
REVIEW Open Access

Applications for detection of acute kidney
injury using electronic medical records and
clinical information systems: workgroup
statements from the 15th ADQI Consensus
Conference
Matthew T. James1*, Charles E. Hobson2, Michael Darmon3, Sumit Mohan4, Darren Hudson5, Stuart L. Goldstein7,
Claudio Ronco6, John A. Kellum8, Sean M. Bagshaw5 and For the Acute Dialysis Quality Initiative (ADQI) Consensus
Group

Abstract

Electronic medical records and clinical information systems are increasingly used in hospitals and can be leveraged
to improve recognition and care for acute kidney injury. This Acute Dialysis Quality Initiative (ADQI) workgroup was
convened to develop consensus around principles for the design of automated AKI detection systems to produce
real-time AKI alerts using electronic systems. AKI alerts were recognized by the workgroup as an opportunity to prompt
earlier clinical evaluation, further testing and ultimately intervention, rather than as a diagnostic label. Workgroup
members agreed with designing AKI alert systems to align with the existing KDIGO classification system, but
recommended future work to further refine the appropriateness of AKI alerts and to link these alerts to actionable
recommendations for AKI care. The consensus statements developed in this review can be used as a roadmap for
development of future electronic applications for automated detection and reporting of AKI.
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Abrégé

Les dossiers médicaux électroniques et les systèmes de renseignements cliniques sont de plus en plus utilisés dans
les hôpitaux. Ces éléments pourraient être mis à profit pour faciliter le dépistage de l’insuffisance rénale aigüe (IRA)
et améliorer les soins offerts aux patients qui en souffrent. Lors de la dernière réunion du Acute Dialysis Quality Initiative
(ADQI), un groupe de travail s’est réuni pour établir un consensus autour de principes régissant la constitution d’un
système automatisé de détection de l’IRA. Un système qui permettrait de produire des alertes en temps réel
pour dépister les cas d’IRA (alertes IRA). Le groupe de travail a reconnu que de telles alertes représenteraient
des opportunités de procéder à une évaluation clinique ou un dépistage précoce de la maladie et donc, à des
interventions plus rapides, plutôt que de ne constituer qu’un indicateur diagnostique. Les membres du groupe
de travail se sont entendus pour que le système d’alertes IRA soit développé en se basant sur la classification
(Continued on next page)
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établie par le KIDGO. Ils ont toutefois recommandé que des travaux ultérieurs soient effectués pour raffiner les
alertes et pour que celles-ci soient suivies de recommandations applicables et assorties d’un plan concret de
soins à offrir aux patients. Les déclarations consensuelles présentées dans ce compte-rendu pourraient constituer
le plan de développement pour la mise au point d’applications électroniques permettant la détection et le
signalement de cas d’IRA de façon automatisée.

Background
Acute kidney injury (AKI) is a common complication in
patients hospitalized for a range of medical conditions
and surgical procedures. AKI usually occurs in suscep-
tible patients following episodes of low blood pressure,
volume depletion, sepsis, use of diagnostic imaging con-
trast media, and/or nephrotoxic drug exposure [1, 2]. The
incidence of AKI has increased more than 4-fold over the
last two decades and AKI is expected to continue to rise
in frequency due to the growing prevalence of risk factors,
accompanied by the expanding use of medications, diag-
nostic imaging, and surgical interventions that can lead to
AKI [3–5]. AKI is usually accompanied by few specific
symptoms or signs, which can delay recognition, but its
progression can be avoided or reversed with early rec-
ognition [1, 4].
In 2012, Kidney Disease Improving Global Outcomes

(KDIGO) published clinical practice guidelines for AKI pre-
vention, identification, and treatment [6]. These guidelines
include specific recommendations for; 1) identification of
patients who are susceptible to AKI, 2) use of validated
laboratory and urine output criteria for AKI identification
and staging (Table 1), and 2) stage-based management
approaches for AKI. However, implementing these rec-
ommendations in clinical practice remains challenging.
Patients who develop AKI are cared for by diverse pro-
viders from several different medical and surgical disci-
plines, many of whom may not be aware of guideline
recommendations [7, 8]. Lack of recognition of AKI by
care providers leads to delayed intervention and has
been identified as a barrier to optimal care [7].
Systems to enhance recognition of AKI are promising

strategies to improve the quality of care for AKI [9, 10].

Electronic medical records (EMRs) and clinical informa-
tion systems (CIS) are becoming increasingly common
in hospitals and can be leveraged to detect changes in
serum creatinine or urine output according to current
definitions for AKI. Such systems have the potential to
increase AKI recognition, reduce the time to therapeutic
interventions in order to prevent progression of AKI,
and improve outcomes. Although there have been recent
publications describing the implementation and evalu-
ation of automated AKI alert systems, there has been no
consensus on how such systems should be designed or
implemented using EMRs and CISs, or whether refine-
ments to the KDIGO AKI identification and staging sys-
tem are required.

Review
Our group recognized the need to develop principles
for the design of automated AKI detection systems to
produce real-time alerts using EMRs and CISs. We fo-
cused on how the current consensus criteria for AKI
identification should be applied to this task, examined
what refinements to the consensus criteria should be
considered, and how AKI detection from such systems
should be relayed to care providers. Our recommenda-
tions were framed by the notion that automated AKI
alerts should be designed to enable early detection of
AKI and provide opportunities to link AKI detection to
clinical decision support tools for management, in
order to mitigate avoidable propagation of AKI and as-
sociated harms.

ADQI process
We followed the ADQI process, as previously described
[11]. The 15th ADQI Consensus Conference Chairs as-
sembled a diverse panel representing relevant disciplines
(nephrology, critical care, pediatrics, pharmacy, epidemi-
ology, health services research, biostatistics, bioinformatics
and data analytics) from five countries in North America
and Europe around the theme of “Acute Kidney Injury in
the Era of Big Data” for a 2-day consensus conference in
Banff, Canada on September 6–8, 2015. From this group,
our work group was tasked with examining the applica-
tion of EMRs and CISs for alerts for detection of AKI.
Our pre-conference activities involved a systematic search
of the literature for evidence on automated AKI alerts and
a critical evaluation of the relevant literature. A pre-

Table 1 The KDIGO staging system for AKI

AKI
Stage

Serum creatinine criteria Urine output criteria

1 Increase > 26.4 μmol/L <0.5 mL · Kg−1 · h−1 for 6 to 12 h

or 1.5-1.9 times baseline

2 Increase 2.0 -2.9 times
baseline

<0.5 mL · Kg−1 · h−1 for more than
12 h

3 Increase creatinine
> 354 μmol/L

<0.3 mL · Kg−1 · h−1 for 24 h

or 3 times baseline or anuria for 12 h

or initiation of RRT
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conference teleconference involving work group members
was used to identify both the current state of AKI
alerts and limitations in the current literature and clin-
ical practices. The key questions for the work group
were formulated from this discussion. During the con-
ference our work group developed consensus positions,
and plenary sessions involving all ADQI participants
were used to present, debate, and refine these posi-
tions. Following the conference this final report was
produced, revised, and approved by all members of the
work group. The broad objective of ADQI is to provide
expert-based statements and interpretation of current
knowledge for use by clinicians according to profes-
sional judgment and identify evidence care gaps to es-
tablish research priorities.

Key questions
We identified 4 key questions, which were used to develop
consensus statements:

1. What features of the current AKI consensus
definitions should be applied to automated AKI alerts?

2. What relevant inputs could be used to refine
automated AKI detection tools?

3. What are the key outputs from automated AKI
detection systems which will be used to improve
clinical responses and interventions?

4. What are the most important limitations and
knowledge gaps regarding automated AKI
detection that should be addressed through
further research?

Overview of existing literature on automated AKI alert systems
A summary of publications reporting design, implemen-
tation, or evaluation of automated AKI alerts is provided
in the Additional file 1: Table S1. We identified 12 auto-
mated AKI alert systems from 15 publications [12–29].
Eight of the systems were implemented in adult hospi-
tals, one in a pediatric hospital, and 3 were specific to
intensive care units. All systems included an AKI detec-
tion algorithm based on a change in serum creatinine,
but only the 3 systems implemented within intensive
care units also incorporated urine output criteria for
AKI. Most systems aligned with consensus definitions
for AKI detection and/or staging (RIFLE, AKIN, or
KDIGO), while two systems used a non-consensus defin-
ition. The mode of delivery of alerts varied substantially
and included interruptive as well as non-interruptive
alerts delivered within EMR/CIS systems, by paper noti-
fication, paging systems, or telephone calls to providers.
Five studies reported an evaluation of appropriateness
of the AKI alert based on a reference standard (neph-
rologist or other adjudicator) and 4 studies examined
the impact of the AKI alert on processes of care or clin-
ical outcome.

What features of the current AKI consensus definitions
should be applied to AKI alerts?

Table 2 Features that may influence the performance of
automated AKI alerts based on the KDIGO AKI criteria

KDIGO AKI
criteria

Feature

Serum
creatinine

Calibration of measure according to IDMS standard

Optimal measurement using enzymatic assay [15]

Comparison across laboratories or measurement
techniques [16]

Relevancy of e-alert systems using estimated baseline
creatinine

If previous creatinine available, chosen definition of
baseline creatinine

Management of outliers measures

Significance of small changes in serum creatinine in
patients with low weight/body surface or with
pre-existing CKD

Performance of e-alert system in unselected population
of patients.

Management of multiple alert in a same patient

Influence of fluid balance/dilution [17].

Urine output Difference in measurement according to setting
(ICU vs. Ward, Specificity of paediatric units, rate of
Foley catheter use).

Management of missing data

Errors in reading [8]

Errors related to manual entry of urinary output

Differences related to measurement (hourly vs. by
shift vs. daily)

Recognition of the lack of specificity of oliguria [18–20]

Cross-tabulation between serum creatinine and UO

Box 1 What features of the current AKI consensus definitions
should be applied to AKI alerts?

Consensus Statements:
We agree with designing AKI alert systems to align with the existing
KDIGO classification system, incorporating identification of baseline
serum creatinine when known, changes in serum creatinine, and
urine output when available.

Basic AKI alert tools can be built using laboratory information systems
and triggered by a single abnormal creatinine measurement, changes
in inpatient creatinine measurements alone, or changes in inpatient
and outpatient creatinine measurements.

AKI alerts should be used as an opportunity to prompt earlier clinical
evaluation, further testing and ultimately intervention, rather than as a
diagnostic label.
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Several studies have assessed the feasibility and im-
pact of electronic alert systems for AKI; however, sur-
prisingly few of them evaluated the sensitivity and
specificity of the AKI detection algorithms employed
[12–30]. Where provided, results suggest a broad range
in sensitivities and specificities for detecting AKI, which
range from fair [25, 30] to excellent [12, 14] depending
on the alert criteria and reference standard used for
identification of true cases of AKI. Many of the studies
that have reported on performance of automated AKI
detection systems have been limited to a relatively spe-
cific spectrum of patients. The population of interest
for large scale deployment of AKI detection systems
may also differ substantially from the study populations
examined to date because many of these studies have
excluded patients with previously known chronic kid-
ney disease (CKD) from these analyses despite their
increased susceptibility to AKI. It is important to high-
light that despite the application of published consen-
sus criteria for AKI detection, the optimal algorithm for
automated real time detection of AKI in clinical set-
tings is currently unknown and comparison of potential
algorithms is an important objective to be addressed by
future studies.
Acknowledging the absence of evidence for optimal

AKI alert criteria, our work group agreed that it was
appropriate for initial AKI alert systems to align with
the existing KDIGO definition and classification sys-
tem for AKI (Table 1). Thus, algorithms should ideally
identify a baseline serum creatinine when known,
changes in serum creatinine, and urine output where
feasible [31]. Urine output will be most accurately
measured in patients using a Foley catheter and would
require reporting in a 6 – 12 h time frame to align
with consensus AKI definitions. Such a system would
necessarily require electronic medical recording de-
vices or frequent manual entry of data, which are vul-
nerable to errors in urine output measurement or
reporting [32]. While this may be feasible in ICU set-
tings, it is unlikely to be accurate or feasible in the
majority of hospitalized patients where it would be im-
practical and inappropriate to prolong the placement
of urinary catheters merely for the purpose of AKI
detection.
We believe that automated AKI alerts systems should

be viewed as an opportunity to prompt clinical evalu-
ation rather than provide a diagnostic label, and thus
do not believe that urine output measurements are
mandatory for basic AKI alert systems. At present, it is
most feasible for hospital-based AKI alerts to be based
on laboratory information systems and triggered by
either a single abnormal creatinine measurement, sig-
nificant creatinine elevations compared to estimated
baseline serum creatinine, or by changes in serum

creatinine measurements from an identified baseline in
hospitalized patients [31]. Such a system would be im-
perfect and lack sensitivity with respectto the current
KDIGO definition. The lack of urine output in such
alert systems will likely fail to detect some episodes of
AKI, detect AKI at a later time point, or under repre-
sent the severity of AKI in some patients [33]. The po-
tential surrogates chosen to replace an unknown
baseline creatinine also have several limits. Use of ad-
mission serum creatinine as the baseline will fail to de-
tect AKI present at the time of admission while use of
an estimated baseline may ignore pre-existing CKD
leading to a high rate of false positive detection of AKI
[33–35]. However, as both AKI and CKD are associated
with adverse outcomes in hospitalized patients, and
share some common principles in terms of manage-
ment and medication safety, we do not think that con-
cerns about misclassification of AKI and CKD should
be a barrier to development of these systems. We en-
courage an incremental approach to development and
modification of AKI alert systems with the potential to
build in increasing complexity to allow alignment with
AKI detection algorithms based on the KDIGO criteria
(Fig. 1).
Several areas of uncertainty about AKI detection

using the current KDIGO criteria remain (Table 2)
[36–39]. Each of them is likely to modify the rate of
false positive and negative alerts and should be ad-
dressed through future research to evaluate potential
improvements in performance of automated AKI de-
tection. In order to ensure the generalizability of these
alerts to real-world settings, pragmatic cohorts in un-
selected populations of patients are needed. Ideally,
future work in this field should characterize the rates
of false positive and false negative alerts against a
suitable clinical reference standard or measure of ac-
ceptability for physician, health care providers, and
patients.

What relevant inputs could be used to refine AKI
automated detection tools?

Box 2 What relevant inputs that could be used to refine AKI
automated detection tools?

Consensus Statements:
Contextual information could be used to identify patients where AKI
alerts are generated in order to increase their specificity or could be
incorporated within alerts themselves to inform further diagnostic or
treatment approaches.

We suggest refining AKI alerts using readily accessible clinical,
laboratory, and medication information for patients in whom AKI is
detected to increase the appropriateness of AKI alerts and to link
these alerts to actionable recommendations.
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Changes in creatinine concentration are frequently
influenced by factors beyond changes in renal func-
tion. For example, volume of distribution, laboratory
precision, presence of chromogens that interfere with
measurement, and biological variation in creatinine
production can contribute to false positive alerts as
well as the failure to detect AKI [40–46]. Current defi-
nitions of AKI were developed to create a uniform def-
inition to allow for comparison across clinical studies
[47]. While the current definition facilitates epidemio-
logical analysis and an improved understanding of associ-
ated outcomes, the performance of the current KDIGO
definition for clinical case identification is unclear. Recent
analyses suggest that the false positive rate for creatinine
based alerts that are uninformed by other consider-
ations may be as high as 30 % among certain popula-
tion subsets [41].
False positive alerts are likely to be recognized as

such by the clinicians receiving them, thereby mitiga-
tingthe possibility of direct harm to patients. The true
harm however of high false positive rates is “alert fa-
tigue” and the risk of clinicians ignoring alerts even
when accurate, thus rendering them ineffective. Fur-
thermore, identification of a complex syndrome such
as AKI, which can result from several causes and is
frequently multifactorial, may not be useful to pro-
viders if the corrective action remains unclear. Provid-
ing AKI alerts within a specific clinical context provides

increased opportunities to link alerts with a proposed
meaningful response.
Strategies to lower the false positive rate of an alert

will require the use of additional inputs beyond just
changes in creatinine and/or urine output and should
include patient risk factors, susceptibilities, and expo-
sures. Incorporation of patient characteristics would
allow for tailoring of AKI alert thresholds and may
even create opportunities for identification of AKI in
circumstances where it might have previously gone un-
detected. This would provide the potential to decrease
the risk of false positives, while also providing the pos-
sibility of tailoring alerts to individual circumstances
and providing recommendations for possible beneficial
interventions.
Most current AKI alert systems rely on changes in serum

creatinine determined within laboratory information sys-
tems. Given the current challenges of integrating real time
physiological measurements, the adoption of additional
data inputs has been slow and most efforts have instead fo-
cused on ensuring an accurate estimate of the change in
creatinine [47]. Recognizing that the extent of adoption of
EMRs and their current abilities are highly variable across
health care systems and countries, we still believe that
EMRs provide great potential to provide contextual infor-
mation that could be used to inform AKI alerting systems.
Potential sources of data to improve AKI alerting would in-
clude current medications, procedures, anthropometric

Fig. 1 An approach to development and refinement of automated AKI detection systems. The scheme illustrates the potential to refine AKI alerts
based on the current KDIGO criteria through the incorporation of additional data elements. Alerts based on serum creatinine are currently
feasible in many EMRs / CISs; however, electronic data enhancements may improve the performance (sensitivity and specificity) of electronic
alerts for AKI in the future. Reproduced with permission from ADQI
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measurements (rapid weight gain suggesting changes in
volume of distribution), hemodynamic data (documentation
of recent hypotensive episodes), time stamps (for events,
procedures), comorbidities as well as historical clinical and
administrative data. The use of natural language pro-
cessing techniques, although still in their infancy in
both development and implementation, provides the
prospect of rapid search through physician and clin-
ician documentation for data to incorporate into an
alert system.
Increasing adoption of electronic order entry systems

also provides an opportunity to improve AKI alerts. The
identification of an extended exposure or the use of mul-
tiple concomitant agents resulting in an alert has been
shown to be effective in lowering the incidence of AKI
in pediatric populations [17]. Changes in anthropometric
measurements could also be used to refine AKI alerts.
Rapid weight increases that result from rapid volume ex-
pansion should result in a drop in creatinine if associ-
ated with stable renal function [46]. Correction of
creatinine changes for fluid accumulation could be used
to refine AKI alerts to increase their sensitivity before a
change in creatinine occurs that would meet the trad-
itional definitions for AKI. Additional information such
as a history of AKI following prior exposure to contrast
or a nephrotoxin on a prior admission may be retained
in EMRs/CIS and used to trigger alerts within order
entry system when the same or similar medication is
prescribed. Information about such past episodes are
typically not readily accessible from discharge summar-
ies but would be available in historical datasets for pa-
tients and best identified using automated systems.
Creatinine change is a late marker of AKI and novel bio-
markers have the potential to identify the onset of kid-
ney injury sooner. Should the development and clinical
validation of any novel AKI biomarker lead to its wide-
spread uptake, incorporation of the biomarker in any
AKI alert system would be essential and could be of par-
ticular use in distinguishing true renal injury from
changes in creatinine that are not accompanied by evi-
dence of renal injury.
Big data approaches to identifying AKI will include

the potential to use repeated laboratory measures while
accounting for biological variability in measurements
and the incorporation of large volumes of non-discrete
data that would require both advanced detection and
interpretation techniques. Continued refinement of the
approach for detection of AKI will require the incorp-
oration of both traditional parameters that we are
aware of and nontraditional parameters that, while
associated with AKI, need not be part of the causal
pathway and may or may not directly inform the inter-
vention that would allow patients to benefit from early
recognition of AKI.

What are the key outputs from automated AKI detection
systems which will be used to improve clinical responses
and interventions?

The output from automated AKI detection systems
can be customized based on the capabilities of EMR/CIS
systems and will need to be tailored to resources avail-
able locally. The most basic AKI alert system would be a
passive display as part of an EMR or laboratory informa-
tion system. Increasing complexity involves the ability to
provide AKI alerts outside of these systems and should
extend to linking alerts to communication systems be-
yond the system creating the alert. We believe that an
ideal AKI alerting system would have the ability to
modulate the delivery method of the alert based on its
severity and need for clinical response. For example, it
may be sufficient for an episode of stage 1 AKI to trigger
the creation of a passive alert within the EMR that
would only be triggered when the user is interacting
with the EMR. The development of stage 2 AKI could
trigger an alert that utilizes a hospital paging system or
text messaging service directly to a specified clinician
caring for the patient.
A second important output of an AKI alert system

would provide a more active and interruptive alert during
specific actions by clinicians. This form of an alert more
closely ties AKI detection to recommendations provided
in clinical decision support systems, such that the alert is
brought to the attention of a user performing specific acts
that may have a detrimental effect on renal function. An
example would include an alert for AKI that is generated
when a nephrotoxic medication is ordered. A simplified
system may only alert the care provider to the presence of
AKI as part of a medication ordering process. More ad-
vanced, predictive systems may be developed that trigger
an alert whenever an intervention would be predicted to
cause AKI or increase the stage of injury. The system
could also make specific recommendations on medication
or appropriate dose modifications [48, 49]. Within any

Box 3 What are the key outputs from automated AKI
detection systems which will be used to improve clinical
responses and interventions?

Consensus Statements:
Basic AKI detection systems should provide alerts to care providers as
close to the time of AKI onset as possible.

More sophisticated AKI alerts should identify the severity of AKI so
that detection can be linked to graded responses and means of
notifying care providers.

AKI alerts could also be delivered when there is progression of AKI
severity or when recovery is detected to allow surveillance, identify
patients for research studies, and aid with resource planning based
on the type of care needed.
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EMR with a clinical decision support system it is import-
ant that human factors are considered to develop strat-
egies to prevent or reduce alert fatigue. Modulating the
intrusiveness of an AKI alert depending on AKI severity
or on the likelihood that an action may cause injury will
increase the effectiveness of the alert, prevent alert fatigue,
and ensure an appropriate response.
A third feature of output from an automated AKI alert

system could include a message to a registry system to
permit tracking of specific AKI quality indicators and re-
source planning. Such a system would also facilitate re-
search by providing information on the presence and
timing of development of AKI in patients, collection of
factors contributing to the alert trigger, and monitoring
for subsequent interventions by the clinicians and even-
tual outcomes. AKI surveillance based on AKI alert out-
puts could also be used to plan for resource allocation
(e.g. need for staff and equipment for dialysis) and identify
patients for enrollment in prospective research studies.

What are the most important limitations and knowledge
gaps regarding automated AKI detection that should be
addressed through further research?
Understanding the limitations and knowledge gaps regard-
ing existing automated AKI alert applications is important
to spur further research and innovation. The developers of
automated AKI alert systems will need to confront and
overcome these current limitations, but more importantly
will need to focus on several novel areas of advancement.
Ideally AKI alert systems will not just detect first onset of
AKI but will continuously and automatically monitor and
assess a patient’s risk for developing AKI. To do so they
will need to integrate in real time the wealth of clinical
data available for a patient and assess both static and dy-
namic data elements of a patient. Advanced AKI alert
systems will need to leverage the information that is avail-
able or will soon be available from systems such as con-
tinuously reporting sensors which are either worn by the
patient or placed in their proximity. Perhaps the next gen-
eration of AKI alert systems will enable a move beyond
binary detection (AKI yes or no) or categorical output
(AKI stage), to provide a continuous score or dashboard
presentation of AKI that encompasses both AKI severity,
rate of progression, and other features of the clinical con-
text. Assessing the performance of new AKI alert systems
will require measuring both the diagnostic capability of a
system and its performance within the larger data acquisi-
tion and processing system. The acceptability of an alert
system to healthcare providers, patients and administrators
will also need to address secondary issues such as the util-
ity of AKI alert systems in research and surveillance. The
implications of AKI alert systems for medical liability will
also need to be defined. Finally, as both the sophistication
and performance of AKI alert systems improves, the

possibility of using data mining techniques and predictive
analytics to discover new associations within clinical data
that better detect or even predict AKI will become real.

Conclusion
In this review we have articulated some principles for de-
veloping automated, real time AKI alert systems within
EMRs / CISs. We encourage alignment and evaluation of
modifications to the most recent consensus definitions
and classification schemes for AKI, with the understand-
ing that an effective AKI alert system must rely upon data
that can be made available within the EMR or CIS. Cur-
rently available applications for the detection of AKI using
EMRs and CISs are in their infancy. Given the prevalence
of AKI, the morbidity and mortality associated with even
mild and moderate degrees of AKI, and the silent nature
of the condition, the importance of developing better tools
to detect cannot be overstated. We hope the consensus
statements developed in this review can help provide a
roadmap for future development.

Additional file

Additional file 1: Table S1. Characteristics of existing AKI alert systems.
(DOC 50 kb)
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