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PREDICTION METHODS FOR 1/fβ PROCESSES WITH APPLICATION

TO THE ANALYSIS OF STRIDE INTERVAL TIME SERIES

Etienne Zahnd, M.S.

University of Pittsburgh, 2016

The power law in the frequency spectrum S(f) = 1/fβ allows for a good representation of

the various time evolutions and complex interactions of many physiological processes. The

spectral exponent β can be interpreted as the degree of fractal characteristic which in turn

makes it some sort of biomarker that gives an idea of the relative health of an individual.

This thesis presents a thorough investigation of prediction of the fractal nature of the process

with specific consideration given to experimentally measured gait stride interval time series.

The goal is to consider the accuracy of several time series prediction methods such as the

neural networks, regression trees and bagged regression trees learning method. To test these

methods we simulated stride intervals time series as 1/fβ processes. This investigation is to

complement previous analyses on predicting the process with which this study compared. It

was shown as result of the research that the greatest number of points one can accurately

predict is between five and fifteen using the regression tree,the feedforward neural network

and the AR model.

Keywords: prediction, stride interval, time series, 1/fβ process, human gait, neural net-

works, regression trees, autoregressive model.
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1.0 INTRODUCTION

1.1 OVERVIEW OF THE HUMAN GAIT

Postural control is no longer considered simply a summation of static reflexes but, rather,

a complex skill based on the interaction of dynamic sensorimotor processes [1]. Human

walking, or gait, is heavily influenced by external stimuli and it is controlled and regulated

by physiological systems and parameters. One would simply describe the human gait as

being the continuous motion of the lower body segments in a repetitive and periodic manner

as to not lose balance. That is the concept everyone experiences on a macro scale although

there is much more to human locomotion than simply moving one’s legs since it is generated

thanks to a complex neurological wiring system [1]. Regardless, the following comments on

the human gait is a simplified overview of the various phases of an entire completed cycle

of the physical process on the macro scale. Simplifying this process allows to easily define

the gait process by dividing the cycle in different functional phases which would in turn

allow to easily pin point a specific physiological or physical task for analysis purposes [2, 3].

Each of these phases allow for an enhanced visualization of one completed gait cycle, further

allowing to distinguish the various processes in motion such as control, feedback and external

mechanisms. In this case, the gait process starts off with an initial contact phase where the

heel of the foot lands on a surface and ends with the same foot doing the same contact phase

and thus another cycle instantly begins. This entire process is human locomotion briefly

explained [2–5]. The cycle of the gait process can be broken into eight individual phases, an

overview of these (a)-(h) can be found below and it is illustrated in Figure 1.1.
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Figure 1.1: Human Walking Kinematics. The thick red line represents the leg which corre-

sponds to the phase below, the blue line is the other leg

(a) Initial Contact: The initial contact phase when an individual’s foot hits the floor with

the heel. Once in this position, the limb is ready to take on the force that will be applied

to it, resulting in the subsequent phase [1–3].

(b) Loading Response: The Loading Response phase begins after the foot of an individual

in motion is initially applied on a surface and it ends when the other foot is lifted from

the floor. In this state, the first limb flexes in order to absorb the shock so that it can

maintain maximum surface contact between it and the surface [1–3].

(c) Midstance: This is the first phase where the foot that made the initial contact is in full

support of the body of the individual and the other leg is swinging from back to front.

The first foot is still in full contact with the surface and the knee is extending [1–3].
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(d) Terminal Stance: In the Terminal Stance phase, the first leg is still supporting the body

and it is the last phase where the foot is in full contact with the floor. The body moves

forward and the leg is now placed behind the individual [1–3].

(e) Pre-swing: The Pre-swing phase is the last phase where the foot that made the initial

contact is still in contact with the surface. In this stance, only the toes are in contact in

order to prepare for the swinging phase [1–3].

(f) Initial Swing: The Initial Swing phase is similar to the loading response phase except

that the feet state are inverted. The leg swing begins with the initial swing, the first

of three phases, where the leg is still behind the individual. The toes leave the surface

rendering the leg airborne, ideal for swinging. This allows to carry the body weight

forward, continuing with the motion[1–3].

(g) Mid-swing: The Mid-swing phase, as its name suggests, is the phase where the leg is in

the middle of the swing period. The knee remains flexed however the hip carries the leg

through the end of the swing [1–3].

(h) Terminal Swing: The Terminal Swing phase is the last phase of the swing period and

the last one of the entire cycle of the gait process. It ends when the foot hits the floor

again. The limb is now in front of the individual, the knee fully extends and now the

body is in position to reiterate the whole cycle again [1–3].

As previously mentioned, the separation of the entire gait process into eight phases

described above allows a more clear identification of each phase’s specific functional objec-

tives and the unique synergistic motions of all the physical components [1–5]. Past studies

conducted relating to the gait process may have considered one or more specific events which

may occur between or within each of the phases described hereinabove, mainly in a non-

macro scale [1,2]. The issue with the eight phase cycle of the gait process given by VT Inman

is that it is not entirely precise and not describe every step for any case possible [3]. It was

mentioned that the first step of the cycle is defined by the heel of an individual touching a

surface [3] however this does not concern every member of the population. Some may have

a dysfunctional gait where their heel may never enter into contact with a surface, or may do

so during the cycle when the person falls and catches himself during a swinging period for

example and the foot hits the ground [2,4,5]. VT Inman introduced the eight phase process
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as a way to resolve any misunderstandings that dysfunctional gaits may present to analysis

of unique abnormalities [3]. In the following section, an overview of the decline in human

gait will be done where the causes and their effects on locomotion will be discussed.

1.2 DECLINE IN GAIT

The human body is comprised of many physiological systems which interact in a nonlinear

manner [6–14]. As a result, changes in functional outcomes in a given physiological system

may be caused by events in one or more systems in the body [6, 7, 15]. There exist many

possible causes that affect the gait process: aging, diseases, genetic disorders and trauma to

name a few. These causes have various affects, ranging from benign to significant [4, 5, 16–

18]. That complex system is the locomotor system, which influences directly the human

gait process. It is consists of many physiological systems, mainly the central nervous system

mainly [4,5]. Without going to much into detail, the locomotor system is itself composed of

the cerebellum, the motor cortex, the basal ganglia and various sensors [4,5]. The locomotor

system is very much similar to a control system and can thus be compared to one. Indeed,

the cerebellum and basal ganglia receive information for processing and send signals via the

motor cortex. Current state information and feedback are provided by internal and external

inputs different physiological sensors [4,5,7]. When an individual has a healthy gait, a stable

walking pattern is drawn and maintained thanks to the functionality of all the components

that compose the locomotor system.

As mentioned hereinabove, there exist elements that may alter the locomotor system’s

ability to correctly and accurately react to changes in the gait process [18]. Hausdorff

et al mentions that these neurophysiological changes include for example decreased nerve

conduction velocity, decreased proprioception, muscle strength, loss of motor neurons, and

central processing capabilities which are notable declines due to advancing age and are

therefore natural causes that affect many seniors [18]. However, aging is not the only cause of

declining gait, neurodegenerative diseases affect a wider range of people in the age spectrum.

Amyotrophic Lateral Sclerosis (ALS) is one of them. It significantly affects the function of
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the motor neurons of the cerebral cortex, brain stem, and spinal cord [17]. Muscle weakness,

increased fatigue and decreased endurance are characteristic of ALS [19–21]. These changes

in the gait process directly influence the walking velocity by significantly reducing it and

therefore increasing the stride interval time. Other neurodegenerative diseases that affect

the locomotor system, more precisely in the basal ganglia, in a negative way are Huntington’s

disease (HD) and Parkinson’s disease (PD) [18]. Both Huntington’s and Parkinson’s disease

are known to greatly affect the central motor control where one of the outcomes can be

visible on the macro scale which is an intensive shaking of the limbs [18,22]. Although these

diseases have different effects on the human locomotor system and thus the gait process, all

three increase the stride interval time since movement is decreased [18, 22]. However it is

important to note that the increase in stride interval time does not imply that one suffers

from a neurodegenerative disease, therefore the fluctuations of the stride interval must be

considered in order to make such conclusions [17, 18]. That being said, it is apparent that

once a component of the human locomotor system is affected by change from diseases, aging

or even trauma, for example a stroke, the consequence can be an abnormal gait. However,

the identity and severity of the underlying mechanism(s) causing the functional decline are

still unknown, and can be extremely difficult to identify and characterize due to the highly

nonlinear and complex interactions of the constituent physiological systems [17,18,23,24].

1.3 CURRENT METHODS TO DETECT FUNCTIONAL DECLINE IN

GAIT

Analysis of the gait process is extremely challenging. Given the high number of time variant

physiological systems and their according parameters, a complete quantitative perspective

of the gait process has very high dimensionality [25]. Potential causes are parameters of

some general, neural and physical processes that may consist of the kinematic and kinetic

data of joint angles, or even velocities, not to mention some anthropomorphic parameters

[2, 25]. In conclusion to these important amounts of critical variables, alternatives methods

that reduce the amount of data yet keep the key information are necessary [2, 25].

5



Figure 1.2: Gait Analysis Methods

Physiologists recognize the need for effective methods that reduce and extract useful

information from highly correlated time-dependent gait data [4, 5, 25–27]. Such methods

would greatly expand the understanding of motor control mechanisms and have immense

benefit for monitoring disease progression and applying appropriate therapies [17, 25, 26].

Numerous investigations were achieved regarding various approaches that would allow to

analyze the gait process. Figure 1.2 overviews some of these methods that expands toward

a large set of various fields such as engineering, physics, computer science to name a few

[6,9, 10, 25,26,28–30].

With such a wide variety of available analytical tools, the determination of an appropri-

ate method to investigate health and decline in gait data is also difficult. In many cases,

the choice of an analytical method is generally dictated by the nature of the available data.

The main challenges of the gait analysis problems these methods aim to address are the

high dimensionality, variability, temporal dependence, and nonlinear relationships of gait

data [25]. The following explanation will be a brief discussion of Figure 1.2. Multivariate

statistical methods such as the factor analysis, the principal component analysis and the

density estimation are generally useful when addressing the problem of high dimensionality

and variability as they have been shown to provide helpful insight into interpretations of gait

data [25]. Unfortunately, these multivariate statistical methods have limited applications due
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to the supposedly linearity between gait variables [25]. Furthermore, when dealing with five

or more variables, these statistical methods are severely limited due to the assumption of

linearity [25]. Moreover, when applying the same tests with multivariate statistical methods

while using different patients, tools and experimental design, a discrepancy between these

tests is noticeable because of these differences in experimental design [2, 25]. Therefore, the

high variability of statistical measures between various studies makes statistical conclusions

drawn from gait date more difficult [25]. Finally, in physiology the time evolution of variables

and systems in a considered process is critical. Generally, model parametrizations of the time

evolution of parameters assumes that there is stationarity. This implies that patterns in the

gait process that are sensitive to time will not be picked up by these models [7,9,10,25,30].

On the other hand, dynamical system models such as the Markov models have been devel-

oped in a way that allows to describe the gait process under random perturbations, however it

cannot reveal any underlying mechanism that governs the system’s behavior [7,27,31]. That

is because these models assume stationarity, this leads to time-sensitive patterns present in

the gait process to not be picked up [7,9,10]. The nonlinear relationships between these gait

parameters is a natural observation of the dynamics of systems, but such relationships defy

traditional analytical description [7, 25].

There is therefore a need to find alternative methods in order to address the complexity

and behavior of the variability of the gait data. These alternative methods include some

approaches such as artificial neural networks, fractal analysis and fuzzy analysis. Artificial

neural networks have been shown to be a promising alternative tool, however their use are

quite complicated and their result are hard to understand and quantify [25]. Similarly,

fractal and fuzzy analysis have also been shown to be promising tools in a clinical setting

[9, 10, 25, 30]. The difference between these two is that fuzzy analysis treats variability as a

non-probabilistic uncertainty, whereas fractal analysis considers variability to be correlated

and the outcome of long range dynamics [7, 9, 10, 25,30].

Nowadays there exist a variety of ways where stride intervals studies are used to detect

gait functional decline. Indeed, as previously mentioned, there exist a correlation between

the latter and the stride interval time series [17, 18]. Recent studies have shown that a
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slow gait does not necessarily imply that an individual presents any cognitive declines but

is rather an early indicator of a pathology that may or will affect the locomotor system

[18, 32–35]. Mielke et al has shown that a faster gait speed was usually associated with a

better performance in memory, global cognition, and executive function [32]. At baseline, it

was hence usually associated with less cognitive decline across all domain-specific and global

scores whereas for a slower gait, both gait speed and cognitive scores declined over time

[32]. In order to observe these results, the notion of stride interval was considered. This is

defined as the time between subsequent initial contact phases, and its value is considered

as the output of the locomotor system [2–5, 16–18, 25]. The understanding of physiological

processes as scale invariant parameter fluctuations provides a simple distinction between

healthy and pathological processes [16–18]. Using some of these dynamical systems invoked

earlier, the investigation of the application of dynamical system as a way to predict gait

stride intervals can provide meaningful insight into the presence of physiological decline.

Therefore, there is a need to find a method that would allow to measure prediction of the

gait process as a way to give an early warning on the decline of an individual’s gait.

1.4 RESEARCH OBJECTIVE

Fractal analysis techniques is a promising tool for developing computational biomarkers of

decline due to aging, disease, and trauma. This work seeks to further solidify the foundation

of fractal analysis as a medical diagnostic tool by using a fractal process known as the 1/fβ

process which has been shown to accurately simulate stride interval time series, and to make

clearer a direction to progress toward the long term goal of developing machine learning

algorithms applied to the medical world. Reviews of the current techniques have indicated

that promising alternative methods such as fractal analysis, fuzzy clustering, and artificial

neural networks still require additional inquiry to clarify their potential as a phsyiological

analysis tool, and here to the application of gait analysis. Fractal analysis shows significant

promise for providing insight into gait processes that is not attainable with the previously

mentioned traditional methods. The clinical applicability and accessibility of fractal time
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series analysis here is an important goal. To these ends, this work mainly aims to quantify

the performance of fractal time series analysis under ideal and constrained conditions, and

to demonstrate the utility of these methods to signals derived in a physiological setting.

The first goal of this thesis will be to carry out a comparative analysis of machine learning

algorithms to determine the best possible method available that would accurately model the

existing 1/fβ process. Four different methods will be compared, two neural networks - the

feedforward neural network (FFNN) and the layer recurrent neural network (LRNN) - and

two regression trees - the regression tree (RT) and the bagged regression tree (BRT). This

will be done in order to visualize the accuracy of these methods.

The second aim will be to set a number of points to forecast and actually determine until

which point prediction remains accurate. This is done by extrapolating data using ARIMA

models with a given seasonality that allows for a forecast of the 1/fβ power law. The number

of forecasted points chosen in this study were five, fifteen, twenty-five and thirty-five. The

tests will include the entire range of the 1/fβ process with a total number of strides being

equal to three hundred which is determined to be the average number of strides done by a

healthy subject in five minutes even though a common limitation in acquiring physiological

data, such as gait stride intervals, is the time series length [7,29,36]. However this thesis will

disregard this since prediction will be done on a wide range of β value using simulated data

from the 1/fβ itself. It has also been recognized that the parameters of many physiological

processes, such as stride interval time series, are by nature not zero mean [4,5, 16–18].

Chapter 2 provides background information regarding the elements that are discussed

in this thesis. Then Chapter 3 describes the methodology for the different phases of the

research. Chapter 4 presents the prediction results and the final selected features, as well

as the relevance of these prediction methods. Implications for these results are discussed in

Chapter 5. Finally, conclusions and future directions for the study are provided in Chapter

6. Chapter 7 acknowledges the support of those who helped the author in completing the

study, followed by a list of references.
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2.0 BACKGROUND

2.1 FRACTAL TIME SERIES ANALYSIS

2.1.1 Fractals in Mathematics

Originally conceived for geometric purposes, the mathematical concept of fractals was de-

clared to explore the existence of scale independent features [7, 37–39]. Generally, complex

fractal geometries are created by applying a basic rule of transformation, otherwise known

as the generator to a simple geometric object such as a line, triangle, or square, that is

usually called the initiator [7, 39] A very well-known example is the Von-Kock curve, also

known as the ”snowflake” fractal. It is easily recursively constructed by a line initiator. The

generator, however, is applied by an equilateral triangle at the midpoint of the line, as can

be seen in Figure 2.1. The process is repeated infinitely and that infinite iteration transfor-

mation results in a geometry with the identically complex structure at all scale lengths. In

the Euclidean geometry, the set of numbers Rn for n = 1, 2, 3, in other words, 1D, 2D or 3D

sets of numbers, are used to describe the shape and spacial coordinates of objects in space

[7, 37] However, the Euclidean description of inherently complex structures would require a

large number of objects and corresponding spacial coordinates to describe the geometry at

all scales [7]. This can be seen in Von-Koch’s curve fractal by observing it at a shorter scale,

as demonstrated in Figure 2.2. This comes to show that at lower dimensions, when the Eu-

clidean coordinates are in Rn for n = 1, 2, the Von-Koch curve fractal cannot be sufficiently

described on all scales [7, 37–39]. A direct result of this recursively defined structure is that

spaces of integer dimension are inadequate for completely representing it. Additionally, a

set of traditional geometric axioms inherently cannot describe the outcome of the structure

10



(a) Initiator (b) Generator

(c) Resulting Fractals according to the number of iterations

Figure 2.1: Von-Koch snowflake fractal

in the same way the recursive algorithm can, which contains underlying mechanism of the

outcome [7,38,39]. To be able to fit the infinite scales of existence of the geometrical features

of these fractals, spaces of non-integer dimension Rn+m where 0 < m < 1 have to be used

[7, 37–39]. Since m is a fractional number, m ∈ D, dimensions such as Rn+m are fractional,

commonly referred to as fractals, hence the name. In the instance of the Von-Koch curve,

the complex structure is given simply in terms of an initiator and generator. The general

utility of fractal space then is a unique description of complexity by a simple recursive algo-

rithm that captures the essence of the object. This is used in favor of whole integer space
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Figure 2.2: Scale invariant feature of the Von-Koch snowflake fractal

and Euclidean geometry requiring a large number of coordinates and axioms to be able to

describe an very complex process [7].

Fractals that are mathematically generated by a recursive algorithm display the same

feature over an infinite range. Fractals can occur naturally, the perfect example is the

snowflake as it is considered to have a fractal-like shape however they can also be statistical.

Both exhibit feature scaling over a limited range. An Example of an exact fractal is the

Mandelbrot Tree, as seen in Figure 2.3 [7]. The infinite recursive iteration in the Mandelbrot

Tree creates an identical branching feature which continues infinitely at all smaller and larger

scale lengths. Given this definition, it is possible to consider some structures in day to day

lives to be fractals, a couple of examples are the neural and arterial networks, although the

branching is not as exact as the Mandelbrot Tree of Von Koch’s snowflake and the scale

length is not infinite as well. However, this is not to say that the properties they exhibit are

not striking.

The measurement of a feature in a fractal object does not converge to any value on a

single scale. There exist a parameter q which has a power law scaling relationship instead.
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Figure 2.3: Mandelbrot tree with varying number of iterations

This relationship is given in Equation 2.1 [7] :

q = psε (2.1)

where s is the scale, p is the factor of proportionality and ε is the scaling exponent. As with

all exponents, the scaling exponent ε is easily retrievable by applying the log function on

the previous equation. The value is therefore:

ε =
logq − logp

logs
(2.2)

It is critical to be aware that the range of scales s is restricted for natural physical structures

and phenomena.

2.1.2 Fractal Time Series

The time series of many physiological processes’ parameters such as arterial blood pressure,

breathing, heart rate, and walking have been observed to possess various complex statistical

properties [9,10,14,18,24,40–42]. This phenomenon is due to the time evolution and complex

interactions of many dynamical systems, imposed with random fluctuations, resulting in

chaotic processes [43]. Some descriptions of the statistical qualities of these processes may

be of a slow exponentially decayed autocorrelation function, a 1/f type power spectral
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density, or a heavy-tailed probability distribution function [37, 44–46]. In such processes, it

is possible to consider the time evolution of variables represented by a time series x(t). The

process has the property of being long range dependent when the autocorrelation function

rxx(τ) of x(t) satisfies the following condition:

∫ ∞
0

rxx(τ)dτ =∞ (2.3)

This means that the autocorrelation function is not integrable [37,47]. This implies that the

nonintegrable autocorrelation function can be expressed as follows:

rxx(τ) ≈ c|τ |−β (τ →∞) (2.4)

where c > 0 and 0 < β < 1. This relationship implies a power law and long range dependence

in the autocorrelation of x(t) [37]. Similarly, the autocorrelation function reveals special

properties of the power spectral density S(ω) of x(t):

S(ω) =

∫ ∞
0

rxx(t)e
−jωtdt (2.5)

In the case of a long range dependent time series, S(ω) does not exist in the above form

[37]. However, when the autocorrelation function approximated by the power law c|τ |−β, the

power spectral density can be found by:

F (|τ |−β) = 2sin(
πβ

2
)Γ(1− β)|ω|1−β (2.6)

where F is the Fourier transform and Γ is the Gamma function [37, 48, 49]. It follows that

the power spectral density of the long range dependent process also possesses the power law

property S(f) = 1/fβ [37, 39,42,50].

This reasoning can be applied to the autocorrelation function where the relationship is

given in terms of p(x), the probability distribution function.

rxx(τ) =

∫ ∞
−∞

x(t)x(t+ τ)p(x)dx (2.7)
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The integrals that define the mean µx and variance σ2
x, given in Equations 2.8 and 2.9, are

non-existent when dealing with a long rang dependent time series x(t).

µx =

∫ ∞
−∞

xp(x)dx (2.8)

σ2
x =

∫ ∞
−∞

(x− µx)2p(x)dx (2.9)

This implies that the tail of the probability distribution function p(x) is not exponentially

bounded, i.e. it is heavy-tailed [37,51]. There are noticeable differences between a time series

in the R1 space and a time series that is long range dependent and possesses the power law

type autocorrelations, a 1/f power spectral density and a heavy-tailed probability distribu-

tion function. The latter is fractal and it exist in the Rd+1 where d ∈ [0, 1] [37]. The existence

of these properties are indicative of other unique characteristics which can reveal fractal be-

havioral mechanisms of the process beneath the apparent chaos [30, 37, 52]. However, the

long range dependence of time series like these and absence of the mean and variance such

measures are not enough to describe the statistical nature of these properties. This lead to

the introduction of the Hurst exponent H for cases like these and it is implemented similarly

to the long range dependent autocorrelation equation given in Equation 2.4:

rxx(τ) ≈ c|τ |2H−1 (τ →∞) (2.10)

Unlike the geometrical fractals, fractal time series cannot be self similar because the dimen-

sions of a time series, which is the amplitude over time, are different. This implies that any

power law exhibits the property of self affinity [7]. In general, mathematical and statistical

fractal geometries and structures are self-similar, whereas amplitude versus time processes

are self-affine [7]. However, there is no importance in distinguishing the differences between

self-similar and self-affine in this thesis. Generally the description of power law behavior of

parameters is referred to as self similarity.

In this study, the it was assumed that the scaling index β is time invariant which would

imply that the time series is monofractal. The latter is a simplified variant of the multifractal

time series [7, 53,54]
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2.1.3 Obtaining the Spectral Exponent β

It has been previously defined that the power spectral density is an informative perspective

of fractal processes, which shows inverse power law scaling behavior by S(f) = 1/fβ. These

types of processes are commonly referred to as 1/fβ processes [7,26,42,50,55–57]. Generally,

these 1/fβ processes can be classified, it can either be the fractional Gaussian noise class

(fGn) or the fractional Brownian motion class (fBm) [7, 29]. For fGn class signals, the

probability distribution of a segment of the signal is independent of the segment size and

its temporal position in the signal [7]. Thus, the correlation structure and any statistical

descriptions of the process do not change over time, so the process is said to be stationary [29].

In an fBm signal, the probability distribution in a larger segment is equal to a distribution

in a smaller segment when the distribution in the large segment is rescaled [7]. The inverse

power law relationship is seen for the calculation of a statistical measure m on the segment

of length n:

log(mn) = log(p) +Hlog(n) (2.11)

where p is a proportionality factor and H is the Hurst exponent. The latter verifies H ∈ [0, 1].

The Hurst exponent is a commonly used tool for indicating the fractal nature of a fractional

Gaussian noise or fractional Brownian motion process [58–60]. These processes have the

interesting property that when iterating the summation of the fGn signal, it results in an

fBm signal [7]. In the general case, a process, either from the fGn or the fBm class can be

classified in the other class by either intergrating or deriving the signals [7,42,50,55,56]. This

implies that there is a need for a unique Hurst exponent for each of these classes. Similarly

to the signals, these Hurst exponent can be called HfGn and HfBm for the fGn and fBm

classes respectively. Since they are both Hurst exponents, their values are inside the [0, 1]

interval [7,29]. There is a special case in the Hurst exponent that applies for both classes and

it is when H = 0.5. When HfGn = 0.5, the special case is that the signal is considered to be

a white Gaussian noise. HfGn < 0.5 is anti-correlated Gaussian noise, whereas HfGn > 0.5

is correlated [26]. When HfBm = 0.5, the signal is considered to be red noise, or Brownian

motion [7, 26]. HfBm < 0.5 is anti-persistent Brownian motion, whereas HfBm > 0.5 is

persistent Brownian motion [7]. White Gaussian noise is the characteristic process of the
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fractional Gaussian noise class of 1/fβ processes [7]. A very important property of white

Gaussian noise in general is that energy is equally distributed regardless of the frequency.

When plotting the power spectrum, the result would be an offsetted flat line implying that

β = 0. As for the fBm class, the Brownian motion, or red noise, is characteristic of that

class. The β value for signals in this class is equal to 2 as can be seen in the power spectrum

[7, 17]. Contrarily to the fGn case, these types of processes are non-stationary. There is

another special case when HfBm = 0 in which case the noise is called pink noise and β = 1

[7]. In that case, correlation exists but it is not strong enough compared to the other cases

[29]. An overview of all these cases can be found in Figure 2.4 for when the Hurst exponent

H ∈ {0, 0.5, 1}.

As demonstrated hereinabove, there is a correlation between the Hurst exponents HfGn

and HfBm and the spectral exponent β of the power spectrum of 1/fβ. That relationship is

given in equations 2.12 and 2.13 [7].

HfGn =
β + 1

2
(2.12)

HfBm =
β − 1

2
(2.13)

These equations imply that for a Hurst exponent H ∈ [0, 1], the value of β is such that

β ∈ [−1, 3] and the border between the fGn and the fBm classes lies at β = 1 [7, 29]. Now

that the relationship has been introduced as well as the way of obtaining the β value using

the power spectrum, similarly to Figure 2.4, an overview of white Gaussian noise (β = 0),

pink noise (β = 1) and red noise, or Brownian motion (β = 2) can be found in Figure 2.5

along with the respective power spectrum plot displaying the slope which is, as previously

mentioned, the value of β for that signal.

There are many ways to mathematically obtain the spectral exponent. For a 1/fβ, β

values can be estimated in time, frequency or time-scale domains. These methods include the

bridge detrended scaled window variance (bdSWV) and the detrended fluctuation analysis

which are time domain methods, various PSD linear regression methods as seen hereinabove

which are frequency domain methods and finally the average wavelet coefficient (AWC) which

introduces the continuous wavelet transform (CWT) which is a time-scale domain method.
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Figure 2.4: Range of the fGn and fBm class signals
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A 2014 study that assessed various characterization methods of 1/fβ processes has shown

that the spectral exponent β was best estimated when using the time-scale method, the

AWC [61]. This method is especially informative, as it provides information of shifted and

stretched, or rescaled, versions of the basis mother wavelet function [61, 62]. Moreover, the

wavelet transform is not biased for low and high frequency components of the process, and

provides precise characterization of these dynamics [7, 61]. The AWC was first introduced

by Simonsen in 1998 and it is defined as follows [63]. For a signal h(x), the mother wavelet

function is defined as:

ψa;b(x) = ψ(
x− b
a

) (2.14)

where the wavelets chosen are usually the twelfth Daubechies wavelet as given in Simonsen’s

study [63]. When dealing with wavelet transforms a certain number of levels must be re-

Figure 2.5: Signals of length N for β ∈ {0, 1, 2} with respective PSD and linear regression
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spected. It is chosen with respect to the signal length, determined as never lower than 23

or greater than 27 [64]. The mother wavelet is a zero-mean function, where a is the scale

coefficient and b is the translation coefficient. Knowing this, the definition of the AWC can

be given [61,63]:

W [h](a, b) =
1√
a

∫ ∞
−∞

ψ∗a;b(x)h(x)dx (2.15)

To find the averaged wavelet coefficient cn at level n, the arithmetic mean with respect to

the translation coefficient b is calculated by:

cn = 〈W [h](a, b)〉b (2.16)

The mean is calculated at every level n. The means versus the levels are then plotted on a

log-log plot and the slope will then then by HfBm + 1
2
. Therefore β = HfBm + 1

2
[7, 61].

2.1.4 Physical Meaning of Spectral Exponent β

The spectral exponent β of the 1/fβ process applied to the human gait is considered to be a

biomarker as previously mentioned. This means that β is able to quantify the physiological

health of an individual regarding his locomotive abilities, also known as gait. Theoretically,

a healthy individual would exhibit an index value of β = 1 whereas an indivual with a

pathological gait would rather have a β value that can be equal to any other value while

still being between 0 and 2 [7, 14]. However, these results may vary in real life applications,

for example a healthy patient may exhibit an index that would be deemed unhealthy but

overall, the β values differ depending on the state of a person [4,5,7,14]. A way of predicting

the future state of the 1/fβ process applied to stride interval time-series would have a great

impact in the medical field. The issue lies in the number of strides that can be forecasted.

This thesis seeks to determine the best method available for forecasting these type of signals

by applying machine learning algorithms and extrapolation of data in order to properly

forecast future state.
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2.2 MACHINE LEARNING ALGORITHMS FOR TIME-SERIES

PREDICTION

Machine learning is a subfield of computer science that evolved from the study of pattern

recognition and computational learning theory to artificial intelligence. In this study, the

1/fβ process is first modeled using a few machine learning algorithms since it provides an

accurate model of the process for extrapolation purposes which will be the second step.

Next is an overview of some of literature’s most prominent methods. Prior to this, a small

definition of supervised learning will be given.

2.2.1 Supervised Machine Learning

Previous studies and breakthroughs in computational algorithms have come to show that

it is possible to apply machine learning algorithms to stride interval time series problems.

Machine learning tasks can be separated into two major subfields, which depend on the

nature of the available dataset. If the pattern recognition system has a labeled training data,

that is to say each observation maps to a given class, the learning task is called supervised

learning. The other subfield is called unsupervised learning. It is a task that occurs when the

dataset is unlabeled. Therefore, the algorithm will have to find the different hidden patterns

on its own. Since the 1/fβ process is a stochastic process, supervised learning methods will

be used.

As mentioned, supervised machine learning, whose general definition is given in Definition

2.2.1 where the goal of the computer is to map labeled input features to output classes

[65,66]. The idea behind this concept is to create algorithmic tools that are able to perform

accurate predictions automatically with the help of past knowledge in order to output future

estimations.

Definition 2.2.1. Supervised Machine Learning

Given a set of data S = {∀i ∈ J1, NK/(xi, yi)} of size N , the supervised learning task consists

in finding a correlation between x and y by actively learning. This is achieved by providing

a new input x∗ and obtaining a new output y∗ that is accurate.
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Figure 2.6: General supervised machine learning cycle representation. Left: Step 1. Right:

Step 2. Adapted from [77,78]

The goal of supervised machine learning is to obtain y using the known respective value x.

This equates to knowing the value of the conditional probability P (y|x, S). It thus helps to

understand why supervised learning is called that way since it refers to a supervisor which

is in charge of labeling y for each x in the dataset S.

Supervised machine learning algorithms generally follow a pattern which is given in Fig-

ure 2.6. The first step is to acquire a model of the process at hand using known sets. These

sets include data and the response of the process when applied to the previous data. It

requires either an expert to pick the most descriptive attributes, or a selection methods to

segregate the data [67]. Yet, errors can still be present in the dataset, making pre-processing

of the data a crucial task in supervised machine learning [68, 69]. This explains the impor-

tance of having to know the response of the dataset when processed through the model in

order to train it. Once the model is obtained, a new dataset is applied to it. The predicted

response of the new data is acquired.

There exist various supervised machine learning methods but can be classified in either

one of two categories of algorithm, classification or regression algorithms. Table 2.1 lists a

few of them [70–76]. As can be seen, both neural networks and decision trees can be classified

in either category.
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Table 2.1: List of various supervised machine learning algorithms

Classification Algorithms Regression Algorithms

Neural Networks Linear Regression

Naive Bayes Classifier Nonlinear Regression

Decision Trees Generalized Linear Models

Discriminant Analysis

Nearest Neighbors (kNN)

Support Vector Machines (SVM)

2.2.2 Regression Algorithms Description

For time series prediction, a few methods can be used in supervised machine learning classi-

fication or regression category. Regression algorithms are best suited for this task, notably

regression trees and neural networks where both include various subgroups [72, 73]. Same

goes for linear and nonlinear regression algorithms where a vast number of methods can be

found with varying applications [79].

2.2.2.1 Linear and Nonlinear Regression Algorithms .

Table 2.2 is an overview of various linear and nonlinear regression models [80].

Table 2.2: List of linear and nonlinear regression algorithms

Linear Algorithms Nonlinear Algorithms

Simple Gauss-Newton Algorithm

Multiple Gradient Descent Algorithm

Multivariate Levenberg-Marquardt Algorithm
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Linear algorithms are can either be simple, multiple or multivariate. They are defined

by the general equation:

y = γ0 + ΣγiXi + εi (2.17)

where γ represent linear parameter estimates , ε is the error variable and Xi are the inde-

pendent variables called predictors. Simple linear regression models are very common, they

only deal with one predictor whereas multiple linear regression models deal with multiple

predictors as the name suggests. The latter must not be mistaken for the multivariate lin-

ear regression models because although the name makes it seem that they are similar, the

multivariate one deals with multiple response variables.

On the other hand, nonlinear regression models are the most useful tools in this study

because they are best suited for processing stochastic models [80]. Table 2.2 includes a list

of the most common algorithms. Generally, a nonlinear regression algorithm is defined by

the following equation [81]:

y = f(X, γ) + ε (2.18)

where the nomenclature is the same as for Equation 2.17. Each y is modeled as a random

variable with a mean given by a nonlinear function f(X, γ) which varies according to the

algorithm used. A brief definition of both the Gauss-Newton and Levenberg-Marquardt al-

gorithms is given below.

Gauss-Newton Algorithm - The Gauss-Newton algorithm is similar to Newton’s method

for finding the minimum of a function. The algorithm is as follows [82]:

xn+1 = xn + (JTJ)−1JT r(fn) (2.19)

where J is the Jacobian matrix.

Levenberg-Marquardt Algorithm - The Levenberg-Marquardt algorithm, also known as

the Damped Least-Squares method, is an interpolation of the Gauss-Newton algorithm and

the gradient descent method however it is quite slower. First introduced by Levenberg

and Marquardt, the algorithm that bears their names is often used due to its robustness
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Figure 2.7: Curve fitting 1/fβ process using the Levenberg-Marquardt Algorithm. Signals:

o is the data generated by the stochastic process, - is the fitted curve. Left: β = 0, middle:

β = 1, right: β = 2.

compared to the Gauss-Newton algorithm, meaning that a solution will eventually be found.

The Levenberg-Marquardt algorithm is given as follows [83,84]:

(JTJ + λdiag(JTJ))δ = JT [y − f(x)] (2.20)

where λ is the damping factor and δ is the increment. An example of the Levenberg-

Marquardt algorithm applied to the 1/fβ process is given in Figure 2.7. For all three β

values that generate a different colored noise, it is possible to see that the algorithm fits

the curve perfectly. This algorithm is the one chosen for the neural network model training

generation.

2.2.2.2 Neural Networks .

The basic biological definition of a neural network is very similar to the definition of a neural

network in machine learning. Regarding the latter, a neural network is a computer system

modeled on the human brain and nervous system of the human body. It allows the studied

system to learn from mistakes made and be allowed to improve the results through what is

called the epochs [85–87] . There exist several neural networks, the ones chosen in this study

were the feedforward neural network and the layer recurrent neural network.

Feedforward Neural Network - The simplest of all artificial neural networks, the feed-

forward neural network has only one layer and contrarily to the recurrent version, it does

not cycle. The information only moves forward from the input nodes to the output nodes

25



(a) Feedforward Neural Network (b) Layer Recurrent Neural Network

Figure 2.8: Examples of feedforward and layer recurrent neural networks

through the hidden layer and it is considered to be a universal approximator [85,87,88]. Its

use in this study is mainly for comparative purposes in order to visualize the effectiveness of

a basic neural network to a more complex and well suited version such as the layer recurrent

neural network introduced below. In this study, the number of nodes chosen are 150 as it

seems that this outputs less errors than for any other number of nodes. An example of such

a network can be found in Figure 2.8a.

Layer Recurrent Neural Network - As opposed to the neural network presented herein-

above, the layer recurrent neural network does actually form a cycle, allowing for a usage of

their internal memory to process arbitrary sequences of inputs [86,88–92]. Recurrent neural

networks are considered to be the optimal choice for time series prediction thanks to the

cycle that they exhibit [88, 91, 92]. In this study, the hidden sizes are chosen to be equal to

15. These are the default values in Matlab. An example of such a network can be found in

Figure 2.8b.
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2.2.2.3 Decision Trees .

Trees are structures used to predict the response to inputs. This method is often used in

machine learning theory [79,93,94] and it is based on the construction of a binary tree where

the nodes represent the tests made on the inputs. In this study, the regression tree and

the bagged decision tree have been chosen as the structures used for prediction. They both

are very useful since they provide easy to understand predictions in all types of conditions

[93–95].

Regression Tree - Regression tree analysis is done when the predicted outcome can be

considered a real number [79,93,94]. Prediction trees use the tree to represent the recursive

partition. Each of the terminal nodes, or leaves, of the tree represents a cell of the partition,

and has attached to it a simple model which applies in that cell only. The input is given in

what is called the root node of the tree and then a sequence of questions is asked about the

features. The interior nodes are labeled with questions, and the edges or branches between

them labeled by the answers. The questions asked depend highly on the previous answers

[79,93,94]. There are a few advantages for choosing a regression tree:

1. Predictions are hastily computed.

2. Understanding which variables have a considerable impact on making the decisions is

rendered easy.

3. If data is missing, there might be a chance that the end of the tree is not reached.

Fortunately, a prediction can still be made by averaging all the leaves in the sub tree.

4. There are fast, reliable algorithms to learn these trees such as the Levenberg-Marquardt

algorithm.

Bagged Regression Tree - Orignally called bootstrap aggregated trees, bagged regres-

sion trees are designed to improve the stability and accuracy of the regular regression tree.

First designed by Breiman in 1994, it leads to improvement for unstable procedures but

can degrade the performance of more stable methods [95]. Definition 2.2.2 gives a general

description of bagging [95].
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Definition 2.2.2. Bagging Given a set of data S of size N , bagging generates M new

training sets Si each of size N1 by sampling from S uniformly and with replacement. By

sampling with replacement, some observations may be repeated in each Si. This kind of

sample is called bootstrap sample. The M models are fitted using the above M bootstrap

samples and combined by averaging the output for regression models.

In this study, the bagged regression tree was set to having a minimum number of leaves

at a low number.

2.2.3 AR Model

Forecasting is a process that involves the prediction of a signal or process by creating points

outside of the bounds of the signal. Many methods exist that allows forecasting, some

of them already mentioned previously such as the neural networks and the decision trees.

Another method that was left unmentioned is the autoregressive model, or AR model. It

is a representation of a type of random process which implies that it is greatly suited for

time series manipulation. The AR model is considered to be a form of stochastic difference

equation. If p is the order of the AR model, the latter can defined as [96]:

Xt = cst+

p∑
n=1

φnXt−n + εt (2.21)

where φn, ∀n ∈ J1, nK, are the parameters of the AR model and εt is white noise. Once

the parameters Xt have been estimated, the AR model can be used to forecast an arbitrary

number of periods into the future. There are four sources of uncertainty when using the AR

model as a predictor [96, 97]:

1. Is the AR model the the correct model ?

2. Is the accuracy of the forecasted values used as lagged values in the AR equation good

enough ?

3. Are the values of the AR coefficients good enough ?

4. Is the value of εt for the period being predicted correct ?
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Points 2 to 4 are quantified and used to give what is called a confidence interval which

widens the more points are being forecasted. This is due to the increasing number of esti-

mates the algorithm lies on to make the predictions [96, 97].

There is therefore doubt on the actual accuracy and quality of the forecasts using the

AR model. However, for low parameter values it can be considered a good enough method

for prediction, hence its use in this study. Its main purpose will be mostly to compare it

to the machine learning algorithms as a way to evaluate the accuracy and functionality of

these aforementioned methods.
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3.0 METHODOLOGY

3.1 EVALUATING 1/fβ PROCESS

3.1.1 Stride Interval Definition

Since the 1/fβ power law recreates the stride interval time series, the best way to get results

that recreate real life conditions is to simulate the power law [61, 98]. In this study, the

number of strides chosen was 300 as it is the average number of strides a healthy individual

does in five minutes that is not considered to be active in sports [4, 5, 18]. As a reference,

an athlete does 190 steps per minute. Obviously a person that is affected by a disease

that declines his locomotor system or an older adult will be able to achieve a lower amount

of strides in that same amount of time and the spacing between the strides is much larger.

However, since the aim of this study is to be able to predict the 1/fβ process, these constraints

were disregarded. The method on how to reproduce that process is discussed in the following

subsection.

3.1.2 Generating Discrete 1/fβ Process

First of all, since the 1/fβ process was needed, the generation of the latter was achieved.

There exist some methods that allow to accurately simulate the process. In this discussion,

a chronological presentation will be briefly done. A first method was proposed by Li and

other of his associates where he created a filter of fractional order in order to generate fBm

processes with stochastically fractional differential equations [37, 49, 51]. That method was

extended and generalized for any filter that would include fGn and fBm signal, or 1/fβ

processes [50]. This method was implemented for this numerical analysis of 1/fβ processes.
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According to Kasdin, the transfer function of the fractional system that follows the power

law of β is given by introducing a series h(n) that can be calculated using an iterative process

and convoluting the result to white Gaussian noise in order to obtain the realization of the

process x(n)[50]. A mathematical demonstration is given below [50]:

h(n) =
Γ(β/2 + n)

n!Γ(β/2)
(3.1)

which is calculable using the following iterative process, where h(0) = 1:

h(n) =

(
β

2
+ n− 1

)
h(n)− 1

2
(3.2)

Finally, the realization of the process x(n) is given by:

x(n) = wgn(n) ∗ h(n) (3.3)

where ∗ denotes the convolution symbol and wgn(n) is white Gaussian noise.

3.2 ANALYSIS SCHEME

3.2.1 Analysis of Simulated Time-Series: Monte Carlo simulation

The basis of this computational evaluation is the generation of 1/fβ processes. For com-

pleteness, the prediction models and forecasted points were calculated using the smaller

range of β, i.e. 0 ≤ β ≤ 2. Indeed, due to physiological constraints, the anti-persistent

fractional Brownian motion, β > 2 and the anti-correlated fractional Gaussian noise, β < 0,

were disregarded. Thus, this only includes a smaller range of possible values of the Hurst

exponent, 0 < H < 1, meaning that it still includes the fractional Gaussian noise and the

fractional Brownian motion but not the unwanted possibilities. As previously mentioned, the

methods are evaluated for a total number of points equal to 300 strides in order to recreate

healthy conditions as a basis. Moreover, it is also calculated over a range of β values and

since predictions can sometimes be inaccurate after a certain number of points, usually very

low, the number of points forecasted include 5 points, then 15, 25, 35, 50, 100 and finally
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150 points forecasted. More precisely, for forecasting an amount N of strides, or points,

the prediction would start at 300 − N strides in order to achieve a total of 300 strides.

Given the stochastic nature of these processes, it is important determine a convergent value

on which each technique forecasts the time-series. The procedure of signal generation and

calculation is implemented in a Monte Carlo scheme, where each realization is repeated 100

times. Since it is wished to verify the accuracy of the predictions made, every calculations

are made for a starting β value at 0 following and incrementation of 0.1 at each iteration,

i.e. β = 0, 0.1, 0.2, ..., 2. In each iteration for a set of β values, the time-series is normalized

and evaluated by each of the machine learning methods following extrapolation and then a

mean of these 100 realizations is computed in order to get a single signal representative of

these signals for a specific β value. Importantly, each iteration is carried out for the same

realization of randomly generated 1/fβ process.

3.2.2 Evaluating the Processes

The best way to evaluate the accuracy of the modeled 1/fβ processes after the machine

learning algorithms is to calculate the mean and the coefficient of variation of these models.

These methods were implemented in the Monte Carlo simulation mentioned hereinabove.

The mean allows to observe the long-run expected average. If the models after simulation

have a mean that can be considered roughly similar to the mean of the actual three hundred

stride signal then it can be said that the signal that exhibits this feature is a good enough

model for the number of forecasted points it predicts. Stride interval variability (SIV) was

estimated using the coefficient of variation of stride intervals [99, 100]. The latter is simply

a measure of dispersion of a given variable or process, it shows the extent of variability

in relation to the mean of the population. Both of these linear measures characterize the

amount of variability present in the data [101]. However, there is an advantage in using the

coefficient of variation, it can compare across different variables or processes because they

are now measured on the same relative scale (ratio). Furthermore, the standard deviation of

data must always be understood in the context of the mean of the data. A process with the

smaller coefficient of variation is less dispersed than the process with the larger coefficient
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of variation. Generally, changes in the coefficient of variation are indicative of increases or

decreases in the amount of variability [101]. However, if the mean of a signal is close to zero,

the value of the coefficient of variation will approach infinity. Therefore any small changes in

the mean of a signal will significantly impact the value of the coefficient of variation. It is a

tool that is used in many fields, namely in statiscal and applied probability and its definition

is simple. For a signal x, the coefficient of variation is defined as follows [101]:

CoV (x) = 100
σ(x)

µ(x)
(3.4)

where σ(x) denotes the standard deviation of the signal x and µ(x) is its mean. The ratio

is multiplied by 100 in order to get a percentage reference of the coefficient of variation.

The calculation of the coefficient of variation and the mean in the Monte Carlo simulation is

proven to be deterministic when it comes to time series prediction [100, 101]. If a predicted

signal presents similar values as the actual signal, then the former is an acceptable prediction

model.
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4.0 RESULTS

In this section are presented the error plots of the results of the simulation using the time

series compared to the original signal. From these results this thesis seeks to determine which

of the several method presented hereinabove can most effectively and accurately evaluate the

prediction of the simulated time series under various constraints. a great number of points

forecasted being the ultimate goal, the aim of this study is also determine up to which

number of points is it possible to get an accurate measure. The stride interval time series

was simulated using the fact that they can be simulated using the the 1/fβ power law. As

mentioned, the number of strides is 300 and the tests were conducted using 0 ≤ β ≤ 2 in order

to mimic a spectrum of conditions. A Monte Carlo simulation was computed where a forecast

of 5, 15, 25, 35, 50, 100 and 150 points was done compared to the spectral exponent. The

results are presented in the two following sections. The mean of the simulated and modeled

time series will firstly be compared followed by the one for the coefficient of variation.

4.1 COMPARISON OF THE MEAN

The results in this section were acquired through a Monte Carlo simulation using the con-

ditions mentioned in Chapter 3. The β ∈ [0, 2] spectrum presents the performance of the

general scheme which allows to calculate the mean of the entirety of the forecasted signals

with significance. Shown are the results of the simulated time series along with the forecasted

signals for a variety of total forecasted points over 300 strides in Figures 4.1 and 4.2. Figure

4.1a corresponds to 5 points being forecasted, as for Figures 4.1b, 4.1c, 4.1d, 4.2a, 4.2b and

4.2c, they respectively correspond to 15, 25, 35, 50, 100 and 150 points being forecasted.
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The noticeable trait on all signals is that regardless of the conditions, the mean of sim-

ulated forecasts correspond with the mean of the original signal, although some do have

noticeable effects as discussed below. The exception is for the layer recurrent neural net-

work. Although it does follow the same pattern as the others, the mean varies greatly

compared to the others. By looking into more details, it can be seen that the error between

the mean of this model and that of the original signal is fairly low when the spectral exponent

β is lesser than 1. As the value of β increases though, the mean value changes as well. The

difference increases drastically where in some cases the peaks reach an immeasurable value

as seen in some figures where some values are outside the bounds, however for the LRNN,

the maximum value reached is well above that of the original signal as seen in Figure 4.2c

for example. The number of points forecasted does exhibit some impact in the mean values

but the general pattern is still the same, apart for the LRNN. Some peaks are visible in

Figures 4.1b for FFNN and 4.1d for the LRNN. It can be the consequence of calculation

errors since it only happens for one particular β value in one set of forecasted points. These

changes, albeit quite benign, are under the form of small increases in the mean value for

some method, most notably for the layer recurrent neural network.

In order to get a better view of the results exhibited in Figure 4.1, numerical values can

be seen in Table 4.1. It displays the values (mean ± standard deviation) of the difference

between a modeled and the actual signal for a given number of points being forecasted. It

can be seen that the largest values are displayed for the largest number of points forecasted.

Furthermore, this further shows that the methods used does have an impact on the mean

value where some are greater than others. The most interesting values are obtained with

both the regression tree and bagged regression tree, and the auto-regressive method. The

feedforward neural network does display interesting results as well however due to the small

error peaks that often appears when forecasting does not make it reliable enough for pre-

dictions. The results in the table regarding the latter is conclusive, the feedforward neural

network exhibits greater differences with the original signal compared to the AR model and

both decision trees.
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A second series of test was done in order to have more conclusive results. The following

subsection will display the results obtained by using the coefficient of variation. A comparison

will then be made between the results using both methods.

(a) Forecasting 5 points (b) Forecasting 15 points

(c) Forecasting 25 points (d) Forecasting 35 points

Figure 4.1: Part 1: Error plot of the MonteCarlo simulation result for the mean of the

forecasted signals depending on the β value compared to the original signal. Signals: -o is

FFNN, -* is LRNN, -x is the regression tree, -+ is the bagged regression tree, ♦ is the AR

model
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(a) Forecasting 50 points (b) Forecasting 100 points

(c) Forecasting 150 points

Figure 4.2: Part 2: Error plot of the MonteCarlo simulation result for the mean of the

forecasted signals depending on the β value compared to the original signal. Signals: -o is

FFNN, -* is LRNN, -x is the regression tree, -+ is the bagged regression tree, ♦ is the AR

model
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Table 4.1: Absolute value of the difference of the mean of the models and the actual signal when 0 ≤ β ≤ 2. FFNN:

Feedforward Neural Network, LRNN: Layer Recurrent Neural Network, RT: Regression Tree, BRT: Bagged Regression Tree,

AR: Autoregressive Model

FFNN LRNN RT BRT AR

5 points

(×10−5)
2.5452±24.952 3.7428±72.836 0.6202±71.107 3.8314±70.646 111.29±259.91

15 points
1.5×106

±6.9×106
0.0217±0.1474 0.0227±0.1485 0.0226±0.1485 0.0265±0.1532

25 points 0.0189±0.1301 0.0192±0.1339 0.0192±0.1320 0.0192±0.1319 0.0229±0.1306

35 points 0.0236±0.1276 0.1394±0.5228 0.0218±0.1299 0.0218±0.1299 0.0309±0.1248

50 points 18.540±9.5076 0.0390±0.2545 0.0050±0.0207 0.0237±0.0573 0.0206±0.0575

100 points 0.0489±0.1806 0.0410±0.5812 0.0486±0.1724 0.0484±0.1718 0.0347±0.1137

150 points 0.0834±0.2563 362.12±1515.3 0.0898±0.2757 0.0902±0.2747 0.0145±0.1556
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4.2 COMPARISON OF THE COEFFICIENT OF VARIATION

In order to strengthen what is already know, the coefficient of variation was calculated for

all modeled signals along with the forecast as well as the original signal. The results in this

section were also acquired through a Monte Carlo simulation where the same conditions were

applied. Shown are the error plots of the results of the simulated time series compared to

the forecasted signals for a variety of total forecasted points over 300 strides in Figures 4.3

and 4.4. Figure 4.3acorresponds to 5 points being forecasted, as for Figures 4.3b, 4.3c, 4.3d,

4.4a, 4.4b and 4.4c, they respectively correspond to 15, 25, 35, 50, 100 and 150 points being

forecasted.

It can be seen that the value of the spectral exponent β does have a huge impact on

the mean and coefficient of variation. As the value of β increases, the error values of the

coefficient of variation of the original signal and that of the modeled signal increase as well.

The accuracy regarding the coefficient of variation is very different than the one for the mean

since the error here is far greater. That error oscillates near 0 for all methods but as soon

as β verifies β > 1, although that value changes depending on the number of points being

forecasted, the error increases drastically, reaching nearly 35 when forecast a greater number

of strides which is far greater than the errors when forecasting smaller numbers. However,

as can be seen in both Figures 4.3 and 4.4, that value is not the maximum that is reached

since there are some signals that have far greater maxima than that of the original signal.

Since these signals’ range are so great, a consideration was made where the acceptable bound

would be maximum thirty. Outside these bounds, the error is considered too great to be

considered accurate and thus the value at the corresponding β value is disregarded.

A small discrepancy in the coefficient of variation values for each method is visible when

β ≤ 1 but the gap only widens when the number of forecasted points increases. If a more sep-

arate case is done, regarding the coefficient of variation results, one can see that all methods

display a signal that is similar to the original, with very few differences when the number of

points increases. Above 25 forecasted points, it becomes apparent the layer recurrent neural

network starts to be unreliable as its coefficient of variation values dramatically increase. A
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noteworthy information is that increase starts when the signal is no longer considered pink

noise, but rather starts to resemble a fractal Brownian motion type signal, or red noise. In

Fig 4.4c, the coefficient of variation of the LRNN is entirely different from the original signal,

yet it still oscillates around the values of it. Similarly to the results found in Figure 4.1b,

the FFNN in Figure 4.3b displays a peak at the same β value as with the mean. This can

be explained by the definition of the coefficient of variation mentioned previously.

The FFNN, regression tree, bagged regression tree, and the AR have considerably better

approximations than the LRNN when forecasting over 25 points. However, when exceeding

50 points, the predicted signals, albeit relatively similar, have coefficients of variation that

are greater than that of the original, albeit relatively similar. Only the AR model has a far

more accurate prediction than the others as seen in Figure 4.4c.

Similarly to the previous section, a table was designed in order to get a general view

of the results shown in Figure 4.3. These numerical values can be found in Table 4.2. It

displays the values (mean ± standard deviation) of the difference between a modeled and

the actual signal for a given number of points being forecasted. It can be seen that the layer

recurrent neural network does not display close enough values to the actual signal as seen in

the figures. It has an average coefficient of variation that well above what is expected for the

predictions. Similarly, the bagged regression tree, regression tree and layer recurrent neural

network have a slightly greater coefficient of variation but does not come close enough to the

actual signal compared to the autoregressive model. Regarding machine learning methods,

the decision trees can be considered better suited for the task, however the AR model would

generally be the best method since it is not affected by the number of points forecasted and

has the closest values to the ones of the actual signal.

40



(a) Forecasting 5 points (b) Forecasting 15 points

(c) Forecasting 25 points (d) Forecasting 35 points

Figure 4.3: Part 1: Error plot of the MonteCarlo simulation result for the coefficient of

variation of the forecasted signals depending on the β value compared to the original signal.

Signals: -o is FFNN, -* is LRNN, -x is the regression tree, -+ is the bagged regression tree,

♦ is the AR model
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(a) Forecasting 50 points (b) Forecasting 100 points

(c) Forecasting 150 points

Figure 4.4: Part 2: Error plot of the MonteCarlo simulation result for the coefficient of

variation of the forecasted signals depending on the β value compared to the original signal.

Signals: -o is FFNN, -* is LRNN, -x is the regression tree, -+ is the bagged regression tree,

♦ is the AR model
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Table 4.2: Absolute value of the difference of the coefficient of variation of the models and the actual signal when 0 ≤ β ≤ 2.

FFNN: Feedforward Neural Network, LRNN: Layer Recurrent Neural Network, RT: Regression Tree, BRT: Bagged Regression

Tree, AR: Autoregressive Model

FFNN LRNN RT BRT AR

5 points 0.0228±0.0243 0.0648±0.0905 0.0651±0.0884 0.0653±0.0881 0.0059±0.0865

15 points 6.9217±31.862 0.0207±3.1158 0.0574±3.2040 0.0553±3.2022 0.6975±3.1601

25 points 0.2798±3.7759 0.6388±3.6827 0.5141±3.8207 0.5114±3.8228 0.6160±3.9940

35 points 0.5215±1.8920 4.9118±12.221 0.7452±1.9041 0.7273±1.9122 0.7917±2.1511

50 points 1.7148±1.5854 8.9867±100.61 2.0304±1.8839 2.0497±1.9855 0.3006±0.6439

100 points 4.5375±0.2016 23.669±211.57 4.0746±3.7515 4.0519±3.7912 0.0777±2.0105

150 points 4.9999±6.9583 12.529±137.55 4.2190±4.4150 4.0803±4.1100 0.6692±3.2485
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5.0 DISCUSSION

In this study, we considered five methods, which includes four machine learning methods, to

predict the stochastic process that is the 1/fβ function. A Monte Carlo simulation was done

for all five methods on a range of β values for a given number of forecasted points ranging

from 5 to 150. The mean of the signals as well as their coefficient of variation have been

computed. Both were used for the simulation. In this section, an in-depth approach will be

conducted in order to better understand the results that were obtained.

5.1 PREDICTED SIMULATED MODELS

The results regarding the mean of the signals obtained through the simulation have shown

that the regression tree, bagged regression tree, feedforward neural network and the au-

toregressive model are well suited for predicting the 1/fβ process, however the FFNN was

deemed unreliable due to the errors it presented. As for the simulation using the coefficient

of variation, the same signals also exhibited promising predictions. By comparing these re-

sults, the FFNN can no longer be considered a viable option. From the remaining prediction

methods, only the decision trees and the AR model can be considered for forecasting pur-

poses.

Since the 1/fβ process is a stochastic process, it was not surprising that predicting it

would not give accurate results. When using the neural networks and the decision trees, the

predictions do not display the exact variations of the white, pink and red noises. This resulted
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in choosing the regression trees as the best methods for predicting the stride interval time

series, as well as the AR model. However, when forecasting less than 25 points, all methods

used in this study can be deemed acceptable for this purpose, yet the most robust are still

the ones mentioned previously. Since the goal is to predict the future β value of an individual

using the Average Wavelet Coefficient (AWC), either the RT, BRT or the AR model suffice.

However, as mentioned previously, if the goal is to get the value one particular point at a

future state, the best method would therefore be the AR model since it is the most robust

of all the methods presented in this study.

5.2 INFLUENCE OF THE BIOMARKER

The biomarker β plays an essential role in the prediction outcome. As seen in the Monte

Carlo simulations, its value greatly influences the accuracy of the models. If the value is

such that 1 < β ≤ 2, the signals used for prediction might be unreliable, depending on the

number of points that is being forecasted. Previous studies, most notably with Hausdorff

et al., have shown that these β values are more often than not inferior to one, which is

considered as being the benchmark for a healthy patient, regardless of the health state of

the individual (affected by Huntington’s disease, Parkinson’s disease or ALS in the case of

the study) [5,17,18]. However, this piece of information does not alter the conclusions drawn

previously. It is in that range of β values, 0 ≤ β ≤ 1, that the simulated signals exhibit

more accuracy.

In this study, the prediction was only performed on simulated data which indeed helps

give an idea of the outcome, however data obtained through acquisition on real life cases helps

give more probable results. The simulated data does not take into account the difference in

stride intervals between individuals, it is constant regardless of the β value. Furthermore, the

Monte Carlo simulation was only done with 100 simulation per β value. Although it can give

accurate results, an increased number of simulations would only strengthen the conclusions

that are being drawn. Finally, only a handful of methods were used in for predicting the
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signals. Machine learning methods are well suited for prediction and forecasting, there exist

many different types of neural networks and decision trees, the ones chosen in this study are

the more common ones.

In order to improve the results obtained in this study, it would be interesting to apply

what is already known here to real life data, as well as increase the number of simulations

to 1000. That would require a lot of computational power since the simulation is voracious

time-wise and computer-wise with only 100 simulations per β value. Finally, it would be

interesting to explore more machine learning methods for the purpose of increasing the total

number of points that is possible to forecast.
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

The object of this study was to provide a way to predict the non-zero mean 1/fβ time series

with respect to the physiological applications as well as determining a number of points

that can be forecasted accurately in an acceptable way. Primarily, a prediction analysis was

carried out in order to determine the functionality of various prediction methods available.

If fractal characteristics are of any interest for some arbitrary physiological process, it is

important to determine which method may output acceptable accurate results as this can

prove useful in the medical field. Predicting stochastic processes proves to be quite difficult

which is why the choice of prediction methods is crucial. Machine learning and regression

methods prove to do well when dealing with such processes as this study has shown. Two

neural networks were studied, the feed forward neural network and the layer recurrent neural

network, as well as two regression trees, the regression tree and the bagged regression tree,

and finally the autoregressive (AR) model. The evaluation of the neural networks have shown

that for a high β value and a high number of strides forecasted, they cannot be applied for

extrapolation. However, these are still relatively valid evaluations if these neural networks

are applied in the special conditions where the spectral exponent is between 0 and 1 and that

the number of strides predicted is below a certain value. On the other hand, both regression

trees and the AR model present a far better and accurate result for forecasting points. The

previously carried out evaluations have shown that a more accurate result is given for an

total number of forecasted points around 15 strides which is satisfactory given the methods

at hand, however it still remains a low value compared to the three hundred initial strides.

This study is the first of its kind that applies the time series prediction on stride interval time
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series thus comparisons to other studies cannot be made. However, this paves the way for

other studies to be made in the field of stride interval time series forecasting by introducing

the importance of such studies and how it can affect the medical world thanks to the notions

and results they carry.

6.2 FUTURE WORK

This investigation uncovered some of the pitfalls of some methods of prediction in fractal

time series analysis. Any recommendations of algorithm modification or development were

out of the scope of this comparative and forecasting assessment. For example, there are

many ways in which neural networks and regression trees, or other machine learning and

regression algorithms, may be improved to more suitably predict and forecast the modeled

non-zero mean 1/fβ stride interval time series process. In the interest of developing the

general scheme, parameters such as the total number of stride intervals, the spacing between

strides or the number of points forecasted, were kept constant and did not necessarily apply

to all the possible cases. As discussed previously no other studies have been conducted on

the gait stride interval time series prediction, it would thus be interesting to extend and

refine the analysis done in this thesis in order to forecast even more points accurately so that

specific mechanisms of disease and decline in gait can be better observed and understood.

Also, this study focused on a simplified assumption of the complex phenomena of interest in

that all processes are assumed to be monofractal which is presently unclear if they actually

are. Although some multifractal analysis in physiology have been performed, applying it to

the stride interval time series would prove to be interesting. Furthermore, a more widespread

use of fractal measures as a parameter in other investigations of nonlinear and nonstationary

phenomena would be interesting to study. It can prove to be a useful tool in studies that

focus on pattern recognition problems in dysphagia or for EEG measures. Finally, it seems

that model predictions would be well suited to inform the development of more behaviorally

accurate models of complex physiological systems. With technology always improving and

implemented in our day to day life, a more mobile version for verifying the physiological
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state of one individual that can efficiently output results would prove to be useful. It would

be interesting to investigate the development of one such mobile device and implement it in

rehabilitation centers where patients with a pathological gait due to accidents, for example,

learn to walk again.
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