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AVERAGING AND FIXED POINTS IN BANACH SPACES

Torrey M. Gallagher, PhD

University of Pittsburgh, 2016

We use various averaging techniques to obtain results in different aspects of functional anal-

ysis and Banach space theory, particularly in fixed point theory.

Specifically, in the second chapter, we discuss the class of so-called mean nonexpansive

maps, introduced in 2007 by Goebel and Japón Pineda, and we prove that mean isometries

must be isometries in the usual sense. We further generalize this class of mappings to

what we call the affine combination maps, give many examples, and study some preliminary

properties of this class.

In the third chapter, we extend Browder’s and Opial’s famous Demiclosedness Principles

to the class of mean nonexpansive mappings in the setting of uniformly convex spaces and

spaces satisfying Opial’s property. Using this new demiclosedness principle, we prove that

the iterates of a mean nonexpansive map converge weakly to a fixed point in the presence of

asymptotic regularity at a point.

In the fourth chapter, we investigate the geometry and fixed point properties of some

equivalent renormings of the classical Banach space c0. In doing so, we prove that all norms

on `∞ which have a certain form must fail to contain asymptotically isometric copies of c0.
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1.0 INTRODUCTION

We begin with some preliminary notions essential to discussing fixed point theory.

Definition 1.0.1. Let C be a set and f : C → C a function. We say f has a fixed point in

C if there exists x0 ∈ C such that f(x0) = x0.

Definition 1.0.2. Let (M,d) be a metric space and suppose f : M →M is a function.

1. We say f is Lipschitz (or k-Lipschitz ) if there exists k ≥ 0 such that

d(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈M . We refer to the infimal Lipschitz constant of f as k(f).

2. If f is 1-Lipschitz, we say it is nonexpansive. If f is k-Lipschitz for some k ∈ [0, 1), we

say f is a strict contraction.

3. If (X, ‖·‖) is a normed vector space, we say that (X, ‖·‖) has the fixed point property

for nonexpansive maps (fpp(ne)) if, for every nonempty closed, bounded, convex (c.b.c.)

C ⊂ X, and for every nonexpansive T : C → C, it follows that T must have a fixed point

in C.

The questions of fixed point theory are typically of a similar flavor: given a subset C of a

topological space and some collection of functions mapping C back into C satisfying certain

properties, can we guarantee that every such function has a fixed point? This setting is

usually too general to say anything positive, so “topological space” will usually be replaced

by “Banach space” (that is, a complete normed vector space), and the subsets in question

are usually c.b.c. or compact, either in the topology induced by the norm or in some other

useful topology on the space. In 1910, Brouwer proved his famous fixed point theorem [36,

Ch. 8] about the simplest class of Banach spaces, (Rn, ‖·‖):
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Theorem 1.0.1 (Brouwer). Suppose that K ⊂ Rn is (nonempty) norm-compact and convex

and that f : K → K is continuous. Then f has a fixed point in K.

Note that, in (Rn, ‖·‖), we have that a set K is compact if and only if K is closed and

bounded. Thus, we may rephrase Brouwer’s result to say “(Rn, ‖·‖) has the fixed point

property for continuous maps.” Schauder later extended this result [47] to the infinite-

dimensional setting. We state a version of Schauder’s theorem which elucidates the analogy.

Theorem 1.0.2 (Schauder). Suppose X is a locally convex topological vector space (e.g.

any Banach space) and suppose that K ⊂ X is nonempty, compact and convex. Then every

continuous T : K → K has a fixed point.

Answering the fixed point question for c.b.c., noncompact subsets of a given space is where

the theory begins to come into its own. Banach’s famous contraction mapping theorem has

completeness as the essential assumption of the underlying space, but makes no mention of

compactness. Indeed, Banach’s theorem does not require boundedness, convexity, or even a

linear structure.

Theorem 1.0.3 (Banach Contraction Mapping Theorem (BCMT)). Suppose (M,d) is a

complete metric space and T : M →M is a strict contraction; that is, there exists a k ∈ [0, 1)

such that

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈M.

Then T has a unique fixed point x0 ∈ M . Moreover, d(T nz, x0) →n 0 for all z ∈ M , where

T n := T ◦ · · · ◦︸ ︷︷ ︸
n

T .

When the condition on the function in BCMT is relaxed to nonexpansiveness, additional

assumptions must be placed on the domain of the function in order to say anything positive.

Inspired by Brouwer and Schauder, we consider closed, bounded, convex subsets of an infi-

nite dimensional Banach space (which crucially are not necessarily norm-compact). In this

setting, the fixed point problem becomes significantly harder. To illustrate this, we present

two classical examples of fixed-point-free nonexpansive mappings defined on closed, bounded,

convex subsets of the Banach space of real sequences which converge to 0, (c0, ‖·‖∞), and

absolutely-summable sequences, (`1, ‖·‖1), endowed with their usual norms as defined below.
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Example 1.0.1. Define

c0 :=
{

(x1, x2, . . .) : xk ∈ R for all k ∈ N and lim
k→∞

xk = 0
}

and define the norm ‖(xn)n‖∞ := supn |xn|. We define our closed, bounded, convex (and not

norm-compact) set

C := {x ∈ c0 : 0 ≤ xk ≤ 1 for all k ∈ N} .

We define a right-shift map on C,

T : C → C : (x1, x2, . . .) 7→ (1, x1, x2, . . .).

Then

‖Tx− Ty‖∞ = ‖(0, x1 − y1, x2 − y2, . . .)‖∞ = sup
n
|xn − yn| = ‖x− y‖∞

and we have that T is an isometry. Finally, observe that Tx = x if and only if x = (1, 1, 1, . . .).

Not only is the sequence (1, 1, . . .) not in C, it is not even in c0! Therefore, T is fixed-point-

free on C, and we can say that (c0, ‖·‖∞) fails fpp(ne).

Example 1.0.2. Define

`1 := {(x1, x2, . . .) : xk ∈ R for all k ∈ N and
∞∑
k=1

|xk| <∞},

and define the norm ‖x‖1 :=
∑∞

k=1 |xk|. Now define the closed, bounded, convex (but not

norm-compact) subset

C :=

{
x = (xn)n ∈ `1 : xn ≥ 0 for all n, and

∞∑
n=1

xn = 1

}
.

Let T : C → C be a right-shift map similar to the one defined above:

Tx := (0, x1, x2, . . .).

Then for any x, y ∈ C,

‖Tx− Ty‖1 = ‖(0, x1 − y1, x2 − y2, . . .)‖1 =
∞∑
n=1

|xn − yn| = ‖x− y‖1 ,

and we see that T is an isometry (and hence nonexpansive). Moreover, Tx = x if and only

if x = 0. But 0 6∈ C, so T is fixed-point-free on C. From this, we can say that (`1, ‖·‖1) fails

fpp(ne).
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In order to obtain positive results, we will ask an easier preliminary question: does a

nonexpansive map T on a c.b.c. C satisfy infC ‖Tx− x‖ = 0? The answer is yes, and the

proof is a clever application of BCMT.

Theorem 1.0.4. Let (X, ‖·‖) be a Banach space, C ⊂ X c.b.c., and T : C → C nonexpan-

sive. Then infC ‖Tx− x‖ = 0.

Proof. Fix z ∈ C and ε ∈ (0, 1). For x ∈ C, define Tεx := (1− ε)Tx+ εz. Then

‖Tεx− Tεy‖ = (1− ε) ‖Tx− Ty‖ ≤ (1− ε) ‖x− y‖ .

That is, Tε is a strict contraction for all ε ∈ (0, 1). Since X is Banach and C is closed, C is

a complete metric space (with the metric induced by ‖·‖) and, by BCMT, Tε has a unique

fixed point xε ∈ C for all ε ∈ (0, 1). Now

‖Txε − xε‖ = ‖Txε − Tεxε‖ = ε ‖Txε − z‖ → 0 as ε→ 0

since C is bounded. Hence, infC ‖Tx− x‖ = 0.

Note that the above theorem guarantees the existence of an approximate fixed point

sequence (afps) for any nonexpansive self-mapping of a closed, bounded, convex subset of a

Banach space. That is, for any nonexpansive T : C → C, there exists (xn)n in C for which

lim
n→∞

‖Txn − xn‖ = 0,

provided that C is closed, bounded, and convex.

After Schauder, it took 35 years until the next major breakthroughs in understanding

the “fixed point question,” when, in 1965, several major positive results were proven inde-

pendently by Browder [7, 8], Göhde [30], and Kirk [32]. First, Browder proved that Hilbert

spaces (a Hilbert space is a vector space equipped with an inner product whose induced

norm is complete) have fpp(ne) [7].

Theorem 1.0.5 (Browder’s Theorem). All Hilbert spaces have fpp(ne).
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His proof relied on the relationship between nonexpansive maps and the so-called mono-

tone maps. Specifically, if (H, ( ·, · )) is Hilbert and T : H → H, we say T is monotone

if

(Tx− Ty, x− y) ≥ 0

for all x, y ∈ H. Browder observed that for any nonexpansive map U : H → H, the

associated mapping T := I − U (where I is the identity mapping on H) is monotone, and

the fixed point property for Hilbert spaces follows from an extension theorem of Kirszbraun

[48] in the Hilbert space setting and several lemmas which Browder proves about monotone

mappings.

Also in 1965, this result was independently improved by Göhde [30] from Hilbert spaces

to the class of uniformly convex Banach spaces, defined below.

Definition 1.0.3. A Banach space (X, ‖·‖) is called uniformly convex if, for all ε ∈ (0, 2],

there exists a δ ∈ (0, 1] for which
‖x‖ ≤ 1,

‖y‖ ≤ 1, =⇒ 1
2
‖x+ y‖ ≤ 1− δ.

‖x− y‖ ≥ ε

This extends Browder’s Theorem for Hilbert spaces because all Hilbert spaces are uni-

formly convex.

Theorem 1.0.6 (Göhde’s Theorem). If (X, ‖·‖) is uniformly convex, then X has fpp(ne).

Göhde’s proof relied on the following keen observation about uniformly convex spaces:

if (X, ‖·‖) is uniformly convex and C ⊂ X is bounded and convex, then for all ε > 0, there

exists a δ > 0 such that if u, v ∈ C and z = tu+ (1− t)v for some t ∈ [0, 1], then‖x− u‖ ≤ ‖z − u‖+ δ

‖x− v‖ ≤ ‖z − v‖+ δ

=⇒ ‖x− z‖ ≤ ε.

Again in 1965, Browder [8] also proved, independently from Göhde, that uniformly convex

spaces have fpp(ne). He did so in a way that was distinct both from his own methods in the

Hilbert space setting and from Göhde’s methods. In short, he proved that uniformly convex

5



spaces have fpp(ne) by using an argument about the diameters of certain sets in uniformly

convex sets. Recall that we define the radius and diameter of a set C in a Banach space as

follows:

Definition 1.0.4. Suppose (X, ‖·‖) is a Banach space and C ⊂ X is nonempty.

1. Fix x ∈ C. Define r(x,C) := sup{‖x− z‖ : z ∈ C}. We define the radius and diameter

of C, resp., to be

rad(C) := inf
x∈C

r(x,C) and

diam(C) := sup
x∈C

r(x,C)

Note that we always have rad(C) ≤ diam(C).

2. If diam(C) > 0, we say that C has normal structure if rad(C) < diam(C). If every such

c.b.c. C ⊂ X has normal structure, we say that the space (X, ‖·‖) has normal structure.

Finally, Kirk [32] proved the strongest result of 1965 and did so independently from both

Browder and Göhde. Before stating Kirk’s Theorem, let’s recall one final definition.

Recall that for any normed linear space (X, ‖·‖) over K = R or C, we define the dual

space (sometimes called the continuous dual space) to X, denoted by X∗, as

X∗ := {f : X → K : f is continuous and linear}.

We define the weak topology on X to be the coarsest topology on X such that each f ∈ X∗

is continuous. We say that a Banach space (X, ‖·‖) has the weak fixed point property for

nonexpansive maps (w-fpp(ne)) if, for every nonempty, weakly compact, convex set K ⊂ X,

every nonexpansive map T : K → K has a fixed point. Now we state two versions of Kirk’s

Theorem.

Theorem 1.0.7 (Kirk’s Theorem, Version 1). Suppose X is a Banach space having weak

normal structure (i.e. every weakly compact, convex subset of X with positive diameter has

normal structure). Then X has w-fpp(ne).
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Let X∗∗ := (X∗)∗ denote the second dual of X. Recall that a Banach space X is said to

be reflexive if the linear map j : X → X∗∗ is an isometric isomorphism, where j is defined

for all x ∈ X and for all ϕ ∈ X∗ by j(x)(ϕ) := ϕ(x). That is, reflexive spaces are those

which correspond exactly with their second dual space. It is a fact that, in a reflexive space,

a set C is c.b.c. implies that C is weakly compact. With this in mind, we can state Kirk’s

theorem in a “strong” way.

Theorem 1.0.8 (Kirk’s Theorem, Version 2). Suppose (X, ‖·‖) is reflexive and has normal

structure. Then X has fpp(ne).

Note that Kirk’s Theorem is a genuine extension of both Browder’s and Göhde’s results

since all uniformly convex spaces are reflexive and have normal structure. There are two key

elements to Kirk’s proof, both of which quite naturally generalize the techniques developed

by Browder in the uniformly convex setting. The first element of Kirk’s proof is that any

nonexpansive mapping T : C → C, with C weakly compact, must have a minimal invariant

set ; that is, by Zorn’s Lemma, there must exist a set K ⊆ C for which T (K) ⊆ K and if

K ′ ⊆ K also satisfies T (K ′) ⊆ K ′, it must follow that K ′ = K. The second key element of

his proof is that, in the presence of normal structure (or weak normal structure, as the case

may be), any minimal invariant set must be a singleton; that is, T must have at least one

fixed point.

In 1967, Opial [43] revealed the essential pieces of the proof of Browder’s Theorem for

Hilbert spaces and used them to prove a new and interesting generalization of Theorem 1.0.5

in a way distinct from both Göhde’s and Kirk’s methods. Recall that a sequence (xn)n in X

converges weakly to x ∈ X if limn ϕ(xn) = ϕ(x) for all ϕ ∈ X∗. We will use “⇀” to denote

weak convergence and “→” to denote strong (norm) convergence throughout. Before stating

Opial’s result, we need two notions.

Definition 1.0.5 (Opial’s Property). Suppose (X, ‖·‖) is a Banach space. We say X has

Opial’s property if, whenever xn ⇀ x, we have

lim inf
n
‖xn − x‖ < lim inf

n
‖xn − y‖

for all y 6= x.
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Note that all Hilbert spaces have Opial’s property, as do `p for all p ∈ (1,∞). However,

Lp fails to have Opial’s property for p 6= 2.

Definition 1.0.6 (Demiclosedness). Suppose (X, ‖·‖) is a Banach space, C ⊆ X, and F :

C → X a function. For any y ∈ X, we say F is demiclosed at y if, whenever xn ⇀ x in C

and Fxn → y, it follows that Fx = y. If F is demiclosed for all y ∈ X, we call F demiclosed.

Note that if a function T is such that I − T is demiclosed at 0 and T has a weakly

convergent approximate fixed point sequence, then T will have a fixed point. A detailed

proof of this fact can be found in Lemma 3.3.1.

Theorem 1.0.9 (Opial’s Demiclosedness Principle). Suppose (X, ‖·‖) is a Banach space with

Opial’s property. Then for any closed and convex C ⊆ X, any nonexpansive map T : C → X

is such that I − T is demiclosed at 0. In particular, (X, ‖·‖) has w-fpp(ne).

Using Opial’s ideas and a subtle refinement of the techniques developed by Göhde, Brow-

der [9] proved his famous Demiclosedness Principle in 1968.

Theorem 1.0.10 (Browder’s Demiclosedness Principle). If (X, ‖·‖) is uniformly convex,

C ⊆ X is closed, bounded, and convex, and T : C → X is nonexpansive, then I − T is

demiclosed. In particular, X has fpp(ne).

It has been of interest to study classes of mappings broader than the nonexpansive

maps. For instance, Goebel and Kirk [26] defined the class of asymptotically nonexpansive

mappings ; that is, we say a function T : C → C is asymptotically nonexpansive if, for all

n ∈ N and x, y ∈ X,

‖T nx− T ny‖ ≤ kn ‖x− y‖ ,

where kn ↘ 1. If a mapping is nonexpansive, it is easy to see that it is asymptotically

nonexpansive for any choice of (kn)n decreasing to 1. In 1991, Xu [51] extended Browder’s

Demiclosedness Principle to the class of asymptotically nonexpansive mappings, and Garcia-

Falset, Sims, and Smyth [22] extended Opial’s Demiclosedness Principle to asymptotically

nonexpansive mappings in 1996. We provide generalizations of both Opial’s and Browder’s

Demiclosedness Principles, which are distinct from the results of Xu, Garcia-Falset, Sims,

and Smyth, in Chapter 3. In particular, we prove the Demiclosedness Principle for mean
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nonexpansive mappings, which were introduced in 2007 by Goebel and Japón Pineda [25].

We say a function T : C → C is mean nonexpansive if there is a multi-index α =

(α1, . . . , αn) with α1, αn > 0 and α1 + · · ·+ αn = 1 for which

n∑
k=1

αk
∥∥T kx− T ky∥∥ ≤ ‖x− y‖

for all x, y ∈ C. Again, notice that any nonexpansive mapping will be mean nonexpansive

for any choice of α. Also note that we provide and study a further generalization of this

class, which we call the class of affine combination mappings, in Chapter 2. Just like Xu,

Garcia-Falset, Sims, and Smyth, we use our Demiclosedness Principle for mean nonexpan-

sive mappings to prove fixed point theorems in the presence of an approximate fixed point

sequence, which must be assumed to exist in the case of both asymptotically nonexpansive

and mean nonexpansive mappings.

So far, we have only seen positive fixed point property results in two distinct contexts:

closed, bounded, convex subsets of reflexive spaces, or weakly compact, convex subsets of

possibly nonreflexive spaces. All Hilbert spaces are reflexive, uniformly convex spaces are

reflexive, and we have a theorem about reflexive spaces having normal structure. Further,

we have two results of Maurey (see [1, Ch. 3, §V] and [41]) regarding reflexivity and the

fixed point property. First,

Theorem 1.0.11 (Maurey’s L1 Theorem). All reflexive subspaces of (L1[0, 1], ‖·‖1) have

fpp(ne).

Recall that a Banach space (X, ‖·‖) is called superreflexive if and only if there exists an

equivalent norm ‖·‖0 on X which is uniformly convex, an equivalence which is due to Enflo

[19]. Maurey’s second result that we will state is of a slightly different flavor than the rest

of the theorems listed here because it deals only with the fixed points of isometries.

Theorem 1.0.12 (Maurey’s Superreflexive Theorem). Superreflexive Banach spaces have

the fixed point property for isometries.

Both of Maurey’s theorems were proven using “nonstandard methods” regarding the

ultrapowers of Banach spaces. For a thorough survey of nonstandard techniques in fixed

point theory, see [1]. In Chapter 2, we will investigate whether or not Maurey’s Superreflexive
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Theorem extends to the class of mean isometries. Indeed, we will answer this question in

the affirmative for the class of mean isometries with multi-index of length 2, and also that

such mean isometries defined on closed, bounded, convex subsets of Banach spaces must also

have approximate fixed point sequences.

In Examples 1.0.1 and 1.0.2, we saw that the lack of reflexivity led to the failure of

fpp(ne). On the other hand, we do have the w-fpp(ne) results for possibly nonreflexive

spaces having normal structure or Opial’s property. Several questions naturally arise from

these observations: Do there exist weakly compact, convex sets which fail to have fpp(ne)?

and must a Banach space be reflexive in order to have fpp(ne)?

The answers to these questions are “yes” and “no,” respectively.

In 1981, Alspach [2] answered the first question by providing an example of a weakly

compact, convex set which fails to have the fixed point property for nonexpansive maps. His

example, now called “Alspach’s Map,” is an isometry on a weakly compact, convex subset

of L1[0, 1] which is fixed-point-free. That is, he proved the following theorem.

Theorem 1.0.13 (Alspach). (L1[0, 1], ‖·‖1) fails to have the w-fpp for isometries. Hence,

(L1[0, 1], ‖·‖1) fails to have w-fpp(ne).

In 2008, Lin [40] answered the second question in the negative by providing an example

of a nonreflexive space which has fpp(ne). His example is a renorming of (`1, ‖·‖1). For all

x ∈ `1, define a new norm

‖x‖ := sup
n∈N

(
γn

1 + γn

∞∑
k=n

|xk|

)
where γn := 8n for all n. Note that ‖·‖ is Lipschitz-equivalent to ‖·‖1, with

8

9
‖x‖1 ≤ ‖x‖ ≤ ‖x‖1 ,

and thus (`1, ‖·‖) is nonreflexive. Lin proved the following theorem.

Theorem 1.0.14 (Lin). (`1, ‖·‖) has fpp(ne).

Lin’s result shows that the notions of reflexivity and fpp(ne) cannot be equivalent, but

it is still possible that reflexivity implies the fixed point property. A partial positive result

in this vein was given by Domı́nguez Benavides [4] in 2009, and, interestingly, his result also

pertains to altering the original norm.
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Theorem 1.0.15 (Domı́nguez Benavides). If (X, ‖·‖) is reflexive, then there exists a norm

‖·‖0 on X that is Lipschitz-equivalent to ‖·‖ such that (X, ‖·‖0) has fpp(ne).

With both Lin’s and Domı́nguez Benavides’ results in mind, we study the following

question in Chapter 4: can c0 be renormed to have fpp(ne)?
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2.0 NONEXPANSIVENESS AND AVERAGING

Beginning with Banach’s Contraction Mapping Theorem, studying the iterates of functions

has been of significant interest. In particular, fixed point theorems have been proven for

uniformly Lipschitzian mappings [27] and asymptotically nonexpansive mappings [22, 26, 51],

and both notions involve conditions being placed on the behavior of iterates. In the case of

a uniformly Lipschitzian mapping T on a metric space (M,d), one would have some k ≥ 0

for which

d(T nx, T ny) ≤ kd(x, y) for all n and all x, y ∈M,

and in the case of asymptotically nonexpansive mappings, one would have T satisfying

d(T nx, T ny) ≤ knd(x, y) for all n and all x, y ∈M,

where (kn)n is a sequence of real numbers strictly decreasing to 1. With this in mind, Goebel

and Japón Pineda [25] sought a fruitful generalization to the nonexpansive mappings which

involved multiple iterates and which is distinct from the class of asymptotically nonexpansive

mappings. A first attempt was to consider a weighted average of the first two iterates of a

function T : C → C where C is a convex subset of a Banach space; i.e. given α = (α1, α2)

with α1, α2 > 0 and α1 + α2 = 1, let’s consider a new function Tα : C → C, given by

Tα := α1T + α2T
2.

If Tα is nonexpansive, can we garner any interesting information about T? The answer is

generally “no,” since this condition does not guarantee continuity or the existence of an

approximate fixed point sequence, as we see in the next examples which appear in [46,

Examples 3.5, 3.6].

12



Example 2.0.1. Let T : [0, 1] → [0, 1] : x 7→ χ[0,1/2](x). Then T is discontinuous, and

T 2x = χ(1/2,1](x) so T 2 is also discontinuous. Further,

inf
x∈[0,1]

|Tx− x| = 1

2
,

so T does not have an approximate fixed point sequence. However, for α = (1/2, 1/2), we

find that

Tαx =
1

2
Tx+

1

2
T 2x =

1

2

for all x ∈ [0, 1]. That is, |Tαx− Tαy| = 0 for all x, y ∈ [0, 1], so Tα is nonexpansive.

This is a rather extreme example since we do not even have continuity of T , so one could

imagine considering only those functions T which were continuous and had Tα nonexpansive.

This is still insufficient, as we see in the next example. Indeed, even if the original function

T is uniformly Lipschitzian, nonexpansiveness of Tα still does not guarantee the existence of

an approximate fixed point sequence for T .

Example 2.0.2. Benyamini and Sternfeld [5] showed in 1983 that, if (X, ‖·‖) is infinite

dimensional, then there always exists a Lipschitz retraction of the unit ball of X,

BX := {x ∈ X : ‖x‖ ≤ 1},

onto the unit sphere of X,

SX := {x ∈ X : ‖x‖ = 1}.

That is, there exists some function R : BX → SX which is Lipschitz and satisfies Rx = x

for all x ∈ SX . Furthermore, Piasecki [46, Example 3.6] notes that the Lipschitz constant of

such a retraction must be quite large: k(R) ≥ 3, where k(R) denotes the Lipschitz constant

of R. Now define T : BX → SX ⊂ BX to be T := −R. Then

T 2x = −R(−Rx) = −(−Rx) = Rx since Rx ∈ SX =⇒ −Rx ∈ SX ,

and similarly,

T nx = (−1)nRx
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for all x ∈ BX . Thus, for all x, y ∈ BX and any n ∈ N,

‖T nx− T ny‖ = ‖(−1)nRx− (−1)nRy‖ = ‖Rx−Ry‖ ≤ k(R) ‖x− y‖

and T is uniformly Lipschitzian. However, for α = (1/2, 1/2),

Tαx =
1

2
Tx+

1

2
T 2x =

1

2
(−Rx) +

1

2
Rx = 0,

and again we see that Tα is a constant (and hence nonexpansive). However, for any x ∈ BX ,

∥∥T 2x− Tx
∥∥ = ‖Rx− (−Rx)‖ = 2 ‖Rx‖ = 2

since Rx ∈ SX . On the other hand, this yields

2 =
∥∥T 2x− Tx

∥∥ ≤ k(T ) ‖Tx− x‖ ≤ k(R) ‖Tx− x‖ ,

which tell us that 0 < 2/k(R) ≤ ‖Tx− x‖, and T cannot have an approximate fixed point

sequence.

As a second attempt, consider a function T on a metric space (M,d) for which

max{d(Tx, Ty), d(T 2x, T 2y)} ≤ d(x, y)

for all x, y ∈ M . However, it is easy to see that any such function is already nonexpansive.

Next, one could consider a function for which

min{d(Tx, Ty), d(T 2x, T 2y)} ≤ d(x, y)

for all x, y ∈M . All nonexpansive mappings satisfy this condition, but such functions need

not be continuous and do not necessarily have approximate fixed point sequences, as shown

in the next example given by Goebel and Japón Pineda.
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Example 2.0.3. Let ϕ : [1/4, 1/2) → [3/4, 1] be one-to-one and onto. Define T : [0, 1] →

[0, 1] by

Tx :=



x+ 1
2

x ∈
[
0, 1

4

)
ϕ(x) x ∈

[
1
4
, 1
2

)
x− 1

2
x ∈

[
1
2
, 3
4

)
ϕ−1(x) x ∈

[
3
4
, 1
]
.

T is discontinuous, and |x − Tx| ≥ 1/4 for all x ∈ [0, 1], so T cannot have an approximate

fixed point sequence. A simple calculation shows that T 2x = x for all x ∈ [0, 1], so T 2 is

nonexpansive and hence

min{|Tx− Ty|, |T 2x− T 2y|} ≤ |x− y|

for all x, y ∈ [0, 1].

Lying between the numbers min{d(Tx, Ty), d(T 2x, T 2y)} and max{d(Tx, Ty), d(T 2x, T 2y)}

are all of the weighted averages of d(Tx, Ty) and d(T 2x, T 2y); that is, all numbers of the

form

td(Tx, Ty) + (1− t)d(T 2x, T 2y)

for some t ∈ [0, 1]. With this in mind, Goebel and Japón Pineda defined and studied the

class of mean nonexpansive mappings.

2.1 MEAN LIPSCHITZ CONDITION

Definition 2.1.1. Let (M,d) be a metric space. A function T : C → C is called mean k-

Lipschitzian (or α-k-Lipschitzian) if there exists a k > 0 and a multi-index α = (α1, . . . , αn)

with α1, αn > 0, each αj ≥ 0 and α1 + · · ·+ αn = 1 such that, for all x, y ∈ C, we have

n∑
j=1

αjd(T jx, T jy) ≤ kd(x, y).

When k = 1, we say T is α-nonexpansive (or mean nonexpansive).
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First, observe that if T : C → C is k-Lipschitzian for some k ≥ 0, then

1. k(T n) ≤ kn for all n ∈ N, and

2. for any multi-index α = (α1, . . . , αn) with each αk ≥ 0 and α1 + · · · + αn = 1, we have

that T is α-k̃-Lipschitz, where k̃ := α1k + α2k
2 + · · ·αnkn.

Thus, all Lipschitzian maps are mean-Lipschitzian. In particular, all nonexpansive maps

are mean-nonexpansive for any choice of α. We will primarily be concerned with mean

nonexpansive mappings defined on some closed, bounded, convex subset of a Banach space.

To see that this is indeed a nontrivial definition, we have an example due to Goebel and

Sims [28] of a function which is mean nonexpansive but none of its iterates are nonexpansive

in the usual sense.

Example 2.1.1 (Goebel and Sims). Let’s define a map

T : B`1 → B`1 : (x1, x2, . . .) 7→
(
τ(x2),

2

3
x3, x4, . . .

)
,

where τ : [−1, 1]→ [−1, 1] is given by

τ(t) :=


2t+ 1 −1 ≤ t ≤ −1

2

0 −1
2
≤ t ≤ 1

2

2t− 1 1
2
≤ t ≤ 1

.

Note the following facts about τ and T :

1. |τ(t)| ≤ |t| for all t ∈ [−1, 1],

2. |τ(t)− τ(s)| ≤ 2|t− s| for all s, t ∈ [−1, 1],

3. ‖Tx− Ty‖1 ≤ 2 ‖x− y‖1,

4. ‖T jx− T jy‖1 ≤
4
3
‖x− y‖1 for all x, y ∈ B`1 , for all j ≥ 2, and

5. each estimate above is sharp.
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We claim that T is (1/2, 1/2)-nonexpansive. First we calculate a formula for T 2,

T 2x = T (Tx) =

(
τ

(
2

3
x3

)
,
2

3
x4, x5, . . .

)
.

Now consider, for any x, y ∈ B`1 ,

1

2
‖Tx− Ty‖1 +

1

2

∥∥T 2x− T 2y
∥∥
1

=
1

2

(
|τ(x2)− τ(y2)|+

2

3
|x3 − y3|+

∞∑
n=4

|xn − yn|

)

+
1

2

(∣∣∣∣τ (2

3
x3

)
− τ

(
2

3
y3

)∣∣∣∣+
2

3
|x4 − y4|+

∞∑
n=5

|xn − yn|

)

≤ 1

2

(
2|x2 − y2|+

2

3
|x3 − y3|+

∞∑
n=4

|xn − yn|

)

+
1

2

(
4

3
|x3 − y3|+

2

3
|x4 − y4|+

∞∑
n=5

|xn − yn|

)

= |x2 − y2|+ |x3 − y3|+
(

1

3
+

1

2

)
|x4 − y4|+

∞∑
n=5

|xn − yn|

≤ ‖x− y‖1 .

Thus, T is a mean nonexpansive map for which no iterate is nonexpansive.

Note that, for a given multi-index α = (α1, . . . , αn), if we define

Tα := α1T + α2T
2 + · · ·+ αnT

n,

then by the triangle inequality, we have that T is α-nonexpansive implies Tα is nonexpansive.

We have the following results due to Goebel and Japón Pineda, which we state in the simple

case of α = (α1, α2) before stating the analogous results for multi-indices of arbitrary length.

Theorem 2.1.1 (Goebel and Japón Pineda). If T : C → C is (α1, α2)-nonexpansive, then

infC ‖Tx− x‖ = 0, provided that α1 ≥ 1
2
. That is, T has an approximate fixed point sequence.

If it happens that the underlying space is already known to have fpp(ne), we can say

more:

Theorem 2.1.2 (Goebel and Japón Pineda). Suppose that X has fpp(ne). Then X has the

fixed point property for (α1, α2)-nonexpansive maps, provided α1 ≥ 1/2.
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We will present the proofs of Theorems 2.1.1 and 2.1.2, which rely entirely on the non-

expansiveness of Tα, in Chapter 3 (see the proofs of Theorems 3.0.1 and 3.0.2). Goebel and

Japón-Pineda proved generalizations of Theorems 2.1.1 and 2.1.2 for the case when T is

(α1, . . . , αn)-nonexpansive for arbitrary n ∈ N. The proofs, along with slight extensions in

specific cases (e.g. multi-indices (α1, α2, α3) with 1/2 ≤ α1 < 1/
√

2 and α2 ≥ α3), can be

found in [46, pp. 35-37].

Theorem 2.1.3 (Goebel and Japón Pineda). Suppose T : C → C is α-nonexpansive for

some α = (α1, . . . , αn) with α1 ≥ 2
1

1−n . Then

1. infC ‖Tx− x‖ = 0, and

2. If X has fpp(ne), then T has a fixed point in C. That is, X has fpp(α-ne).

These results lead to two open questions: can we obtain any results, positive or negative,

for α1 < 1/2? and can one classify the set of all multi-indices for which a given function is

mean nonexpansive? We provide partial answers to these questions in the following sections

and in Chapter 3.

Seeking intuition for these questions, we want tangible examples of mean nonexpansive

maps with α1 < 1/2. The following is an example of a family of maps TA,β : B`1 → B`1 that

are (α1, α2)-n.e. for α1 < 1/2, but which are not nonexpansive.

Example 2.1.2 (Modifications to the map of Goebel and Sims from Example 2.1.1). Fix

A ∈ R and β ∈ (0, 1) with

2 < A < A+ and max

{
1

A
,
A− 1

A+ 1

}
< β ≤ A

A2 − A+ 1
,

where A+ is the unique real number satisfying A3
+ − 3A2

+ + A+ − 1 = 0; i.e.

A+ := 1 + (1/3)(27− 3
√

57)1/3 + (1/3)2/3(9 +
√

57)1/3 ≈ 2.7693.

Some notes:

1. The inequalities listed above are nontrivial: max{1/A, (A−1)/(A+1)} < A/(A2−A+1)

for A ∈ (2, A+) as above.
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2. Depending on the value of A, we have the following:

max

{
1

A
,
A− 1

A+ 1

}
=


1
A

2 < A ≤ 1 +
√

2

A−1
A+1

1 +
√

2 ≤ A < A+

.

Define τA : [−1, 1]→ [−1, 1] as follows:

τA(t) :=


At+ (A− 1) −1 ≤ t ≤ −A−1

A+1

−t −A−1
A+1
≤ t ≤ A−1

A+1

At− (A− 1) A−1
A+1
≤ t ≤ 1

.

Finally, define T = TA,β : `1 → `1 by Tx := TA,β(x) := (τA(x2), βx3, x4, . . .).

Notes on T :

1. |τA(t)| ≤ |t| for all t ∈ [−1, 1], so we have that T (B`1) ⊂ B`1 .

2. |τA(s)− τA(t)| ≤ A|s− t| for all s, t and

∣∣∣∣τA(1)− τA
(
A− 1

A+ 1

)∣∣∣∣ = A

∣∣∣∣1− A− 1

A+ 1

∣∣∣∣ ,
so we have that k(T ) = A > 2.

3. |τA(βs)− τA(βt)| ≤ Aβ|s− t| for all s, t and τA(β · 1)− τA(β · u)| = Aβ|1− u| where

u :=
1

2

(
1 +

1

β

A− 1

A+ 1

)
,

so we have that k(T 2) = Aβ > 1.

4. Further, we have k(T n) = Aβ for all n ≥ 2.

5. Tx = x ⇐⇒ x = 0.

Claim 2.1.1. Fix A, β as above and let T = TA,β : B`1 → B`1 be defined as above. Then T

is (α1, α2)-nonexpansive if

(0 <)
Aβ − 1

Aβ − β
≤ α1 ≤

1

A

(
<

1

2

)
.
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Proof of Claim. Fix α1 as in the statement of the claim and let α2 := 1−α1. Fix x, y ∈ B`1 .

Then

α1 ‖Tx− Ty‖+ α2

∥∥T 2x− T 2y
∥∥ = α1

(
|τA(x2)− τA(y2)|+ β|x3 − y3|+

∞∑
n=4

|xn − yn|

)

+ (1− α1)

(
|τA(βx3)− τA(βy3)|+ β|x4 − y4|+

∞∑
n=5

|xn − yn|

)
≤ Aα1|x2 − y2|+ (α1β + (1− α1)Aβ)|x3 − y3|

+ (α1 + (1− α1)β)|x4 − y4|+
∞∑
n=5

|xn − yn|

≤ ‖x− y‖

since we have

1. Aα1 ≤ 1 ⇐⇒ α1 ≤ A−1,

2. α1β + (1− α1)Aβ = Aβ + α1(β − Aβ) ≤ 1 ⇐⇒ Aβ−1
Aβ−β ≤ α1, and

3. α1 + (1− α1)β ≤ 1 whenever α1 ∈ (0, 1).

For a concrete example of such a map, choose A = 5/2 and β = 1/2. Then

TA,βx = T 5
2
, 1
2
x =

(
τ 5

2
(x2),

1

2
x3, x4, . . .

)
,

where

τ 5
2
(t) :=


5
2
t+ 3

2
−1 ≤ t ≤ −3

7

−t −3
7
≤ t ≤ 3

7

5
2
t− 3

2
3
7
≤ t ≤ 1

.

Then TA,β is (α1, α2)-nonexpansive for any α1 with

1

3
≤ α1 ≤

2

5
.
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One of the more interesting and fruitful observations about mean nonexpansive maps is

the fact that a mean nonexpansive map is actually nonexpansive with respect to an equivalent

metric. Before we define the metric, first note that T is α = (α1, . . . , αn)-nonexpansive (with

α1 6= 0) implies that α1 ‖Tx− Ty‖ ≤ ‖x− y‖, and we therefore have that

‖Tx− Ty‖ ≤ α−11 ‖x− y‖

for all x, y ∈ C. That is, T is α−11 -Lipschitz. Now we define the metric in the case when

α = (α1, α2).

Theorem 2.1.4 (Goebel and Japón Pineda). Suppose (M,d) is a metric space and T : M →

M is (α1, α2)-nonexpansive. Then

1. For all x, y ∈M , let

ρ(x, y) := d(x, y) + α2d(Tx, Ty).

Then ρ is a metric on M that is Lipschitz-equivalent to d.

2. T is a nonexpansive map on (M,ρ).

Proof. 1. ρ is a metric on M , and for all x, y ∈M we have

d(x, y) ≤ ρ(x, y) ≤
(

1 +
α2

α1

)
d(x, y) = α−11 d(x, y).

That is, d ∼ ρ.

2. Fix x, y ∈M . Then

ρ(Tx, Ty) = d(Tx, Ty) + α2d(T 2x, T 2y)

= α2d(Tx, Ty) + α1d(Tx, Ty) + α2d(T 2x, T 2y)

≤ d(x, y) + α2d(Tx, Ty)

= ρ(x, y).

Hence, ρ(Tx, Ty) ≤ ρ(x, y) and T is nonexpansive on the metric space (M,ρ).
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Note that if T is defined on a subset C of a Banach space, then

ρ(x, y) = ‖x− y‖+ α2 ‖Tx− Ty‖

is a metric (not generally a norm) which is equivalent to d(x, y) := ‖x− y‖. Again, a general

form of the above theorem is given for (α1, . . . , αn)-nonexpansive maps. We omit the proof.

Theorem 2.1.5 (Goebel and Japón Pineda). If (M,d) is a metric space and T : M → M

is (α1, . . . , αn)-nonexpansive, then

ρ(x, y) :=
n∑
j=1

(
n∑
k=j

αk

)
d(T j−1x, T j−1y)

is a metric that is Lipschitz-equivalent to d and T is nonexpansive with respect to ρ.

We have an immediate consequence of this theorem.

Corollary 2.1.1. Any α-nonexpansive map T : M → M is uniformly Lipschitzian with

d(T jx, T jy) ≤ α−11 d(x, y) for all j ∈ N.

Proof. Fix x, y ∈ C and j ∈ N. Then

d(T jx, T jy) ≤ ρ(T jx, T jy) ≤ ρ(x, y) ≤ 1

α1

d(x, y).

This estimate is not sharp for j > 1; i.e. for α = (α1, α2) and j ≥ 2, every α-nonexpansive

map T is such that k(T j) < α−11 . In [46, ch. 4], Piasecki calculated sharp bounds for the

Lipschitz constants of iterates of mean nonexpansive maps, as we see in the next section.
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2.1.1 Lipschitz constants for iterates of mean nonexpansive maps

Theorem 2.1.6 (Piasecki). Suppose T is (α1, α2)-nonexpansive for α2 6= 1. Then

1. k(T n) ≤ 1 + α2

1− (−α2)n+1
,

2. Moreover, this estimate is sharp. That is, for any (α1, α2), there exists a Banach space

X and an α-nonexpansive map T : X → X with k(T n) = (1 + α2)/(1 − (−α2)
n+1) for

all n ∈ N.

Proof of 1. Refer to [46, pp. 41-43].

Proof of 2. Let (X, ‖·‖) = (`1, ‖·‖1). Fix α1, α2 > 0 with α1+α2 = 1. For our α-nonexpansive

map T , we take a variation on the left-shift. For all x = (x1, x2, . . .) ∈ `1, define

Tx :=

(
1− (−α2)

1

1− (−α2)2
x2,

1− (−α2)
2

1− (−α2)3
x3, . . . ,

1− (−α2)
k

1− (−α2)k+1
xk+1, . . .

)
.

T is linear, and it is easy to check that α1 ‖Tx‖1 + α2 ‖T 2x‖1 ≤ ‖x‖1 for all x ∈ `1. By part

1, we know that

k(T n) ≤ 1 + α2

1− (−α2)n+1
.

All that is left to do is to show that this estimate is sharp. Taking en := ( 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, . . .),

we have

‖T nen+1‖1 =

∥∥∥∥( 1− (−α2)
1

1− (−α2)n+1
, 0, 0, . . .

)∥∥∥∥
1

=
1 + α2

1− (−α2)n+1

as desired.

Piasecki calculated sharp bounds in a similar, but naturally more complicated, fashion

for (α1, . . . , αn)-nonexpansive and for (α1, . . . , αn)-k-Lipschitzian maps. We omit the general

treatment, which can be found in [46, pp. 46-69].
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2.1.2 Classifying multi-indices

In this section, we give a partial answer to the question of Goebel and Japón Pineda regarding

the classification of all multi-indices for which a given function is mean nonexpansive.

Let us recall Example 2.1.1 due to Goebel and Sims. The map, defined on the closed

unit ball of `1 was found to be (1/2, 1/2)-nonexpansive with k(T ) = 2 and k(T j) = 4
3

for all

j > 1. Thus, 2 ≤ 1/α1 ⇐⇒ α1 ≤ 1/2, and

4

3
= k(T 2) ≤ 1/(α2

2 − α2 + 1) ⇐⇒ α2 =
1

2
.

Thus the only (α1, α2) for which T is (α1, α2)-nonexpansive is (1/2, 1/2). In contrast with the

Goebel and Sims example, we also saw in example 2.1.2 examples of (α1, α2)-nonexpansive

maps that remained mean nonexpansive over a range of multi-indices. In the case when a

given map is known to be mean nonexpansive for multiple multi-indices of the same length,

we have the following theorem.

Theorem 2.1.7 (Interpolation of multi-indices). Suppose (M,d) is a metric space and T :

M → M is mean nonexpansive for each multi-index α(j) = (α
(j)
1 , . . . , α

(j)
n ), j = 1, . . . , J .

Then T is µ-nonexpansive for any µ ∈ co{α(j) : j = 1, . . . , J}.

Proof. Fix t1, . . . , tJ ∈ [0, 1] with t1 + · · ·+ tJ = 1. For each j and for all x, y ∈ C,

tj

n∑
m=1

α(j)
m d(Tmx, Tmy) ≤ tjd(x, y) =⇒

J∑
j=1

tj

n∑
m=1

α(j)
m d(Tmx, Tmy) ≤ d(x, y)

⇐⇒
n∑

m=1

(
J∑
j=1

tjα
(j)
m

)
d(Tmx, Tmy) ≤ d(x, y)

⇐⇒
n∑

m=1

µmd(Tmx, Tmy) ≤ d(x, y),

where (µm)nm=1 :=
(∑J

j=1 tjα
(j)
m

)n
m=1
∈ co{α(j) : j = 1, . . . , J}.

Generalizing the above question, can we characterize all multi-indices (not necessarily of

the same length) for which a given map is mean nonexpansive?

We have an elementary result.

Theorem 2.1.8. Let (M,d) be a metric space. The following are equivalent.
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1. T : M →M is (α1, α2)-nonexpansive.

2. T is (γ1(β), γ2(β), γ3(β))-nonexpansive, where

γ1(β) := βα1, γ2(β) := (1− β)α2
1 + α2, and γ3(β) := (1− β)α1α2

for all β ∈ [0, 1].

Proof. First, note that

γ1(β) + γ2(β) + γ3(β) = βα1 + (1− β)α2
1 + α2 + (1− β)α1α2 = 1.

Next, we know that for all x, y ∈ C, α1d(Tx, Ty) + α2d(T 2x, T 2y) ≤ d(x, y). Thus

γ1(β)d(Tx, Ty) + γ2(β)d(T 2x, T 2y) + γ3(β)d(T 3x, T 3y)

= βα1d(Tx, Ty) + ((1− β)α2
1 + α2)d(T 2x, T 2y) + (1− β)α1α2d(T 3x, T 3y)

= βα1d(Tx, Ty) + (1− β)α1(α1d(T 2x, T 2y) + α2d(T 3x, T 3y)) + α2d(T 2x, T 2y)

≤ βα1d(Tx, Ty) + (1− β)α1d(Tx, Ty) + α2d(T 2x, T 2y)

= α1d(Tx, Ty) + α2d(T 2x, T 2y)

≤ d(x, y)

Taking β = 1 yields the converse.

This theorem generalizes to multi-indices of arbitrary length.

Theorem 2.1.9. Let (M,d) be a metric space and T : M → M . The following are equiva-

lent.

1. T is (α1, . . . , αn)-nonexpansive.

2. T is (γ1(t), . . . , γn+1(t))-nonexpansive for all t ∈ [0, 1], where

γk(t) := αk + tα1αk−1 for k = 1, . . . , n, and

γn+1(t) := tα1αn,

with α0 := −1
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Proof. This proof is entirely similar to the proof presented above. Note that each γk(t) ≥ 0

and

γ1(t) + · · ·+ γn+1(t)

= (α1 + tα1α0) + (α2 + tα2
1) + · · ·+ (αn + tα1αn−1) + tα1αn

= (α1 + · · ·+ αn) + tα1(α0 + α1 + · · ·+ αn)

= 1.

Finally, T is γ(t)-nonexpansive:

γ1(t)d(Tx, Ty) + · · ·+ γn+1(t)d(T n+1x, T n+1y)

= (α1d(Tx, Ty) + · · ·+ αnd(T nx, T ny))

+ tα1(α0d(Tx, Ty) + α1d(T 2x, T 2y) + · · ·+ αnd(T n+1x, T n+1y))

≤ d(x, y) + tα1(−d(Tx, Ty) + d(Tx, Ty))

= d(x, y).

Mean Lipschitzian maps are not necessarily uniformly Lipschitzian, so we have a question:

Can we come up with a notion of mean-uniformly Lipschitzian maps?

One idea is to try the following: consider a map T for which there exists a k and a

sequence of pairs
(
α
(n)
1 , α

(n)
2

)
(with α

(n)
1 , α

(n)
2 > 0 and summing to 1) such that for all n and

for all x, y,

α
(n)
1 d(T nx, T ny) + α

(n)
2 d(T n+1x, T n+1y) ≤ kd(x, y).

Note preliminarily that, if this notion is to have any merit, we should have that all (α1, α2)-

nonexpansive mappings are also (α
(n)
1 , α

(n)
2 )-1-uniformly Lipschitzian for some sequence of

pairs (α
(n)
1 , α

(n)
2 ). This is indeed the case.

Claim 2.1.2. If T : M → M is (α1, α2)-nonexpansive, then T is (α
(n)
1 , α

(n)
2 )-1-uniformly

Lipschitzian, with

α
(n+1)
1 := α1α

(n)
1 + α

(n)
2 and α

(n+1)
2 := α2α

(n)
1 for all n ∈ N,

where α
(1)
1 := α1 and α

(1)
2 := α2.
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Proof of the claim. We proceed by induction. First, it is clear that α
(n)
j > 0 for all n ∈ N

and j = 1, 2. Next, let us check that α
(n)
1 + α

(n)
2 = 1 for all n. When n = 1, α

(1)
1 + α

(1)
2 =

α1 + α2 = 1. If it happens that α
(n)
1 + α

(n)
2 = 1 for some n ∈ N, then

α
(n+1)
1 + α

(n+1)
2 = α1α

(n)
1 + α

(n)
2 + α2α

(n)
1 = α

(n)
1 + α

(n)
2 = 1.

Now, we must check that α
(n)
1 d(T nx, T ny) + α

(n)
2 d(T n+1x, T n+1y) ≤ d(x, y) for all n. When

n = 1, it follows from the fact that T is (α1, α2)-nonexpansive. For any n and x, y ∈M , let

Dn := d(T nx, T ny) for simplicity, and note that the (α1, α2)-nonexpansiveness of T gives us

that α1Dn+1 + α2Dn+2 ≤ Dn for all n. Supposing that the inequality α
(n)
1 Dn + α

(n)
2 Dn+1 ≤

D0 := d(x, y) is satisfied for some n ∈ N, we then have

α
(n+1)
1 Dn+1 + α

(n+1)
2 Dn+2 =

(
α1α

(n)
1 + α

(n)
2

)
Dn+1 + α2α

(n)
1 Dn+2

= α
(n)
1 (α1Dn+1 + α2Dn+2) + α

(n)
2 Dn+1

≤ α
(n)
1 Dn + α

(n)
2 Dn+1

≤ D0,

as desired.

All (α1, α2)-nonexpansive maps are therefore (α(n))n-1-uniformly Lipschitzian, where

α(n) = (α
(n)
1 , α

(n)
2 ) is given above. Similarly, if T is already k-uniformly Lipschitzian, then

T is (α(n))-k-uniformly Lipschitzian for any choice of (α(n))n. If we can fully formalize this

notion, find nontrivial examples, and begin to study it in earnest, then it may be possible

to obtain theorems like Theorem 2.1.1 and Theorem 2.1.2 which would extend the results of

Goebel and Kirk in uniformly convex spaces [27].
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2.2 MEAN ISOMETRIES

Recall Maurey’s Superreflexive Theorem (Theorem 1.0.12), which states that superreflexive

Banach spaces have the fixed point property for isometries. With the notion of a mean

nonexpansive mapping in mind, one could ask if Maurey’s Superreflexive Theorem extends

to the class of mean isometries. In the natural way, we say a function T : (M,d) → (M,d)

a mean isometry if, for all x, y ∈M ,

n∑
j=1

αjd(T jx, T jy) = d(x, y)

for some multi-index α = (α1, . . . , αn) for which α1, αn > 0, αj ≥ 0 for all j with α1 + · · ·+

αn = 1. Notice that all isometries are mean isometries for any choice of α. Indeed, as we

will see, the converse is also true.

2.2.1 Mean isometries when α = (α1, α2)

Theorem 2.2.1. Let (M,d) be a metric space. Then T : M → M is an isometry if and

only if it is an (α1, α2)-isometry.

We will have two immediate and trivial corollaries.

Corollary 2.2.1. Superreflexive Banach spaces have the fixed point property for (α1, α2)-

isometries.

Corollary 2.2.2. If X is a Banach space, C ⊂ X is closed, bounded, and convex, and

T : C → C is a mean isometry, then T has an approximate fixed point sequence (regardless

of the size of α1).

The proof of Theorem 2.2.1 relies on the following lemma, stated without proof.

Lemma 2.2.1. Suppose that a recurrence relation is given by an = c1an−1 + c2an−2 (n ≥ 3)

for constants c1, c2, with a1, a2 ∈ R given. Suppose further that the equation t2− c1t− c2 = 0

has two distinct real roots, t1 and t2. Then for all n, an = b1(t1)
n + b2(t2)

n, where b1, b2 ∈ R.
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Proof of Theorem 2.2.1. Let (M,d) be a metric space. First, if T : M → M is an isometry,

then T is a mean isometry with respect to any (α1, α2).

Conversely, suppose for a contradiction that T : M → M is not an isometry, but is a

mean isometry; that is, T satisfies α1d(Tx, Ty) + α2d(T 2x, T 2y) = d(x, y) for all x, y ∈ M ,

but there exist x, y ∈M such that d(Tx, Ty) 6= d(x, y). For all n ∈ N, define

µn = µn(x, y) := d(T nx, T ny).

From the mean isometry condition, we know that d(Tx, Ty) 6= d(x, y) =⇒ d(T nx, T ny) 6=

d(x, y) for all n. We know further that the sequence µn satisfies

α1µn + α2µn+1 = µn−1 ⇐⇒ µn+1 = −α1

α2

µn +
1

α2

µn−1.

Consider the equation t2 + α1

α2
t− 1

α2
= 0. Solving, we find the solutions t1 and t2 to be

t1 = − 1

α2

and t2 = 1.

From Lemma 2.2.1, we know that µn = b1

(
− 1
α2

)n
+ b2 for all n. Solving for b1 and b2 yields

b1 =
α2

1 + α2

(µ0 − µ1) and b2 =
1

1 + α2

(µ0 + α2µ1).

The important thing to note is that d(Tx, Ty) 6= d(x, y) =⇒ µ0 − µ1 6= 0 ⇐⇒

b1 6= 0. Since α2 ∈ (0, 1), we have α−12 > 1, and therefore µn = b1

(
− 1
α2

)n
+ b2 < 0 for

sufficiently large n. But µn = d(T nx, T ny) ≥ 0 for all n. Contradiction. Thus it must be

that d(Tx, Ty) = d(x, y) for all x, y ∈M .

Remark 2.2.1. The techniques in the above proof work even in the case when α2 ∈ (−1, 0).

We will explore this notion in depth in Sections 2.3 and 2.4.

We close this section with a conjecture regarding mean isometries for multi-indices of

arbitrary length.

Conjecture 2.2.1. If T : M → M is a mean isometry for some α = (α1, . . . , αn), then T

is an isometry.
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2.3 AFFINE COMBINATION (A.C.) MAPS

Upon inspection of the proof of Theorem 2.2.1, we see that the assumption that α2 ∈ (0, 1)

may, in the right context, be relaxed to α2 ∈ (−1, 1). First, if α2 = 0, then α1 = 1 and T is

already an isometry. If α2 ∈ (−1, 0), following the same argument as above, we would have

d(T nx, T ny) = b1

(
− 1

α2

)n
+ b2 →n ∞.

We have proved the following theorem.

Theorem 2.3.1. Let (M,d) be a bounded metric space. The following are equivalent.

1. T is an isometry.

2. There exist α1, α2 with α2 ∈ (−1, 1) and α1 + α2 = 1 for which

α1d(Tx, Ty) + α2d(T 2x, T 2y) = d(x, y)

for all x, y ∈M .

Remark 2.3.1. The assumption of boundedness is essential in the above theorem, as Ex-

ample 2.3.5 demonstrates.

Let us examine this new class of functions in more detail, first by stating the definition.

Definition 2.3.1. Let (M,d) be a metric space and T : M → M . We call T affine com-

bination Lipschitz (or a.c. Lipschitz ) if, for some α = (α1, . . . , αn) ∈ Rn, α1, αn 6= 0 with

α1 + · · ·+ αn = 1, we have
n∑
j=1

αjd(T jx, T jy) ≤ kd(x, y)

for all x, y ∈M and for some k > 0.

If k = 1, we say T is a.c. nonexpansive, and if k < 1, we say T is an a.c. contraction.

In other words, Theorem 2.3.1 may be rephrased to say T is an isometry on a bounded

metric space if and only if T is an a.c. isometry for a length 2 multi-index with α2 ∈

(−1, 1). Also, it is clear that the class of a.c. nonexpansive mappings includes the class

of mean nonexpansive mappings. Indeed, the class of a.c. nonexpansive mappings is a

nontrivial extension of the class of mean nonexpansive mappings, as the following examples

demonstrate.
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2.3.1 Examples of a.c. nonexpansive mappings

Example 2.3.1. Let X = R2, equipped with any `p norm ‖·‖p, p ≥ 1. Let C = BR2 =

{(x, y) ∈ R2 : ‖(x, y)‖p ≤ 1} and let

T :=

 0 1

0 0

 .
Then T is linear and for any (x, y) ∈ C,

T

 x

y

 =

 0 1

0 0

 x

y

 =

 y

0


so ‖T (x, y)‖p ≤ ‖(x, y)‖p, and we have that T (C) ⊆ C. Also note that T 2 = 0, so for any

k ∈ [0, 1) and any α1 < 0 and α2 = 1− α1,

α1 ‖T (x, y)− T (u, v)‖p + α2

∥∥T 2(x, y)− T 2(u, v)
∥∥
p

= α1 ‖T (x, y)− T (u, v)‖p

≤ 0

≤ k ‖(x, y)− (u, v)‖p .

Hence T is an a.c. contraction for any α1 < 0 and any k ≥ 0.

Note that a function may be an a.c. contraction without even being continuous, as we

see in the next example.

Example 2.3.2. Let f : [−1, 1]→ [−1, 1] be given by

f(x) :=

−1 −1 < x < 0

1 otherwise

.

Then f 2(x) = 1 for all x, and |f 2(x)− f 2(y)| = 0 for all x, y, just as in the above example.

Thus, f is an a.c. contraction for all k ∈ [0, 1) and for any α1 < 0.

Also note that a discontinuous function with non-constant second iterate may be a.c.

nonexpansive:
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Example 2.3.3. Let f : [0, 1]→ [0, 1] be given by

f(x) :=


x
5

x ∈
[
0, 1

2

]
x
6

x ∈
(
1
2
, 1
] .

Then

1. for all x, y ∈ [0, 1
2
], |f(x)− f(y)| = 1

5
|x− y|,

2. for x, y ∈ (1
2
, 1], |f(x)− f(y)| = 1

6
|x− y|,

3. for any x ∈ [0, 1], f(x) ∈ [0, 1
2
), so

f 2(x) =


x
25

x ∈
[
0, 1

2

]
x
30

x ∈
(
1
2
, 1
] .

Now let x ∈ [0, 1
2
] and y ∈ (1

2
, 1], so

|f(x)− f(y)| = 1

30
|6x− 5y|, and

|f 2(x)− f 2(y)| = 1

150
|6x− 5y|.

Let α1 := −1
4

and α2 := 5
4
. Then

α1|f(x)− f(y)|+ α2|f 2(x)− f 2(y)| = −1

4
· 1

30
|6x− 5y|+ 5

4
· 1

150
|6x− 5y|

= 0

≤ |x− y|.

Thus, f is (−1/4, 5/4)-nonexpansive.

If we have equality, as in the above, (that is, α1 ‖Tx− Ty‖+α2 ‖T 2x− T 2y‖ = ‖x− y‖)

we say T is an a.c. isometry.
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Example 2.3.4. Consider R2 endowed with the 1-norm, ‖(x, y)‖1 := |x| + |y|, and let

A : BR2 → BR2 be given by

A :=

 1 0

0 1
2

 .
Then

‖A(x, y)‖1 =

∥∥∥∥(x,
1

2
y)

∥∥∥∥
1

= |x|+ 1

2
|y|, and

3 ‖A(x, y)‖1 − 2
∥∥A2(x, y)

∥∥
1

= 3|x|+ 3

2
|y| − 2|x| − 1

2
|y|

= |x|+ |y|

= ‖(x, y)‖1 .

That is, A is a (3,−2)-isometry without being an isometry in the usual sense.

Note also that by changing the above example slightly, we see that a.c. isometries with

α2 < 0 may be norm-expanding or even strict contractions in the usual sense.

Example 2.3.5. Fix α2 < 0 and let α1 := 1− α2. Define

f : R→ R : x 7→ − 1

α2

x.

Then for any x, y ∈ R,

α1|f(x)− f(y)|+ α2|f 2(x)− f 2(y)| = −α1

α2

|x− y|+ 1

α2

|x− y| = |x− y|,

and we have that f is an a.c. isometry. Further more, if α2 ∈ (−1, 0), then |f(x)− f(y)| >

|x− y| for all x, y, and if α2 < −1, then |f(x)− f(y)| = −α−12 |x− y| for all x, y and is hence

a strict contraction in the usual sense.
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Finally, we have examples of fixed-point-free a.c. nonexpansive mappings defined on

closed, bounded, convex sets in (`1, ‖·‖1). Given a bounded sequence λ = (λn)n of real

numbers, define the closed, bounded, convex set Cλ ⊂ `1 via

Cλ :=

{
x =

∞∑
n=1

tnfn : tn ≥ 0,
∞∑
n=1

tn = 1, fn = λnen

}

and define the map T : Cλ → Cλ via

T

(
∞∑
n=1

tnfn

)
:=

∞∑
n=1

tnfn+1.

Note that showing T is a.c.-nonexpansive amounts to finding α1 ∈ R for which α1(λn+1 −

λn+2) ≤ λn − λn+2 for all n. This is because α2 = 1− α1 and

α1 ‖Tx− Ty‖1 + α2

∥∥T 2x− T 2y
∥∥
1
≤ ‖x− y‖1 ⇐⇒ α1λn+1 + α2λn+2 ≤ λn.

Example 2.3.6 (A norm-expanding map that is a.c. nonexpansive for some α2 < 0). Let

λn := 1−2−n for all n ∈ N. Then λn < λn+1 for all n, and for x =
∑
tnfn, y =

∑
snfn ∈ Cλ,

we have

‖Tx− Ty‖1 =
∞∑
n=1

λn+1|tn − sn| >
∞∑
n=1

λn|tn − sn| = ‖x− y‖1

provided that x 6= y, and we have that T is expansive on Cλ with respect to ‖·‖1.

For α1, α2 ∈ R, we know that

α1 ‖Tx− Ty‖1 + α2 ‖Tx− Ty‖1 ≤ ‖x− y‖1 ⇐⇒ α1λn+1 + α2λn+2 ≤ λn

for all n ∈ N. Thus, we have

α1(λn+1 − λn+2) ≤ λn − λn+2 ⇐⇒ α1

(
1

2n+2
− 1

2n+1

)
≤ 1

2n+2
− 1

2n

⇐⇒ α1

(
− 1

2n+2

)
≤ − 3

2n+2

⇐⇒ α1 ≥ 3

We know three things about T :

1. T is a (3,−2)-isometry,

2. T is (α1, α2)-nonexpansive for all α1 > 3 (or, equivalently, for all α2 < −2), and

34



3. (`1, ‖·‖1) fails to have the fpp for a.c. nonexpansive maps and a.c. isometries for α2 < 0.

Example 2.3.7 (An a.c. isometry for some α1 < 0 which is not an isometry). Let λ2k :=

1− 2−2k and λ2k−1 := 1 + 2−(2k−1) for all k.

Claim 2.3.1. T is a (−1, 2)-isometry.

Proof. We consider two separate cases.

1. First,

−λ2k+1 + 2λ2k+2 = −1− 1

22k+1
+ 2− 2

22k+2

= 1− 2

22k+1

= 1− 1

22k

= λ2k.

2. Similarly,

−λ2k+2 + 2λ2k+3 = −1 +
1

22k+2
+ 2 +

2

22k+3

= 1 +
2

22k+2

= 1 +
1

22k+1

= λ2k+1.

Thus, −λn+1 + 2λn+2 = λn for all n ∈ N, and T is a (−1, 2)-isometry. Finally, T is not

an isometry with respect to ‖·‖1 since ‖Tf1 − Tf2‖1 = λ2 + λ3 6= λ1 + λ2 = ‖f1 − f2‖1.

Now we can also say that (`1, ‖·‖1) fails to have the fpp for a.c. isometries with α1 < 0.
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2.4 FIXED POINT RESULTS FOR A.C. NONEXPANSIVE MAPPINGS

WITH α1 < 0

Notice that, if T is a.c. nonexpansive for α1 < 0, then

α1d(Tx, Ty) + α2d(T 2x, T 2y) ≤ d(x, y) ⇐⇒ d(T 2x, T 2y) ≤ β1d(x, y) + β2d(Tx, Ty),

where β1 = α−12 and β2 = −α1α
−1
2 , and that β1, β2 > 0 with β1 + β2 = 1.

Similarly, T is a.c. nonexpansive for α2 < 0 if and only if

d(Tx, Ty) ≤ β1d(x, y) + β2d(T 2x, T 2y),

where β1 = α−11 , β2 = −α2α
−1
1 > 0 and β1 + β2 = 1.

Definition 2.4.1. We will say T : M → M is a strong a.c. contraction with α1 < 0 if, for

some k ∈ [0, 1), β1, β2 > 0 with β1 + β2 = 1, and for all x, y ∈M we have

d(T 2x, T 2y) ≤ k(β1d(x, y) + β2d(Tx, Ty)).

2.4.1 A contraction mapping theorem

Theorem 2.4.1. Suppose that (M,d) is a complete metric space and that T : M → M is

continuous and a strong a.c. contraction with α1 < 0. Then T has a unique fixed point

x0 ∈M , and limn→∞ d(T nx, x0) = 0 for all x ∈M .

Proof. Fix x0 ∈M and let xn := T nx0 for all n ∈ N. Let γn := d(xn+1, xn). Then

γn = d(xn+1, xn) = d(T 2xn−1, T
2xn−2)

≤ k(β1d(xn−1, xn−2) + β2d(Txn−1, Txn−2))

= k(β1γn−2 + β2γn−1)

Let δ0 := γ0, δ1 := γ1, and δn := k(β1δn−2 + β2δn−1). Note that γn ≤ δn for all n. If δ0 = 0,

then δn = 0 for all n, so assume δ0 > 0, which gives us that δn > 0 for all n. We want to use

lemma 2.2.1, so consider the equation t2 − kβ2t− kβ1 = 0. Solving yields

t−,+ =
1

2

(
kβ2 ±

√
k2β2

2 + 4kβ1

)
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and δn = b1(t−)n + b2(t+)n. It is easy to check that k < 1 =⇒ |t−| < |t+| < 1.

Now for any m < n,

d(xm, xn) ≤
n−1∑
k=m

d(xk, xk+1) =
n−1∑
k=m

γk ≤
n−1∑
k=m

δk = b1

n−1∑
k=m

(t−)k + b2

n−1∑
k=m

(t+)k

which is small for sufficiently large m. That is, (xn)n is Cauchy. Since (M,d) is complete,

(xn)n is convergent to some z ∈ M . Since T is continuous, z = limn xn = limn T (xn−1) =

T (limn xn−1) = T (z) and z is a fixed point of T . To see that z is unique, suppose z′ is

another fixed point of T . Then

0 ≤ d(z′, z) = d(T 2z′, T 2z) ≤ k(β1d(z′, z) + β2d(Tz′, T z))

= k(β1d(z′, z) + β2d(z′, z))

= kd(z′, z)

< d(z′, z),

which is a contradiction. Thus, z is unique.

Remark 2.4.1. The technique in the proof above works in the slightly broader setting of

continuous a.c. contractions with α1 < 0; i.e. continuous functions satisfying

α1d(Tx, Ty) + α2d(T 2x, T 2y) ≤ kd(x, y)

for some k ∈ [0, 1) and α1, α2 ∈ R, α1 < 0, for which α1 +α2 = 1. In this case, the solutions

to the characteristic equation are

t−,+ =
1

2α2

(
−α1 ±

√
α2
1 + 4kα2

)
.

Whenever one proves an extension of Banach’s Contraction Mapping Theorem, one must

ask whether it is genuinely an extension. That is, one must ask if it is possible that a.c.

contractions with α1 < 0 are strict contractions with respect to another complete metric.

A theorem of Bessaga [6], which is quite general, tells us that any a.c. contraction T with

α1 < 0 is indeed a strict contraction with respect to a family of different metrics.
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Theorem 2.4.2 (Bessaga). Suppose X is an abstract set and f : X → X is such that fn

has a unique fixed point for all n ∈ N. Let λ ∈ (0, 1). Then there exists a complete metric

ρλ on X such that f is a strict contraction on (X, ρλ) with contraction constant λ.

Bessaga’s proof relies on the axiom of choice; in fact, he remarks that the theorem above

is equivalent to a special case of the axiom of choice. We give constructive results for a.c.

contractions.

2.4.2 Equivalent metrics

Suppose that (M,d) is a complete metric space and T : M → M is an (α1, α2)-contraction;

that is, suppose T satisfies

α1d(Tx, Ty) + α2d(T 2x, T 2y) ≤ kd(x, y)

where α1, α2 ∈ R, α1 + α2 = 1, k ∈ [0, 1), and x, y ∈M . By the proof of Theorem 2.4.1 and

Remark 2.4.1, we know that T has a unique fixed point if α1 < 0 with T continuous, and

that T nx converges to the fixed point for any x ∈ M with the rate of convergence being on

the order of 1
2α2

(−α1 +
√
α2
1 + 4kα2).

Choose k0 with
1

2α2

(
−α1 +

√
α2
1 + 4kα2

)
≤ k0 < 1

and define a new metric ρ on M :

ρ(x, y) := c0d(x, y) + c1d(Tx, Ty) + d(T 2x, T 2y),

where 0 ≤ c0 ≤ k20 + α1

α2
k0 − k

α2
and c1 = k0 + α1

α2
.

Note that c0 = 0 if k0 = 1
2α2

(
−α1 +

√
α2
1 + 4kα2

)
and that all of the above inequalities

are nontrivial. Note also that we have c0d(x, y) ≤ ρ(x, y) for all x, y ∈ M , and if T is

γ-Lipschitz on (M,d), then c0d(x, y) ≤ ρ(x, y) ≤ (c0 + γc1 + γ2c2)d(x, y) for all x, y ∈ M .

Similarly, if we have only continuity of T on (M,d), then we know that ρ is complete if d is

complete.

Theorem 2.4.3. T is a contraction with respect to ρ.
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Proof.

ρ(Tx, Ty) = c0d(Tx, Ty) + c1d(T 2x, T 2y) + d(T 3x, T 3y)

≤ c0d(Tx, Ty) + c1d(T 2x, T 2y) +
k

α2

d(Tx, Ty)− α1

α2

d(T 2x, T 2y)

=

(
c0 +

k

α2

)
d(Tx, Ty) +

(
c1 −

α1

α2

)
d(T 2x, T 2y)

≤
(
k20 +

α1

α2

k0

)
d(Tx, Ty) + k0d(T 2x, T 2y)

= k0

((
k0 +

α1

α2

)
d(Tx, Ty) + d(T 2x, T 2y)

)
≤ k0ρ(x, y)

Note that if we take k0 >
1

2α2

(
−α1 +

√
α2
1 + 4kα2

)
, then the method of Theorem 2.4.1

(and Remark 2.4.1) gives a faster convergence rate than that of the equivalent metric. On

the other hand, if we take k0 = 1
2α2

(
−α1 +

√
α2
1 + 4kα2

)
, then c0 = 0 and ρ(x, y) =

(k0 + α1/α2)d(Tx, Ty) + d(T 2x, T 2y), which does not necessarily define a metric.

If we relax the condition on T to a.c. nonexpansiveness, then we can find a metric with

respect to which a.c. nonexpansive maps are nonexpansive in the usual sense.

Theorem 2.4.4. Suppose (M,d) is a metric space and T : M → M is a.c. nonexpansive

with α1 < 0. For all x, y ∈ M , let ρ(x, y) := β1d(x, y) + d(Tx, Ty), where β1 := α−12 . Then

T is nonexpansive on (M,ρ).

Proof. Let β2 = 1− β1 = −α1α
−1
2 . For any x, y ∈M , we have

ρ(Tx, Ty) = β1d(Tx, Ty) + d(T 2x, T 2y)

≤ β1d(Tx, Ty) + β1d(x, y) + β2d(Tx, Ty)

= β1d(x, y) + d(Tx, Ty)

= ρ(x, y).
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2.4.3 Lipschitz constants of iterates

Finally, in the case when α1 < 0 and T is assumed to be Lipschitz, we deduce that T is in

fact uniformly Lipschitzian with bounds for k(T j) for all j.

Theorem 2.4.5. If (M,d) is a metric space and T : M → M is γ-Lipschitz and a.c.

nonexpansive with α1 < 0, then T is uniformly Lipschitzian. Furthermore,

k(T n) ≤ γ + β1 + (−β1)n(1− γ)

1 + β1
,

where β1 = α−12 and β2 = −α1α
−1
2 are positive and sum to 1.

Proof. For any x, y ∈M , let µn = µn(x, y) := d(T nx, T ny). We have the following claim.

Claim 2.4.1. µn ≤ cnµ0, where c0 = 1, c1 = γ, and cn+1 = β1cn−1 + β2cn for all n ∈ N.

Proof of the claim. We proceed by (strong) induction on n. We easily see that µ0 ≤ c0µ0

and µ1 ≤ c1µ0. Also,

µ2 ≤ β1µ0 + β2µ1 ≤ (β1 + β2γ)µ0 = c2µ0,

where c2 = β1 + β2γ = β1c0 + β2c1. Suppose that, for some n0 ∈ N, we have µk ≤ ckµ0 for

k = 1, . . . , n0. Then

µn+1 ≤ β1µn−1 + β2µn ≤ (β1cn−1 + β2cn)µ0 = cn+1µ0

as desired. This completes the proof of the claim.

From the claim and Lemma 2.2.1 we know that cn = a+ (−β1)nb for some a, b ∈ R and

for all n ∈ N. Solving for a and b we find that

a =
β1 + γ

β1 + 1
and b =

1− γ
β1 + 1

.

Thus,

k(T n) ≤ cn = a+ (−β1)nb =
γ + β1 + (−β1)n(1− γ)

1 + β1
.
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Uniformly Lipschitzian maps were first studied in fixed point theory by Goebel and Kirk

[27], and their results were improved by Lifshitz [39]. Before stating his result, let’s recall a

few pertinent notions. For ∅ 6= C ⊂M and x ∈ C, let

rx(C) := sup{d(x, y) : y ∈ C}, and

r(C) := inf
x∈C

rx(C).

Lifshitz defined the character of the metric space M , which we state in the case when M is

a Banach space (X, ‖·‖) for simplicity:

κ(X) := sup{c > 0 : r (B(0, 1) ∩B(x, c)) < 1, ‖x‖ ≤ 1},

where B(z, r) := {w ∈ X : ‖z − w‖ ≤ r}. It is known that, for any Banach space X,

κ(X) ∈ [1, 2] (by definition), and that in particular, κ(H) =
√

2 for any Hilbert space H.

Lifshitz proved a fixed point theorem using this notion.

Theorem 2.4.6 (Lifshitz). If (M,d) is bounded and complete and T : M →M is uniformly

Lipschitzian with supn k(T n) < κ(M), then T has a fixed point.

Garćıa and Piasecki [24, Theorem 3.2] note that, if C is a closed, bounded, convex subset

of a Banach space X and T : C → C is such that

k∞(T ) := lim sup
n

k(T n) < κ(X)

then T must have a fixed point.

From Theorem 2.4.5, we obtain a fixed point theorem for a.c. nonexpansive maps with

α1 < 0.

Theorem 2.4.7. If C ⊂ X is closed, bounded, and convex, T : C → C is γ-Lipschitz, a.c.

nonexpansive with α1 < 0, and
γ + β1
1 + β1

< κ(X),

where β1 = α−12 and β2 = −α1α
−1
2 as usual, then T has a fixed point.

Proof. k∞(T ) = lim supn k(T n) ≤ (γ + β1)/(1 + β1) since α1 < 0 =⇒ α2 > 1 =⇒ β1 ∈

(0, 1), so (−β1)n → 0 as n→∞.
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2.5 MISCELLANEOUS QUESTIONS

Since we have a generalized notion of nonexpansiveness and an analogue of Banach’s Con-

traction Mapping Theorem, it is natural to ask whether the proof of Theorem 1.0.4 which

guarantees the existence of approximate fixed point sequences for nonexpansive mappings

defined on closed, bounded, convex subsets of a Banach space can be adapted to the new

context. The formal statement of the question is as follows: Can we use Theorem 2.4.1 to

obtain approximate fixed point sequences for a.c. nonexpansive mappings with α1 < 0 which

are defined on closed, bounded, convex subsets of a Banach space?

We showed in Theorem 2.3.1 that (α1, α2)-isometries on bounded metric spaces were

isometries in the usual sense for α2 ∈ (−1, 1), and it seems natural to ask whether this

theorem extends to the case of arbitrary length multi-indices. So we have a question: Must

a.c. isometries for multi-indices of arbitrary length be, in the appropriate context, isometries

in the usual sense?
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3.0 THE DEMICLOSEDNESS PRINCIPLE

We remark that the theorems in Sections 3.1 - 3.3 have recently appeared in [20]. Goebel

and Japón Pineda suggested, but did not study, the class of (α, p)-nonexpansive maps. A

function T : (M,d) → (M,d) is called (α, p)-nonexpansive if, for some α = (α1, α2, . . . , αn)

with
∑n

k=1 αk = 1, αk ≥ 0 for all k, α1, αn > 0, and for some p ∈ [1,∞),

n∑
k=1

αkd(T kx, T ky)p ≤ d(x, y)p, for all x, y ∈M.

For simplicity, we will generally discuss the case when n = 2 and when M is a subset of

a Banach space. That is, for (X, ‖·‖) a Banach space, C ⊆ X, and T : C → C, we say T is

((α1, α2), p)-nonexpansive if for some p ∈ [1,∞), we have

α1 ‖Tx− Ty‖p + α2

∥∥T 2x− T 2y
∥∥p ≤ ‖x− y‖p , for all x, y ∈ C.

When p = 1, we have the original notion of (α1, α2)-nonexpansiveness.

As one can imagine, (α, p)-nonexpansive maps can be quite natural to study in Lp spaces.

The following is an example of a ((1/2, 1/2), 2)-nonexpansive map defined on (`2, ‖·‖2) for

which none of its iterates are nonexpansive. The map below is based on Example 2.1.1.

Example 3.0.1. Let (`2, ‖·‖2) be the Hilbert space of square-summable sequences endowed

with its usual norm. Let τ : [−1, 1]→ [−1, 1] be given by

τ(t) :=



√
2 t+ (

√
2− 1) −1 ≤ t ≤ −t0

0 −t0 ≤ t ≤ t0
√

2 t− (
√

2− 1) t0 ≤ t ≤ 1
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where t0 := (
√

2− 1)/
√

2.

Note the following facts about τ :

1. τ is Lipschitz with k(τ) =
√

2, and

2. |τ(t)| ≤ |t| for all t ∈ [−1, 1].

Let B`2 denote the closed unit ball of (`2, ‖·‖2) and for any x ∈ `2, define T by

T (x1, x2, . . .) :=

(
τ(x2),

√
2

3
x3, x4, x5, . . .

)

and

T 2(x1, x2, . . .) =

(
τ

(√
2

3
x3

)
,

√
2

3
x4, x5, . . .

)
.

Observe that |τ(t)| ≤ |t| implies that T (B`2) ⊆ B`2 , and k(T ) =
√

2 > 1 and k(T j) = 2√
3
> 1

for all j ≥ 2. Now, for any x, y ∈ B`2 we find

1

2
‖Tx− Ty‖22 +

1

2

∥∥T 2x− T 2y
∥∥2
2

=
1

2

(
|τ(x2)− τ(y2)|2 +

2

3
|x3 − y3|2 +

∞∑
j=4

|xj − yj|2
)

+
1

2

∣∣∣∣∣τ
(√

2

3
x3

)
− τ

(√
2

3
y3

)∣∣∣∣∣
2

+
2

3
|x4 − y4|2 +

∞∑
j=5

|xj − yj|2


≤ 1

2

(
2|x2 − y2|2 +

4

3
|x3 − y3|2 +

5

3
|x4 − y4|2 + 2

∞∑
j=5

|xj − yj|2
)

≤ ‖x− y‖22 .

Hence, T : B`2 → B`2 is a ((1/2, 1/2), 2)-nonexpansive map for which each iterate T j is not

nonexpansive.
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It is easy to check that all (α, p)-nonexpansive maps with p > 1 are α-nonexpansive.

Indeed, if T : (M,d) → (M,d) is (α, p)-nonexpansive, then for any x, y ∈ M we use the

Hölder inequality to see that

n∑
k=1

αkd(T kx, T ky) =
n∑
k=1

α
p−1
p

k α
1
p

k d(T kx, T ky)

≤

(
n∑
k=1

αk

) p−1
p
(

n∑
k=1

αkd(T kx, T ky)p

) 1
p

=

(
n∑
k=1

αkd(T kx, T ky)p

) 1
p

≤ d(x, y).

Hence, T is α-nonexpansive.

The converse, however, does not hold; that is, there is an α-nonexpansive map which is

not (α, p)-nonexpansive for any p > 1, as we see in the following example due to Piasecki

[46, Ch. 5].

Example 3.0.2. Let T : `1 → `1 be the linear mapping given by

Tx :=

(
2x2,

2

3
x3, x4, x5, . . .

)
,

and we find that

T 2x =

(
4

3
x3,

2

3
x4, x5, . . .

)
.

Now
1

2

(
‖Tx‖1 +

∥∥T 2x
∥∥
1

)
= |x2|+ |x3|+

5

6
|x4|+

∞∑
n=5

|xn| ≤ ‖x‖1

for any x ∈ `1, and we have that T is (1/2, 1/2)-nonexpansive. However, note that

Te3 := T (0, 0, 1, 0, 0, . . .) =

(
0,

2

3
, 0, 0, . . .

)
,

T 2e3 =

(
4

3
, 0, 0, 0, . . .

)
,
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and finally, for any α1, α2 > 0 with α1 ≤ 1/2 and α1 + α2 = 1 and for any p > 1, by the

(strict) convexity of the real-valued function u 7→ up, we see that

α1 ‖Te3‖p1 + α2

∥∥T 2e3
∥∥p
1

= α1

(
2

3

)p
+ α2

(
4

3

)p
>

(
α1 ·

2

3
+ α2 ·

4

3

)p
≥ 1

= ‖e3‖p1 .

Hence, T is not ((α1, α2), p)-nonexpansive. In particular, T is not ((1/2, 1/2), p)-nonexpansive

for any p > 1.

Goebel and Japón Pineda gave preliminary fixed point results for the class of mean

nonexpansive maps. Specifically, they proved two important theorems, which we state for

the case when n = 2 for simplicity. The proofs are elementary and are given for completeness.

Furthermore, we present the proof to emphasize the contrast between the methods of Goebel

and Japón Pineda and the methods which are presented in this thesis. In particular, their

proofs rely heavily on the nonexpansiveness of the map Tα := α1T + α2T
2 + · · · + αnT

n

(which is seen to be nonexpansive by the triangle inequality whenever T is α-nonexpansive).

Theorem 3.0.1 (Goebel and Japón Pineda). If (X, ‖·‖) is a Banach space, C is a closed,

bounded, convex subset of X and T : C → C is (α1, α2)-nonexpansive, then T has an

approximate fixed point sequence, provided that α1 ≥ 1
2
.

Proof. Fix ε > 0. Since Tα is a nonexpansive self-map on C, we know that infC ‖Tαx− x‖ = 0

and thus there exists xε ∈ C for which ‖Tαxε − xε‖ ≤ α2ε. Since T is (α1, α2)-nonexpansive,

we have

α1

∥∥T 2xε − Txε
∥∥+ α2

∥∥T 3xε − T 2xε
∥∥ ≤ ‖Txε − xε‖

= ‖Txε − Tαxε + Tαxε − xε‖

≤ ‖Txε − Tαxε‖+ ‖Tαxε − xε‖

≤
∥∥(1− α1)Txε − α2T

2xε
∥∥+ α2ε

= α2

∥∥Txε − T 2xε
∥∥+ α2ε.
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Thus, (α1 − α2) ‖Txε − T 2xε‖ + α2 ‖T 3xε − T 2xε‖ ≤ α2ε ⇐⇒ (2α1 − 1) ‖Txε − T 2xε‖ +

α2 ‖T 3xε − T 2xε‖ ≤ α2ε. Since α1 ≥ 1
2
, we know 2α1 − 1 ≥ 0, so ‖Tzε − zε‖ ≤ ε, where

zε := T 2xε ∈ C.

Taking ε = 0 in the above proof yields the following result.

Theorem 3.0.2 (Goebel and Japón Pineda). If (X, ‖·‖) has the fixed point property for

nonexpansive maps, then any (α1, α2)-nonexpansive map T : C → C has a fixed point,

provided that α1 ≥ 1
2
.

Piasecki [46, Theorems 8.3 and 8.4] generalizes these results for (α, p)-nonexpansive map-

pings as follows.

Theorem 3.0.3 (Piasecki). If T : C → C is (α, p)-nonexpansive for some α = (α1, . . . , αn)

and p ≥ 1, then T has an approximate fixed point sequence provided that

(1− α1)

(
1− α

n−1
p

1

)
≤ α

n−1
p

1

(
1− α

1
p

1

)
.

Furthermore, if X has the fixed point property for nonexpansive maps, then T has a fixed

point.

Goebel and Japón Pineda asked what, if anything, can be said for mean nonexpansive

maps with α1 <
1
2

(the more general version of the theorems for α = (α1, . . . , αn) requires

that α1 ≥ 2(1−n)−1
). In light of Theorem 3.0.3 above, one may ask even more generally what

can be said for (α, p)-nonexpansive maps for which

(1− α1)

(
1− α

n−1
p

1

)
> α

n−1
p

1

(
1− α

1
p

1

)
.

We give a partial answer to this question in Theorem 3.3.1, which has no restriction on

the value of α1, but does rely on the existence of an approximate fixed point sequence.

Similar to Goebel and Japón Pineda, Garćıa and Piasecki [24] have proven fixed point

theorems that place restrictions on α in spaces X with characteristic of convexity ε0(X) < 1,

which in turn gives Lifshitz constant κ(X) > 1 [17]. The main fixed point theorem in

their paper, given below, relies on the fact that mean nonexpansive mappings are uniformly

Lipschitzian with precise estimates for the Lipschitz constant of T n for all n.
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Theorem 3.0.4 (Garćıa and Piasecki (Thm. 3.4)). Let X be a Banach space with ε0(X) <

1 and let C ⊂ X be nonempty, closed, bounded, and convex. If T : C → C is (α, p)-

nonexpansive for p ≥ 1 with

(
n∑
j=1

(
n∑
i=j

αi

)) 1
p

< κ(X),

then T has a fixed point in C.

This yields the following interesting corollary.

Corollary 3.0.1 (Garćıa and Piasecki (Cor. 3.7)). If H is a Hilbert space, C ⊂ H is closed,

bounded, and convex, and T : C → C is ((α1, α2), 2)-nonexpansive, then T has a fixed point.

Recall that a mapping F : C ⊆ X → X is called demiclosed at y (Definition 1.0.6)

if, whenever xn converges weakly to x in C and Fxn → y strongly in X, it follows that

Fx = y. Browder’s famous Demiclosedness Principle [9] states that if (X, ‖·‖) is uniformly

convex, C ⊆ X is closed, bounded, and convex, and U : C → X is nonexpansive, then I−U

is demiclosed, where I is the identity operator. Note that U need not map C into C, an

observation which is essential for our study.

Suppose that (X, ‖·‖) is a Banach space and C ⊆ X. Recall that we say C has the Opial

property (Definition 1.0.5) if, for any sequence (xn)n in C converging weakly to some x ∈ X

and for any y ∈ X with y 6= x, we have lim infn ‖xn − x‖ < lim infn ‖xn − y‖. When C = X

we say the space (X, ‖·‖) has the Opial property. It is well known that all Hilbert spaces

and the sequence spaces (`p, ‖·‖p) have the Opial property for all p ∈ (1,∞), yet (Lp, ‖·‖p)

fails to have the Opial property when p 6= 2. In particular, uniform convexity does not imply

Opial’s property, and spaces having Opial’s property need not be isomorphic to a uniformly

convex space [18].

3.1 DEMICLOSEDNESS AND UNIFORM CONVEXITY

We will begin by formally stating the main theorem of this section.
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Theorem 3.1.1. Suppose (X, ‖·‖) is uniformly convex, C ⊆ X is nonempty, closed, bounded,

and convex, and T : C → C is ((α1, α2), p)-nonexpansive for some p ∈ (1,∞). Then I − T

is demiclosed at 0.

In order to prove this theorem, we need a lemma and classical results of Clarkson [13,

Theorem 1] and Browder [9, Theorem 3] (c.f. Theorem 1.0.10). First, the result of Clarkson:

Theorem 3.1.2 (Clarkson). If (X1, ‖·‖1), . . . , (Xn, ‖·‖n) are uniformly convex, then for p >

1, (X1⊕· · ·⊕Xn, ‖·‖p) is uniformly convex, where ‖(x1, . . . , xn)‖p := (‖x1‖p1 + · · ·+ ‖xn‖pn)
1
p .

Corollary 3.1.1. If (X, ‖·‖) is uniformly convex and α1, α2 > 0 with α1 + α2 = 1, then for

p > 1, (X2, ‖·‖α,p) is uniformly convex, where ‖(x, y)‖α,p := (α1 ‖x‖p + α2 ‖y‖p)
1
p .

Now we state a version of Browder’s Demiclosedness Principle for uniformly convex

spaces:

Theorem 3.1.3 (Browder’s Demiclosedness Principle). Suppose (X, ‖·‖) is uniformly con-

vex, K ⊂ X is closed, bounded, and convex, and U : K → X is nonexpansive. Then

1. I − U is demiclosed, and

2. (I − U)(K) is closed in X.

Finally, we have a straightforward lemma regarding weak convergence.

Lemma 3.1.1. (X2, ‖·‖α,p)∗ = (X∗⊕X∗, ‖·‖∗α,p), where ‖·‖α,p is the norm defined above and

‖·‖∗α,p, the dual norm to ‖·‖α,p, is defined as usual. In particular, if the sequences (yn)n, (zn)n

converge weakly to y, z, respectively, in X, then (yn, zn)n converges weakly to (y, z) in X2.

Proof. First, given any two ϕ, ψ ∈ X∗, the linear map Φ(x, y) := ϕ(x) + ψ(y) is ‖·‖∗α,p-

bounded, so X∗⊕X∗ ⊆ (X2)∗. Conversely, given any Φ ∈ (X2)∗, define ϕ(x) := Φ(x, 0) and

ψ(y) := Φ(0, y). Then both ϕ, ψ are linear and bounded, and thus elements of X∗. Hence,

X∗ ⊕X∗ = (X2)∗.

Second, for any sequences yn ⇀ y and zn ⇀ z in X and for any Φ ∈ (X2)∗, we have that

Φ(yn, zn) = ϕ(yn) + ψ(zn)→ ϕ(y) + ψ(z) = Φ(y, z).

We can now prove Theorem 3.1.1. The techniques below are inspired by the proof, due

to Kirk, Martinez Yañez, and Sik Shin [35, Theorem 4.1], that asymptotically nonexpansive
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mappings have approximate fixed point sequences in Banach spaces which have the so-called

“super fixed point property for nonexpansive maps;” i.e. every ultrapower of the space X

has fpp(ne). Sparing most of the details, the key observation made by the authors was that,

if T is asymptotically nonexpansive on X, then the associated function T ′, defined on the

ultrapower of X, given by

T ′(x1, x2, x3, . . .) := (Tx1, T
2x2, T

3x3, . . .)

is nonexpansive.

Proof of Theorem 3.1.1. Suppose that (X, ‖·‖) is uniformly convex, C ⊂ X is closed, bounded,

and convex, and T : C → C is ((α1, α2), p)-nonexpansive for some p ∈ (1,∞).

Let (X2, ‖·‖α,p) be as defined above. Define the function T̃ : C2 → C2 by

T̃ (x, y) := (Tx, T 2y).

Generally speaking, we cannot say very much about
∥∥∥T̃ (x, y)− T̃ (u, v)

∥∥∥
α,p

, since

∥∥∥T̃ (x, y)− T̃ (u, v)
∥∥∥
α,p

=
(
α1 ‖Tx− Tu‖p + α2

∥∥T 2y − T 2v
∥∥p) 1

p .

However, consider the set

D := {(x, x) : x ∈ C} ⊆ C2,

and observe that for any (x, x), (y, y) ∈ D, we now have

∥∥∥T̃ (x, x)− T̃ (y, y)
∥∥∥
α,p

=
∥∥(Tx− Ty, T 2x− T 2y)

∥∥
α,p

=
(
α1 ‖Tx− Ty‖p + α2

∥∥T 2x− T 2y
∥∥p) 1

p

≤ (‖x− y‖p)
1
p

= (α1 ‖x− y‖p + α2 ‖x− y‖p)
1
p

= ‖(x, x)− (y, y)‖α,p .

Thus, T̃
∣∣
D

: D → C2 is nonexpansive and, by Browder’s Demiclosedness Principle,

I − T̃
∣∣
D

is demiclosed. To see that I − T is also demiclosed at 0, let (xn)n be any sequence
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converging weakly to x ∈ C for which (I − T )xn → 0 (that is, (xn)n is an approximate fixed

point sequence for T ). Then (I − T 2)xn → 0 as well, since

∥∥xn − T 2xn
∥∥ ≤ ‖xn − Txn‖+

∥∥Txn − T 2xn
∥∥ ≤ (1 + α

− 1
p

1

)
‖xn − Txn‖ .

Thus, xn ⇀ x implies (xn, xn) ⇀ (x, x) and ‖xn − Txn‖ , ‖xn − T 2xn‖ → 0 implies

(I− T̃ )(xn, xn)→ (0, 0), so the demiclosedness of I− T̃
∣∣
D

tells us that (I− T̃ )(x, x) = (0, 0).

That is, (Tx, T 2x) = (x, x) and Tx = x. Therefore, I − T is demiclosed at 0.

This result easily generalizes to (α, p)-nonexpansive maps for arbitrary length α =

(α1, . . . , αn), as shown in the following theorem.

Theorem 3.1.4. Suppose (X, ‖·‖) is uniformly convex, C ⊆ X is nonempty, closed, bounded,

and convex, and T : C → C is (α, p)-nonexpansive for some p ∈ (1,∞) and α = (α1, . . . , αn).

Then I − T is demiclosed at 0.

Proof. If {1 < j < n : αj = 0} 6= ∅, then write {1 < j < n : αj = 0} = {j1, j2, . . . , jm} and

{1 ≤ k ≤ n : αj > 0} = {k1, k2, . . . , kn−m}, where k1 = 1 and kn−m = n. Then the space

(Xν , ‖·‖α,p) is uniformly convex, where ν := n−m and

‖(x1, . . . , xν)‖α,p :=

(
ν∑
r=1

αkr ‖xr‖
p

) 1
p

.

Again, the map T̃ : Cν → Cν , defined by

T̃ (x1, . . . , xν) := (T k1x1, T
k2x2, . . . , T

kν−1xν−1, T
kνxν)

= (Tx1, T
k2x2, . . . , T

kν−1xν−1, T
nxν)

is nonexpansive on D := {(x, x, . . . , x) : x ∈ C}, which is a closed, bounded, and convex set

in Xν . Thus, I − T̃
∣∣
D

is demiclosed, and an analogous argument to the one presented above

gives us that I − T is demiclosed at 0 as well.
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Remark 3.1.1. For any function f with domain A, let F (f) denote the fixed point set of

f : F (f) := {x ∈ A : fx = x}. Observe that for T : C → C and T̃
∣∣
D

: D → Cν defined as

above, we have

F
(
T̃
∣∣
D

)
= {(x, . . . , x) ∈ D : (Tx, . . . , T nx) = (x, . . . , x)} = {(x, . . . , x) ∈ D : Tx = x},

which may be easily identified with the set {x ∈ C : Tx = x} = F (T ). Also note that

F (T ) = (I − T̃ )−1{0} ∩D. Note that the above proof tells us that (I − T̃ )(D) is closed in

(Xν , ‖·‖α,p), and this gives a dichotomous scenario regarding the existence of fixed points for

an (α, p)-nonexpansive map T : either 0 ∈ (I − T̃ )(D) or 0 6∈ (I − T̃ )(D). In other words, T

either has a fixed point, or T admits no approximate fixed point sequences. For more about

fixed point results, see Section 3.3.

Remark 3.1.2. It should also be noted that Klin-eam and Suantai [37, Theorem 3.4]

proved a version of the demiclosedness principle for (α1, . . . , αn)-nonexpansive mappings

in uniformly convex spaces, but with the restriction that α1 is sufficiently large, specifically

α1 >
√

2
1−n

. Their method of proof resembles those of Goebel and Japón Pineda and

primarily utilizes the triangle inequality.

3.2 DEMICLOSEDNESS AND OPIAL’S PROPERTY

Now we will establish the demiclosedness principle for (α1, α2)-nonexpansive maps whose

domains satisfy Opial’s property. That is, the definition of Opial’s property can be applied

to subsets of Banach spaces rather than to the entire space. We say that C ⊆ X has the

Opial property if, whenever (xn)n is a sequence in C converging weakly to some x ∈ X, then

lim inf
n
‖xn − x‖ < lim inf

n
‖xn − y‖

for all y 6= x in X.

We first make an easy observation for length 2 multi-indices which extends easily to

multi-indices of arbitrary length.
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Lemma 3.2.1. If (X, ‖·‖) is a Banach space and C ⊆ X is closed and convex with the Opial

property, then (D, ‖·‖α) ⊂ (C2, ‖·‖α) has the Opial property, where ‖·‖α := ‖·‖α,1.

Proof. Let (xn, xn)n be a weakly convergent sequence in D. Then (xn, xn) ⇀ (x, x) for some

x ∈ C since C closed and convex implies C is weakly closed. Let (u, v) ∈ X2 be such that

(u, v) 6= (x, x). Without loss of generality, suppose that u 6= x. Then

lim inf
n
‖xn − x‖ ≤ lim inf

n
‖xn − v‖ ,

and since C is Opial we have that

lim inf
n
‖xn − x‖ < lim inf

n
‖xn − u‖ .

Thus,

lim inf
n
‖(xn, xn)− (x, x)‖α = lim inf

n
(α1 ‖xn − x‖+ α2 ‖xn − x‖)

< lim inf
n

(α1 ‖xn − u‖+ α2 ‖xn − v‖)

= lim inf
n
‖(xn, xn)− (u, v)‖α .

Hence, D is Opial.

The following theorem is straightforward, and we present the proof for completeness.

Theorem 3.2.1. Suppose C ⊆ X is closed and convex and C has the Opial property. If

U : C → X is nonexpansive, then I − U is demiclosed at 0.

Proof. Suppose (xn)n is a sequence in C weakly convergent to some x ∈ X. Since C is closed

and convex, it is weakly closed and x ∈ C. Suppose further that (I − U)xn → 0. Since U is

nonexpansive,

‖xn − (I − U)xn − Ux‖ = ‖Uxn − Ux‖ ≤ ‖xn − x‖

and

lim inf
n
‖xn − (I − U)xn − Ux‖ ≥ lim inf

n
(‖xn − Ux‖ − ‖(I − U)xn‖)

= lim inf
n
‖xn − Ux‖ .
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Thus,

lim inf
n
‖xn − Ux‖ ≤ lim inf

n
‖xn − x‖ .

Since C is Opial, this is only possible if x = Ux, and we have I − U is demiclosed at 0.

Notice that, in contrast with Browder’s Demiclosedness Principle, we don’t need the

assumption of boundedness in Theorem 3.2.1, but the most that we can conclude is demi-

closedness of I − T at 0 (rather than demiclosedness of I − T at every point). Now we have

our theorem, the proof of which is nearly identical to the proof of Theorem 3.1.1.

Theorem 3.2.2. If (X, ‖·‖) is a Banach space and C ⊆ X is closed and convex with the

Opial property, then any α-nonexpansive map T : C → C is such that I − T is demiclosed

at 0.

Recall that a mapping J : X → X∗ (where (X∗, ‖·‖∗) is the dual space of X with dual

norm ‖·‖∗ defined as usual) is called a duality mapping of X if, for all x ∈ X, J satisfies

both

1. (Jx)(x) = ‖Jx‖∗ ‖x‖, and

2. ‖Jx‖∗ = µ(‖x‖), where µ : R+ → R+ is a continuous, strictly increasing function with

µ(0) = 0.

Before drawing an application to uniformly convex spaces, we state a lemma of Opial

[43, Lemma 3]:

Lemma 3.2.2 (Opial). If a Banach space X has a weakly continuous duality mapping and

(xn)n converges weakly to x0, then for any x ∈ X,

lim inf
n
‖xn − x0‖ ≤ lim inf

n
‖xn − x‖ .

If X is also uniformly convex, then X has the Opial property.

Corollary 3.2.1. If (X, ‖·‖) is uniformly convex with a weakly continuous duality map

and C ⊂ X is closed, bounded, and convex, then any α-nonexpansive map T : C → C is

demiclosed at 0. In particular, this result holds when (X, ‖·‖) = (`p, ‖·‖p) for p ∈ (1,∞).

Proof. Since X is uniformly convex with a weakly continuous duality map, X has the Opial

property by Lemma 3.2.2.
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Remark 3.2.1. Our results are genuinely distinct from those of Xu for asymptotically

nonexpansive maps [51] since the class of mean nonexpansive maps and asymptotically non-

expansive maps do not coincide. For instance, if T is asymptotically nonexpansive, then

lim supn k(T n) = limn k(T n) = 1, and yet Piasecki [46, Ch. 4] constructed an example of an

(α1, α2)-nonexpansive mapping T for which lim supn k(T n) = limn k(T n) = 1 + α2.

Furthermore, our results are not included in those of Goebel and Kirk for uniformly Lips-

chitzian maps [27]. As we have seen, every mean nonexpansive map is uniformly Lipschitzian

[23, 46], but supn k(T n) ≤ α−11 (and the inequality is sharp), where α1 can be arbitrarily

small.

Remark 3.2.2. Finally, as noted in the introduction, spaces having uniform normal struc-

ture are of interest in fixed point theory, but our techniques fail in such spaces. In particular,

the demiclosedness principle does not necessarily hold in spaces having uniform normal struc-

ture, with the space (`2 ⊕ R, ‖·‖) (where ‖(x, t)‖ := max{‖x‖2 , |t|}) serving as an example

[34].

3.3 FIXED POINT RESULTS

Now we present a standard argument to show that any function T whose domain is a weakly

compact subset of a Banach space with I − T demiclosed at 0 has a fixed point, provided

that T has an approximate fixed point sequence.

Lemma 3.3.1. Suppose C ⊂ X is weakly compact and T : C → X is such that T has an

approximate fixed point sequence and I − T is demiclosed at 0. Then T has a fixed point.

Proof. Let the approximate fixed point sequence for T be denoted by (zn)n. Since (zn)n is

a sequence in C, which is weakly compact, there is a weakly convergent subsequence (znk)k

with znk ⇀ z for some z ∈ C. For simplicity, denote znk by zk. Also note that (I−T )zk → 0.

Thus, by the demiclosedness of I − T at 0, we have Tz = z.

Now we have a partial extension of Theorem 3.0.2 that has no requirement on the size

of α1, and thus we have a partial answer to the fixed point question for mean nonexpansive
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maps, which we summarize in the following theorem.

Theorem 3.3.1. Suppose (X, ‖·‖) is a Banach space, C ⊂ X is closed, bounded, and convex,

and T : C → C is (α, p)-nonexpansive for some α = (α1, . . . , αn) and p ∈ [1,∞). Suppose

further that T has an approximate fixed point sequence. Then T has a fixed point if

1. (X, ‖·‖) is uniformly convex and 1 < p, or

2. (C, ‖·‖) is weakly compact with the Opial property.

Proof. In either case, I−T is demiclosed at 0 and a fixed point of T is a weak-subsequential

limit point of its approximate fixed point sequence.

Since it is known that uniformly convex spaces and weakly compact sets with the Opial

property have the fixed point property for nonexpansive maps, the above theorem yields a

special case of Theorem 3.0.3 as a corollary.

Corollary 3.3.1. Suppose (X, ‖·‖) is a Banach space, C ⊂ X is closed, bounded, and convex,

and T : C → C is (α, p)-nonexpansive for some α = (α1, . . . , αn) with

(1− α1)

(
1− α

n−1
p

1

)
≤ α

n−1
p

1

(
1− α

1
p

1

)
and p ∈ [1,∞). Then T has a fixed point if either

1. X is uniformly convex and p > 1, or

2. C is weakly compact with the Opial property.

Proof. Since (1 − α1)

(
1− α

n−1
p

1

)
≤ α

n−1
p

1

(
1− α

1
p

1

)
, T has an approximate fixed point

sequence by Theorem 3.0.3.

Finally, recall that a Banach space (X, ‖·‖) is called strictly convex if x, y ∈ X with

‖x‖ , ‖y‖ ≤ 1, then

‖x− y‖ > 0 =⇒ 1

2
‖x+ y‖ < 1.

It is well-known that, if (X, ‖·‖) is strictly convex, C ⊂ X is closed and convex, and T :

C → C is nonexpansive, then F (T ) is closed and convex (see, for instance, [29, p. 34]).

There is nothing in the proof which requires T (C) ⊂ C, however, so the same result holds

for nonexpansive non-selfmaps T : C → X.
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Garćıa and Piasecki proved [24, Theorem 4.2] that any α-nonexpansive self-map of a

closed, convex subset of a strictly convex space must have a closed and convex fixed point

set. Our techniques do not yield this result in its entirety since ‖·‖α,1 is not generally strictly

convex. However, the techniques in this paper do yield the following theorem, which is a

special case of the Garćıa and Piasecki result, essentially for free:

Theorem 3.3.2. If (X, ‖·‖) is strictly convex, C ⊂ X is closed, bounded, convex, and

T : C → C is (α, p)-nonexpansive for some α = (α1, . . . , αn) and p > 1, then F (T ) is closed

and convex.

Proof. Without loss of generality, αj > 0 for all j = 1, . . . , n. Using the notation established

previously, (Xn, ‖·‖α,p) is strictly convex and T̃
∣∣
D

: D → Cn is nonexpansive, which implies

that its fixed point set is closed and convex in (Xn, ‖·‖α,p). It follows that F (T ) is also closed

and convex in (X, ‖·‖).

Remark 3.3.1. In light of the above theorems, is now important to determine precisely

when a mean nonexpansive map admits an approximate fixed point sequence. Some partial

results toward this end are known. For example, it is shown in [25] that if T is (α1, α2, α3)-

nonexpansive with 1/2 ≤ α1 and α2 ≥ (1 − α1)/2, then T has an approximate fixed point

sequence. Piasecki [46, Theorem 8.23] then extends this result to α2 ≥ 1/2− α2
1.

While all known examples of mean nonexpansive maps admit approximate fixed point

sequences (regardless of the size of α1), it is possible that α1 must be sufficiently large in

order to guarantee the existence of an approximate fixed point sequence, which would be

interesting in its own right. If this is the case, then Theorems 3.1.1, 3.1.4, and 3.2.2 would

still be of interest for convergence and approximation purposes, but Theorem 3.3.1 would

reduce to the special case of Theorem 3.0.3 stated in the above corollary.

Remark 3.3.2. It is worth noting that fixed point theory for nonexpansive non-self maps in

Banach spaces usually requires some kind of boundary condition, most notably inwardness

of the map. Recall that a function F : K → X is called inward at x if Fx ∈ IK(x) :=

{x+λ(y−x) : y ∈ K,λ ≥ 0}. However, it is easy to check that T̃ is inward at (x, . . . , x) ∈ D

if and only if Tx = T 2x, and hence no new fixed point information can be garnered from

inwardness of T̃ .
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3.4 WEAK CONVERGENCE RESULTS

In this section, we prove generalizations to the classical theorems of Browder and Petryshyn

[10] and Opial [43] from 1966 and 1967, respectively, regarding weak convergence of iterates

of a nonexpansive map to a fixed point in the presence of asymptotic regularity and Opial’s

property.

Recall that, for any subset C of a Banach space X and any x ∈ C, a mapping T : C → C

is called asymptotically regular at x if

lim
n→∞

∥∥T nx− T n+1x
∥∥ = 0.

If T is asymptotically regular for all x ∈ C, we say T is asymptotically regular. Let us state

the main theorem of this section regarding (α1, α2)-nonexpansive mappings in Opial spaces.

The proofs of the following theorem and lemmas will follow.

Theorem 3.4.1. Suppose (X, ‖·‖) is a Banach space and C ⊆ X is weakly compact, convex,

and has the Opial property. Suppose further that T : C → C is (α1, α2)-nonexpansive and

asymptotically regular at some point x ∈ C. Then (T nx)n converges weakly to a fixed point

of T .

To ensure that this theorem is a genuine extension of the classical theorems for nonex-

pansive maps, note that Example 3.0.1 is a mean nonexpansive map defined on (`2, ‖·‖2)

for which none of its iterates are nonexpansive, and this map is asymptotically regular.

Moreover, since `2 is Hilbert, it is Opial.

Before proving the theorem, let’s state some preliminary definitions and results. For any

x ∈ C, let

ωw(x) := {y ∈ C : y is a weak subsequential limit of (T nx)n}

and note that if C is weakly compact, then ωw(x) 6= ∅. Further note that if I−T is demiclosed

at 0 and asymptotically regular at x, then ∅ 6= ωw(x) ⊆ F (T ). We have a lemma.

Lemma 3.4.1. Suppose C is weakly compact and convex with the Opial property, and suppose

that T : C → C is (α1, α2)-nonexpansive and asymptotically regular at some x ∈ C. Then

for all y ∈ ωw(x), limn ‖T nx− y‖ exists.
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Our theorem will be proved if we can show that ωw(x) is a singleton. This follows from

the fact that C is Opial and the knowledge that (‖T nx− y‖)n converges for all y ∈ ωw(x),

as summarized in the following lemma.

Lemma 3.4.2. If C ⊆ X is Opial, T : C → C is a function, and for some x ∈ C,

limn ‖T nx− y‖ exists for all y ∈ ωw(x), then ωw(x) is empty or consists of a single point.

3.4.1 Proofs

Proof of Lemma 3.4.1. C closed and convex with the Opial property implies that I − T

is demiclosed at 0. That is, whenever (zn)n is a sequence in C converging weakly to

some z (which is necessarily in C since closed and convex implies weakly closed) for which

‖(I − T )zn‖ →n 0, it follows that (I − T )z = 0.

By the asymptotic regularity of T at x, we have that (T nx)n is an approximate fixed

point sequence for T .

Since y ∈ ωw(x) and I − T is demiclosed at 0, we have that y is a fixed point of T and

we see that

α1 ‖Tx− y‖+ α2

∥∥T 2x− y
∥∥ = α1 ‖Tx− Ty‖+ α2

∥∥T 2x− T 2y
∥∥

≤ ‖x− y‖ .

Hence, at least one of ‖Tx− y‖ or ‖T 2x− y‖ must be less than or equal to ‖x− y‖. Let

k1 ∈ {1, 2} be such that
∥∥T k1x− y∥∥ ≤ ‖x− y‖.

Next, we know that

α1

∥∥T k1+1x− y
∥∥+ α2

∥∥T k1+2x− y
∥∥ = α1

∥∥T k1+1x− T k1+1y
∥∥+ α2

∥∥T k1+2x− T k1+2y
∥∥

≤
∥∥T k1x− T k1y∥∥

=
∥∥T k1x− y∥∥

and so one of
∥∥T k1+1x− y

∥∥ or
∥∥T k1+2x− y

∥∥ must be less than or equal to
∥∥T k1x− y∥∥. As

above, let k2 ∈ {k1 + 1, k1 + 2} be such that
∥∥T k2x− y∥∥ ≤ ∥∥T k1x− y∥∥.

Inductively, build a sequence (kn)n which satisfies
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1. kn + 1 ≤ kn+1 ≤ kn + 2, and

2.
∥∥T kn+1x− y

∥∥ ≤ ∥∥T knx− y∥∥
for all n ∈ N. Now (

∥∥T knx− y∥∥)n is a non-increasing sequence in R+, and is thus convergent

to some q ∈ R+.

Consider the set M := N \ {kn : n ∈ N}. We have two cases. First, if M is a finite set,

then the claim is proved. Second, if M is infinite, write M = {mn : n ∈ N}, where (mn)n

is strictly increasing. Note that, by property (1) of the sequence (kn)n above, we must have

that for all n ∈ N, there exists a jn ∈ N for which

mn = kjn + 1.

Also, (jn)n is strictly increasing. Asymptotic regularity of T at x and the fact that

limn

∥∥T knx− y∥∥ = q gives us that for any ε > 0, there is n large enough such that

1. ‖Tmnx− Tmn−1x‖ < ε/2, and

2.
∣∣ ∥∥T kjnx− y∥∥− q ∣∣ < ε/2.

Thus,

‖Tmnx− y‖ − q ≤
∥∥Tmnx− Tmn−1x∥∥+

∥∥Tmn−1x− y∥∥− q
=
∥∥Tmnx− Tmn−1x∥∥+

∥∥T kjnx− y∥∥− q
<
ε

2
+
ε

2
= ε.

Entirely similarly, we have that

‖Tmnx− y‖ − q ≥ −
∥∥Tmnx− Tmn−1x∥∥+

∥∥Tmn−1x− y∥∥− q
= −

∥∥Tmnx− Tmn−1x∥∥+
∥∥T kjnx− y∥∥− q

> −ε
2
− ε

2
= −ε.

Hence,
∣∣ ‖Tmnx− y‖−q ∣∣ < ε for n large enough. Since {mn : n ∈ N}∪{kn : n ∈ N} = N,

we have finally that limn ‖T nx− y‖ exists for any y ∈ ωw(x).

Remark 3.4.1. The above argument presented in the proof above actually works for any

y ∈ F (T ), but in particular for y ∈ ωw(x). This will be of use to us in Theorem 3.4.3.
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Proof of Lemma 3.4.2. Suppose for a contradiction that z and y are distinct elements of

ωw(x). Then there exist (nk)k and (mk)k for which T nkx ⇀k z and Tmkx ⇀k y. Thus, using

the fact that C is Opial, we have

lim
n
‖T nx− y‖ = lim

k
‖Tmkx− y‖

< lim
k
‖Tmkx− z‖

= lim
n
‖T nx− z‖

= lim
k
‖T nkx− z‖

< lim
k
‖T nkx− y‖

= lim
n
‖T nx− y‖ ,

which is a contradiction. Thus, ωw(x) is a singleton.

Proof of Theorem 3.4.1. As stated above, let

ωw(x) := {y ∈ C : y is a weak subsequential limit of (T nx)n}

and note that ωw(x) 6= ∅ since C is weakly compact, as well as that the demiclosedness of

I − T at 0 gives us that ωw(x) ⊆ F (T ), where F (T ) is the set of fixed points of T . By

Lemma 3.4.2, we know that ωw(x) consists of a single point, say y. Thus, T nx ⇀n y, and

the theorem is proved.

3.4.2 Results for arbitrary α

We have the corresponding theorem for α of arbitrary length.

Theorem 3.4.2. If C ⊆ X is weakly compact, convex, and has the Opial property, T : C →

C is α-nonexpansive and asymptotically regular at some point x ∈ C, then T nx converges

weakly to a fixed point of T .

The theorem will follow immediately from the analogous lemma concerning convergence

of the sequence (‖T nx− y‖)n for any y ∈ ωw(x).
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Lemma 3.4.3. Suppose C is weakly compact and convex with the Opial property, and suppose

that T : C → C is α-nonexpansive and asymptotically regular at some x ∈ C. Then for all

y ∈ ωw(x), limn ‖T nx− y‖ exists.

Proof of the lemma. Let α = (α1, . . . , αn0). In the same way as above, we build a sequence

(kn)n for which

1. kn + 1 ≤ kn+1 ≤ kn + n0, and

2.
∥∥T kn+1x− y

∥∥ ≤ ∥∥T knx− y∥∥.

Again, as above, let M = N \ {kn : n ∈ N}. If M is finite, we are done. If M is infinite,

then write the elements of M as (mn)n, strictly increasing. Note that for all n ∈ N, there

exist jn ∈ N and in ∈ {1, . . . , n0 − 1} for which

mn = kjn + in.

Also, (jn)n is strictly increasing. Now, for any ε > 0, we can find n large enough so that

∥∥Tmn−j+1x− Tmn−jx
∥∥ < ε

n0

for all j = 1, . . . , n0 − 1, and

∣∣∣ ∥∥T kjnx− y∥∥− q ∣∣∣ < ε

n0

, where q = lim
n→∞

∥∥T knx− y∥∥ .
Thus, for n large, we have

‖Tmnx− y‖ − q ≤
∥∥Tmnx− Tmn−1x∥∥+ · · ·+

∥∥Tmn−in+1x− Tmn−inx
∥∥+

∥∥Tmn−inx− y∥∥− q
=
∥∥Tmnx− Tmn−1x∥∥+ · · ·+

∥∥Tmn−in+1x− Tmn−inx
∥∥+

∥∥T kjnx− y∥∥− q
<

ε

n0

+ · · ·+ ε

n0︸ ︷︷ ︸
in times

+
ε

n0

≤ (n0 − 1)
ε

n0

+
ε

n0

= ε.

A similar argument proves that
∣∣ ‖Tmnx− y‖− q ∣∣ < ε for n large, and the lemma is proved.
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3.4.3 Losing boundedness of C

Similar arguments show that, under appropriate circumstances, the assumption of bound-

edness of C may be dropped. First, it is easy to see that there is an equivalent sequential

notion of uniform convexity. That is, X is uniformly convex if and only if for every R > 0

and for any sequences (un)n and (vn)n in X,‖un‖ , ‖vn‖ ≤ R for all n, and

1
2
‖un + vn‖ → R

=⇒ lim
n
‖un − vn‖ = 0.

Using this equivalent notion of uniform convexity, Lemma 3.2.2, and the fact that the

fixed point sets of mean nonexpansive self-maps of closed, convex subsets of strictly convex

spaces are closed and convex, we can prove a theorem:

Theorem 3.4.3. Suppose (X, ‖·‖) is uniformly convex with a weakly sequentially continuous

duality map and C ⊆ X is closed and convex. Assume further that T : C → C is α-

nonexpansive, F (T ) 6= ∅, and T is asymptotically regular at some x ∈ C. Then (T nx)n

converges weakly to some z ∈ F (T ).

The proof follows largely from the work done above and the original proof for nonexpan-

sive mappings due to Opial [43, Theorem 1], and we present it here for completeness.

Proof. By Opial’s Lemma (Lemma 3.2.2), X is uniformly convex with a weakly continuous

duality map implies that X is Opial. Thus, for every y ∈ F (T ), by the proof of Lemma

3.4.1 and Remark 3.4.1, we know that limn ‖T nx− y‖ exists. In particular, this implies that

{T nx : n ∈ N} is bounded. Let ϕ : F (T )→ [0,∞) be given by ϕ(y) := limn ‖T nx− y‖. For

any r ∈ [0,∞), consider the set

Fr : = {y ∈ F (T ) : ϕ(y) ≤ r}

= ϕ−1 ([0, r]) ∩ F (T ).

We summarize the relevant facts about Fr.

Claim 3.4.1. The sets Fr satisfy the following four properties:

1. Fr is nonempty for r sufficiently large,
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2. Fr is closed, bounded, and convex for all r ≥ 0,

3. there is a minimal r0 for which Fr0 is nonempty, and

4. Fr0 is a singleton.

Proof of Claim 3.4.1. (1) and (2) are easy to verify.

(3) follows from the fact that each Fr is weakly compact (since X is reflexive) and

{Fr : r ≥ 0} forms a nested family. Thus, if each Fr 6= ∅ for r > t for some t ≥ 0, it follows

that

Ft =
⋂
r>t

Fr 6= ∅.

(4) follows from uniform convexity. Suppose u, v ∈ Fr0 with u 6= v, and let z := 1
2
(u+v).

Note that z ∈ Fr0 since Fr0 is convex. Because r0 is minimal for which Fr0 6= ∅, it follows

that ϕ(u) = r0 = ϕ(v). We want to show that ϕ(z) < r0. Suppose for a contradiction that

ϕ(z) = r0. Then

lim
n

1

2
‖(T nx− u) + (T nx− v)‖ = lim

n
‖T nx− z‖ = r0

and uniform convexity implies that

lim
n
‖(T nx− u)− (T nx− v)‖ = ‖u− v‖ = 0,

but ‖u− v‖ > 0. This tells us that ϕ(z) < r0, which contradicts the minimality of r0. Hence,

Fr0 must be a singleton. This completes the proof of the claim.

Let Fr0 = {y0}. We aim to show that T nx ⇀ y0. For a contradiction, suppose this is

not the case. Since {T nx : n ∈ N} is bounded and X is reflexive, there is some subsequence

(T nkx)k converging weakly to some y 6= y0. By asymptotic regularity of T and demiclosedness

of I − T at 0, we know that ‖(I − T )T nkx‖ → 0 yields Ty = y. That is, y ∈ F (T ). Thus,

r0 = ϕ(y0) = lim
n
‖T nx− y0‖

= lim
k
‖T nkx− y0‖

> lim
k
‖T nkx− y‖

= lim
n
‖T nx− y‖ = ϕ(y),
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which contradicts the minimality of r0. Finally, we have that T nx ⇀ y0, and the proof is

complete.

Remark 3.4.2. We note here, just as Opial did, that the same result will hold in any

reflexive Opial space where F (T ) is convex and Fr0 is a singleton. For example, to guarantee

that F (T ) is convex for a mean nonexpansive map, we need only assume strict convexity of

X as opposed to uniform convexity.

3.5 MISCELLANEOUS QUESTIONS

3.5.1 T “almost” commutes with Tα

The observation essential to the proof of Theorem 3.1.1 gives a bit more than advertised.

In particular, we know that, if C is a closed, bounded, convex subset of a uniformly convex

Banach space X and T : C → C is (α, p)-nonexpansive for some p > 1, then T̃ : D → Cn :

(x, x, . . . , x) 7→ (Tx, T 2x, . . . , T nx) is nonexpansive with respect to the uniformly convex

norm ‖·‖α,p, where D := {(x, x, . . . , x) : x ∈ C}. In 1981, Bruck [11] proved an interesting

result about nonexpansive maps defined on closed, bounded, convex subsets of uniformly

convex Banach spaces.

Theorem 3.5.1 (Bruck). If (X, ‖·‖) is uniformly convex, C ⊂ X is closed, bounded, and

convex, and F : C → X is nonexpansive, then there exists a continuous, convex, and strictly

increasing function g : [0,∞)→ [0,∞) with g(0) = 0 such that, for any u1, . . . , un ∈ C and

t1, . . . , tn ≥ 0 with t1 + · · ·+ tn = 1, we have

g

(∥∥∥∥∥F
(

n∑
j=1

tjuj

)
−

n∑
j=1

tjFuj

∥∥∥∥∥
)
≤ max

1≤i,j≤n
(‖ui − uj‖ − ‖Fui − Fuj‖) .

In fact, the function g may be chosen independently of the nonexpansive mapping F .
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So, for our (α, p)-nonexpansive mapping T̃ , we know that there is some function g which

is strictly increasing, continuous, convex, with g(0) = 0 for which

g

∥∥∥∥∥T̃
(

n∑
j=1

tj(uj, uj)

)
−

n∑
j=1

tjT̃ (uj, uj)

∥∥∥∥∥
α,p


≤ max

1≤i,j≤n

(
‖(ui, ui)− (uj, uj)‖α,p −

∥∥∥T̃ (ui, ui)− T̃ (uj, uj)
∥∥∥
α,p

)

for any u1, . . . , un ∈ C and any t1, . . . , tn ≥ 0 for which t1 + · · ·+ tn = 1.

For example, let’s assume that T is ((α1, α2), p)-nonexpansive, and let’s take ti := αi and

ui := T ix, i = 1, 2, where x ∈ C is arbitrary. Then we would have

g

(∥∥∥T̃ (α1(Tx, Tx) + α2(T
2x, T 2x)

)
−
(
α1T̃ (Tx, Tx) + α2T̃ (T 2x, T 2x)

)∥∥∥
α,p

)
= g

(∥∥∥T̃ (Tαx, Tαx)− (TαTx, TαT
2x)
∥∥∥
α,p

)
= g

(∥∥∥T̃ T̃α(x, x)− T̃αT̃ (x, x)
∥∥∥
α,p

)

on the left-hand side, and on the right-hand side,

max
1≤i,j≤2

(
‖(ui, ui)− (uj, uj)‖α,p −

∥∥∥T̃ (ui, ui)− T̃ (uj, uj)
∥∥∥
α,p

)
=
∥∥(Tx, Tx)− (T 2x, T 2x)

∥∥
α,p
−
∥∥(T 2x, T 3x)− (T 3x, T 4x)

∥∥
α,p

=
(
α1

∥∥Tx− T 2x
∥∥p + α2

∥∥Tx− T 2x
∥∥p) 1

p −
(
α1

∥∥T 2x− T 3x
∥∥p + α2

∥∥T 3x− T 4x
∥∥p) 1

p

=
∥∥Tx− T 2x

∥∥− (α1

∥∥T 2x− T 3x
∥∥p + α2

∥∥T 3x− T 4x
∥∥p) 1

p

=
1

α2

‖Tx− Tαx‖ −
(
α1

∥∥T 2x− T 3x
∥∥p + α2

∥∥T 3x− T 4x
∥∥p) 1

p

≤ 1

α2

‖Tx− Tαx‖ .

Before we continue, let’s make a simple observation.

Lemma 3.5.1. If g : [0,∞) → [0,∞) is strictly increasing, continuous, and convex on

[0,∞), then g−1 is strictly increasing and concave.
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Proof. Since g is strictly increasing, we know g−1 exists. To see that it is strictly increasing,

note that, for all u, v ∈ g([0,∞)) ⊆ [0,∞), u = g−1(x) and v = g−1(y) for some x, y ∈ [0,∞),

and

u < v ⇐⇒ g(u) < g(v), so g−1(x) < g−1(y) ⇐⇒ g
(
g−1(x)

)
< g

(
g−1(y)

)
.

Finally, to see that g−1 is concave, fix u, v ∈ g([0,∞)) and s, t > 0 with s+ t = 1. Note also

that continuity of g ensures that su+ tv ∈ g([0,∞)). Then, since g−1 is increasing,

g(sg−1(u) + tg−1(v)) ≤ su+ tv ⇐⇒ sg−1(u) + tg−1(v) ≤ g−1(su+ tv).

In particular, this lemma tells us that∥∥∥T̃ T̃α(x, x)− T̃αT̃ (x, x)
∥∥∥
α,p
≤ g−1

(
1

α2

‖Tx− Tαx‖
)
,

and, expanding the left-hand side,

α1 ‖TTαx− TαTx‖p + α2

∥∥T 2Tαx− TαT 2x
∥∥p ≤ (g−1( 1

α2

‖Tx− Tαx‖
))p

.

Finally, by making another elementary estimate,

‖TTαx− TαTx‖ ≤
(

1

α1

) 1
p

g−1
(

1

α2

‖Tx− Tαx‖
)

= h (‖Tx− Tαx‖) , (3.1)

where h(u) := α−p
−1

1 g−1
(
α−12 u

)
is strictly increasing, h(0) = 0, and concave by the lemma

above.

Now, we have three generalized notions of commutativity due to Jungck [31] and Pant

[44, 45].

Definition 3.5.1. Let A,B : (M,d)→ (M,d) be functions.

1. (Jungck) We say A,B are compatible if, whenever (xn)n is a sequence in M for which

lim
n
A(xn) = lim

n
B(xn) = x

for some x ∈M , it follows that

lim
n
d(B(A(xn)), A(B(xn))) = 0.
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2. (Pant) If there exists an R > 0 such that, for all x ∈M ,

d(ABx,BAx) ≤ Rd(Ax,Bx),

then we say A and B are R weakly commuting.

3. (Pant) If for all x ∈M , there exists an R = Rx > 0 for which

d(ABx,BAx) ≤ Rd(Ax,Bx),

we say A and B are pointwise R weakly commuting.

4. We say a point x ∈ M is a coincidence point of A,B if Ax = Bx. If it happens that

Ax = Bx = x, we say x is a common fixed point of A,B, and if d(Ax,Bx) < ε for some

ε > 0, we say x is an (ε-)approximate coincidence point.

There are theorems about the existence of coincidence and common fixed points of point-

wise R weakly commuting mappings [44, 45] as well as theorems about the existence of

approximate coincidence points [14]. For example,

Theorem 3.5.2 (Pant). Let (M,d) be any metric space (not necessarily complete). Suppose

f, g : M →M are noncompatible, pointwise R weakly commuting, and suppose they satisfy

1. f(M) ⊆ g(M),

2. d(fx, fy) ≤ kd(gx, gy) for some k ≥ 0, and

3. d(fx, f 2x) 6= max{d(fx, gfx), d(f 2x, gfx)}

whenever the right-hand side is nonzero. Then f and g have a common fixed point.

Also,

Theorem 3.5.3 (Dey, Kumar Laha, Saha). Let (M,d) be any metric space (not necessarily

complete). Suppose f, g : M →M are such that

1. f(M) ⊆ g(M), and

2. d(fx, fy) ≤ β (d(gx, gy)) · d(gx, gy) for all x, y ∈ M , where β : [0,∞) → [0, 1) is a

function for which β(tn)→ 1 =⇒ tn → 0.

Then for all ε > 0, f and g have an ε-approximate coincidence point. That is,

inf
x∈M

d(fx, gx) = 0.
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Notice that in the case of T and Tα, we would know that T has an approximate fixed

point sequence if T and Tα have an ε-approximate coincidence point for all ε > 0, since

‖Tx− Tαx‖ = α2

∥∥Tx− T 2x
∥∥ ,

so if ‖Tx− Tαx‖ < ε, we would have

‖z − Tz‖ < α−12 ε, where z = Tx.

Note also, by Equation 3.1, we have that T and Tα are pointwise R weakly commuting, with

Rx :=
‖Tx− Tαx‖

h(‖Tx− Tαx‖)
if ‖Tx− Tαx‖ 6= 0, and Rx > 0 if ‖Tx− Tαx‖ = 0.

We have a question: Is there any way to use this notion of commutativity and the fact that

Tα is known to be nonexpansive (and hence must have an approximate fixed point sequence)

to obtain an ε-approximate coincidence point for T and Tα for all ε > 0?

If the answer is affirmative, then we would obtain an approximate fixed point sequence

for T , and demiclosedness of I − T at 0 would tell us that uniformly convex spaces have the

fixed point property for mean nonexpansive mappings, regardless of the size of α1.

3.5.2 Approximate fixed point sequences for T 2

Intuitively speaking, the restriction that α1 ≥ 1/2 in Theorems 3.0.1 and 3.0.2 indicates that

T is “close” to being nonexpansive since the majority of the weight in the average is given

to the ‖Tx− Ty‖ term, and subsequently ‖T 2x− T 2y‖ plays a less significant role in the

inequality. When α1 ≥ 1/2, Theorem 3.0.1 guarantees the existence of an approximate fixed

point sequence for T . So we have a question: If α2 ≥ 1/2, can we ensure the existence of an

approximate fixed point sequence for T 2 rather than T? More generally, if T is (α1, . . . , αn)-

nonexpansive and j ∈ {1, . . . , n} is such that αj = max{αk : k = 1, . . . , n}, can we ensure

that T j has an approximate fixed point sequence?
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Note also that the proofs of Theorems 3.1.1 and 3.2.2 can be altered to give us demi-

closedness information about I − T 2 in the case of an ((α1, α2), p)-nonexpansive mapping

(where p > 1 or p = 1, depending on the context). In particular, observe that

(α2
1 + α2)

∥∥T 2x− T 2y
∥∥p + α1α2

∥∥T 3x− T 3y
∥∥p

= α1(α1

∥∥T 2x− T 2y
∥∥p + α2

∥∥T 3x− T 3y
∥∥p) + α2

∥∥T 2x− T 2y
∥∥p

≤ α1 ‖Tx− Ty‖p + α2

∥∥T 2x− T 2y
∥∥p

≤ ‖x− y‖p .

and it is easy to check that α2
1 + α2 + α1α2 = 1. Thus, if we put a new norm on X2, say

‖(x, y)‖′α,p :=
(
(α2

1 + α2) ‖x‖p + α1α2 ‖y‖p
) 1
p ,

then the function T̃ ′ : C2 → C2, given by

T̃ ′(x, y) := (T 2x, T 3y)

would again be ‖·‖′α,p-nonexpansive when restricted to the set D = {(x, x) : x ∈ C}, and

Browder’s (or Opial’s, as the case may be) Demiclosedness Principle would tell us that

I − T̃ ′
∣∣
D

is demiclosed at 0. Using the same argument as in the proofs of Theorems 3.1.1

and 3.2.2, we would have that I − T 2 is demiclosed at 0 as well. Hence, the existence of an

approximate fixed point sequence for T 2 would guarantee the existence of a fixed point for

T 2 while, a priori, it may be the case that neither exist for the original function T .
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3.5.3 Asymptotic regularity of Krasnoselkii-type iterates

As noted in Section 3.4, asymptotic regularity at a point is quite a strong tool insofar as fixed

point theory is concerned. While nonexpansive mappings generally fail to be asymptotically

regular at even a single point, Krasnoselkii [38] first noted in 1955 that, if X is uniformly

convex, C ⊂ X is closed bounded, convex, and T : C → C is nonexpansive with T (C)

contained in a norm-compact subset of C, then the sequence (F nx)n converges strongly to

a fixed point of T , where

F :=
I + T

2
.

This result was substantially generalized by Browder and Petryshyn [10] in 1966.

Theorem 3.5.4 (Browder and Petryshyn). If X is uniformly convex, C ⊂ X is closed,

bounded, and convex, and T : C → C is nonexpansive, then the associated function

F := λI + (1− λ)T

maps C into C, is nonexpansive, has the same fixed points as T , and is asymptotically regular

at every x ∈ C.

A further generalization was then provided by Kirk in 1971 [33]:

Theorem 3.5.5 (Kirk). Suppose C is a closed, bounded, convex subset of a uniformly convex

Banach space X and T : C → C is nonexpansive. Let

F := α0I + α1T + · · ·+ αkT
k,

where αj ≥ 0 for all j, α1 > 0, and α0 + · · · + αk = 1. Then F (C) ⊆ C, F has the same

fixed points as T , is nonexpansive, and asymptotically regular on C.

We have a natural question: Supposing we have an (α, p)-nonexpansive mapping, where

α = (α1, α2, . . . , αn) and p > 1, on a closed, bounded, convex subset of a uniformly convex

space, are the analogues of Browder and Petryshyn’s and Kirk’s theorems still valid? Perhaps

it will be impossible to obtain the fully general versions of these theorems (i.e. where the

coefficients on T j are allowed to vary), but could we obtain asymptotic regularity of the

function F := α1I + α2T + · · ·+ αnT
n−1 for the prescribed values of α1, . . . , αn?
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3.5.4 An ergodic theorem

In 1931, von Neumann [42] proved his famous “mean ergodic theorem” for unitary operators

on Hilbert space:

Theorem 3.5.6 (von Neumann’s Ergodic Theorem). Suppose H is a Hilbert space and

U : H → H is a linear operator such that U∗U = I. Then, for all v ∈ H,

lim
n

∥∥∥∥∥ 1

n

n−1∑
k=0

Ukv − Pv

∥∥∥∥∥ = 0,

where U0 := I, and P is the orthogonal projection onto {x ∈ H : Ux = x}.

Rephrasing this theorem in terms of fixed point theory, we can say that the sequence

vn :=
v + Uv + U2v + · · ·+ Un−1v

n

converges in norm to a fixed point of U . Furthermore, the sequence (vn)n forms an approxi-

mate fixed point sequence for U , with

‖vn − Uvn‖ ≤ ‖vn − U(Pv)‖+ ‖U(Pv)− Uvn‖ = 2 ‖vn − Pv‖ → 0

since U is an isometry and since U(Pv) = Pv by definition. With this slightly different

viewpoint in mind (that is, the viewpoint of building approximate fixed point sequences

rather than obtaining strong convergence to fixed points), Baillon [3] extended this theorem

to nonlinear nonexpansive mappings on Hilbert space in 1975, and this result was further

improved by Bruck [11] in 1981. We state a version of Bruck’s more general result here.

Theorem 3.5.7 (Bruck’s Ergodic Theorem). Suppose (X, ‖·‖) is a uniformly convex Ba-

nach space, C ⊂ X is closed, bounded, and convex, and T : C → C is (nonlinear and)

nonexpansive. Then

lim
n
‖Snx− TSnx‖ = 0

uniformly on C, where

Sn :=
I + T + T 2 + · · ·+ T n−1

n
.

From Bruck’s Ergodic Theorem and Browder’s Demiclosedness Principle, we have a sim-

ple corollary.
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Corollary 3.5.1. If X is uniformly convex, C ⊂ X is closed, bounded, and convex, and

T : C → C is nonexpansive, then for all x ∈ C, there is a subsequence (Snkx)k for which

Snkx ⇀ x0,

where x0 is a fixed point of T in C.

There is a natural question that arises from this: Can we prove a version of Bruck’s

Ergodic Theorem for mean nonexpansive mappings? Would a stronger summability method

(e.g. Abel or Borel) be required to guarantee convergence of (T n)n≥0?
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4.0 EQUIVALENT RENORMINGS OF C0

Recall the definition of the Banach space of real-valued, convergent-to-zero sequences,

c0 := {x = (x1, x2, . . .) : xk ∈ R for all k ∈ N, and lim
n
|xn| = 0},

with its usual norm given by ‖x‖∞ := supn |xn|.

As we saw in Example 1.0.1, (c0, ‖·‖∞) fails to have the fixed point property for nonex-

pansive maps. Despite this fact, Maurey [36, p. 194] was able to prove the following deep

result about (c0, ‖·‖∞).

Theorem 4.0.1 (Maurey). (c0, ‖·‖∞) has w-fpp(ne). That is, for any weakly compact,

convex set C ⊂ c0, every nonexpansive mapping T : C → C has a fixed point.

This result was improved by Dowling, Lennard, and Turett [16] when, in 2004, they

proved that the converse of Maurey’s theorem also holds.

Theorem 4.0.2 (Dowling, Lennard, Turett). A closed, bounded, convex subset of (c0, ‖·‖)

has the fixed point property for nonexpansive maps if and only if it is weakly compact.

It is also known that the space of real-valued, convergent sequences (c, ‖·‖∞) has w-

fpp(ne), but, interestingly, it was shown in 2015 by Lennard, Popescu, and the present author

[21] that weak compactness is not equivalent to the fixed point property for nonexpansive

maps in c. That is, we found an example of a closed, bounded, convex subset of c which is

not weakly compact, but which is hyperconvex. By the theorems of Sine [49] and Soardi [50],

such a set must have fpp(ne). From this study, we then found an equivalent renorming of c0

and a closed, bounded, convex (but non-weakly compact) subset of c0 which was hyperconvex

and therefore has fpp(ne). The set in question is given by

K := {x ∈ c0 : each xk ≥ 0, x1 + x2 ≤ 1, and x2 ≥ x3 ≥ x4 ≥ · · · },
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and the equivalent norm on c0 is given by

‖x‖ := sup
k
|xk+1 + x1|.

This was the first known example of such a set in an equivalent renorming of c0. For more

details, see [21, Theorem 5.1]

We have one more preliminary notion and result, both of which are due to Dowling,

Lennard, and Turett [15].

Definition 4.0.1 (a.i. c0). Let (X, ‖·‖) be a Banach space. We say X contains an asymp-

totically isometric copy of c0 (“a.i. c0” for short) if there exists a sequence (xn)n in X and

a sequence (εn)n in (0, 1) decreasing to 0 such that for all t ∈ c0, we have

sup
n

(1− εn)|tn| ≤

∥∥∥∥∥
∞∑
k=1

tkxk

∥∥∥∥∥ ≤ sup
n

(1 + εn)|tn|

Theorem 4.0.3 (Dowling, Lennard, Turett). If X contains an asymptotically isometric copy

of c0, then X fails fpp(ne).

As the authors noted in [15], a consequence of this theorem is that every equivalent

renorming of both (`∞, ‖·‖∞) and (c0(Γ), ‖·‖) (for Γ uncountable) fails fpp(ne).

4.1 A NEW NORM ON C0

In this chapter, we will be concerned with studying an entirely different class of renormings of

c0 from the one mentioned above. In particular, given two real, positive, summable sequences

(λn)n and (κn)n, let’s define a new norm on `∞ by

‖x‖ :=
∞∑
k=2

λk sup
1≤j≤k−1

|xj| +
∞∑
k=1

κk sup
j≥k
|xj|.
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First, note that ‖·‖ is Lipschitz-equivalent to ‖·‖∞, since

κ1 ‖x‖∞ ≤
∞∑
k=1

κk sup
j≥k
|xj|

≤ ‖x‖

≤

(
∞∑
k=2

λk +
∞∑
k=1

κk

)
‖x‖∞

for all x ∈ `∞ (or, in particular, for all x ∈ c0).

As a preliminary step to determining whether or not ‖·‖ has the fixed point property, we

check if the usual example of a fixed-point-free nonexpansive mapping on a closed, bounded,

convex subset of c0 is nonexpansive with respect to ‖·‖.

Example 4.1.1. Let C := {x ∈ c0 : 0 ≤ xk ≤ 1 for all k}, and let T : C → C be given by

Tx = T (x1, x2, x3, . . .) := (1, x1, x2, x3, . . .).

Given two real numbers a, b, denote max{a, b} as a ∨ b. Then, for any x, y ∈ C,

‖Tx− Ty‖ = ‖(0, x1 − y1, x2 − y2, x3 − y3, . . .)‖

=

(
λ2 · 0 +

∞∑
k=3

λk sup
2≤j≤k−1

|xj−1 − yj−1|

)

+

(
κ1 ‖x− y‖∞ +

∞∑
k=2

κk sup
j≥k
|xj−1 − yj−1|

)

=
∞∑
k=3

λk sup
2≤j≤k−1

|xj−1 − yj−1|+ κ1 ‖x− y‖∞ +
∞∑
k=2

κk sup
j≥k
|xj−1 − yj−1|

= λ3|x1 − y1|+ λ4(|x1 − y1| ∨ |x2 − y2|) + · · ·

+ (κ1 + κ2) ‖x− y‖∞ + κ3 sup
k≥2
|xk − yk|+ κ4 sup

k≥3
|xk − yk|+ · · · ,

and

‖x− y‖ =
∞∑
k=2

λk sup
1≤j≤k−1

|xj − yj| +
∞∑
k=1

κk sup
j≥k
|xj − yj|

= λ2|x1 − y1|+ λ3(|x1 − y1| ∨ |x2 − y2|) + · · ·

+ κ1 ‖x− y‖∞ + κ2 sup
k≥2
|xk − yk|+ κ3 sup

k≥3
|xk − yk|+ · · · .
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In order to make sure that this function is not nonexpansive on C, we need only use

specific values for x and y and determine which sequences (λn)n and (κn)n will force T

to expand the distance between x and y. In particular, we know that the summing basis

elements σk are all contained in C, where

σk : = e1 + e2 + · · ·+ ek

= (1, 0, 0, . . .) + (0, 1, 0, . . .) + · · ·+ ( 0, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . .)

= ( 1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . .).

So let’s begin calculating using the σk’s. First note that Tσk = σk+1. Then

‖Tσk − Tσk−1‖ − ‖σk − σk−1‖ = ‖σk+1 − σk‖ − ‖σk − σk−1‖

= ||( 0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . .)|| − || 0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . .)||

= κ1 + κ2 + · · ·+ κk+1 + λk+2 + λk+3 + · · ·

− (κ1 + κ2 + · · ·+ κk + λk+1 + λk+2 + · · · )

= κk+1 − λk+1,

and hence ‖Tσk − Tσk−1‖ > ‖σk − σk−1‖ if and only if κk+1 > λk+1 for all k ∈ N.

So, if we add the assumption that κk+1 > λk+1 for all k ∈ N, then we have that the

usual right shift mapping on C is not nonexpansive with respect to ‖·‖. However, it is

possible to adapt the underlying set and the right shift map T to make some iterate T k

‖·‖-nonexpansive. It isn’t especially important for the remainder of this chapter, so we will

not explicitly prove it, but rather give an example to convince you that this is true.

Example 4.1.2. For any p ∈ N (p ≥ 2), let

Cp :=

{
v =

∞∑
n=1

tnσpn−1 : 0 ≤ tn for all n ∈ N and
∞∑
n=1

tn ≤ 1

}
.

Note that Cp is closed, bounded, and convex for all p. Define an analogue of the right shift,

Tp : Cp → Cp as usual,

Tpv = Tp

(
∞∑
n=1

tnσpn−1

)
:=

∞∑
n=1

tnσpn .
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We can easily compute T kp ,

T kp

(
∞∑
n=1

tnσpn−1

)
=
∞∑
n=1

tnσpn−1+k .

Note that σ1 = e1, σp ∈ Cp for all p. Consider

∥∥T kp σp − T kp σ1∥∥− ‖σp − σ1‖ = || 0, . . . , 0︸ ︷︷ ︸
pk−1

, 1, . . . , 1︸ ︷︷ ︸
pk−pk−1

, 0, 0, . . . || − || 0, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, 0, . . .)||

= κ1 + · · ·+ κpk−1 + λpk−pk−1+1 + · · ·

− (κ1 + · · ·+ κp + λ3 + · · · )

= κp+1 + · · ·+ κpk−1 −
(
λ3 + · · ·+ λpk−pk−1

)
.

If we want
∥∥T kp σp − T kp σ1∥∥ > ‖σp − σ1‖ for all k ∈ N, then we will require

∞∑
j=p+1

κj >
∞∑
j=3

λj,

but since (κn)n is summable, we have that

lim
p→∞

∞∑
j=p+1

κj = 0,

which means that, for some p large enough,

∞∑
j=p+1

κj ≤
∞∑
j=3

λj

So (c0, ‖·‖) fails to have the fixed point property for nonexpansive mappings, but, inter-

estingly, (c0, ‖·‖) turns out to contain no asymptotically isometric copies of c0 as we see in

the next section.
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4.2 A CLASS OF NORMS FAILING TO CONTAIN A.I. C0’S

Dowling, Lennard, and Turett [15] gave an example of an equivalent renorming of (`∞, ‖·‖∞)

(and hence of (c0, ‖·‖∞)) which contains no asymptotically isometric copies of c0. Recall

that, given a Banach space (X, ‖·‖) with dual space (X∗, ‖·‖∗), we say a sequence (ϕn)n in

X∗ converges weak-∗ to ψ if, for all x ∈ X we have

lim
n→∞

ϕn(x) = ψ(x).

Note that we will use “⇀∗” to denote weak-∗ convergence. Also note that weak-∗ convergence

in X∗ depends on the choice of predual (e.g. both (c, ‖·‖∞) and (c0, ‖·‖∞) have dual space

(`1, ‖·‖1), but (c, ‖·‖∞) and (c0, ‖·‖∞) are not isometrically isomorphic Banach spaces).

Theorem 4.2.1 (Dowling, Lennard, Turett). (`∞, ‖·‖) contains no a.i. c0’s, where

‖x‖ := ‖x‖∞ +
∞∑
k=1

|xk|
2k

.

First, we give the original proof of this theorem.

Original proof. Suppose for a contradiction that `∞ does contain an a.i. c0 sequence, denoted

(y(n))n. That is, there exists (εn)n null in (0, 1) such that for all t ∈ c0,

sup
n

(1− εn)|tn| ≤

∥∥∥∥∥
∞∑
n=1

tny
(n)

∥∥∥∥∥
∼

≤ sup
n
|tn|.

Since 1− ε1 ≤
∥∥y(1)∥∥∼, we have that there is some ` ∈ N minimal such that y

(1)
` 6= 0. Let

α :=
1

3 · 2`
|y(1)` |

and choose N1 ≥ ` such that
∑

k>N1
2−k < α/4. Further, choose N2 s.t. εn < α for all

n ≥ N2.
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Without loss of generality, y(n) ⇀∗n 0, and thus y
(n)
k →n 0 for all k. With this in mind,

choose N ≥ N2 such that |y(n)k | < α/4 for all k = 1, . . . , N1 and for all n ≥ N . Now for

n ≥ N ,

∥∥y(n)∥∥∼ =
∥∥y(n)∥∥∞ +

∞∑
j=1

|y(n)j |
2j

≤
∥∥y(n)∥∥∞ +

N1∑
j=1

|y(n)j | 2−j +
∞∑

j=N1+1

2−j(1)

<
∥∥y(n)∥∥∞ +

α

2

By the triangle inequality,
∥∥y(n)∥∥∞ ≤ 1

2

(∥∥y(1) + y(n)
∥∥
∞ +

∥∥y(1) − y(n)∥∥∞) for all n, so∥∥y(1) + δny
(n)
∥∥
∞ ≥

∥∥y(n)∥∥∞ for some δn = ±1. Since (y(n))n is an a.i. c0 sequence, we have

1 ≥
∥∥y(1) + δny

(n)
∥∥
∼ =

∥∥y(1) + δny
(n)
∥∥
∞ +

∞∑
j=1

|y(1)j + δny
(n)
j |

2j

≥
∥∥y(n)∥∥∞ +

|y(1)` + δny
(n)
` |

2`

≥
∥∥y(n)∥∥∼ − α

2
+
|y(1)` | − |y

(n)
` |

2`

≥
∥∥y(n)∥∥∼ − α− |y(1)` |

2`

≥ 1− εn − α + 2−` |y(1)` |

> 1 + α.

Contradiction. Thus, (`∞, ‖·‖) contains no asymptotically isometric copies of c0.

Now a streamlined proof.

New proof. Let εn and y(n) be as above. Note that 1− ε1 ≤
∥∥y(1)∥∥∼ =⇒ y(1) 6= 0. We still

have that
∥∥y(n)∥∥∞ ≤ ∥∥y(1) + δny

(n)
∥∥
∞ for some δn = ±1, and since (y(n))n forms an a.i. c0
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basis, we also still have that
∥∥y(1) + δny

(n)
∥∥
∼ ≤ 1. Now

1 ≥
∥∥y(1) + δny

(n)
∥∥
∼ =

∥∥y(1) + δny
(n)
∥∥
∞ +

∞∑
j=1

|y(1)j + δny
(n)
j |

2j

≥
∥∥y(n)∥∥∞ +

∞∑
j=1

|y(1)j + δny
(n)
j |

2j

=
∥∥y(n)∥∥∼ − ∞∑

j=1

|y(n)j |
2j

+
∞∑
j=1

|y(1)j + δny
(n)
j |

2j

≥
∥∥y(n)∥∥∼ +

∞∑
j=1

|y(1)j |
2j
− 2

∞∑
j=1

|y(n)j |
2j

≥ 1− εn + σ
(
y(1)
)
− 2σ

(
y(n)
)

→n 1 + σ
(
y(1)
)
> 1,

which is a contradiction. Note that we define σ(x) :=
∑

j |xj|/2j, and we implicitly use the

facts that

1. σ(x) > 0 if x 6= 0, and

2. σ(x(n))→n 0 if x
(n)
k →n 0.

This leads us to a theorem for our norm on c0 (or `∞), given by

‖x‖ :=
∞∑
k=1

κk sup
j≥k
|xj| +

∞∑
k=2

λk sup
1≤j≤k−1

|xj|

where
∑

k κk,
∑

k λk < ∞ and all κk, λk > 0 except λ1 := 0 since it doesn’t appear in the

norm. Let

η(x) :=
∞∑
k=1

κk sup
j≥k
|xj| and σ(x) :=

∞∑
k=2

λk sup
1≤j≤k−1

|xj|

Note:

1. σ and η are both seminorms (indeed they are both norms).

2. ‖x‖ = η(x) + σ(x).

3. σ(x) > 0 if x 6= 0.

4. σ(x(n))→n 0 if x
(n)
k →n 0.
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We have a theorem.

Theorem 4.2.2. (`∞, ‖·‖) contains no a.i. c0’s.

Proof. For a contradiction, let εn and y(n) be as above. Since η satisfies the triangle inequality,

we still have that η
(
y(n)
)
≤ η

(
y(1) + δny

(n)
)

for some δn = ±1. Furthermore, we know

that 1 − ε1 ≤
∥∥y(1)∥∥ =⇒ y(1) 6= 0 =⇒ σ

(
y(1)
)
> 0, and that σ

(
y(n)
)
→n 0 since

y(n) ⇀∗n 0 =⇒ y
(n)
k →n 0 for all k. Again, as above, we also know that

∥∥y(1) + δny
(n)
∥∥ ≤ 1.

Now, very similarly to the above proof, we see that

1 ≥
∥∥y(1) + δny

(n)
∥∥ = η

(
y(1) + δny

(n)
)

+ σ
(
y(1) + δny

(n)
)

≥ η
(
y(n)
)

+ σ
(
y(1) + δny

(n)
)

=
∥∥y(n)∥∥− σ (y(n))+ σ

(
y(1) + δny

(n)
)

≥
∥∥y(n)∥∥− 2σ

(
y(n)
)

+ σ
(
y(1)
)

≥ 1− εn − 2σ
(
y(n)
)

+ σ
(
y(1)
)

→n 1 + σ
(
y(1)
)
> 1

which is a contradiction.

This proof generalizes quite easily to a class of norms on `∞. Say a norm ‖·‖ on `∞ is

dissociative if it can be written as ‖x‖ = η(x) + σ(x), where

1. η and σ satisfy the triangle inequality,

2. σ(x) > 0 if x 6= 0, and η(x), σ(x) ≥ 0 for all x,

3. σ
(
x(n)
)
→n 0 if x

(n)
k →n 0 for all k.

Following the last proof almost exactly yields the following theorem.

Theorem 4.2.3. If ‖·‖ is a dissociative norm on `∞, then (`∞, ‖·‖) contains no a.i. copies

of c0.

Proof. Suppose for a contradiction that (`∞, ‖·‖) contains an a.i. c0 sequence (y(n))n (cor-

responding to a null sequence (en)n in (0, 1)). Without loss of generality, y(n) ⇀∗n 0, so

y
(n)
k →n 0 for all k and σ(y(n)) →n 0. We know that 1 − ε1 ≤

∥∥y(1)∥∥ =⇒ y(1) 6= 0, so

σ(y(1)) > 0. By the triangle inequality, η(y(n)) ≤ 1
2

(
η(y(1) + y(n)) + η(y(1) − y(n))

)
for all n,
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so η(y(n)) ≤ η(y(1) + δny
(n)) for some δn = ±1. Finally, we know that

∥∥y(1) + δny
(n)
∥∥ ≤ 1,

and 1− εn ≤
∥∥y(n)∥∥ for all n. Hence,

1 ≥
∥∥y(1) + δny

(n)
∥∥ = η(y(1) + δny

(n)) + σ(y(1) + δny
(n))

≥ η(y(n)) + σ(y(1) + δny
(n))

=
∥∥y(n)∥∥− σ(y(n)) + σ(y(1) + δny

(n))

≥
∥∥y(n)∥∥− σ(y(n))− σ(δny

(n)) + σ(y(1))

≥ 1− εn − σ(y(n))− σ(δny
(n)) + σ(y(1))

→n 1 + σ(y(1)) > 1,

which is a contradiction.

At a glance, we see that η ≡ 0 satisfies all of the above requirements. That is, ‖·‖ is a

dissociative norm on `∞ with η ≡ 0 if and only if
∥∥y(n)∥∥→n 0 whenever y

(n)
k →n 0 for all k,

and we have an easy corollary:

Corollary 4.2.1. Suppose ‖·‖ is a norm on `∞ such that
∥∥y(n)∥∥ →n 0 whenever y

(n)
k →n 0

for all k. Then (`∞, ‖·‖) contains no a.i. copies of c0.

Note that, even though they do the job, we don’t need any of the aforementioned tech-

niques to prove this corollary.

Direct proof of the corollary. If (y(n))n is an a.i. c0 sequence, then, without loss of generality,

y
(n)
k →n 0 for all k, and by our only assumption on the norm we know that

∥∥y(n)∥∥ →n 0.

But since the y’s form an a.i. c0 sequence, we know that 1 − εn ≤
∥∥y(n)∥∥ ≤ 1 for all

n =⇒
∥∥y(n)∥∥→n 1. Contradiction.

Of course this begs the question “can such an equivalent norm exist on `∞?” The

answer to this question is definitively no. Note that there are a few ways to prove this,

but, in particular, such a norm would be a Schur norm, and `∞ is not a Schur space (since

c0 ≤ `∞ and c0 is not Schur). This could let us say a couple things.

1. First, perhaps we should call σ the “Schur part of ‖·‖.”
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2. Second, if ‖·‖ is a dissociative norm on `∞ equivalent to ‖·‖∞, then η 6≡ 0. That is, there

exists x ∈ `∞ for which η(x) 6= 0.

Of course it is still possible for a space to fail fpp(ne) despite containing no a.i. copies

of c0, so we have a few questions:

1. Do any dissociative norms have the fixed point property?

2. “How many” (in the sense of category or porosity) norms can be seen as dissociative?

3. What properties do the dual norms have in `1?

4. What additional conditions can we place on η and σ so that, for instance, (c0, ‖·‖) has

the weak fixed point property?
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