck-boost converters, the same process of determining PI gain values can be 

used for the regulator. The same settling time (25 ms), damping (0.707), settling time tolerance 

(2%) is used for the regulator, keeping the math identical for the initial steps of gain calculation.  
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Reusing the same natural frequency for the plant as the TMMC modules, 226.31 rad/s (15), 

the P and I gain terms for the regulator are calculated (43), (44). The duty cycle of the regulator 

varies anywhere from 0.3 to 0.7, so an ideal value of 0.5 was selected for gain purposes.  

 𝐾𝐾𝐼𝐼,𝑝𝑝𝑝𝑝 =
𝜔𝜔0
2𝑠𝑠
𝐷𝐷′

=
(226.31)2(0.0002)

0.5
= 𝟐𝟐𝟐𝟐.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒  (43) 

 𝐾𝐾𝑝𝑝,𝑝𝑝𝑝𝑝 =
2(0.707)(226.31)(0,0002)

0.5
= 𝟐𝟐.𝟐𝟐𝟒𝟒𝟒𝟒  (44) 

It should be noted that several converters are used within the scope of this research effort. 

In order to avoid potential converter component resonance between converters with shared 

switching frequencies, each converter was given a unique switching frequency that was not a 

multiple or divisible by the others. The only shared switching frequency was between the 

ultracapacitor converters and the TMMC modules at 20 kHz. The full PV system including the PV 

array, the boost converter, and the buck-boost regulator is shown below in Figure 35. A couple 

small additions to this cascaded system were added including a DC-link capacitor in between the 

boost and buck-boost converters, and two additional switches in between the boost and buck-boost 

converters, to reduce start-up transients at the beginning of simulation. The DC-link capacitor is 

0.2 F and helps to decouple the dynamics between the boost and buck-boost converters. The 

adjoining switch connects the two circuits at 1 ms, which sufficiently eliminates initial spikes in 

voltage and current throughout the converter components. 

 

Figure 35. Simplorer PV Array System  
Includes PV Array, Boost Converter (w/ MPPT), and Buck-Boost Regulator 
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Figure 36. Demonstration of Stability for PV Array System  
From Top to Bottom: PV Array Voltage, MPPT Duty Cycle, Regulator Output Power, and 

Regulator Output Voltage 
 

 The results of this joined circuit are shown above in Figure 36 including the PV array 

voltage, the boost converter duty cycle, output power across the buck-boost regulator load resistor, 

and voltage across the output terminals of the buck-boost regulator. The PV array voltage helps to 

verify proper maximum power point operation and is at a desirable 42.55 V as compared to the 

ideal maximum power point voltage of 42.94 V. Similarly, the boost converter’s duty cycle is also 
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MPPT algorithm functioning properly on the front end, the output power from the buck-boost 

regulator on the back end achieves 1744.7 W versus the ideal 1747 W. Lastly, the output voltage 

of the buck-boost regulator is -95.04 V, which is very close to the desired 95 V for a connection 

to a TMMC module. This voltage magnitude is negative due to the inverting nature of buck-boost 

converters. 

7.5 INTEGRATION OF PV ARRAY SYSTEM TO TMMC 

Now that the full PV array system is operational achieving the desired power and voltage levels 

for the test bed, a method of integrating the PV into the TMMC must be developed. Due to some 

start up transients of the PV system, it initializes separately from the TMMC and ultracapacitors, 

and switch into the system. This dynamic can also be viewed as generation step change, helping 

to evaluate the performance of the TMMC and ultracapacitors in handling such a perturbation. 

Figure 37 shows the full PV system with interconnection switches and an LC filter for minimizing 

the switching ripple when adding the PV to the TMMC.  

 

 

Figure 37. Full PV System with Interconnection Switches and LC filter for Integration into 
TMMC 
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The PV system achieves steady state output levels around 150 ms at which point, the 

interconnection switches are turned ON -- connecting the PV system to the bottom-most left 

TMMC module’s capacitor. An additional set of switches exist to the right of the interconnection 

switches and exist to remove the PV from the system, simulating a large downward step change in 

PV output power. To account for the inverted voltage of the buck-boost converter, its positive and 

negative output leads connect to the negative and positive ports of the module, respectively.  The 

LC low pass filter, blown up in Figure 38, was sized experimentally according to the following 

equations for cutoff frequency (45) and impedance (46) with parameters summarized in Table 11. 

An LC filter with inductor of 0.03 H and capacitor of 0.002 F produced the greatest decrease of 

current ripple and power delivery. 

 𝑖𝑖𝑖𝑖 =
1

2𝜋𝜋�𝐶𝐶𝑟𝑟𝑠𝑠𝑟𝑟
=

1
2𝜋𝜋�(0.03)(0.002)

= 20.547 𝐻𝐻𝐻𝐻 (45) 

 𝑍𝑍 = �
𝐶𝐶𝑟𝑟
𝑠𝑠𝑟𝑟

= � 0.03
0.002

= 3.873 Ω (46) 

 A damping resistor was placed in parallel to the inductor, as described in [37], to further 

reduce the ripple frequency superimposed on top of the signal buffered by the LC filter. The value 

of this resistor was also determined experimentally with a sweep of resistor values used with the 

most promising outcomes resulting from a value of 0.5 Ω. Ideally, (47) describes the transfer 

function related to the output current of the RLC filter. 

 

 𝐻𝐻𝐸𝐸𝐿𝐿𝐶𝐶(𝑖𝑖) =
𝑖𝑖𝐶𝐶𝑟𝑟 + 𝑅𝑅𝑚𝑚

𝑖𝑖2𝑅𝑅𝑚𝑚𝐶𝐶𝑟𝑟𝑠𝑠𝑟𝑟 + 𝑖𝑖𝐶𝐶𝑟𝑟 + 𝑅𝑅𝑚𝑚
 (47) 

where Lf is the filter inductor, Cf is the filter capacitor, and Rd is the damping resistor. 
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Figure 38. PV Interconnection Switches and LC Filter 

 

 

Table 11. RLC Filter Parameters 

Parameter Value 
Lf 0.03 H 
Cf 0.002 F 
Rd 0.5 Ω 
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8.0  RESULTS 

With all system parameters functional and interconnected, the performance of the ESS can now be 

validated in the presence of both load and generation step changes. In order to weaken the 

connection to the strong “grid” voltage source, an inductor, 0.5 H, was placed in between this 

source and the top row of the TMMC modules. This value was determined experimentally by 

running a simulation sweep of the three-row step-down TMMC through several values of inductors 

ranging from 0.0005 H to 0.5 H. The inductor value that provided the most critically damped 

voltage with the least amount of signal ripple across the module capacitor voltages was 0.5 H and 

therefore it was selected to weaken the grid connection. By weakening the grid connection, larger 

transients from load and generation step changes can be seen across the converter, allowing for the 

greatest opportunity to notice potential improvements from the ESS. 

 Three main test scenarios were simulated in Simplorer, comparing the TMMC output 

voltage, TMMC module voltages, TMMC output power, grid connection supplied current, and 

output power from the PV system. Three test cases evaluate the performance of the ESS by 

stressing the system with a combination of positive and negative step changes for both the PV 

generation and the output load demand. Each of the three tests on the system is run both without 

the ESS and with the ESS to determine how it affects the performance of the TMMC. Test systems 

comprise the TMMC, the PV system, and the ESS (switched in and out for comparison).  The three 

test cases include: 
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1. Test One: The irradiance of the PV system is set to 1000 W/m2 and is switched into the 

converter at 150 ms. An output load step at 250 ms doubles the load power demand by 

halving the resistance from 2.12 Ω to 1.06 Ω. 

2. Test Two: The irradiance of the PV system stays at 1000 W/m2 and is still switched into 

the converter at 150 ms. The output load step at 250 ms now halves the load power demand 

by doubling the resistance from 2.12 Ω to 4.24 Ω. 

3. Test Three: The irradiance of the PV system remains at 1000 W/m2 initially, and is still 

switched into the converter at 150 ms. The output load step is not altered for this test. 

However, the PV irradiance is dropped to 1 W/m2 and switched out of the system at 250 

ms, simulating a drop in power due to a loss in irradiance. 

 
For each of these tests, the simulation runs for 350 ms with a time step of 1 𝜇𝜇s. This time 

step is selected to accommodate the range of switching frequencies present throughout the system 

and to satisfy proper Nyquist Sampling Theorem. Nyquist dictates that the sampling frequency of 

a sampled system must be twice that of the highest frequency contained in the signal. Therefore, 

the largest frequency in the system, 70 kHz, is used to determine the threshold of a proper sampling 

frequency, and sampling time step in (48), (49), and (50).  

 
 𝑖𝑖𝑠𝑠 ≥ 2𝑖𝑖𝑠𝑠 (48) 

where fs is the sampling frequency and fc is the highest frequency value within the system. 

 
 𝑖𝑖𝑠𝑠 ≥ 2(70,000) = 140 𝑘𝑘𝐻𝐻𝐻𝐻 (49) 

 𝑇𝑇𝑠𝑠,𝑚𝑚𝑙𝑙𝑙𝑙 =
1

140000
= 7.14 ∗ 10−6 = 7.14 𝜇𝜇𝑖𝑖 (50) 



  

 70 

 In order to improve the fidelity of the simulation and move away from this threshold time 

step, a time step for the modeling of 1 𝜇𝜇𝑖𝑖 was chosen. Table 12 in Appendix A details all of the 

system parameters. The entire Simplorer model can also be found in Appendix A with Figure 54 

and Figure 55. 

8.1 TEST ONE RESULTS – PV AND LOAD STEP UP 

The first test involves the connection of the PV array at full irradiance as well as the increased load 

(decreased output resistance) by a factor of two. These events should lead to a momentary spike 

in the TMMC output voltage and power when the PV is added to the system due to additional 

generation being added to the mix. Also, the increased load should incur a subsequent temporary 

dip in the output voltage while the system’s generation portfolio can supply the load with adequate 

levels of power, while the output power should see a surge followed by an increased steady state 

operating point of output power (from around 4 kW to 8 kW) to feed the larger load demand. With 

regards to the “grid” current, the addition of the PV generation should reduce the amount of current 

supplied by the grid (proportional to the ratio of PV power to total load power) since the “grid” no 

longer needs to supply the entirety of the load demand. However, the increased load should bring 

about a large increase in grid supplied current, proportional to the total in output power minus PV 

power. The PV power portfolio is a little more sporadic with added dynamics from the multiple 

converters associated with the PV system. Although, it is expected to steadily charge and be 

switched into the TMMC at its peak power output level. After being added to the system, its power 

drops somewhat due to the RLC filter added to the end of the PV system, but it should hold steady 

and have its power output react similarly to the “grid” current and output load power. 
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Figure 39. Test One - TMMC Capacitor Voltages - No ESS 

 

Figure 40. Test One - TMMC Capacitor Voltages – with ESS 

 

Figure 39 and Figure 40 show TMMC capacitor voltages, and the main points of interest 

are the extreme points of each spike related to the PV connection and load change, respectively. 

Without the ESS, steady state voltage is around 95 V averaged between all rows, and the two 
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spikes are 118.48 V and 55.48 V; meanwhile, with the addition of ESS, the spikes are 106.97 V 

and 71.45 V. These transient values are reduced by 11.51 V (~12% of steady state voltage) and   

15.97 V (~17% of steady state voltage), and reduce the time it takes for the signals to return to 

their nominal values. 

 

 

Figure 41. Test One - TMMC Output Voltage and Power, Grid Current, PV Output Power –  
No ESS 
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Figure 42. Test One - TMMC Output Voltage and Power, Grid Current, PV Output Power - 
With ESS 

 

The same trends from the capacitor voltages are extended to the output voltage, output 

power, grid current, and PV power in Figure 41 and Figure 42– transient spikes are less severe 

with the ESS and recovery times are increased greatly. The biggest recovery time improvement is 

noticeable after the load change. The ESS system is able to recover within 25 ms, while the non-

ESS system continues to settle towards steady state after 100ms. Interestingly, the PV power 
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without ESS is extended past its designed operating range in terms of maximum power, while the 

PV with ESS operates within its feasible capabilities. Per load predictions, the output power 

approximately doubles from 4022 W (4030 W) to 7972 W (7832 W). 

 

 

Figure 43. Test One – ESS Row Ultracapacitor Current Injection 
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Figure 43 displays the ESS ultracapacitor current injection for each TMMC row designed 

to mitigate transient events within the converter’s operation. Each of the upward and downward 

current flows demonstrate the ESS respectively either discharging and raising the capacitor 

voltages, or charging and lowering the voltages. Each of these current flows, directly match up 

with a transient event in Figure 42. 

8.2 TEST TWO RESULTS – PV AND LOAD STEP DOWN 

Test two similarly has the PV system switched into the system at full irradiance; however, the load 

is now stepped down by half (output resistance doubled). This load change requires the output load 

to change power demands from 4 kW down to 2 kW. This step change causes a spike in voltage 

across the capacitors and output resistor due to an excess of power flowing into the system as the 

load demands are decreasing. Moreover, a decrease in power demands from the load requires less 

power from both the “grid” connection as well as the PV system, which should both see a 

downward trend in generation. 

 Comparing the results from the capacitor voltages in Figure 44 and Figure 45, the same 

trend of reduced transient spikes in seen in test two. The spike from decreasing the load 

requirement by half creates a very large spike about 131.80 V or 136% of the nominal value. 

Although with the addition of ESS, the peak reduces to 108.17 V, reducing the transient voltage 

stress on the system by 23.63 V or 24.87% of steady state voltage. The initial spike changes are 

the same as those recorded in test one. 
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Figure 44. Test Two - TMMC Capacitor Voltages – No ESS 

 

 

Figure 45. Test Two - TMMC Capacitor Voltages – With ESS 
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Figure 46. Test Two - TMMC Output Voltage and Power, Grid Current, PV Output Power –  
No ESS 

 

 These trends continue when looking at Figure 46 and Figure 47. Voltage and power spikes 

decrease in magnitude with faster recovery times to new steady state values. As designed, the 

output power decreases by roughly half from 4028 W (3999 W) to 2023 W (2015 W) after the 
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output resistance is doubled. Transient recovery times for the non-ESS system is about 100 ms, 

and fall to around 25 ms when introducing the ultracapacitors. 

 

 

 

Figure 47. Test Two - TMMC Output Voltage and Power, Grid Current, PV Output Power – 
With ESS 
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Figure 48. Test Two – ESS Row Ultracapacitor Current Injection 
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8.3 TEST THREE RESULTS – PV STEP UP AND DOWN 

The third and last test focuses mainly on the impact of large PV step changes on the system with 

the PV first connected at maximum irradiance, and then later disconnected promptly creating a 

large deficit in generation. The output load stays constant throughout the whole simulation, so 

there is no main change in system power demands. The capacitor and output voltages are also 

expected to spike upwards when the PV is connected and subsequently take a large dip when the 

PV is disconnected entirely. The “grid” current dips proportionally to the amount of power offset 

from the grid to the PV system upon connection, and then return to initial values when the PV is 

no longer connected to the TMMC. The PV system itself responds as before when it interconnects 

with the TMMC; however, it output power drops quickly down to zero output, as soon as it 

disconnects from the system. 

 

 

Figure 49. Test Three - TMMC Capacitor Voltages – No ESS 
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Figure 50. Test Three - TMMC Capacitor Voltages – With ESS 

 

 A sizable difference in spikes between ESS and non-ESS systems is present once more in 

Figure 49 and Figure 50. The second spike dipping downward due to the disconnected PV hits a 

trough value of 75.94 V for the traditional TMMC as compared to 83.83 V for the ESS-enhanced 

model. This reduction of 7.89 V or 8.3% of steady state voltage is less dramatic than the other 

tests, but a noticeable improvement nonetheless. The initial spike changes are the same as those 

recorded in test one. 
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Figure 51. Test Three - TMMC Output Voltage and Power, Grid Current, PV Output Power – 
No ESS 

 

 The connection and disconnection of the PV has a somewhat mirrored impact upon the 

output voltage, output power, and “grid” current. The transient recovery for the non-ESS system 

from the PV step changes is decent with about 50 ms of recovery time. This recovery is about cut 

in half when introducing the ESS however. The current injections in Figure 53 once again line up 

well with the transient events present in Figure 52. 
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Figure 52. Test Three - TMMC Output Voltage and Power, Grid Current, PV Output Power – 
With ESS 

 



  

 84 

 

 

 

Figure 53. Test Three – ESS Row Ultracapacitor Current Injection 

 

 

 

 

 



  

 85 

 

9.0  CONCLUSION 

As the “modern” power grid continues to evolve in order to meet the growing and diversifying 

generation and load landscape, interfacing converters will likely play an important role in 

regulating system-level power flow and power quality throughout distribution grid structures such 

as microgrids. Renewable sources of generation supplement the growing development in meeting 

the growing electricity demands; however, they also provide additional challenges with managing 

their intermittent supply profile. However, a grid system that utilizes modular converters enhanced 

with energy storage that connect an arrangement of sources and loads, could allow for a greater 

penetration of renewable sources. The triangular modular multilevel converter utilizing 

ultracapacitors affixed to each of its modules has been proven a solid candidate for interfacing 

loads with intermittent generation sources. It is capable of mitigating the transient spikes 

associated with large step changes both in load as well as PV generation, as well as reducing the 

recovery time necessary to return to nominal steady state voltage and power levels. Both of these 

qualities are valuable as the focus on converter research continues to shift towards the development 

of power routing and power buffering interfacing converters.  
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10.0  FUTURE WORK 

Future iterations of this work would rework several portions of the overall system in order to 

optimize overall performance. For starters, the control system of the TMMC needs to be 

overhauled in order to achieve true voltage and current sharing between rows. The power-sharing 

mechanic of the TMMC was maintained throughout the system, but a gradient of module voltages 

from the top to bottom row appeared as the number of rows expanded and the power demands of 

the topology were increased. Additionally, the ultracapacitor selection for the ESS could be more 

optimally chosen in order to precisely choose the proper amount of energy for the converter system 

based off load and generation requirements. The PV array system could also benefit from a more 

streamlined integration into the converter versus the brute forced switching that was implemented.  

 Next immediate steps for this converter topology include the realization of the design using 

a hardware-in-the-loop platform, as well as the expansion of the model to pursue the development 

of an APDN design with multiple inputs and multiple outputs still utilizing an ESS to power buffer 

the flow the power from source to load. 
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APPENDIX 

SYSTEM PARAMETERS AND DIAGRAMS 

Table 12. Complete System Parameters 
 

Name Evaluated 
Value Name Evaluated 

Value 
C 6e-005 F Vref_UC_Ctrl 55 V 
L 0.00056 H nI 0.97 

Vin 380 V Nparallel 5 
TPHmax 60 Nseries 1 
TPHmin -60 Rsh 47.9694 Ω 

Vo 48 V Rs 0.22828 Ω 
Kp 0.0384 UC_UpperThreshold 99 V 
Ki 6.14 UC_LowerThreshold 91 V 
SC 83 F UC_initval 48 V 
Lf 0.001 H Dnew 0.5 
Rf 2990 mΩ Ki_pv 20.4865 

UC_ESR 10 mΩ Kp_pv 0.064 
Kpuc 1.777 Irrad 1000 W/m2 
Kiuc 1579 Rload 2.12 Ω 
Ts 5e-005 s     
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Figure 54. Left Side of Model. Includes PV System, PV Filter, TMMC Controller, and Grid 
Connection 
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Figure 55. Right Side of Model. Includes TMMC, Ultracapacitor ESS, and ESS Controllers 
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