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Abstract

The data contained within the electronic health record (EHR) is “big” from the standpoint of volume, velocity, and
variety. These circumstances and the pervasive trend towards EHR adoption have sparked interest in applying big
data predictive analytic techniques to EHR data. Acute kidney injury (AKI) is a condition well suited to prediction
and risk forecasting; not only does the consensus definition for AKI allow temporal anchoring of events, but no
treatments exist once AKI develops, underscoring the importance of early identification and prevention. The Acute
Dialysis Quality Initiative (ADQI) convened a group of key opinion leaders and stakeholders to consider how best to
approach AKI research and care in the “Big Data” era. This manuscript addresses the core elements of AKI risk
prediction and outlines potential pathways and processes. We describe AKI prediction targets, feature selection,
model development, and data display.
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Abrégé

Les données figurant dans les dossiers médicaux électroniques (DMÉ) sont considérables, tant au point de vue du
volume que du débit ou de la variété. Ces trois caractéristiques et la tendance générale à adopter les DMÉ ont
soulevé un intérêt pour appliquer les techniques d’analyse prédictive des mégadonnées aux données contenues
dans les dossiers médicaux électroniques. L’insuffisance rénale aiguë (IRA) est une maladie qui convient
parfaitement à une méthode de prévision et de prévention des risques: non seulement la définition acceptée de
cette affection permet-elle un ancrage temporel des événements ; mais il n’existe aucun traitement une fois que la
maladie est déclarée, ce qui montre l’importance d’une détection précoce. L’Acute Dialysis Quality Initiative (ADQI) a
convoqué un groupe de travail constitué de leaders d’opinion et autres intervenants du milieu pour se pencher sur
la meilleure façon d’approcher la recherche et les soins offerts aux patients atteints d’IRA en cette ère de
mégadonnées. Le présent article traite des éléments centraux de la prévention des risques et en expose les
procédures potentielles. Nous y décrivons les cibles de prévention de l’IRA, la sélection des paramètres, l’élaboration
des modèles et l’affichage des données.
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Background
The term “big data” has traditionally been used to
describe extraordinarily large and complex datasets. For
many medical practitioners, this concept was initially
epitomized by genomics – the colossal amount of
discrete data generated by high throughput sequencing
techniques required analytic methods ranging far beyond
standard statistical approaches [1]. However, “omics” are
now ubiquitous and “big data” has become vernacular in
medicine [2, 3]. Clinical researchers are beginning to
employ innovative, high-content analytic techniques
capable of integrating and exploring the exceedingly large
and diverse datasets contained within the electronic
health record (EHR).
EHR data, which are generated through the routine

provision of clinical care, are “big” from the standpoint
of volume (number of discrete data points available),
velocity (rate at which new data accumulates), and var-
iety (myriad of data elements available for interrogation)
[3, 4]. These aspects, along with its singular clinical rele-
vance, make EHR data ideal for disease prediction and
risk forecasting. In particular, acute kidney injury (AKI)
is a syndrome which lends itself well to predictive mod-
eling and early risk stratification (Fig. 1). The presence
of a standard, consensus definition allows accurate and
efficient AKI diagnosis [5]; temporal anchoring of the
AKI event creates a distinct pre-disease dataset to which
high-content, high-throughput predictive techniques can
be applied (Fig. 1). Additionally, although AKI has been
associated with poor short and long term outcomes in
both adults and children, no treatments exist to mitigate
or cure AKI once it has developed [6–13]. The ability to
predict AKI in hospitalized patients would provide the
opportunity to modify care pathways and implement
interventions. This, in turn, could prevent AKI events,
thereby reducing mortality, shortening length of stay,
averting the development of chronic kidney disease, and
potentially creating novel quality of care indicators

[13, 14]. In this manuscript, we present evidence in-
formed, consensus driven statements regarding the con-
cepts of primary relevance when considering the capacity
of EHR data to be used in AKI prediction applications.

Methods
This consensus meeting following the established ADQI
process, as previously described [15]. The broad object-
ive of ADQI is to provide expert-based statements and
interpretation of current knowledge for use by clinicians
according to professional judgment and identify evi-
dence care gaps to establish research priorities. The 15th
ADQI Consensus Conference Chairs convened a diverse
panel representing relevant disciplines from five coun-
tries from North America and Europe around the theme
of “Acute Kidney Injury in the Era of Big Data” for a 2-
day consensus conference in Banff, Canada on Septem-
ber 6–8, 2015. During the pre-conference phase of the
meeting, each work group performed a comprehensive
literature search to summarize areas where broad con-
sensus exists, categorize knowledge gaps, and identify fu-
ture priorities for research. Specifically for the AKI
prediction workgroup, the literature search was con-
ducted using the terms “acute kidney injury prediction”,
“acute renal failure prediction”, and “AKI prediction” in
MEDLINE using PUBMED as the search engine. This
search yielded a total of 679 articles for review. Studies
were limited to articles published in 2010–2015 to re-
flect more recent harmonized AKI definitions. Studies
were included if they discussed a prediction model and
did not isolate the analysis to identification of independ-
ent risk factors. Studies were excluded if the focus of the
prediction model was novel biomarkers due to practical
issues in using these markers in current clinical practice.
Thirty-four articles were selected in the initial review.
Upon reviewing the articles, there was a consensus
amongst work group members to include seven add-
itional articles published prior to 2010; these articles

Fig. 1 Signal Identification for AKI Development and Progression. Current consensus AKI definitions allow AKI events to be precisely anchored
from a temporal standpoint, clearly defining a pre-disease state. As the patient progresses from “No AKI” to “AKI,” the pattern of data generated
within the EHR changes, creating an “AKI signal” which can be identified through advanced analytic techniques. This signal can be translated into
a prediction model which is capable of identifying patients at high risk for AKI development. Reproduced with permission from ADQI
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used earlier consensus definitions for AKI, laid the
groundwork for the subsequently developed models, and
were archetype models when published [16–22]. Four
core questions/concepts were crafted for presentation to
the entire ADQI consensus group during the conference
(Table 1). During the conference our work group devel-
oped consensus positions, and plenary sessions involving
all ADQI contributors were used to present, debate, and
refine these positions. Following the conference this
summary report was generated, revised, and approved
by all members of the work group.

Results
Question 1: Across the spectrum of AKI, which event or
events should be targeted for prediction?
Prior to developing a model, it is important to carefully
choose the target for prediction. From the outset, the
consensus group believed it was imperative that, for the
purposes of prediction, AKI be diagnosed and identified
according to the generally accepted consensus definition
and classification scheme, the KDIGO criteria [5]. This
is the most current consensus definition, it harmonizes
the previously proposed AKI criteria (RIFLE, pRIFLE,
and AKIN), and is applicable to both adults and children
[5, 23–25]. In order to build the strongest and most use-
ful predictive model, we would recommend forecasting
AKI events with a horizon of 48–72 h. While it would
be advantageous to identify AKI events as early as pos-
sible, lengthening the event horizon reduces the accur-
acy of the model; we believe the suggested horizon gives
practitioners adequate time to modify practice, optimize
hemodynamics, and mitigate potential injury without
sacrificing predictive power. The group additionally be-
lieved that rather than targeting all AKI, it would be ini-
tially advantageous to predict “moderate/severe” AKI as
defined as KDIGO stage 2 or 3. While this recommenda-
tion is based on evidence-informed opinion, there are
rational justifications for making it. First, this is consist-
ent with the initial ADQI consensus statement which
described the RIFLE criteria; operationally, Stage 1
KDIGO-defined AKI correlates with RIFLE stage “Risk”
[24]. Treating KDIGO-defined Stage 1 AKI as “AKI
risk,” allows it to become a subsequent predictor for

moderate/severe AKI. Second, AKI predictors or risk
factors have traditionally been more strongly associated
with higher severity AKI [26, 27]. The greater strength
of association will likely result in more powerful predict-
ive modeling by reducing confounding; the development
of robust models is of paramount importance for these
initial big data attempts at predictive AKI analytics. Fi-
nally, while “mild” Stage 1 AKI has been associated with
poorer outcomes, the association with these outcomes is
significantly stronger for Stages 2/3 [6, 11, 27–31]. This
ability to strongly link AKI with outcomes has an add-
itional benefit as it will allow the models to predict not
only AKI, but AKI-related outcomes as well. In one po-
tential scenario proposed by the workgroup, a model
would provide predictive AKI risk up until the occur-
rence of AKI then, at the inflection point of AKI devel-
opment, it would provide a one-time predictive risk for
patient-centered, clinically important outcomes. The
workgroup acknowledges that if only Stage 2 and 3 AKI
are targeted for prediction, early simulative subanalysis
should be performed to evaluate the suitability of this
approach.

Consensus Statement For the purpose of developing
AKI prediction models using the data contained within
the EHR, the prototype should predict risk both for de-
veloping KDIGO-defined Stage 2/3 AKI as well as
patient-centered and clinically important AKI-related
outcomes.

Question 2: For the purposes of predictive modelling,
what paradigm should be used for variable identification
and selection?
Prior to applying “big data” analytics to AKI prediction,
the consensus group believed it was important to ap-
praise the AKI prediction models which had been devel-
oped to date. Based upon our predictive goals outlined
in the prior section, model variables of particular interest
would be causally and/or temporally associated both
with the development of AKI and with AKI-related
outcomes.
A number of investigators have approached AKI pre-

diction using standard multivariable regression method-
ology [17–22, 32, 33]. Models have been developed for a
variety of patient populations with a particular emphasis
on cardiac surgery patients [34, 35]; notably, less work
has been performed in general critical care populations
despite the fact that they are also at high risk for AKI
[36–38]. Even less established are prediction models in
non-critically ill patients. However, given the ultimate
goal of preventing AKI, we also need to consider pre-
dictive modeling in these populations in order to identify
high-risk patients as early as possible [39, 40]. A fairly
comprehensive list of studies and variables are shown in

Table 1 Core Questions for ADQI Consensus Group

Question 1 Across the spectrum of AKI, which event or
events should be targeted for prediction?

Question 2 For the purposes of predictive modelling,
what paradigm should be used for variable
identification and selection?

Question 3 What is the optimal technical approach for
model building and EHR integration?

Question 4 What is the optimal output of an architype
predictive model?
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Table 2 Selected list of Predictive Models Currently Available in the Literature

Study Population and sample Size Variables in Model Outcome

Aronson A et al, 2007 [91] CABG patients
n = 2381

Age, preoperative CHF, prior MI,
preexisting renal disease, intraoperative
inotropes, intraoperative intra-aortic
balloon pump, bypass time, pre-
operative pulse pressure.

postoperative creatinine ≥2
mg/dL w/ increase ≥0.7
mg/dL from baseline or dialysis

Basu RK et al. 2014 [29] Pediatric critically ill patients
n = 584 total in 4 cohorts

Vasopressor/inotrope use, invasive
mechanical ventilation, percent
fluid overload, change in
creatinine clearance

KDIGO Stage 2/3 AKI

Brown JR et al, 2007 [92] CABG patients
n = 8363

Age, female, diabetes, peripheral
vascular disease, CHF, hypertension,
prior CABG, preoperative IABP,
elevated WBC count

eGFR <30 ml/min/1.73 m2

Chawla LS et al, 2013 [37]
Koyner JL et al, 2015 [93]

Critically ill patients
n = 77

Urine output measurement Progression to AKIN stage III

Chong E et al, 2012 [94] Patients w/ eGFR <60
ml/min/1.73 m2 undergoing
percutaneous coronary
intervention n = 770

Age, baseline eGFR, post-percutaneous
coronary intervention, creatinine kinase,
contrast volume

Contrast-induced nephropathy
defined as 25 % or 0.5 mg/dL
increase from baseline creatinine
within 48 h after PCI

Cruz DN et al. 2014 [95] Critically ill patients n = 506 Age, diabetes, cardiovascular disease,
chronic kidney disease, hypertension,
obesity, hyperbilirubinemia, cerebrovascular
accident, AIDS, cancer, hypotension, high-risk
surgery, nephrotoxin exposure, sepsis

AKI stage II and III defined by AKIN

Demirjian S et al, 2012 [44] Cardiac surgery patients
n = 25,898

gender, race, weight, pulmonary disease,
CHF, diabetes, hypertension, type of surgery,
previous cardiac surgery, emergency surgery,
eGFR, albumin, bicarbonate, sodium, BUN,
hemoglobin, platelet count, bilirubin, BMI,
potassium, CPB time, intrasurgical transfusion
or vasopressor, intrasurgical UOP

AKI requiring dialysis

Forni LG et al. 2013 [39] Patients admitted to an
acute medical unit n = 3707

Age, alertness scale, chronic kidney disease,
congestive cardiac failure, diabetes, liver disease

AKI defined per KDIGO
guidelines

Gao et al.2014 [96] Coronary angiography
intervention n = 3945

Age, hypertension, acute MI, heart failure,
use of intra-aortic balloon pump, decreased
glomerular filtration rate, contrast volume

Increase in serum creatinine
level

Grimm JC et al 2015 [97] Lung transplant
n = 10,693

Race, sarcoidosis, diabetes, weight, baseline
renal function, Kanofsky performance score,
previous ICU stay, ECMO, days on list, double
transplant

AKI requiring dialysis

Gurm HS et al. 2013 [98] Patients undergoing a
percutaneous coronary
intervention n = 68,753

age, weight, height, percutaneous coronary
intervention status and indication, coronary
artery disease presentation, cardiogenic shock,
heart failure, ejection fraction, diabetes, CKMB,
creatinine, hemoglobin, troponin I and T

≥0.5 mg/dl increase in
serum creatinine level from
baseline, RRT receipt

Ho J et al, 2012 [99] Cardiac surgery patients
n = 350

Bypass time, baseline eGFR, euroSCORE,
postoperative serum creatinine

AKI by AKIN criteria

Hong SH et al. 2012 [100] Living donor transplant
recipients
n = 429

age, MELD, hypertension, platelet count,
surgical time, packed red blood cell transfusion,
lactate, furosemide dose, calcium chloride dose,
phosphate level

Renal failure was defined
according to RIFLE

Kane-Gill et al. 2015 [38] Elderly, critically ill
n = 25,230

age, gender, race, eGFR, heart failure, diabetes,
hypertension, admission type (medical vs surgical),
requirement for vasopressors or mechanical
ventilation, sepsis, hypotension, nephrotoxic drugs.

AKI by KDIGO criteria

Kim JM et al. 2014 [46] Liver transplant recipients
n = 153

Hepatic encephalopathy, deceased donor liver
donations, MELD score,intraoperative blood loss,
and indication for liver transplantation

Patients who needed
renal replacement therapy
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Table 2 Selected list of Predictive Models Currently Available in the Literature (Continued)

Kim MY et al, 2011 [101] Isolated off-pump CABG
patientsn = 448

High systolic blood pressure, low baseline
eGFR, coronary angiography less than 7
days prior to surgery

AKI by AKIN criteria

Kim WH et al. 2013 [102] Aortic surgery with
cardiopulmonary
bypass n = 737

Age, preoperative glomerular filtration, ejection
fraction, operation time, intraoperative urine output,
intraoperative furosemide use

AKI defined by RIFLE

Kristovic D et al. 2015 [26] Cardiac surgery patients
n = 1056

age, atrial fibrillation, CHF classification,
previous cardiac surgery, creatinine,
endocarditis, weight, gender, COPD, bypass

AKI stage by KDIGOAKI
requiring dialysis

Legrand M et al. 2013 [103] Patients with endocarditis/
cardiac surgery with
cardiopulmonary bypass
n = 202

Age, gender, pre-existing comorbidities, presence of
shock, systemic emboli, NYHA classification, hemoglobin,
baseline creatinine, need for mechanical ventilation, char
acteristics of infection/surgery, use of nephrotoxic agents

Development or progression of AKI in
the 7 days following surgery. AKI
defined per AKIN

McMahon GM et al. 2013
[104]

Rhabdomyolysis within 3
days of admission n = 2371

Age, female sex, cause of rhabdomyolysis,
initial creatinine, creatinine phosphokinase,
phosphate, calcium, and bicarbonate

Composite endpoint:
Renal replacement therapy
or mortality

Medha et al. 2013 [41] Trauma patients n = 4396 hepatic dysfunction, urea, glucose, pulmonary
dysfunction, severity of injury

serum creatinine level
>2.0 mg/dL during the
hospital stay

Meersch M et al. 2014 [42] Patients undergoing cardiac
surgery with bypass n = 50

Diabetes, severity of illness, ejection fraction,
baseline serum creatinine, cross-clamp time,
chronic obstructive pulmonary disease

AKI defined by RIFLE or
AKIN together

Mehran R et al, 2004 [22] Patients undergoing
percutaneous coronary
interventions n = 8357

Hypotension, intra-aortic balloon pump, congestive
heart failure, age >75 years, anemia, diabetes,
contrast volume, baseline creatinine or eGFR

Increase of ≥25 % or
≥0.5 mg/dL in pre-PCI
serum creatinine at 48 h
after PCI

Mehta RH et al, 2006 [32] CABG and/or valve surgery
patients n = 449,524

Preoperative creatinine, age, race, type of
surgery, diabetes, shock, NYHA class, lung
disease, recent myocardial infarction, prior
cardiovascular surgery

AKI requiring dialysis

Ng SY et al. 2014 [105] Cardiac surgery patients
n = 28,422

obesity, infective endocarditis, cardiac procedure,
preop creatinine, diabetes, urgency status, eGFR,
CHF, age, cardiogenic shock, IABP use, bypass
time, non-RBC blood product use, gender,
reoperation for bleeding, hypercholesterolemia,
hypertension, and respiratory disease

Increased creatinine >
200 mmol/L (2.26 mg/dL),
≥ 2x increase in creatinine
over baseline, a new receipt
for RRT

Palomba H et al. 2007 [18] Cardiac surgery patients
n = 603

age, serum creatinine, glucose, heart failure,
combined surgeries, cardiopulmonary bypass time,
cardiac output, central venous pressure

creatinine > 2.0 mg/dl
or increase of 50 %
abovebaseline

Park MH et al. 2015 [106] Living-donor liver
transplant n = 538

weight; diabetes, alcoholic liver disease, albumin
<3.5 mg/dL, model for end-stage liver disease score,
child-turcotte-pugh- estimated graft to recipient body
weight ratio, operation details, calcineurin inhibitor use
without mycophenolate

AKI as defined by RIFLE

Rahmanian PB et al, 2011
[107]

Cardiac surgery patients
n = 2511

Pulmonary hypertension, preoperative renal
dysfunction, bypass time, peripheral vascular disease,
recent MI, atrial fibrillation, age, CHF, diabetes

AKI requiring dialysis

Rodriguez et al. 2013 [108] Severe Rhabdomyolysis
n = 126

Albumin, metabolic acidosis, prothrombin time,
peak creatinine phosphokinase

RIFLE category

Romano TG et al. 2013
[109]

Orthotopic liver transplant
patients n = 114

MELD increase≥ 0.3 mg/dL
in serum creatinine

Schneider DF et al, 2012
[110]

Critically ill burn patients
n = 309

age, sex, race, % body surface area burned, burn
mechanism, intubation, inhalation injury, NROF,
fraction of predicted Parkland resuscitation, early
transfusion, weight, Charlson Score, drug abuse,
smoker, number of preadmission medications,
ACEI/ARB, diuretic, NSAIDs, methamphetamine,
lowest hematocrit, potassium, sodium, pH, glucose,
base deficit, lowest mean arterial pressure,
temperature

AKI defined using
RIFLE classification
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Table 2. Variables from patient-specific models are often
constrained to the clinical care specific to that popula-
tion; for example, models for cardiac surgery patients in-
clude cardiopulmonary bypass time and number of
bypass grafts. However, a number of variables commonly
appear across many of the existing models (i.e., age,
baseline renal function, medications, diabetes, hyperten-
sion, etc.); these variables may be better suited for a gen-
eralized model. Most models had modest predictive
success with area under the receiver operating curves
(AUC) approximating 0.75; a few models reached AUCs
as high as 0.9, although the sample sizes were smaller
and there was a pre-selection of high-risk patients
[41–44]. Regardless of their ultimate utility in defining
predictive variables, these models give us a minimum
AUC threshold to target for successful model
development.

As stated, ideal variables would be associated with
both the development of AKI and patient centered, clin-
ically important outcomes following AKI. Notably, many
of the same risk factors described in Table 2 as predict-
ing AKI occurrence have also been shown to predict
AKI-associated mortality [36, 45–51]. In addition to
these factors, positive fluid balance has been associated
with increased mortality in both pediatric and adult pa-
tients with AKI [52–56]. Receipt of renal replacement
therapy (RRT) is another outcome worth forecasting
after AKI has occurred. Although most of the published
clinical scores predicting receipt of RRT have focused on
post-cardiac surgery patients, they have identified many
of the same predictors for AKI occurrence in broader
populations [17, 19, 32, 34]. AKI is known to be asso-
ciated with the development of CKD and ESRD, there-
fore, prediction of these long-term outcomes among

Table 2 Selected list of Predictive Models Currently Available in the Literature (Continued)

Simonini M et al. 2014 [111] Elective cardiac surgery
n = 802

Age, gender, ejection fraction, hypertension,
diabetes, renal function, reoperation cardiac
surgery, surgery type

AKIN stage II/III AKI

Slankamenac K et al.
2013 [112]

Liver surgery n = 549 Need for blood transfusion, cirrhosis, oliguria,
hepaticojejunostomy, use of colloids, use of
diuretics, use of a bolus of catecholamines

R of RIFLE

Soto K et al. 2013 [40] Patients admitted from
the emergency department
n = 616

Age, kidney susceptibility stage, chronic
heart failure, hypertension, cardiovascular
disease, and diabetes mellitus

New onset AKI per
RIFLE

Thakar CV et al, 2005 [17] Cardiac surgery patients
n = 31,677

gender, CHF, ejection fraction, preop intra-
aortic balloon pump, COPD, diabetes, previous
cardiac surgery, emergency surgery, type of
surgery, creatinine >1.2

AKI requiring dialysis

Tsai TT et al. 2014 [113] Percutaneous coronary
intervention n = 947,012

Age, CKD, prior cardiovascular disease, acute
coronary syndrome, cardiac arrest, anemia, CHF,
intra-aortic balloon pump prior to procedure,
cardiogenic shock

AKI defined by AKIN
and AKI requiring dialysis

Wang M et al. 2013 [114] Patients with hemorrhagic
fever (Hantann virus) n = 112

age, gender, presence of shock, proteinuria,
hematuria, platelet count, leukocyte

Required dialysis or
increasedserum creatinine
≥354 mmol/L

Wang Y et al. 2013 [115] Patients hospitalized with
acute heart failure n = 1709

Age, ≥ 3 previous hospital admissions for
acute heart failure, systolic blood pressure
<90 mmHg, serum sodium <130 mmol/L,
heart functional class IV, proteinuria, SCr
≥ 104 mmol/L, intravenous furosemide dose
≥ 80 mg/day

increase in serum creatinine
(SCr) of≥26.4 mmol/L
or≥ 50 % within 48 h.

Wijeysundera DN et al,
2007 [19]

Cardiac surgery patients
n = 20,131

Preoperative eGFR, diabetes, ejection fraction,
previous cardiac surgery, procedures other
than isolated CABG or ASD repair, non-elective
procedure, preoperative intra-aortic balloon
pump

AKI requiring dialysis

Wong B et al. 2015 [116] Cardiac surgery patients who
developed AKI n = 2316

Age, weight, preoperative creatinine, gender,
preoperative intra-aortic balloon pump, ejection
fraction, type of surgery, previous cardiac surgery,
diabetes, COPD, cardiopulmonary bypass time,
clamp time, pump time, number of bypass grafts

AKI Stage 1, stage 2,
stage 3

Xu X et al, 2010 [117] Liver transplant recipients
n = 102

age, MELD score, preoperative creatinine, BUN,
sodium, and potassium, intraoperative UOP,
intraoperative hypotension, intraoperative
noradrenaline

Serum creatinine >1.5 mg/dl
with an increase of 50 %
above baseline and/or RRT
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AKI survivors should also be targeted; archetype vari-
ables associated with these outcomes are shown in
Table 2 [8, 57–68].
While the group believed it was imperative that previ-

ously identified AKI predictors be reviewed, to truly har-
ness the power of the EHR a de novo approach which
considers the entirety of the dataset is required (Fig. 2).
There are a number of potential data-mining, machine
learning approaches to this sort of feature selection
which could be used alone or in combination (Table 3).
One method, neural networks, employ non-linear
models that feed a set of predictors (inputs) into a hid-
den layer of units which then use a non-linear trans-
formation to send a value to an output; the prediction is
a summation of all the values coming from the hidden
layer [69]. This non-linear technique is sometimes de-
scribed as a “black box” method since it’s difficult to de-
termine the form of the final predictive model. However,
this is of little concern in feature selection, as identifying

the group of the most influential variables is of interest.
A second potential method is that of random forests
which is an extension of the binary split classification
tree approach [70, 71]. Multiple trees are created by
allowing a random number of the predictor variables to
be considered at each split of each tree. This results in
trees that cover a larger solution space, potentially in-
creasing accuracy. Another set of methods is cluster ana-
lysis, a group of unsupervised learning techniques.
Observations are grouped according to their similarities
in a multidimensional space, based on a distance meas-
ure [72]. The resultant clusters can then be further ex-
plored to see which ones have a very high or a very low
incidence of the outcome measure. A similar method is
a technique known as self-organizing maps, in which
unsupervised neural networks map a highly dimensional
space onto a two-dimensional map [73, 74]. Principal
components analysis and support vector machines are
two similar feature selection methods which could be

Fig. 2 Development of AKI Prediction Algorithm. The first step in the development of an AKI prediction model is feature selection. This process
would evaluate known risk factors identified from the literature and would use machine learning techniques to identify novel risk factors from
amongst the EHR dataset. All appropriate features would be considered for inclusion in the actual prediction model which would weight
individual variables to create a generalizable model. This model would be validated using a different (or subset of existing) dataset. Once
validated, the model could then be integrated directly into the EHR to allow real time AKI alerting. Reproduced with permission from ADQI

Table 3 Big data modeling techniques

Method Advantages Disadvantages

Neural Networks Discover non-linear relationships. Can assess multi-level
interactions

“Black Box” to clinicians; hard to implement into a DSS*

Random Forests Finds most probable solution set; robust against scaling
influences

Not always best in terms of prediction; hard to implement
into a DSS

Cluster Analysis Finds groups of very similar patients; exploratory analysis Unsupervised technique

Principal Components
Analysis

Uncovers the variables contributing the most to outcome
variation

Not amenable to binary outcomes; assumes additive
relationship

Support Vector Machines Robust against statistical assumptions Difficult to implement into a DSS
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employed in this space [75, 76]. Although this is not a
comprehensive list of the methods that might be consid-
ered, these are excellent exemplar techniques which can
be used to identifying novel features and transform
known risk factors.
In summary, the suggested approach highlights our

belief that accurate prediction of AKI takes precedence
over finding putative variables, though the suggested ap-
proaches do not preclude discovery of new risk factors
for AKI. Additionally, while it is useful to review previ-
ously established variables associated with AKI from
existing studies, application of high content, machine
learning techniques to the complete EHR dataset will be
the driving force behind variable selection. The ability to
dynamically identify and integrate variables from
amongst innumerable patient-level data elements repre-
sents a marked departure from classically developed
model building approaches.

Consensus Statement Variables included in prototype
AKI prediction models should be identified using a hy-
brid approach; risk factors which are well established in
the literature should be considered along with novel risk
factors identified via machine learning techniques. Ap-
plication of these unsupervised approaches should take
precedence as it allows feature selection to be dynamic,
thereby generating the strongest prediction from existing
data elements.

Question 3: What is the optimal approach for model
building and EHR integration?
Once the aforementioned hybrid variable selection
process was complete, previously identified risk factors
and potential predictors discovered via big data tech-
niques could be considered for inclusion in a model. In-
clusion criteria could include:

1. Evidence over multiple studies that the risk factor
was a powerful predictor of AKI

2. Identification by machine learning techniques to be
predictive of AKI and outcomes

3. Available discretely within the EHR to allow easy
integration

4. Reliably/accurately recorded within the EHR

Variables need not necessarily be universal. For ex-
ample, pediatric or ICU specific variables could be con-
sidered; the model could be dynamic with certain
features active/inactive in certain locations/populations.
Additionally, it is possible that effect modification of the
variables could vary between patients or populations; the
presence or absence of certain variables might change
the weighting of the residual variables.

While we advocate for a big data approach to iden-
tify novel predictive features, initially we would rec-
ommend that the predictive model itself be built
through more standard statistical modelling. This is
primarily due to the inherent limitations of current
EHR architecture. EHRs are built to optimize patient
level data review and display; they are not necessarily
organized to optimize cohort level analysis [77]. This
makes implementation of a resource-intense machine
learning algorithm into the EHR itself technically and
operationally problematic. Therefore, once the vari-
ables were identified by literature search and machine
learning methodology, it is likely that a logistic re-
gression model, discriminant analysis, or decision tree
algorithm would be employed to predict the develop-
ment of AKI [71, 78, 79]. Data could accumulate on
a “rolling window” concept and a prediction could be
generated at a pre-specified interval (hourly, every
two hours, every shift); alternatively, the model could
generate a score in real time as each new data value
is received. One conceptual approach would allow
this model to generate a risk score ranging from 0 to
100; low scores would be indicative of minimal AKI
risk and high scores would be indicative of significant
AKI risk. Scoring on a continuous scale would allow
both low and high thresholds to be set. In many
ways, the ability to identify patients at negligible AKI
risk could be as valuable as identifying patients at
great AKI risk. An algorithm such as this could be
active up until the time the patient develops AKI. At
that inflection point, a final, one-time score could be
generated which would be reflective of the patients
AKI-related outcome risk, thereby allowing practi-
tioners to identify patients at great risk for poorer
outcomes.
It is important to note that while the EHR has op-

erational and structural limitations to the application
of big data techniques, alternatives should be available
in the future. For example, many clinical data ware-
house (CDW) solutions have become available for
analytic purposes [80–83]. These CDWs represent
“shadow” EHRs in which data has been manipulated,
linked, and stored in a fashion conducive to high-
content, high-throughput analytics [82, 83]. Once
such CDWs become as ubiquitous as EHRs, big data
approaches could be applied directly to the CDW en-
vironment. However, to truly exploit the full capacity
of the EHR and EHR data, a more progressive ap-
proach is necessary. The EHR has transcended its ori-
ginal purpose; although it is currently a care
monitoring and delivery tool, it has the potential to
revolutionize clinical care paradigms. To achieve this,
data architecture must become as important as data
entry and analytics must be prioritized. The creation
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of a true “learning EHR” could be the key to higher
quality, lower cost care delivered with greater efficacy
and efficiency.

Consensus Statement While machine learning tech-
niques should be used to identify novel AKI risk factors,
prototype AKI prediction models should be built using
more standard statistical weighing techniques to allow
effective EHR integration. However, analytics should at-
tain higher priority and the operational limitations of the
EHR should be addressed. Consequently, subsequent
predictive iterations should progress towards full EHR-
integration of high content analytic techniques.

Question 4: What is the optimal output of an archetype
predictive model?
After the rigorous steps undertaken to select variables
and develop a predictive model, we propose that any
prototypes be directly integrated into the EHR for auto-
mated real time usage. The increasingly widespread use

of EHRs across hospitals has substantially increased the
amount of data available to providers [84]. However,
while EHRs purportedly improve patient outcomes,
studies that have validated these benefits are lacking
[85–87]. Several potential EHR-related barriers to im-
proving outcomes have been identified and include in-
formation overload, ineffective data display, and poor
implementation processes [88–90] Therefore, it is im-
perative that an AKI prediction model not only harness
the power of the EHR data set, but also that it effectively
conform to the strengths and limitations of EHR pro-
cesses. Ideally, AKI risk prediction tools should directly
extract relevant data predictors in real-time, deliver a
relevant “renal risk score,” and provide feedback to prac-
titioners regarding potential actionable items. One po-
tential a concept would be to create a “renal dashboard”
(Fig. 3a and b).
The main objective of the renal dashboard would be

to provide feedback on the absolute risk of developing
moderate to severe AKI within the next 48–72 h as well

Fig. 3 a and b Renal Dashboard. Once the risk prediction model is developed and validated, it is important to determine how to deliver the
information to providers. One possible output might be a “Renal Dashboard” (a). The display would visually display the time trend of AKI as well as a
numeric value (with confidence intervals) for the current risk. For any patients who develop AKI, information about outcome risk would be provided; in
this example, the outcomes of interest are need for RRT, mortality, development of ESRD, and likelihood of renal recovery. The dashboard could be
dynamic, allowing providers to drill into the risk score. In the patient level display (b), information would be available about how the risk had
trended over the past 24 h as well as what factors were affecting the current risk score most significantly. In this example, AKI risk information is
provided in a visually stimulating manner with a dynamic component capable of driving care modification. Reproduced with permission from ADQI
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as to present information about the clinical features con-
tributing to these risks. The electronic dashboard format
could be tailored for a particular provider, service, or
unit. Each patient could have a risk score (in percentage)
with an accompanying confidence interval (Fig. 3a); a
confidence interval component would give practitioners
an idea of how certain the AKI risk was at any given
time. In addition to absolute risk scores, the dashboard
could be configured to display time trends in risk scores
which might give a better sense of evolving AKI risk.
Time trends should be displayed in a visually stimulating
fashion (i.e., sparklines) to demonstrate the dynamic na-
ture of real-time AKI-risk. A fully optimized dashboard
might allow providers to “drill into” the risk score
(Fig. 3b), revealing a magnified view as well as more de-
tailed data on the most recent predictors that contrib-
uted to a significant increase in risk score. The
identification of specific vital sign indicators, laboratory
parameters, medication administration data, or other
clinical factors that contributed directly to a rise in AKI
risk will help guide providers toward implementing risk
reduction actions.
A secondary objective of the dashboard might be to

provide updated feedback on the risk of adverse out-
comes associated with AKI once it actually develops.
Early iterations of this sort of prototype may be lim-
ited to one-time scores for AKI-related outcomes.
However, at the inflection of AKI development, separ-
ate risk scores for mortaltiy, receipt of RRT, CKD,
and renal recovery could be provided. As an example,
the ability to predict receipt of RRT may help pro-
viders plan for appropriate patient disposition (i.e.,
transfer to ICU for CRRT) and timely procedures
(i.e., placement of dialysis catheter). Prediction of
long-term renal and cardiovascular outcomes could
be especially useful at the time of discharge, facilitat-
ing appropriate referrals, vascular access planning,
and long-term care goal discussions.
We anticipate that a renal dashboard such as this

could be displayed either directly within the system or
independently from the EHR platform. Although infor-
mation would be directly fed to the prediction model
from up-to-date EHR data, each healthcare system, ser-
vice, or unit may tailor the physical setting of the dash-
board display to fit their workflows. For example, in an
ICU setting where incidence of AKI may be as high as
40 %, the renal dashboard may be displayed on comput-
erized workstations on wheels so that providers can in-
corporate the real-time information and feedback
provided by the renal dashboard into their multi-
disciplinary rounds [31]. For other services and locations
where incidence of AKI is much lower - for example, the
labor and delivery unit - the renal dashboard may serve
in a more adjunctive role, to be monitored by a

specialized “renal response” team (akin to traditional
“rapid response” teams).
The consensus group acknowledges that numerous

such dashboards could be created for similar medical
conditions to assist with risk stratification. The
approach described in this manuscript is designed to
underscore the utility of a dashboard scheme. We
realize that developing multiple dashboards for
individualized diseases is unlikely to be efficient or ef-
fective in the long run. Operationally, a superior ap-
proach would be to seamlessly integrate a renal
dashboard component into existing dashboard which
is used to evaluate a range of quality and perform-
ance indicators.

Consensus Statement The output from predictive
models should be delivered to practitioners in a fashion
that is cognizant of EHR limitations and strengths, mini-
mizes workflow inefficiency, and maximizes utility.

Conclusion
The EHR dataset is a massive collection of clinically
relevant data elements generated through the routine
provision of patient care. Its size and complexity lend
themselves to “big data” techniques; these in turn offer
the potential to use the entire EHR dataset to predict
AKI and AKI related outcomes. Variable selection
should employ high-content, unsupervised analytic tech-
niques. Developing predictive models should focus on
EHR integration and optimize the output for clinical
utility.
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