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MOTIVIC INTEGRATION, THE SATAKE TRANSFORM AND THE

FUNDAMENTAL LEMMA.

Jorge E. Cely, PhD

University of Pittsburgh, 2016

The purpose of this work is to use motivic integration for the study of reductive groups

over p-adic fields (towards applications of the fundamental lemma for groups). We study

spherical Hecke algebras from a motivic point of view. We get a field independent description

of the spherical Hecke algebra of a reductive group and its structure. We investigate the

Satake isomorphism from the motivic point of view. We prove that some data of the Satake

isomorphism is motivic.
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1.0 INTRODUCTION

In late nineties, Hales started to use motivic integration to representation theory of p-adic

groups.

Arithmetic motivic integration, as a generalization of p-adic integration, can be viewed as

a universal theory of integration for local fields that is independent of p. In 2004, Cluckers

and Loeser developed a theory of motivic integration based the model theory of certain

valued fields. This is the framework of our work. Cluckers, Hales and Loeser used this later

theory to prove that it is possible to transfer the Lie algebra variant of the fundamental

lemma. A lot of work has been done by Gordon, Cluckers and Halupczok.

This work follows those lines and leaves some open questions on that area.

The purpose of this work is to use motivic integration for the study of reductive groups

over p-adic fields (towards applications of the fundamental lemma for groups). In Chapter 2

we present the theory of motivic integration that is used here. In Chapter 3 we present all

the background material on reductive p-adic groups and other ingredients in the fundamental

lemma. The new contributions are in the following chapters. In Chapter 4 we study spherical

Hecke algebras from a motivic point of view. We get a field independent description of the

spherical Hecke algebra of a reductive group and its structure. Even though some of our

results are modulo a null function, that is enough for applications of the transfer principle.

In Chapter 5 we study the Satake isomorphism from the motivic point of view. We prove

that some data of the Satake isomorphism is motivic. Using results from Chapter 4 we define

a motivic version of the Satake transform (up to null functions). We believe that a motivic

Satake can lead to a motivic version of the fundamental lemma for non-unit elements in the

spherical Hecke algebra. Although we do not have a result like that, in Chapter 6 we discuss
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that possibility.
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2.0 MOTIVIC INTEGRATION

2.1 MODEL THEORY

Model theory is the branch of mathematical logic that deals with the relations between

mathematical structures and formal languages used to describe them.

Consider a mathematical structure and a formal language capable of expressing properties

of the mathematical structure. Now if we assume that the formal language has a logic, the

general question that arises is, what is the relation between the syntactic component (with

the logic included) and the semantics of the structure? This is a broad question but it is

at the heart of model theory. Firstly, we restrict to first-order model theory which uses

first-order logic. That is enough for our purposes. Some references are [7], the first book

in the subject; [30] and [42]. These are more recent references, and they include some

applications. Historically the major developments in model theory (theory and applications)

have occurred in first-order model theory. We include an short introduction and comments

on the subject because the theory of motivic integration needed in this work uses the model

theory of certain valued fields. We begin with the logic.

2.1.1 First-order logic

The idea is to use first-order logic to study mathematical objects. These are the logical

symbols:

• Logical connectives ¬,∧,∨,→,↔

• Quantifier symbols ∃,∀
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• Equality symbol = and parenthesis (, )

• Variables x1, x2, . . .

The description of a mathematical object, from the point of view of the logic, is given

by the choice of a language.

2.1.2 Languages and structures

Given a mathematical object M the idea is to associate to M a first-order language L

consisting of non-logical symbols that capture some structure of M. The symbols in a

first-order language are of three kinds:

• Predicate symbols. We attach to each predicate symbol a positive natural number that

represents the arity of the predicate.

• Function symbols. We attach to each function symbol a positive natural number that

represents the arity of the function.

• Constant symbols.

There is no restriction on the number of non-logical symbols. Clearly the language

depends on the mathematical structureM, but it is not unique. One has to choose it. This

is a very important matter because it determines how much structure is controlled by the

logic.

Definition 1. Let L be a first-order language. An L-structure M is given by the following:

i) A non-empty set M , called the universe of the structure or the underlying set (sometimes

M is just denoted M).

ii) For each function symbol f ∈ L with arity nf , a function fM : Mnf →M .

iii) For each predicate symbol R ∈ L with arity nR, a set RM ⊂MnR.

iv) For each c ∈ L, constant symbol, a member cM ∈M .

Example 2. The set Z of integer numbers.

The following are some possibilities of languages for this object.

• L = ∅. The L-structure of Z is the one of a countably infinite set.

4



• LPres = {+,≤, 0, 1,≡d, d = 2, 3, 4, . . .}. The function symbol + (with arity 2) is inter-

preted as the addition in Z. The relation symbol < (with arity 2) is interpreted as the

order in Z. The constant symbols 0, 1 are interpreted in Z as the natural numbers 0,

1. The symbol ≡n is interpreted as the binary relation a ≡ bmod (n) in Z. The LPres-

structure of Z is called the Presburger arithmetic (arithmetic without multiplication).

From the model theoretic perspective, this structure is well-understood. We use it in this

work.

• Lrings = {+,×, 0, 1}. The function symbol × is interpreted as the usual multiplication

in Z. The Lrings-structure of Z seems to be the natural place for the study of number

theory. By Gödel’s incompleteness theorems, this structure is extremely complicated from

the point of view of logic and model theory.

We give now some standard definitions to conclude with the definition of an L-formula.

Definition 3. Let L be a first-order language. The set of L-terms is the smallest set T such

that

i) For each constant symbol c ∈ L, we have c ∈ T .

ii) Each variable symbol xi ∈ T .

iii) For each function symbol f ∈ L with arity nf and t1, . . . , tnf ∈ T , we have f(t1, . . . , tnf ) ∈

T .

Definition 4. Let L be a first-order language. We say that φ is an atomic L-formula if φ

is either of the form

i) t1 = t2, where t1, t2 are L-terms, or

ii) R(t1, . . . , tnR), where R is a predicate symbol with arity nR and t1, . . . , tnR are L-terms.

The set of L-formulas F is defined as the smallest set that contains all the atomic L-formulas

and such that

i) If φ ∈ F , then ¬φ ∈ F .

ii) If φ, ψ ∈ F , then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ) ∈ F .

iii) If φ ∈ F , then ∃xφ ∈ F and ∀xφ ∈ F .
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In the language of rings Lrings = {0, 1,+,×} the following are examples of formulas

x+ 1 = 0, ∃x (x3 + y = 2), and ∀x∀y¬(xy = yx).

The following strings of symbols are not Lrings-formulas

x→ y, xy = 1, and ((¬1(∧x.

Notice that x3 is an abbreviation of the Lrings-term x×x×x, 2 is an abbreviation of 1+1.

A free variable in an L-formula is a variable that is not bounded by a quantifier. An

L-sentence is a an L-formula without free variables.

In model theory one associates invariants of a logical nature to an L-structure M. For

example Th(M), the set of first-order L-sentences which are true in M, is an object called

the L-theory of M. It is fundamental and vastly studied in model theory. But rather

than look at sentences and theories, we can look at formulas with free variables in a given

language. That leads to the concept of a definable set in that language. From here one gets

the important concept of an L-type which is essential in classification theory. Regarding the

use of model theory in motivic integration we do not need to go further into classification

theory. We need to look at the category of definable sets on certain valued fields. A definable

set in a structure (the precise definition is given below) is the set of solutions of a formula

with free variables in a prescribed language. This approach allows us to uniformly handle

those definable sets in a class of structures where the defining formulas makes sense. When

the purpose is to use and understand the definable sets in a given structure or a class of

structures it is very desirable to have quantifier elimination (i.e. every formula is equivalent

to a formula without quantifiers). This is an old and important topic in model theory and

it plays an important role in the theory of motivic integration developed by Cluckers and

Loeser.
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Definition 5. Let M be an L-structure. We say that X ⊂Mn is a definable set if and only

if there is an L-formula φ(x1, ..., xn, y1, ..., ym) and b1, . . . , bm ∈Mm such that

X = {a ∈Mn :M |= φ(a, b1, . . . , bm)},

i.e., X consists of all the tuples a ∈ Mn for which φ(a, b1, . . . , bm) is true in M. We say

that X is definable with parameters in A or definable over A (or A-definable) if b1, . . . , bm ∈

A ⊂ M . We say that a function f : Mn → Mm is definable if the graph of f in Mn×m is a

definable set.

Example 6. Let (R,+,−,×, 0, 1) the Lrings-structure of the real field.

• The formula x2 + y2 = 1 defines the unit circle in R2.

• The usual linear order ≤ of the reals is definable

x ≤ y ⇔ ∃z (y = x+ z2).

• The function x 7→ x3 is definable because its graph is a definable subset of R2.

Example 7. Let (Z,+,−,×, 0, 1) the Lrings-structure of the ring of integers Z. Lagrange’s

four square theorem (any natural number can be represented as the sum of four integer

squares) implies that N is definable by the Lring-formula (y as the free variable)

∃x1 ∃x2 ∃x3 ∃x4 (x2
1 + x2

2 + x2
3 + x2

4 = y).
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2.1.3 Valued fields

The motivic measure has a universal character with respect to the Haar measures on locally

compact non-archimedean fields. It works as a measure that does not depend on any par-

ticular locally compact field. Local fields are the non-discrete locally compact fields; in the

non-archimedean case they are finite extensions of either Qp or Fp((t)). These are valued

fields, and the formulas in Lrings do not capture the extra structure (e.g. the valuation) on

these fields. So a bigger language is need.

Definition 8. A valued field is a field with a map ord : F → G∪{∞} to an ordered abelian

group G such that.

• ord(x) =∞ if and only if x = 0,

• ord(xy) = ord(x) + ord(y) for all x, y ∈ F ,

• ord(x+ y) ≥ min{ord(x), ord(y)} for all x, y ∈ F .

The map ord is called the valuation map of F .

The following examples of valued fields are widely used in mathematics.

Example 9. p-adic numbers.

The field Qp, its finite extensions, its algebraic closure Q̄p and its complete algebraic closure

Cp. All of them have the p-adic valuation.

Example 10. Formal Laurent series.

For any field K, the field K((t)) equipped with the t-adic valuation.

Example 11. Puiseux series.

For any field K, the field
∞⋃
n=1

K((t1/n)),

equipped with the t-adic valuation.

There are various ways (languages) in which valued fields may be regarded as first-order

structures. Before we introduce in the next section the language used in Cluckers-Loeser’s

theory, we mention other possibilities. To begin, a valued field is first and foremost a field,
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so any reasonable language must start with Lring, the language of rings. Suppose F is a

valued field with valuation map ord.

• Let LV = Lring ∪ {V }, with V a unary relation symbol. We regard the valued field F as

a LV -structure by interpreting V as the valuation ring. If F is a non-archimedean local

field, V F = OF , the ring of integers of F . The value group Γ = F×/(V F )× is present in

F viewed as an LV -structure, we say that Γ is interpretable in (F,+, ·, 0, 1, V ).

• Let Ldiv = Lring ∪ {|}, with | a binary relation symbol interpreted in F by

x | y ⇔ ord(x) ≤ ord(y).

In the language Ldiv the valuation ring is definable by the formula 1 |x. These two

languages, LV and Ldiv describe the same structure because each structure is definable

in the other.

• Macintyre’s language, LMac = Ldiv ∪ {Pn : n ≥ 1}, each Pn is a unary predicate symbol,

interpreted in F by

P F
n = {x ∈ F×| ∃y ∈ F (yn = x)},

the set of nth powers in F .

2.2 CLUCKERS-LOESER’S THEORY OF MOTIVIC INTEGRATION

2.2.1 Denef-Pas language

Before we introduce the Denef-Pas language, we need to describe a slight generalization of

first-order languages. A three-sorted language has three sorts of variables; the description

of functions symbols, relation symbols and constant symbols must specify the sort of the

variables involved. Regarding the quantifiers, they range over the corresponding sort. For

example, in the Denef-Pas language, an existential quantifier for a valued field variable ranges

over the valued field sort. A structure for a three-sorted language has a universe with three

disjoint sorts.

9



The Denef-Pas language is a three-sorted language designed for valued fields. The three

sorts correspond respectively to the valued field (denoted by VF), the residue field (denoted

by RF) and the value group (which is always Z).

The Denef-Pas language, denoted by LDP , consist of the following symbols

• Lrings for the valued field sort VF,

• Lrings for the residue field sort RF,

• LPres for the valued group sort Z,

• ord : VF× → Z a function symbol for the valuation map,

• ac : VF→ RF a function symbol for the angular component map.

The language of rings Lrings = {+,×, 0, 1}, already introduced, is the standard language

used in model theory for the study of rings, fields and skew fields. This language consists

of two function symbols +,× interpreted as the addition and the multiplication in the cor-

responding field; and two constant symbols 0, 1 which are interpreted in the expected way,

as the additive unit and the multiplicative unit in the field. Notice that a quantifier-free

formula with n free variables in the language of rings defines a constructible set (a boolean

combination of zero sets of polynomials in n variables).

The Presburger language LPres = {+,≤, 0, 1,≡d, d = 2, 3, 4, . . .} is described above in

example 2. The description of the definable sets and functions by formulas in LPres is rela-

tively simple because of quantifer elimination proved by Presburger [48]. For instance, the

definable subsets of Z in the Presburger language are finite unions of arithmetic progresions

(in positive or negative direction) and points.

The function symbol ord : VF× → Z is interpreted as the valuation map, so clearly by

construction, this language only can be used for valued fields with value group Z; for exam-

ple it is suitable for non-archimedean local fields but not for algebraically closed valued fields.

The function symbol ac : VF → RF is interpreted as an angular component map, this

requires us to fix a uniformizer (a generator of the unique non-zero prime ideal of the discrete

10



valuation ring) in the valued field. We give more details in the next sections.

In summary, any formula in LDP can be interpreted in any discretely valued field once a

uniformizer is chosen. Hence, any discretely valued field is an LDP -structure.

2.2.2 Definable subassignments

The main references for this section are [20] and [10]. We quote some parts of these references.

Let K be a field containing the ground field k. The field of formal Laurent series K((t)) is

a valued field with

ord(f) = N, ac(f) = aN

where f =
∑∞

i=N ait
i and N 6= 0. In this case the uniformizer is t. Then (K((t)), K,Z) is a

structure in the Denef-Pas language.

Let Fieldk be the category of fields containing the ground field k.

Definition 12. We will denote by h[m,n, r] the functor from the category Fieldk to the

category Sets by

h[m,n, r](K) = K((t))m ×Kn × Zr,

where K((t)) is the field of formal Laurent series with coefficients in K.

Some examples: h[1, 0, 0](K) = K((t)), h[0, 0, r](K) = Zr and h[0, 0, 0] is the functor

that assigns to each field K a one-point set.

Definition 13. Let C be a category and let F : C → Sets be a functor. A subassignment of

F is a collection of subsets h(C) ⊆ F (C), for each object in C.

Note that there is no requirement about the morphisms so a subassignment has not to

be a subfunctor. The subassignments play an important role, they are the manner in which

we describe sets in a uniform way, but the idea is to do this in a definable way and that

motivates the following definition.

Definition 14. Let h be a subassignment of the functor h[m,n, r], we say that h is a definable

subassignment if there exists a formula φ in the Denef-Pas language with coefficients in k((t))

11



and m free variables of the valued field sort, with coeffients in k and n free variables of the

residue field sort, and r free variables of the value sort, such that for each K ∈ Fieldk, h(K)

is the definable subset of K((t))m ×Kn × Zr given (or defined) by the formula φ.

The definable subassignments are just the connection (in a uniform way) between the

formulas and their corresponding definable sets. The following definition leaves us in position

to talk about a category of definable subassignments.

Definition 15. Let h1 and h2 be two definable subassignments (probably of different func-

tors). A morphism between h1 and h2 is a definable subassignment G such that G(K) is the

graph of a function from h1(K) to h2(K) (note that this is just a definable function in the

Denef-Pas language between two definable sets), for each element in Fieldk.

We will denote by Defk the category of definable subassignments. Note that it is pos-

sible to define set-theoretic operations on subassignments in a natural way, for instance,

(h1 ∩ h2)(K) := h1(K) ∩ h2(K).

A point on a subassignment S ∈ Defk is, by definition, a pair (s0, K) where K ∈ Fieldk,

and s0 ∈ S(K). We denote the collection of points of S by |S|.

The relative situation is defined as follows. Let S be an object in Defk. We define

the category DefS as follows: the objects are the definable subassignments equipped with a

morphism to S, so for Y ∈ Defk, [Y → S] ∈ DefS and morphisms are commutative triangles

W Y

S

-

?

�
�
�	

For S ∈ Defk, we define the following object in DefS,

S[m,n, r] := S ×K((t))m ×Kn × Zr

the morphism to S is given by the projection onto the first factor.
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We construct another category. Given S ∈ Defk, we define the category of R-definable

subassignments over S, denoted by RDefS, whose objects are definable subassignments of

S[0, n, 0] for some n ≥ 0, the morphism to S of this elements should be the projection on the

first factor, and the morphisms between two elements in this new category are morphisms

over S, similar to above. The idea is that the elements in this category correspond to

definable elements in the residue sort attached somehow to S. For example, RDefSpec k is

basically the category of definable subsets in the residue sort. They are the definable subsets

in the language of rings.

2.2.3 Grothendieck rings and semirings

Various theories of motivic integration (if not all) are associated with Grothendieck rings.

As a first example we can consider the Grothendieck ring of algebraic varieties over a field

k, denoted K0(Vark). It is defined as the free abelian group generated by the isomorphism

classes of k-varieties modulo the set of relations of the form [X − Y ] = [X]− [Y ], whenever

Y is a closed subvariety of X. The product operation is defined using the product operation

on varieties. If k has characteristic zero, Poonen proved that K0(Vark) is not a domain [47].

There are open questions about this ring.

Let S ∈ Defk. The Grothendieck semigroup of R-definable subassignments over S,

denoted by SK0(RDefS) is defined as the quotient of the free abelian semigroup over symbols

[Y → S] with Y → S ∈ RDefS by relations

[∅ → S] = 0,

[Y → S] = [Y ′ → S]

if Y → S is isomorphic to Y ′ → S (over S) and

[(Y ∪ Y ′)→ S] + [(Y ∩ Y ′)→ S] = [Y → S] + [Y ′ → S]

for Y and Y ′ definable subassignments of some S[0, n, 0] → S. Similarly, one defines the

Grothendieck group of R-definable subassignments over S, denoted by K0(RDefS), as the
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quotient of the free abelian group over symbols [Y → S] with Y → S ∈ RDefS by the same

relations above. The cartesian fiber product over S induces a semiring, resp. ring, structure

on SK0(RDefS), resp. K0(RDefS), by

[Y → S][Y ′ → S] = [Y ⊗S Y ′ → S].

The multiplicative unit in the ring and the semiring is [S → S]. The ring K0(RDefS)

is nothing but the ring obtained from SK0(RDefS) by inverting additively every element.

In Lebesgue’s theory of integration, the positive functions play an important role. In this

framework the situation is similar, that is the reason why Grothendieck semirings have to

be considered.

2.2.4 Constructible motivic functions

In this section we define the ring of constructible motivic functions over a fixed subassign-

ment. We begin with the definition of the ring of values of these functions. Let L be a formal

symbol (not a symbol in a first-order language). One considers the ring

A = Z
[
L,L−1,

(
1

1− L−n

)
: n ≥ 0

]
.

Let q be a real number greater than 1. We have a ring homomorphism

vq : A→ R

defined by L 7→ q. We consider the semiring

A+ = {x ∈ A | vq(x) ≥ 0,∀q > 1}

for the functions taking “positive” values. In fact, there are two separate constructions: the

semiring of constructible motivic functions over a definable subassignment S (associated to

“positive” functions on S, the semiring A+ and the Grothendieck semiring SK0(RDefS),

and the ring of constructible motivic functions on S (associated to the ring A and the

Grothendieck ring K0(RDefS)).

14



Let S ∈ Defk be a definable subassignment. The semiring and the ring of constructible

motivic functions over S is built from functions of two types. The first resembles functions

that appear naturally in the p-adic setting. This is not accidental, and it is explained in

more detail in the section on specialization of constructible motivic functions.

We consider the subring P(S) of the ring of functions |S| → A generated by

• Constant functions in A.

• Definable functions α : S → Z in the Denef-Pas language.

• Functions of the form Lα, where α : S → Z is a definable function in the Denef-Pas

language.

We define P+(S) as the semiring of functions in P(S) taking values in A+.

The functions of the second type are elements in the Grothendieck ring K0(RDefS),

or in the Grothendieck semiring SK0(RDefS). So strictly speaking these elements are not

functions over S. Nevertheless, if we think of specialization to p-adic integration (explained

below in detail), we get a family of functions associated to S. Let K be a non-archimedean

local field with residue field Fq. Let [Y → S] ∈ RDefS. This element gives the following

integer-valued function on S(K):

S(K)→ Z,

x 7→ #{y ∈ Y (Fnq ) | y 7→ x},

where Y ∈ S[0, n, 0]. That is, the cardinality of the fiber of Y over x.

To put together the two kind of functions we proceed as follows. In K0(RDefS) and

SK0(RDefS), the isomorphism class of the subassignment x 6= 0 of S[0, 1, 0] is denoted by

L− 1. We denote by P0(S) the subring of P(S) generated by

• the characteristic functions 1Y : S → Z, where Y is a definable subassignment of S, and

• the constant function L− 1.
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The subsemiring P0
+(S) contains the same functions as P0(S), but it is viewed as a sub-

semiring of P+(S). We have canonical morphisms P0(S) → K0(RDefS) and P0
+(S) →

SK0(RDefS) given by Y 7→ [Y ] and (L− 1) 7→ [x 6= 0]. These morphisms allow us to define

the following

C+(S) = SK0(RDefS)⊗P0
+(S) P+(S)

and

C(S) = K0(RDefS)⊗P0(S) P(S).

We now introduce some functorialities. Suppose f : S → S ′ is a morphism in Defk.

The fiber product induces a natural pullback f ∗ : SK0(RDefS′) → SK0(RDefS), namely,

by sending [Y → S ′] to [Y ×S′ S → S]. It is shown in [12] that the morphism f ∗ can be

naturally extended to

f ∗ : C+(S ′)→ C+(S).

Similar constructions apply for K0(RDefS) and C(S).

If f : S → S ′ is a morphism in RDefS′ , composition with f induces a morphism

f! : SK0(RDefS)→ SK0(RDefS′). It is shown in [12] that f! can be naturally be extended

to

f! : C+(S)→ C+(S ′).

Similar constructions apply for K0(RDefS) and C(S).

Some dimension theory for subassignments is needed. Suppose S ∈ Defk is a subassign-

ment in h[m,n, r]. Let VF(S) the image of S under the projection h[m,n, r] → h[m, 0, 0].

Note that each Zariski closed set in Am
k((t)) defines a (definable) subassignment in h[m, 0, 0].

Define the Zariski closure VF(S) of the subassignment VF(S) to be the intersection of all the

Zariski closed sets (viewed as definable subassignments) containing VF(S). The dimension

of S is defined as the dimension of VF(S), viewed as an affine subvariety of Am
k((t)). The

dimension of S is denoted by dim(S). The following is a result in [12].

Proposition 16 (c.f. [12], Thm. 3.3.1). Any two isomorphic objects in Defk have the same

dimension.
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For every non-negative integer d, the ideal of C+(S) generated by functions 1Z , where Z

is a definable subassignment of S with dim(Z) ≤ d, is denoted by C≤d+ (S). We now set

C+(S) :=
⊕
d≥1

Cd+(S)

where

Cd+(S) := C≤d+ (S)/C≤d−1
+ (S).

It is a graded abelian semigroup and also a C+(S)-semimodule. We call the elements of

C+(S) positive constructible motivic functions (or just positive constructible functions) on

S. If φ is a function lying in C≤d+ (S) but not in C≤d−1
+ (S), its image in Cd+(S) is denoted

by [φ]. In a similar way, one can define from C(S) the ring C(S) of constructible motivic

functions (or just constructible functions) over S.

The quotient of C≤d+ (S) by C≤d−1
+ (S) is made because of the necessity to include functions

defined almost everywhere (from the point of view of classical measure theory, this is stan-

dard). This is related to the problem of differentiation of functions with respect to the valued

field variables. It can be proved that, if f : S → S ′ is an isomorphism in Defk, one may

define a function called, the order of the jacobian of f , denoted by ordjacf . This function

is equal almost everywhere to a definable function, hence we may define Lordjacf in Cd+(S)

when S is of dimension d.

The constructible functions over a subassignment S are built from definable functions

on S. The next step is the construction of the S-integrable functions via pushforward of

morphisms.

2.2.5 The motivic measure

The following is the main theorem by Cluckers and Loeser in [12]. It constructs the functor of

S-integrable functions, and this leads to the definition of the motivic measure, as we explain

after the statement of the theorem (quoted from [11] and [12]).
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Theorem 17 (c.f. [12], Thm. 10.1.1). Let k be a field of characteristic zero and let S be an

object in Defk. There exists a unique functor

DefS → Abelian Semigroups

Z 7→ ISC+(Z)

assigning to every morphism f : Z → Y in DefS a morphism f! : ISC+(Z)→ ISC+(Y ) and

satisfying the following axioms:

1. Functoriality

(a) For every composable morphisms f and g in DefS, (f ◦ g)! = f! ◦ g!. In particular,

id! = id.

(b) (Naturality) Let δ : S → S ′ be a morphism in Defk and denote by δ+ : DefS →

DefS′ the functor induced by composition with δ. For every Z in DefS, we have

the inclusion IS′C+(δ+(Z)) ⊂ ISC+(Z), and for φ ∈ IS′C+(δ+(Z)), f!(φ) is the same

function computed in IS or in IS′.

(c) (Fubini) If f : X → Y is a morphism in DefS, a positive constructible function φ

on X belongs to ISC+(X) if and only if φ belongs to IY C+(X) and f!(φ) belongs to

ISC+(Y ).

2. Integrability

(a) For every Z in DefS, ISC+(Z) is a graded subsemigroup of C+(Z).

(b) ISC+(S) = C+(S).

3. Disjoint union

If Z is the disjoint union of two definable subassignments Z1 and Z2, then the iso-

morphism C+(Z) ∼= C+(Z1) ⊕ C+(Z2) induces an isomorphism ISC+(Z) ∼= ISC+(Z1) ⊕

ISC+(Z2), under which f! = f|Z1! ⊕ f|Z2!.

4. Projection formula

For every α in C+(Y ) and every β in ISC+(Z), αf!(β) ∈ ISC+(Y ) if and only if f ∗(α)β ∈

ISC+(Z). If these conditions are verified, then f!(f
∗(α)β) = αf!(β).
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5. Inclusions

If i : Z → Z ′ is the inclusion of definable subassignments of the same object of DefS,

then i! is induced by extension by zero outside Z. For every φ ∈ C+(Z), [φ] ∈ ISC+(Z)

if and only if [i!(φ)] ∈ ISC+(Z ′). If this is the case, then i!([φ]) = [i!(φ)].

6. Integration along residue field variables

This axiom means that integrating with respect to variables in the residue field just

amounts to taking the pushforward induced by composition at the level of Grothendieck

semirings.

Let Y be an object of DefS and denote by π the projection Y [0, n, 0] → Y . Let [φ]

be a function in C+(Y [0, n, 0]). Then [φ] ∈ ISC+(Z) if and only if, [π!(φ)] ∈ ISC+(Y ).

Furthermore, when this holds, π!([φ]) = [π!(φ)].

7. Integration along Z-variables

This axiom states that integration along Z-variables corresponds to summing over the

integers. Some preliminary constructions are needed.

Let φ ∈ P(S[0, 0, r]), so φ : |S| × Zr → A. We say that φ is S-integrable if for every

q > 1 and every x in |S|, the series
∑

i∈Zr vq(φ(x, i)) is summable. It can be proved that

if φ is S-integrable there exists a unique function µS(φ) ∈ P(S) such that

∑
i∈Zr

vq(φ(x, i)) = vq(µS(φ)(x)),

for all q > 1 and all x ∈ |S|. We denote by ISP+(S[0, 0, r]) the set of S-integrable

functions in P+(S[0, 0, r]) and we set

ISC+(S[0, 0, r]) = C+(S)⊗P+(S) ISP+(S[0, 0, r]).

Hence ISP+(S[0, 0, r]) is a sub C+(S)-semimodule of C+(S[0, 0, r]) and µS may be ex-

tended by tensoring to

µS : ISC+(S[0, 0, r])→ C+(S).

We now state the axiom:

Let Y ∈ DefS and let π : Y [0, 0, 1] → Y be the projection. Let [φ] be a function in

C+(Y [0, 0, r]). Then [φ] ∈ ISC+(Y [0, 0, 1]) if and only if there exists φ′ in C+(Y [0, 0, r])
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with [φ′] = [φ] which is Y -integrable in the previous sense and such that [µY (φ′)] ∈

ISC(Y ). Futhermore, when this holds, π!([φ]) = [µY (φ′)].

8. Volume of balls

By analogy with the p-adic case, it is natural to require that the volume of the ball

{z ∈ h[1, 0, 0] | ord(z − c) = α and ac(z − c) = ξ},

with α ∈ Z, c ∈ k((t)) and ξ ∈ k×, should be L−α−1. This axiom is the relative version

of this statement.

Let Y ∈ DefS and let Z be the definable subassignment of Y [1, 0, 0] defined by

ord(z − c(y)) = α(y) ∧ ac(z − c(y)) = ξ(y),

with z the coordinate (free variable) on the A1
k((t))-factor and α, ξ and c definable functions

on Y with values respectively in Z, h[0, 1, 0]\{0}, and h[1, 0, 0]. We denote by f : Z → Y

the morphism induced by the projection. Then [1Z ] ∈ ISC+(Z) if and only if L−α−1[1Y ] ∈

ISC+(Y ), and, if both are true, then

f!([1Z ]) = L−α−1[1Y ].

9. Graphs

This axiom gives an expression for the pushforward for graph projections. It is a special

case of the change of variables theorem that can be proved in the theory.

Let Y ∈ DefS and let c : Y → h[1, 0, 0] be a definable morphism. Let Z be the definable

subassignment of Y [1, 0, 0] defined by z − c(y) = 0 with z the coordinate (free variable)

on the VF-sort. We denote by f : Z → Y the projection. Then [1Z ] ∈ ISC+(Z) if and

only if L(ordjacf)◦f−1 ∈ ISC+(Y ), and, if both are true, then

f!([1Z ]) = L(ordjacf)◦f−1

.

Definition 18. Let f : Z → S be a morphism in Defk. The elements of ISC+(Z) are called

S-integrable positive functions over Z.
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As before S ∈ Defk. The idea is to extend the construction from C+(S) to C(S).

Let Z ∈ DefS. Recall ISC+(Z) is a subsemigroup of C+(Z), and C+(Z) can be mapped

(naturally) into C(Z). The subgroup ISC(Z) of S is defined as the subgroup generated by

the image of ISC+(Z) in C(Z). Then, it can be proved that if f : Z → Y is a morphism in

DefS, the morphism f! : ISC+(Z)→ ISC+(Y ) has a natural extension

f! : ISC(Z)→ ISC(Y ).

As in definition 18, for a morphism f : Z → S in Defk, the elements of ISC(Z) are called

S-integrable functions over Z.

Let us explain the relation with motivic measures. The definable subassignments will

play the role of measurable sets. When S = h[0, 0, 0], the functor that assigns to each field

K ∈ FieldK a one-point set (this is the final object in Defk). We omit the “S” in the

notation. That is, one writes IC+(Z) for ISC+(Z), we say integrable instead of S-integrable

and so on. Note that,

IC+(h[0, 0, 0]) = C+(h[0, 0, 0]) = SK0(RDefk)⊗N[L−1] A+

and

IC(h[0, 0, 0]) = C(h[0, 0, 0]) = K0(RDefk)⊗Z[L] A.

Let Z be an object in Defk and let f : Z → h[0, 0, 0] be a morphism in Defk (note that

such a morphism always exists and it is unique, it depends on Z). Then we have

f! : IC(Z)→ K0(RDefk)⊗Z[L] A

φ 7→ f!(φ).

For φ ∈ IC(Z), we define the motivic measure (or motivic integral) µ(φ) by

µ(φ) =

ˆ
Z

φ dµ := f!(φ).

If φ ∈ IC+(Z), f!(φ) is “positive”, that is, f!(φ) ∈ SK0(RDefk)⊗N[L−1] A+.
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Let Z be an object in Defk of dimension d. Let φ be a function in C+(Z), or in C(Z).

We say that φ is integrable if its class [φ]d in C+(Z), resp. in C(Z), is integrable, and we

have

µ(φ) =

ˆ
Z

φ dµ := f!([φ]d).

For Z ∈ Defk, the motivic volume of Z is defined as

ˆ
Z

1Z dµ = f!([1Z ]),

provided 1Z is integrable. Observe that a motivic volume is an element in the semiring

SK0(RDefk)⊗N[L−1] A+.

Suppose Z is a subassignment of some h[m,n, 0]. We say that Z is bounded if there

exists a positive integer s such that Z is contained in the subassignment Bs of h[m,n, 0]

defined by
m∧
i=1

ord(xi) ≥ −s,

clearly the variables xi are free VF-variables.

The following result of Cluckers and Loeser [12] gives a sufficient condition for the inte-

grability of characteristic functions of certain definable subassignments.

Proposition 19 (c.f. [12], Prop. 12.2.2). If Z is a bounded definable subassignment of

h[m,n, 0], then 1Z is integrable. Hence the motivic volume of Z exists.

2.2.6 Integrals with parameters

This theory of integration can be extended to integrals depending on parameters. Let us fix

Λ in Defk playing the role of parameter space. Let S ∈ DefΛ. The ideal C≤d+ (S → Λ) of

C+(S) generated by functions 1Z with Z a definable subassignment of S such that all the

fibers of Z → Λ are of dimension ≤ d (we give below a more detailed explanation of these

fibers and their dimensions). We set

C+(S → Λ) :=
⊕
d≥1

Cd+(S → Λ)
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where

Cd+(S → Λ) := C≤d+ (S)/C≤d−1
+ (S → Λ).

It is a graded abelian semigroup and it has also the structure of a C+(S)-semimodule. If φ

belongs to C≤d+ (S → Λ) but not to C≤d−1
+ (S → Λ) we write, as before, [φ] for its image in

Cd+(S → Λ). The following is the relative version of Theorem 17.

Theorem 20 (c.f. [12], Thm. 14.1.1). Let Λ be in Defk. Let S be in DefΛ.There is a

unique functor

DefS → Abelian Semigroups

Z 7→ ISC+(Z → Λ),

assigning to every morphism f : Z → Y in Defk a morphism f!Λ : ISC+(Z → Λ) →

ISC+(Y → Λ) and satisfying the axioms similar to A1−A9 of Theorem 17 replacing ISC+(−)

by ISC+(− → Λ) and the following two changes. In A1(b), δ should be a morphism in DefΛ.

In A9, one should replace the function ordjac by its relative version ordjacΛ.

We define now the relative motivic measure. Let f : Z → Λ be a morphism in DefΛ

(since Λ → Λ is the final object in DefΛ, this morphism is unique and it only depends on

Z). We simplify a bit the notation. We write IC+(Z → Λ) for IΛC+(Z → Λ). The relative

motivic measure µΛ is defined as f!Λ, more specifically

µΛ := f!Λ : IC+(Z → Λ)→ C+(Λ→ Λ) = C+(Λ),

and for φ in IC+(Z → Λ),

µΛ(φ) =

ˆ
Z

φ dµΛ := f!Λ(φ).

The relative motivic volume of a definable subassignment Z in DefΛ is by definition µΛ(1Z),

provided 1Z is integrable. The following result shows that the relative motivic measure

corresponds to integration along the fibers of Λ. Before we state this result, it is necessary

to explain some terminology. Suppose Z ∈ DefΛ. Recall that a point λ in Λ is a tuple

(xλ, K) where K in Fieldk, and xλ ∈ Λ(K). We write k(λ) = K. We denote by Zλ ⊂ Z

the fiber of λ under Z → Λ. The fiber Zλ is an object in Defk(λ). Note that the base field

is k(λ) instead of k. Thus, the dimension of Zλ, as a definable subassignment, exists. The
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only thing to bear in mind is that this dimension is taken with respect to k(λ). There exists

a natural restriction morphism i∗λ : C+(Z → Λ)→ C+(Zλ) that respects the grading.

Proposition 21 (c.f. [12], Coro. 14.2.2). Let Z be in DefΛ. Let φ ∈ C+(Z → Λ). Then, φ

belongs to IλC+(Z → Λ) if and only if for every point λ ∈ Λ, i∗λ(φ) ∈ IC+(Zλ). If these are

true, then

i∗λ(µΛ(φ)) = µλ(i
∗
λ(φ)),

for every point λ ∈ Λ. Here µλ denotes the motivic measure on Defk(λ).

As in the absolute case, it is possible to extend the theory from the case of “positive”

functions and get an analogue C(S → Λ), motivic measures and so on.

2.2.7 Volume forms

Cluckers and Loeser extended the theory of motivic integration to integration of volume

forms. They define a spaces of motivic volume forms |Ω(S)| on S, a definable subassignment.

Associated with each motivic volume form α, there is a constructible motivic function |α|.

For details, see [12].

Theorem 22 (c.f. [12] Thm. 15.3.1). Let f : S → S ′ be a morphism of definable sub-

assignments. Assume f is an isomorphism of definable subassignments. A volume form α

in |Ω(S ′)| is integrable if and only if f ∗(α) is integrable. When this holds we have

ˆ
S

f ∗(α) =

ˆ
S′
α.

2.3 SPECIALIZATION OF MOTIVIC FUNCTIONS

Definition 23. Let M > 0 be a positive integer number. We denote by AM the set of

non-archimedean local fields of characteristic zero such that the characteristic of the residue

field is greater or equal than M . We denote by BM the set of non-archimedean local fields

of positive characteristic such that the characteristic of the residue field is greater or equal

than M . Finally, we define CM = AM ∪BM .
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Let S be a definable subassignment. Let F ∈ CM and let φ ∈ C(S). Notice that if

S ⊂ h[m,n, r], then S determines a definable set SF ⊂ Fm × knF × Zr. The specialization

map is a ring homomorphism φ 7→ φF taking values in the ring of C-valued functions on SF .

For details, see [13].

The following is the specialization principle.

Theorem 24. Let f : S → Λ be a morphism in Defk. Let φ be in C(S) and suppose φ is

S-integrable. Then there exists M ≥ 0 such that for every F ∈ AM ∪ BM we have

(µΛ(φ))F = µΛK (φF ).

That is, with integral notation,

(ˆ
S

φ dµΛ

)
F

=

ˆ
SF

φF dµΛF .

Let X be a definable subassignment. A motivic function f over X determines, via

specialization, the collection (fF )F of functions fF : XF → C of the form

fF (x) =
N∑
i=1

q
αiF (x)
F (#(YiF )x) ·

N ′i∏
j=1

βijF (x) ·
N ′′i∏
l=1

1

1− qailF
,

for x ∈ XF , where

• ail ∈ Z \ {0},

• αi : X → Z and βij : X → Z are definable functions,

• Yi ⊂ X×RFri is a definable subassignment. For x ∈ XF , (YiF )x = {y ∈ kriF | (x, y) ∈ YiF}

is a finite set.
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2.4 TRANSFER PRINCIPLES

The transfer principle for motivic integrals is the tool that allow us to move the truth of

the fundamental lemma for non-unit elements in the Hecke algebra, from positive to zero

characteristic, and vice versa (we will explain this later). We start with a transfer principle

for local fields and an application of it. This principle is known as The Ax-Kochen-Eršhov

principle. In fact, the Ax-Kochen-Eršhov principle can be viewed as a particular case of

the transfer principle for integrals proved by Cluckers and Loeser. The Ax-Kochen-Eršhov

principle was obtained independently by Ax-Kochen [2] and Eršhov [18] in the sixties.

2.4.1 Ax-Kochen-Eršhov principle

Although the non-archimedian local fields Qp and Fp((t)) are quite different fields, in principle

because of the characteristic (charFp((t)) = p and char(Qp) = 0), the Ax-Kochen-Eršhov

principle establishes that asymptotically they have similar field structures.

Theorem 25 (Ax-Kochen-Eršhov principle. c.f. [2], Thm. 6 and [18]). Let F1 and F2 be two

Henselian valued fields in the language LV . The LV -structures of these fields are (Fi,OFi)

for i = 1, 2, and with OFi being the discrete valuation ring of Fi. Suppose that

• The residue fields of F1 and F2 satisfy the same sentences in the language of rings.

• The value groups of F1 and F2 satisfy the same sentences in the language of ordered

groups Log = {+, 0, <} (the function symbol + is interpreted as the binary operation of

the group, 0 as the identity element and < as the linear relation, compatible with the

group operation).

If the residue characteristic is 0, then (F1,OF1) and (F2,OF2) satisfy the same sentences in

the language LV .

This theorem says that, from the model-theoretic perspective, a Henselian valued field

is determined by the residue field and the value group.

Corollary 26 (Ax-Kochen-Eršhov principle. c.f. [2], Thm. 6 and [18]). Let φ be a sentence

26



in the language LV . Then

(Qp,Zp) |= φ ⇐⇒ (Fp((t)),Fp[[t]]) |= φ

for all but finitely many primes p.

The following theorem is an asymptotic version of a conjecture of E. Artin on the exis-

tence of solutions of homogeneous polynomials in several variables over p-adic fields.

Theorem 27 (c.f. [2], Thm. 5). For every degree d ≥ 1 there exists a lower bound nd such

that for p ≥ nd, every homogeneous polynomial over Qp of degree d in n variables such that

n > d2 has a non-trivial zero in Qn
p .

Regarding the proof, one has to prove that for a fix d ≥ 1, the property that every

homogeneous polynomial of degree d in n variables such that n > d2 has a non-trivial zero,

is equivalent to the property that every homogeneous polynomial of degree d in d2 + 1

variables has a non-trivial. The latter can be expressed by a Lrings-sentence ψd. Then it is

proved that

(Fp((t)),Fp[[t]]) |= ψd,

and by Corollary 26 the result is also true in (Qp,Zp). We sketched the main steps in

the proof just because our work follows the same philosophy but in the more general and

powerful context of constructible motivic functions. In the next section we present the

transfer principle that we use in this work.

2.4.2 Transfer principles for motivic functions

The next two results are due to Cluckers and Loeser. The following is the abstract transfer

principle for constructible motivic functions.

Theorem 28 (c.f. [13], Thm. 9.2.1). Let S be a definable subassignment, and let f be a

constructible motivic function on S. Then there exists M > 0 such that for every F1, F2 ∈

AM ∪ BM with isomorphic residue fields,

fF1 = 0 ⇐⇒ fF2 = 0.
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The following is the transfer principle for integrals with parameters.

Theorem 29 (c.f. [13], 9.2.4). Let S → Λ and S ′ → Λ be morphisms in DefΛ. Let φ and φ′

be relatively integrable functions in C(S) and C(S ′), respectively. Then there exists M > 0

such that for every F1 and F2 in AM ∪ BM with isomorphic residue fields,

µΛF1
(φF1) = µΛF1

(φ′F1
) ⇐⇒ µΛF2

(φF2) = µΛF2
(φ′F2

).

That is, with integral notation,

ˆ
SF1

(φF1) dµF1 =

ˆ
S′F1

(φ′F1
) dµF1 ⇐⇒

ˆ
SF2

(φF2) dµF2 =

ˆ
S′F2

(φ′F2
) dµF2
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3.0 THE FUNDAMENTAL LEMMA

3.1 REDUCTIVE GROUPS OVER NON-ARCHIMEDEAN LOCAL FIELDS

In this and the next sections we introduce material on reductive groups over p-adic fields

needed for the fundamental lemma.

We start with a p-adic field F . Its algebraic closure is denoted by F̄ and its maximal

unramified extension in F̄ by F un. Associated to the local field F we have the following

objects,

• OF the ring of integers,

• MF the unique maximal ideal of OF ,

• kF the residue field,

• q = |kF | the cardinality of the residue field (a power of a prime number p), and

• $F ∈ OF a uniformizer (i.e. a generator of MF , so MF = $FOF ). We will use $ for

$F since the field F will be clear by the context.

Every element x ∈ F× can be uniquely written as x = u · $n
F for n ∈ Z and u ∈ O×F .

Then, ordF (x) = n and ordF (0) =∞. We set |x|F = q−ordF (x) for x ∈ F× and |0|F = 0.

Our main references for the theory of reductic groups are Springer and Humphreys [54],

[32], respectively. We also follow very close the expository paper on the fundamental lemma

by Hales [26].

There is a general assumption on the linear algebraic groups considered in the funda-

mental lemma. They are connected (with respect to the Zariski topology) reductive linear
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algebraic groups defined over a p-adic field F . Here when we say that a group is defined

over F , that statement has the algebro-geometric meaning (although related to the model

theoretic meaning). Following Springer, a group G is definable over a p-adic field F if the

polynomials defining G have coefficients in F . This leads to the notion of F -structure ([54],

page 6) on G. When we say G is F -group, we mean G is a group definable over the field F

in the algebro-geometric context.

Let F be a p-adic field. If G is reductive group defined over F , the set of F -points of G is

denoted by G(F ). The following examples give the F -points of various connected reductive

linear algebraic groups. Let M(n, F ) be the algebra of n×n matrices with coefficients in F .

Example 30 (The general linear group). The general linear group GL(n) with coefficients

in F is

GL(n, F ) = {X ∈M(n, F ) | det(X) 6= 0}.

We can view this group as an affine algebraic variety in n2+1 variables with defining equation

det(X)y − 1 = 0, so it is definable over the prime field of F .

Example 31 (The special linear group). The special linear group SL(n) with coefficients in

F is

SL(n, F ) = {X ∈ GL(n, F ) | det(X) = 1}.

This group is in fact semisimple.

Example 32 (The special orthogonal group). Let J ∈ GL(n, F ) be an invertible symmetric

matrix. The special orthogonal group SO(n, J) with respect to J with coefficients in F is

SO(n, J, F ) = {X ∈ GL(n, F ) | X tJX = J det(X) = 1}.

This group is in fact semisimple.

Example 33 (The symplectic group). Let n = 2k. Let J = GL(2k, F ) be an invertible

skew-symmetric matrix J t = −J . The symplectic group Sp(2k, J) with respect to J with

coefficients in F is

Sp(2k, J, F ) = {X ∈ GL(2k, F ) | X tJX = J }.
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Example 34 (The unitary group). Let E/F be a separable quadratic extension. We denote

by x̄ the Galois conjugate of x ∈ E with respect to the non-trivial element in Gal(E/F ). For

X ∈ M(n,E), we denote by X̄ the matrix obtained by taking the Galois conjugate of each

entry of X. Let J ∈ GL(n,E) be such that J̄ t = J and det(J) 6= 0. The unitary group

U(n, J) with respect to J and E/F is

U(n, J, F ) = {X ∈ GL(n,E) | X̄ tJX = J }.

3.1.1 Unramified groups

From now on, F denotes a p-adic field.

Definition 35. Let G be a connected reductive group defined over F . A Borel subgroup

B ⊂ G is an algebraic subgroup such that B×F F̄ ⊂ G×F F̄ is a maximal solvable algebraic

subgroup.

Definition 36. Let G be a connected reductive group defined over F . The group G is said

to be an unramified reductive group if it satisfies the following two conditions:

• G splits over an unramified field extension. That is, there is an unramified extension

F1/F and a Cartan (maximal torus defined over F ) in G that is F1- isomorphic to

Gm × · · · ×Gm. We can just say, G is F1-split.

• G is quasi-split. This means G has a Borel subgroup that is defined over F . More

explicitly, there is an F -subgroup B ⊂ G such that B ×F F̄ is a Borel subgroup of

G×F F̄ .

We say that G is a split group if G splits over F . That is, if G has F -Cartan subgroup T

that is isomorphic to Gm × · · · ×Gm over F (we say T is a F -split Cartan subgroup of G).

In terms of the F -points of G, T (F ) ∼= F× × · · · × F×. Recall that, if G is a split connected

reductive group defined over F , then G is quasi-split, and hence unramified.

Example 37. • The general linear group GL(n) is unramified. It is split and the subgroup

of upper triangular matrices in GL(n) is a Borel subgroup defined over F .

• The special linear groups SL(n) is unramified. It is split and the subgroup of upper

triangualr matrices in SL(n) is a Borel subgroup defined over F .
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• If J has non-zero entries along the cross-diagonal and zeros elsewhere, that is, J has the

form

J =


0 0 ∗

0 ∗ 0

∗ 0 0


then SO(n) and Sp(n) are split (with respect to this J), and hence unramified. The

subgroups of upper triangular matrices in the corresponding groups form Borel subgroups

defined over F .

• In the unitary group U(n), if E/F is unramified and J has the same form as above,

then U(n) splits over the unramified extension E. The group is also quasi-split and the

subgroup of upper triangular matrices in U(n) is a Borel subgroup defined over F .

The following is the definition of the hyperspecial subgroup. The standard reference is

the paper by Tits [56].

Definition 38. Let G be a connected reductive group defined over F . A subgroup K of G(F )

is called hyperspecial if there exists G such that the following conditions are satisfied.

• G is a smooth group scheme over OF ,

• G = G ×OF F ,

• G ×OF kF is connected reductive, and

• K = G(OF ).

Lemma 39. Let G be an unramified group defined over F . Then G is the localization of a

smooth affine group scheme G defined over the ring of integers OF whose special fiber over

the residue field of kF is connected reductive. Moreover, a reductive algebraic group G defined

over F is unramified if and only if G(F ) contains a hyperspecial maximal compact subgroup.

See [56] for the proof. We give some examples.

Example 40. • GL(n,OF ) is a hyperspecial maximal compact subgroup of GL(n, F ).

• SL(n,OF ) is a hyperspecial maximal compact subgroup of SL(n, F ).

• Next consider the case of G being equal to SO(n), Sp(n) or U(n), and each cross-diagonal

entry is a unit in the ring of integers OF . There is a group scheme G over OF defined by

the equations X tJX = J and det(X) = 1 (special orthogonal), X tJX = J (symplectic),
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and X̄ tJX = J (unitary). The group G(OF ) is a hyperspecial maximal compact subgroup

of G(F ).

3.1.2 Absolute and relative theory

The excellent paper by Springer [53] provides more detail on the material discussed here.

Let G be a connected unramified reductive group defined over F . Roughly speaking

the relative theory (or relative case) corresponds to the set of F -point in G i.e., G(F ) and

associated objects over F . And the absolute theory (or absolute case) corresponds to the

situation over the algebraic closure (e.g. the F -group G viewed as a F̄ -group G×F F̄ with

the underlying set of F̄ -points G(F̄ )). In the practice we do not need to go that far for the

understanding of the absolute case, it is enough to go up to an unramified extension where

G is split. All the relevant data will be the same. More formally, for any F -algebra R, an

R-point of G is a morphism Spec(R) → G. The set of R-points forms a group, which we

denote G(R). In the relative case we take R = F , and in the absolute case R = F̄ or R = F1.

We begin with the description of the relative theory.

We fix B a Borel subgroup of G defined over F . We fix a maximal F -split torus A ⊂ B in

G (any two maximal F -split tori of G are conjugate over F ). The relative group of characters

of G is

X∗F := Hom(A,Gm) = {χ : A→ Gm | χ is a F -homomorphism}.

The relative group of cocharacters of G is

X∗F := Hom(Gm, A) = {λ : Gm → A |λ is a F -homomorphism}.

Since A is F -split, for some d ≥ 1, A ∼= Gd
m, the isomorphism being over F . Thus, we can

identify any character χ ∈ X∗F with a tuple (n1, . . . , nd) ∈ Zd, where χ is defined as

(x1, . . . , xd) 7→ xn1
1 · · ·x

nd
d , (3.1)
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and any tuple in Zd corresponds to a unique character in X∗F defined similar to 3.1. Similarly,

any cocharacter λ ∈ X∗F is identified with (m1, . . . ,md), where λ is defined as

x 7→ (xn1 , . . . , xnd), (3.2)

and, as before, any tuple in Zd corresponds to a unique cocharacter in X∗F defined similar

to 3.2. We say that G has relative rank d or F -rank(G) = d. Based on this discussion, we

see that we can think of X∗F and X∗F as definable objects in h[0, 0, d] (so they are present in

any Denef-Pas structure) via the following identification

X∗F
∼= Zd and X∗F ∼= Zd.

Observe that this identifications depend only on the relative rank of G.

Composition defines a paring

〈 , 〉 : X∗F ×X∗F → Hom(Gm,Gm) ∼= Z,

defined by 〈χ, λ〉 = n ∈ Z if (χ ◦ λ) : Gm → Gm is given by x 7→ xn.

Suppose that χ ∈ X∗F is identified with (n1, . . . , nd) ∈ Zd, and λ ∈ X∗F is identified with

(m1, . . . ,md) ∈ Zd. Then,

〈χ, λ〉 = n1m1 + · · ·+ ndmd. (3.3)

This proves that the paring 〈 , 〉, viewed as a function Zd × Zd → Z is not definable in the

Presburger language because it uses multiplication of integers (and of course not definable

in the Denef-Pas language). Nevertheless, we have the following two results.

Lemma 41. The pairing 〈 , 〉 is a constructible function over Zd × Zd.

Proof. For i ∈ {1, . . . , 2d}, let πi : Zd × Zd → Z be the projection onto the i-coordinate.

These functions are clearly definable in the Denef-Pas language (in fact, the projections are

always definable in the first-order logic), and hence they are constructible functions over

Zd × Zd. Suppose x = (x1, . . . , xd) and y = (y1, . . . , yd) are tuples of d Z-variables. Thus,

according to 3.3

〈x, y〉 = π1(x)πd+1(y) + · · ·+ πd(x)πd+d(y)
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Therefore, the pairing is a sum of products of constructible functions on Zd×Zd. The result

follows from the fact that the constructible functions over a definable subassignment form a

ring.

Lemma 42. Let m = (m1, . . . ,md) ∈ Zd be a fixed d-tuple of integer numbers. The function

〈 ·,m〉 : Zd → Z is definable in the Denef-Pas language and hence it is a constructible

function over Zd. The same holds if we fix the first component of the pairing.

Proof. The function

〈 ·,m〉 : Zd → Z

is definable in the Presburger language (and hence in the Denef-Pas language) by the formula

x1 + · · ·+ x1︸ ︷︷ ︸
m1 times

+ · · ·+ xd + · · ·+ xd︸ ︷︷ ︸
md times

= x,

where x, x1, . . . , xd are Z-free variables. In the case in which mi is negative, it is possible to

express additive inverses in a definable way or we can just add a function symbol interpreted

as the additive inverse function in Z, there is no harm with that. In the case in which the

first component is fixed, the proof is the same.

While the relative character and cocharacter groups are intrinsic to A, we now consider

the relative root system of G with respect to A. Although this root system is attached to

A, it determines a lot of structure on G. The relative root system of G with respect to A,

ΨF (G) = 〈X∗F , X∗,F ,ΦF ,Φ
∨
F 〉

consists of the following

• X∗F is the group of F -characters of A.

• X∗,F is the group of F -cocharacters of A.

• ΦF ⊂ X∗F is the set of relative roots.

• Φ∨F ⊂ X∗F is the set of relative coroots.
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See Springer [53, §3.], for details on the construction of the relative roots and coroots. The

sets of relative roots and relative coroots are finite subsets of X∗F and X∗F , respectively.

There is a bijection α 7→ α∨ of ΦF onto Φ∨F . For each α ∈ ΦF we define an endomorphism

sα : X∗F → X∗F and sα∨ : X∗F → X∗F , defined by

sα(x) = x− 〈x, α∨〉α, sα∨(u) = u− 〈α, u〉α∨.

The relative Weyl group WF is identified with the group of automorphisms of X∗F gen-

erated by the sα and with the group of automorphisms of X∗F generated by the sα∨ . This

group is finite and the action on X∗F and on X∗F permutes relative roots and relative coroots.

Let N(A) and Z(A) denote normalizer and centralizer of A in G. These are F -subgroups.

The relative Weyl group of G is isomorphic to N(A)/Z(A), and any coset of N(A)/Z(A)

can be represented by an element in N(A)(F ).

Intuitively, it is clear that the generators of the relative Weyl group are definable func-

tions, given that they are linear functions (reflections), that the products in the defining

formulas are “scalar” products, and that can be expressed by formulas in the Presburger

language. In the following lemma we give the details.

Lemma 43. The generators of the relative Weyl group sα (or sα∨), viewed as automorphisms

of Zd, are definable functions in the Presburger language (and hence definable in the Denef-

Pas language).

Proof. Let us consider the case of sα. The case sα∨ is similar. Under the identifications

X∗F
∼= Zd and X∗F

∼= Zd, the relative root α corresponds to (α1, . . . , αd) ∈ Zd, and α∨

corresponds to (α′1, . . . , α
′
d) ∈ Zd. The function sα is now rewriten as sα : Zd → Zd.

Consider the Z-variables x = (x1, . . . , xd) and y = (y1, . . . , yd). The function sα in terms of

the variables x and y is given by

y = x− 〈x, α∨〉α.

Firstly, by the Lemma 42, the pairing 〈 , α∨〉 is a definable function in LDP . The product

between the pairing (a term in Z) and α (a fixed tuple of integer numbers) is not a problem,
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because it corresponds to the “scalar” product between a Z-term and a tuple of fixed integers.

The LDP -formula defining the graph of sα is the following

d∧
i=1

(
yi = xi −

(
〈x, α∨〉+ · · ·+ 〈x, α∨〉

)︸ ︷︷ ︸
αi times

)
.

Remark 44. Lemma 43 stress the fact that the action of the relative Weyl group on char-

acters and cocharacters is definable. Nevertheless, we observe that any automorphism of Zd

is definable in the Presburger language (without using parameters) because it must be linear,

so it is given by a matrix with entries in Z and determinant one.

Lemma 43 clearly implies the definability of the action of WF on characters and cochar-

acters. More explicitly, suppose WF = {w1, . . . , wl}. For each i ∈ {1, . . . l}, we denote by

wi(λ) the action of wi on λ ∈ Zd (representing characters or cocharacters). The action of

each element in WF corresponds to a composition of finitely many actions of generators, and

these are definable by Lemma 43. Clearly the composition of these actions is definable (it

may be thought as the product of matrices with entries in Z). Hence the action of each

element in the Weyl group is definable. That is, for each i ∈ {1, . . . l}, wi(λ) : Zd → Zd is

given by a definable function.

The definability of the action of WF in X∗F implies the following theorem. As usual, X∗F

is identified with the definable set Zd. For λ ∈ Zd, WF (λ) represents the orbit of λ under

the action of WF . The corresponding statement for X∗F is true. The proof is literally the

same since X∗F
∼= Zd ∼= X∗F , as groups.

Theorem 45. a) For each λ ∈ Zd, the orbit WF (λ) ⊂ Zd is definable in the Presburger

language.

b) The function #WF : Zd → Z given by

λ 7→ #WF (λ),

is given by a constructible motivic function.
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Proof. Suppose WF = {w1, . . . , wl}. The formula defining WF (λ), with x a d-tuple of free

Z-variables is
l∨

i=1

x = wi(λ).

This proves part a). For part b) we observe that the function #WF can be described by the

following integral

#WF (λ) =

ˆ
Zd

char(WF (λ)).

The integral is with respect to the counting measure in Zd (recall that the counting measure is

the motivic measure on the Z-sort). By part a), the function char(WF (λ)) is a constructible

motivic function. Then the function #WF is expressed as the integral of a constructible

motivic function over a definable set, hence #WF is a constructible motivic function.

We now describe the absolute case. Let T be the Cartan subgroup (recall, this is a

maximal torus in G defined over F ) containing A. Hence T = ZG(A). That is, T is a

maximally split Cartan subgroup of G (i.e. the torus T contains a F -subtorus that is F -

split which has largest possible dimension). From the general theory we know that, G is split

if and only if A = T . Recall that G is F1-split for some unramified extension F1/F . Therefore

T splits over F1. The constructions are basically the same, but now over T . Recall that

any two F1-split Cartan subgroups of G are conjugate over F1, so although all the following

objects are somehow attached to T , they really determine structure on G, and the choice of

a different Cartan will give the equivalent objects and same structure on G. Observe that

A ⊂ B, implies T ⊂ B. The group of characters of G is

X∗ := Hom(T,Gm) = {χ : T → Gm | χ is a F1-homomorphism}.

The group of cocharacters of G is

X∗ := Hom(Gm, T ) = {λ : Gm → T |λ is a F1-homomorphism}.

Since T is F1-split, for some e ≥ d ≥ 1, T ∼= Ge
m, the isomorphism being over F1. Thus, as

in the relative case, we can identify X∗ and X∗ with Ze. The absolute rank of G, denoted as
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rank(G) is e, the rank of the Cartan subgroup T . The absolute root data of G with respect

to T ,

ΨF (G) = 〈X∗, X∗,Φ,Φ∨, σ〉,

consists of the following

• X∗ is the group of F1-characters of T .

• X∗ is the group of F1-cocharacters of T .

• Φ ⊂ X∗ is the set of roots.

• Φ∨ ⊂ X∗ is the set of coroots.

• σ is an automorphism of finite order of X∗ sending a set of simple roots (see below for a

definition) in Φ to itself. The automorphism σ is obtained from the action on X∗ induced

from the Frobenius element of Gal(F1/F ) on the maximally split Cartan subgroup T of

G. We explain this in more detail.

Let τ ∈ Gal(F1/F ) and let χ ∈ X∗. Consider

τχ := (τ ◦ χ ◦ τ−1) : T → Gm,

the factor τ−1 acts componentwise on T (recall everything here is over F1). It can be proved

that

• τχ ∈ X∗, that is, τχ is a group homomorphism defined over F1;

• idχ = χ, and

• τδχ = τ (δχ).

Hence, we have an action of Gal(F1/F ) on X∗. Since F1 is an unramified extension of F ,

Gal(F1/F ) is a cyclic group generated by the Frobenius element Frob (It comes from the

Frobenius element in the finite residue field.) The action of Frob corresponds to the group

automorphism σ : X∗ → X∗.

See Springer [53, §2.], for details on the construction of the roots and coroots. The sets

of roots and coroots are finite subsets of X∗ and X∗, respectively. There is a pairing between

characters and cocharacters, defined in the same way. There is a bijection α 7→ α∨ of Φ

onto Φ∨. For each α ∈ Φ we define an endomorphism sα : X∗ → X∗ and sα∨ : X∗ → X∗.
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The absolute Weyl group W is defined as the finite group generated by sα or sα∨ . This

finite group acts on X∗ and on X∗ and permutes roots and coroots. Lemma 41, 42, 43 and

Theorem 45 are valid in the absolute case.

The choice of the Borel B ⊃ T is equivalent to a choice of subsets ∆ ⊂ Φ and ∆∨ ⊂ Φ∨

satisfying the following properties:

• The bijection Φ←→ Φ∨ restricts to a bijection ∆←→ ∆∨.

• There exists an element v ∈ X∗ with trivial stabilizer in W such that

∆∨ = {α∨ ∈ Φ∨ | 〈v, α∨〉 > 0}.

The roots in ∆ are called simple roots, and the coroots in ∆∨ are called simple coroots.

The septuple

Ψ0(G) = 〈X∗, X∗,Φ,Φ∨,∆,∆∨, σ〉

is called the absolute based root data of G.

3.1.3 Classification of unramified groups

The group G, being a connected unramified reductive group defined over G, is classified by

its absolute root data

Ψ(G) =
〈
X∗, X∗,Φ,Φ

∨, σ
〉
.

That is, if G′ is a connected unramified reductive group defined over F , then G is isomorphic

to G′ over F if and only if G and G′ have isomorphic absolute root data. Let us recall that an

automorphism of the root data Ψ(G) consist of an automorphism of X∗ that leaves invariant

Φ, and an automorphism of X∗ that leaves invariant Φ∨. The pairing between characters

and cocharacters must be respected.

If G is a split group, then σ = 1, and the first four elements 〈X∗, X∗,Φ,Φ∨〉 classify these

groups. If G is a split group, then the absolute root data and the relative root data are the

same.
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3.1.4 The complex dual group and the L-group

Let G be a connected unramified reductive group defined over F . The absolute root data of

G is denoted by Ψ(G) =
〈
X∗, X∗,Φ,Φ

∨, σ
〉
. The dual group Ĝ is defined as the connected

unramified reductive group over C that corresponds to the root data

Ψ(G)∨ = 〈X∗, X∗,Φ∨,Φ〉,

notice that this root data is obtained by the exchange of characters with cocharacters, and

roots with coroots in the absolute root data of G. Hence, by definition, Ψ(Ĝ) ∼= Ψ(G)∨. The

groups G and Ĝ have isomorphic Weyl groups.

The simplest case of this duality is for tori. If T is a torus defined over F then

T̂ = X∗ ⊗ C×,

where X∗ is the group of characters of T .

Example 46. The following are pairs of Langlands dual groups:

GL(n)←→ GL(n),

SL(n)←→ PGL(n),

SO(2n)←→ SO(2n),

SO(2n+ 1)←→ Sp(2n).

The dual group Ĝ, being a group defined over C, is a C-split group. The dual group of

the F1-split Cartan T ⊂ G is denoted by T̂ . The choice of the Borel B in G determines a

Borel B̂ ⊂ Ĝ that contains T̂ . Equivalently, this corresponds to interchanging simple roots

with simple coroots, considering the absolute based root data of G. Note that there is no

relative case for the dual group. It is by definition defined over C, and we omit the adjective

“absolute” when we refer to the dual group. Let us consider the based root data of Ĝ,

Ψ0(Ĝ) = 〈X∗, X∗,Φ∨,Φ,∆∨,∆〉.

There is a split exact sequence

1 −→ Int(Ĝ) −→ Aut(Ĝ) −→ Aut(Ψ0(Ĝ)) −→ 1,
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where Aut(Ĝ) denotes the set of automorphisms of Ĝ over C, and Int(Ĝ) denotes the set of

inner automorphisms of Ĝ over C. An automorphism of a based root data is an automor-

phism of a root data that also leaves invariant the set of simple roots and the set of simple

coroots.

To get a splitting, we make a choice of root vectors xα∨ , for each α∨ ∈ ∆∨. This choice

defines a splitting (Ĝ, B̂, T̂ , {xα∨}α∨∈∆∨) of Ĝ and gives a canonical isomorphism

Aut(Ψ0(Ĝ))
∼−→ Aut(Ĝ, B̂, T̂ , {xα∨}α∨∈∆∨) ⊂ Aut(Ĝ).

Since G is defined over F , there is an action of Gal(F1/F ) on G(F1), that is, an homo-

morphism

σG : Gal(F1/F )→ Aut(G(F1)) ⊂ Aut(G).

Hence, by composition, we have a homomorphism

Gal(F1/F )→ Aut(Ψ0(G)). (3.4)

The finite group Gal(F1/F ) acts on the root data of G, this action induces an action on

Ĝ. The version of the L-group that we use is

LG = Ĝo Gal(F1/F ).

If G is a split group, then LG = Ĝ.
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3.2 THE STATEMENT OF THE FUNDAMENTAL LEMMA

3.2.1 The spherical Hecke algebra

Let G be a connected unramified reductive group defined over F . Let K be a hyperspecial

maximal compact subgroup of G(F ). Before defining the spherical Hecke algebra of G,

which is the object of our interest, we say some words about the Hecke algebra H(G).

This algebra consist of all compactly supported locally constant complex-valued functions

on G(F ). This space is also known as the Schwartz-Bruhat space of G. In the case of G(F ),

being totally disconnected locally compact space (which is the case of p-adic groups with the

p-adic topology), we have

H(G) = spanC{char(A) : A ∈ TG},

where TG is the set of all open and compact sets in G(F ) and char(A) is the characteristic

function of A. The compact open subgroups of G(F ),

Km = {g ∈ K : g ≡ 1 mod$m}

give a neighborhood basis at the identity element, and by translations we get a basis for any

element in the group. For a fixed m > 1, the formula defining K in conjunction with the

formula ∧
i 6=j

ord(gij) > m ∧
n∧
i=1

ord(gii − 1) > m,

define the subgroup Km, where g = (gij) is a n × n matrix. Then each element of the

neighborhood basis of the identity is definable in the Denef-Pas language. Moreover this

neighborhood basis is uniformly definable: just let m vary. Any element in TG is a finite

union of translations of subgroups Km and since each of these is definable we have that all

the elements in TG are definable with parameters in G(F ). Observe that if Km is definable

without parameters in G(F ), then char(Km) is a constructible motivic function.
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We fix the left Haar measure on G(F ) such that K has volume 1. We define the product

on H(G) by the convolution formula,

(f1 ∗ f2)(g) =

ˆ
G(F )

f1(x)f2(x−1g)dx.

With this convolution product H(G) is an associative algebra. Let H(G,K) be the subalge-

bra of H(G) of bi-invariant functions under K (i.e., f(kg) = f(gk′) = f(g) for all g ∈ G(F )

and k, k′ ∈ K ), this algebra is called the spherical Hecke algebra of G.

We fix A a maximal split torus of G, and a Borel B containing A. Suppose G, B and A

are defined over OF . By choosing a root basis ∆ ⊂ Φ of positive and indecomposible roots,

we determine a positive Weyl chamber P+ in X∗F defined by

P+ = {λ ∈ X∗F | 〈α, λ〉 ≥ 0 for all α ∈ ∆}.

Recall that X∗F is identified Zr.

Lemma 47. Under the hypothesis in this section. The positive Weyl chamber P+ is a

definable subset of Zr.

Proof. Suppose ∆ = {α1, . . . , αk}. So each αi is a tuple in Z. Although they will be used as

parameters in the defining formula, the point is that this choice is field independent (they

are fixed choices, as defined in the next chapter). The LPres-formula with free variables

represented by λ (corresponding to a definable set in Zr) define P+

k∧
i=1

〈αi, λ〉 ≥ 0.

The paring is given by the dot product, and it can be expressed in LPres because α1, . . . , αk

are fixed (they are used as parameters in the formula).

For λ ∈ X∗F , we interpret $λ as follows, λ : F× → A(F ) is a cocharacter (defined over

F ) of the F -torus A, $ ∈ F× and $λ := λ($). The following is a fundamental result for

the understanding of the spherical Hecke algebra.
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Theorem 48 (Cartan decomposition, [56]). The group G(F ) is the disjoint union of double

cosets K$λK, where λ runs through the cocharacters indexed by P+. That is

G(F ) =
⊔
λ∈P+

K$λK.

Each function f ∈ H(G,K) is constant on double cosets K$λK. Since it is also com-

pactly supported, it is a finite linear combination of the characteristic functions char(K$λK)

of these double cosets. Thus

H(G,H) = spanC{char(K$λK) | λ ∈ X∗F}.

For these generators the convolution product has the following form

char(K$λK) ∗ char(K$µK) =
∑
ν

nλµ(ν)char(K$νK)

with nλµ(ν) ∈ Z. In [22], it is proved that

nλµ(ν) = #{(i, j) |$ν ∈ xiyjK} (3.5)

where K$λK =
⊔
xiK and K$µK =

⊔
yjK. We prove in the next chapter that these

integers can be obtained by a motivic function, so the convolution product on generators of

the spherical Hecke algebra is, in some sense, motivic.
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3.2.2 Orbital integrals

As in the previous sections, G is a connected unramified reductive group defined over F with

F1-split Cartan subgroup T and absolute Weyl group W . We follow the survey article by

Ngô [46] for our exposition in this section.

Definition 49. Let γ ∈ G(F ). The centralizer of γ is a subgroup Iγ of G defined over F .

The set of F -points of Iγ is

Iγ(F ) = {g ∈ G(F ) , gγ = γg}.

We say that γ is a strongly regular semisimple if Iγ is a torus.

If γ is a strongly regular semisimple element of G(F ), then the F -torus Iγ is not neces-

sarily an F -split torus.

Definition 50. Let γ be a strongly regular semisimple element of G(F ). Let dg be a Haar

measure on G(F ) and let dt be a Haar measure on Iγ(F ). The orbital integral over the

conjugacy class of γ (or the orbit of γ) is the distribution

Oγ(·, dg/dt) : H(G)→ C

given by

Oγ(f, dg/dt) =

ˆ
Iγ(F )\G(F )

f(g−1γg)
dg

dt
.

Notice that the orbital integral Oγ does not depend on γ but on its conjugacy class. It

also depends on the choice of Haar measures dg and dt on G(F ) and Iγ(F ), respectively.

Theorem 51 (Chevalley restriction theorem). Let G be a connected unramified reductive

group defined over F and let T ⊂ G be an F1-split Cartan defined over F , with absolute Weyl

group W . The G-invariant polynomial functions on G are isomorphic to the W -invariant

polynomial functions on T . More explicitly, the restriction of functions along the inclusion

T ⊂ G, induces an isomorphism

F1[G]G
∼−→ F1[T ]W .
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From this isomorphism one can deduce the F1-morphisms of varieties

χG : G→ T/W = Spec(F1[T ]W ).

There is a similar result for the Lie algebra g of G. In this context one gets an adjoint

quotient g→ h/W , with Cartan subalgebra h.

The morphism χG is called the characteristic polynomial map of G. The following ex-

ample explains the reason for this name.

Example 52. Suppose G = GL(n), the general linear group. Let us consider first the

case of the Lie algebra g = gl(n), with the Cartan subalgebra h of diagonal matrices. By

Chevalley restriction theorem, F1[g]G ∼= F1[h]W , so this is the polynomial ring generated by

the coefficients of the characteristic polynomial. Concretely, h/W ∼= An, and the adjoint

quotient g→ An, maps x ∈ g to the tuple (c0(x), . . . , cn−1(x)), where

px(t) = tn + cn−1(x)tn−1 + ·+ c0(x)

is the characteristic polynomial of x. The polynomial ci is homogeneous of degree n− i. The

group case G is similar; χG maps x ∈ G to the coefficients of its characteristic polinomial.

In this case

T/W = Spec[X±1
1 , . . . , X±1

n ]Sn ∼= An−1 × A\{0},

where Sn is the n-symmetric group.

Let us recall that, γ, γ′ ∈ G(F ) are conjugate over F if g−1γg = γ′ for some g ∈ G(F ).

Definition 53. Let γ and γ′ be strongly regular semisimple elements in G(F ). They are

stably conjugate if g−1γg = γ′ for some g ∈ G(F̄ ). The stable conjugacy class of γ ∈ G(F )

is the set of strongly regular semisimple elements of G(F ) which are stably conjugate with γ.

For strongly regular semisimple elements γ, γ′ ∈ G(F ), they are stably conjugate if and

only if χG(γ) = χG(γ′) (i.e. they have the same characteristic polynomial). By the Cheval-

ley restriction theorem, this is saying that each stable conjugacy class of regular semisimple

elements corresponds to an element of T/W .
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See the article by Kottwitz [34] for a complete discussion of the notion of stable conju-

gacy in reductive groups. For GL(n), these two notions are the same. That is, two strongly

regular semisimple elements in GL(n, F ) are conjugate over F if and only if they are stably

conjugate over F̄ . More generally, two elements in GL(n, F ) are conjugate over F if and

only if they are conjugate over F̄ (i.e., conjugate by an element in G(F̄ )).

The next example lies outside the p-adic context. It is just to illustrate with a simple

example.

Example 54. In SL(2,R), the following two elements

0 −1

1 0

 ,

 0 1

−1 0


are conjugate by i 0

0 −i

 ∈ SL(2,C).

A matrix calculation shows that they cannot be conjugate by an element in SL(2,R). The

obstruction on the conjugation is measured by a Galois cohomology group.

This example is taken from [26].

Example 55. Let G = SL(2) and let F = Qp. Let us assume that p 6= 2 and that u is not

a square in Qp. Let ε =
√
u ∈ Q̄p. A matrix calculation shows that

 1 + p 1

2p+ p2 1 + p

 ,

 1 + p u−1

(2p+ p2)u 1 + p


are stably conjugate by

ε 0

0 ε−1

 ∈ SL(2, Q̄P ),

but they are not conjugate by a matrix of SL(2,Qp).
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Let γ be a strongly regular semisimple element in G(F ). There are possible various

G(F )-conjugacy classes inside the stable conjugacy class of γ. The set of G(F )-conjugacy

classes in the stable conjugacy class of γ can be identified with the subset Aγ of elements

in H1(Gal(F1/F ), Iγ) whose image in H1(Gal(F1/F ), G) is trivial. When F is a local field

(archimedean and non-archimedean), H1(Gal(F1/F ), Iγ) is a finite abelian group. Let κ :

Aγ → C× be a character. The κ-orbital integral is the linear combination

Oκγ(f) :=
∑
γ′

κ(cl(γ′))Oγ′(f).

The sum runs over a set of representatives γ′ of G(F )-conjugacy classes within the stable

conjugacy class of γ, cl(γ′) is the class of γ′ in Aγ, and f ∈ H(G). Since γ, γ′ ∈ G(F )

are strongly regular semisimple, the tori Iγ′ for γ′ in the stable conjugacy class of γ, are

isomorphic in a canonical way. This allows us to transfer a Haar measure from Iγ to Iγ′ .

Thus, the Haar measures on the different centralizers Iγ′ (and hence, the Haar measures on

the orbits) are choosen in a consistent way. If κ = e is the trivial character, we obtain the

stable orbital integral

SOγ(f) := Oeγ(f) =
∑
γ′

Oγ′(f).

Note that the stable orbital integral SOγ depends only on χG(γ), its characteristic polyno-

mial. Therefore, for a ∈ T/W (F ) we can define the stable orbital integral at a as

SOa(f) := SOγ(f),

for any γ ∈ G(F ) such that χG(γ) = a.

For κ-orbital integrals the choice of the base point γ in the stable conjugacy class is not

a trivial issue. For any γ′ in the stable conjugacy class of γ, it is true that Aγ and Aγ′ are

canonically isomorphic, so the character κ on Aγ induces a character κ′ on Aγ′ . Now, the

two objects that we must compare are

Oκγ Oκ′γ′ .
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They are not equal, they differ by the scalar κ(cl(γ′)) (cl(γ′) is the G(F )-conjugacy class of

γ′ in Aγ). These factors, which come from a choice of a base point in the stable conjugacy

class, are known as the transfer factors. They were introduced by Langlands and Shelstad

in [39], and they play an important but technical role in the theory of endoscopy. We will

see that they are the source of a problem for us. Basically, we cannot describe them using

the Denef-Pas language.

Notice that because of the transfer factors, we cannot define, a priori, the κ-orbital

integral Oκa for a characteristic polynomial, that is, an element a ∈ T (F )/W as in the case

of stable orbital integrals. We observe that in the case of Lie algebras, the Konstant section

ιg : h/W → g of the characteristic polynomial map χg : g→ h/W allows to have a canonical

representative, and the definition

Oκa := Oκιg(a)

for a ∈ h/W , simplifies the situation in the Lie algebra case [35].

3.2.3 Endoscopic groups

Roughly, one can say that endoscopy theory is a series of techniques developed by Langlands

and Shelstad to understand conjugation in terms of stable conjugation. This is a simplified

definition of a vast field in representation theory of algebraic groups and automorphic forms.

Our exposition of endoscopic groups is based on the paper by Hales [26], and the paper by

Ngô [46]. We also recommend the article by Labesse [37] for an introduction to endoscopy

theory.

Definition 56. Let G be a connected unramified reductive group defined over F . Let Ψ(G) =

〈X∗, X∗,Φ,Φ∨, σ〉 be the absolute root data of G. An unramified endoscopic group H of G is

an unramified reductive group over F whose classifying data (i.e. the absolute root data of

H) has the form

Ψ(H) = 〈X∗, X∗,ΦH ,Φ
∨
H , σH〉.

The first two entries on the absolute root data are the same for G as for H. The data for H

is subject to the following constraints: there exists an element s ∈ T̂ ∼= Hom(X∗,C×) and a
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Weyl group element w ∈ W , the absolute Weyl group of G, such that

• Φ∨H = {α ∈ Φ∨ | s(α) = 1},

• σH = w ◦ σ, and

• σH(s) = s.

This definition implies that G and H have the same absolute rank. Since there is a

bijection between roots and coroots of G and Φ∨H ⊂ Φ∨. The roots ΦH ⊂ Φ are completely

determined. The absolute Weyl group of H, denoted by WH , is a subgroup of W . The

endoscopic group H is not a subgroup of G in general.

Example 57. The unramified endoscopic groups of SL(2) are UE(1) (E/F is an unramified

quadratic extension), Gm, and SL(2) itself. See [26] for details of this computation.

3.2.4 The fundamental lemma - Lie algebra version

The Lie algebra version of the fundamental lemma takes the following form

SOaH (1h(OF )) = ∆(aH , aG)OκaG(1g(OF )),

It follows from Langlands-Shelstad descent that the fundamental lemma for the Lie

algebras implies the original statement (for groups). It is the Lie algebra variant which Ngô

proved (for fields of positive characteristic).
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4.0 MOTIVIC SPHERICAL HECKE ALGEBRAS

4.1 FIXED CHOICES

We follow the convention of [19] about a fixed choice. Thus, by a fixed choice we mean a

fixed set that is completely independent of the Denef-Pas language or any p-adic field. In

particular, a fixed choice is a field independent object.

Let G be a split reductive algebraic group defined over Q with Cartan and Borel sub-

groups T ⊂ B ⊂ G, all defined over Q. Let (X∗, X∗,Φ,Φ
∨) the root datum of G with

respect to T . The complex dual group of G, denoted by Ĝ is the complex reductive group

that corresponds to the root datum (X∗, X
∗,Φ∨,Φ). The Langlands dual group (L-group)

that we use in this case is just the the complex dual group, so LG = Ĝ.

Let H be a split endoscopic group of G defined over Q. Let TH and BH be Cartan and

Borel subgroups of H defined over Q. Similarly as we did for G, we consider the root datum

of H, and by switching characters with cocharacters and roots with coroots we get the root

datum of Ĥ, the complex dual group of H. We can take Ĥ = CĜ(s)◦ for some semisimple

element s ∈ T̂ . We take LH = Ĥ.

In endoscopy theory an embeding of L-groups ξ : LH → LG is fixed. In our case we can

give a very explicit description of this embedding. Since LH = Ĥ = CĜ(s)◦ ⊂ Ĝ = LG, we

take ξ : Ĥ → Ĝ as the inclusion map.

The Weyl groups W and WH of G and H respectively, are also viewed as fixed choices.
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We note that in the following development we will make further fixed choices.

Let F be a p-adic field of characteristic zero. By extension of scalars the groups G,B, T

can be considered as F -groups. In [10], it is shown how reductive unramified groups can be

realized as definable subassignments in the Denef-Pas language. As is observed in [10] and

[8], given G a split group defined over Q we can fix an embedding

ρ : G→ GL(n)

that is a morphism between two algebraic varieties defined over Q, hence it is definable in

the Denef-Pas language (in fact it is definable in the language of rings without using extra

parameters). Thus, it is clear that the set of F -points G(F ) of the group G is a definable

subset of GL(n, F ). We fix this n throughout. The unramified case requires the definability

of the Frobenius. The details can be found in [10].

Given a split group G, as a subgroup of GL(n), any closed subgroup of G is definable in

the Denef-Pas language. In particular, a fixed Borel subgroup B is definable.

4.2 MOTIVIC IDENTITIES AND MOTIVIC IDENTITIES UP TO A NULL

FUNCTION

A motivic identity, as the name indicates, is an identity between two constructible functions

on a common subassignment. We want to define motivic identities up to a null function.

These are functions that are equal to zero in almost all the specializations to non-archimedean

local fields. The following is the formal definition.

Definition 58. Let S be a definable subassignment and let f ∈ C(S). We say that f is a

null constructible motivic function (or a null function, for short) if there exists M > 0 such

that

fF = 0 for all F ∈ CM .
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Definition 59. Let S be a definable subassignment and let f, g ∈ C(S). We say that f and

g are equal up to a null function, or f = g is a motivic identity up to a null function if

f = g + n,

where n ∈ C(S) is a null function. We may also write f = g mod (null). It is clearly

equivalent to say that the difference of f and g is a null function or that f and g specialize

to the same function for almost all non-archimedean local fields, that is

fF = gF for all F ∈ CM ,

for some M > 0.

It should be clear that it is easier to prove a motivic identity up to a null function

instead of a genuine motivic identity. Maybe at the risk of being redundant, we emphasize

the difference. When we allow null functions, we have to verify the identity for almost all

non-archimedean local fields. Constructible motivic functions specialize to actual functions

on such fields, and the description of the functions is uniform in all non-archimedean fields.

The following two steps provide a general strategy to prove that a relation arising from the

theory of reductive groups over p-adic fields is a motivic identity up to a null function.

1) Prove that the relation can be described in terms of constructible motivic functions (i.e.,

as a potential identity of motivic functions). Let’s say for simplicity f = 0 is such a

relation. Basically, one is proving the existence of a constructible motivic function that

specializes to f . Hence we can promote f from the p-adic level to the motivic one. Notice

that in particular we have a uniform but also field independent description of f .

2) Having part 1), what remains is to prove that fF = 0 for all F ∈ CM , for some M > 1.

In most of the cases such identity was already implicit (basically because we start with

a p-adic relation f = 0) if not obvious by construction.
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At the motivic level, we do not really have functions (in the classical meaning of the

word). They are elements in the ring of constructible motivic functions. To prove a motivic

identity implies that it is going to be true in any Denef-Pas structure where it makes sense to

consider an interpretation. In principle, these structures include more than non-archimedean

local fields.

We observe that the pullback of a null function is a null function and the pushforward

of a null function is also a null function, over the corresponding subassignments.

Remark 60. Although everything in the ring of constructible motivic functions is deter-

mined by definable data, the tools from model theory cannot be applied directly. Nevertheless,

we believe that the relation between motivic identities and motivic indentities up to a null

function might be related to the completeness or non-completeness of a first-order theory in

the Denef-Pas language. See §2.7. in [12]. We point out an important issue in this analysis.

The specialization map does not correspond to the usual model-theoretic interpretation of a

first-order language inside a structure, in principle because a constructible motivic function

is somehow beyond the first-order setting.

4.3 THE SPLIT CASE

We work the split case. Let us assume from now on and until the end of this work (unless we

say the contrary) that G is a F -split group. Therefore the relative data equals the absolute

data. For instance, X∗F = X∗, X∗F = X∗, WF = W and so on.

We start with the description of the character δ in the definition of the Satake transform.

Let Φ+ ⊂ Φ be a set of positive roots (this set is a fixed choice). Consider

2ρ =
∑
α∈Φ+

α ∈ X∗.

Clearly, ρ is a fixed choice as well.
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According to Gross [22], p.6, for λ ∈ X∗,

δ1/2($λ) = q−〈ρ,λ〉 ∈ q(1/2)Z.

Therefore, since δ is unramified, δ1/2 takes values in the group q(1/2)Z. If ρ ∈ X∗ then δ1/2

takes values in the group qZ. As it is observed in [8, §B.3.1.], the theory can be expanded

without any harm to include roots of q. In our situation we just need to consider the square

root of q. This observation combined with Lemma 42 gives that the function on δ1/2 : T → C

is given by a constructible motivic function on T . That is, there exists a constructible motivic

function on T that specializes to δ1/2.

Remark 61. The previous computation of δ is valid in the unramified case, where it is

necessary to work with positive roots in X∗F .

4.4 DEFINABILITY OF THE CARTAN DECOMPOSITION

The spherical Hecke algebra H(G,K) is in principle a p-adic object. A first attempt to deal

with this object at a motivic level is to work just with generators. In this case, the set of

generators can be identified with Zd, which is a definable set. In many situations this is

enough. In this section we explain how the definability of the Cartan decomposition allow us

to define motivic objects that describe in a field independent way H(G,K) and its algebra

structure. The definability of the Cartan decomposition was proved in [52, Lemma B.12].

We explain it in detail and then we define the notion of a motivic Hecke algebra.

Lemma 62. The elements in the group of characters X∗F and the group of cocharacters X∗F

are definable functions in the Denef-Pas language.

Proof. Let χ : T (F )→ F× be an element of X∗F . By definition χ is a morphism of algebraic

varieties defined over F , in the sense of algebraic geometry. Clearly T (F ) and F×, as the set of

F -points of algebraic varieties defined over F , are definable in the Denef-Pas language (using

just VF-variables) using parameters in F . Then the map χ being an algebraic morphism
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between two definable sets over F is a F -definable function in the Denef-Pas language. The

proof for the cocharacters is similar.

Lemma 63. Let G, T , K be a split reductive group defined over F , a Cartan subgroup of

G and a hyperspecial subgroup of G. Let λ ∈ X∗. The double coset K$λK ⊂ G(F ) is a

definable set in the Denef-Pas language. Therefore the characteristic function of K$λK is

a constructible motivic function.

Proof. Let χ1, . . . χr ∈ X∗ be generators of X∗. By the Lemma 62 these characters are

definable in the Denef-Pas language. Let DG
λ the set defined by following Denef-Pas formula

(VF-free variables )

ϕλ(g) = (g ∈ G) ∧ ∃ k1, k2 ∈ K ∃ a ∈ T

(
g = k1ak2 ∧

r∧
i=1

ord(χi(a)) = 〈χi, λ〉

)
.

Note that 〈χi, λ〉 ∈ Z. We claim that DG
λ = K$λK. We prove the two inclusions. If

g ∈ K$λK, there are k1, k2 ∈ K such that k1gk2 = $λ ∈ T . For each i, ord(χi($
λ)) =

ord($〈χi,λ〉) = 〈χi, λ〉. We now prove the other inclusion. Suppose k1ak2 ∈ DG
λ then for each

i ∈ {1, . . . , d}

χi(a) = ui$
〈χi,λ〉 for some ui ∈ O×F .

This implies that a$−λ ∈ K, so k1ak2 = k1(a$−λ)$λk2 ∈ K$λK.

The lemma shows that each double coset in the Cartan decomposition is independent

of the uniformizer of the field (for any two uniformizers $ and π, K$λK = Dλ = KπλK.

So we can describe each double coset without a choice of a uniformizer (i.e., without the

choice of a p-adic element), and moreover that description can be expressed in the Denef-Pas

language. But as we see in the proof there is a choice of generators of X∗, the group of

F -characters of T . This is not a problem since this choice is independent of the Denef-Pas

language or the p-adic field. In other words, this choice of generators is a fixed choice. So we

fix a set of generators χ1, . . . χd ∈ X∗ throughout the rest of our discussion. The following

proposition shows how the Cartan decomposition can be parameterized by a definable set.
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Proposition 64 (Definability of the Cartan decomposition). Let G, T , K be a split reductive

group defined over F , a Cartan subgroup of G and a hyperspecial subgroup of G. There exists

a formula in the Denef-Pas language that describes a parametrization of the double cosets in

the Cartan decomposition of G. More explicitly, there exists a definable set DG ⊂ Zd×G in

the Denef-Pas language such that

(λ, g) ∈ DG ⇐⇒ g ∈ DG
λ ,

where λ = (z1, . . . , zd) is an d-tuple of Z-variables and g is a tuple of VF-variables.

Proof. The set DG is defined by the formula

ϕ(λ, g) = (g ∈ G) ∧ ∃ k1, k2 ∈ K ∃ a ∈ T

(
g = k1ak2 ∧

d∧
i=1

ord(χi(a)) = 〈χi, λ〉

)
.

Where 〈χi, λ〉 is a formula in the free variables z1, . . . , zd that describes the pairing between

xi = (mi1, . . . ,mid) ∈ Zr and λ = (z1, . . . , zd), a tuple of d free variables of type Z. Since

each χi is fixed that pairing can be expressed in the Presburger language, see Lemma 42.

The result follows from Lemma 63.

In Proposition 64 we put together all the generators in a definable way. More explicitly,

we have constructed DG, a definable subassignment of h[n2, 0, d], that encodes the Cartan

decomposition. It is possible to encode this in a single constructible function on Zd × G.

That is, there exists a constructible motivic function charDG ∈ C(Zd ×G) defined by

charDG(λ, g) =

0 if g /∈ DG
λ

1 if g ∈ DG
λ

Clearly, the function charDG is a constructible motivic function by Proposition 64.

Remark 65. In Proposition 64, we consider the Cartan decomposition that runs over X∗

instead of P+ (as stated in Theorem 48). The corresponding result with that refined version

of the Cartan decomposition (running over P+) is still valid since P+ is a definable set, as

proved in Lemma 47.
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Let us make some comments on the generators of H(G,K). The Cartan decomposition

(Theorem 48) says that the set of functions char(K$λK) with λ ∈ P+ is a basis forH(G,K),

as a vector space over C. If we consider λ running over X∗ the set of functions char(K$λK)

is a set of generators.

By Lemma 63, for each λ ∈ X∗ ∼= Zd,

1Gλ := char(DG
λ ) : G→ Z,

is the description of the generator char(K$λK) in a field independent way i.e., 1Gλ ∈ C(G).

P -adically, the Haar measure on a split group G is the measure attached to an invariant

differential form α of top degree. An explicit invariant differential form is given in [19, §2.3.].

We define the integral of f ∈ C(G) with respect to the motivic Haar measure to be

ˆ
G

f |α|

where |α| is a constructible function. For applications to group theory of reductive groups,

we will always use motivic Haar integrals. If G is reductive, a left invariant differential form

of top degree is also right invariant of top degree.

Lemma 66. Let G, K be a split reductive group defined over F , and a hyperspecial subgroup

of G. If α is a differential form of top degree and if f ∈ C(G), then

ˆ
G

f(xg) dx =

ˆ
G

f(x) dx

as functions of g in C(G).

Proof. Consider the following maps

• µ : G×G→ G given by (x, g) 7→ xg,

• π2 : G×G→ G given by (x, g) 7→ g, and

• ψ : G×G→ G×G given by (x, g) 7→ (x, xg)
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Clearly, ψ is an isomorphism and µ = π2 ◦ ψ. The lemma follows from Theorem 22 applied

to the isomorphism ψ.

Remark 67. Lemma 66 allows us to use the standard change of variables formulas for

motivic Haar measure.

The following lemma is due to Hales.

Lemma 68. Let G, K be a split reductive group defined over F , and a hyperspecial subgroup

of G. Let α be the invariant differential of top degree from [19, §2.3.]. Then

vol(K) :=

ˆ
G

char(K) |α|

is an invertible element in the ring C(pt).

Proof. Let K1 be as in §3.2.1. Then by the invariance of the measure

ˆ
G

char(K) |α| = [K : K1]

ˆ
G

char(K1) |α|.

By [K : K1] we mean the motivic class of the reduction of K to the residue field. So it is

enough to show [K : K1] and
´
G

char(K1) |α| are invertible. The class [K,K1] is a product

of factors Li and (Li − 1), with i a positive integer by [5]. These are invertible in A, hence

in C(pt). By the explicit formula for α in [19, §2.3.], the integral

ˆ
G

char(K1) |α| =
ˆ
K1

|α|

is a product of integrals of the form

ˆ
ord(x)≥1

dx =
1

L
,

which is invertible, and where dx gives the additive Haar measure.

Remark 69. Because of the Lemma 68, we can normalize the motivic Haar measure to give

K volume 1 or consider 1
vol(K)

as a motivic constant.

We make two comments with respect to our notation.
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1. The motivic integral ˆ
G

f(x) dx

means integral of f ∈ C(G) with respect to the motivic Haar measure. That is, ϑ!(f |α|),

where ϑ : G→ {pt}.

2. The motivic integral ˆ
G

f(xg) dg

means π1!(µ
∗(f |α|)) where π1 : G × G → G is the projection on the first component

(denoted by x), and µ : G × G → G is the multiplication map, that is, (x, g) 7→ xg.

Clearly f ∈ C(G).

Similarly, the integral ˆ
K

f(xk) dk

means π!(µ
∗(f |α|)) where π : K ×G→ G is the projection onto G, and µ : G×K → G

still represents the multiplication map but restricted to K in the second component.

Definition 70. Let G be a split reductive group defined over F . Let f1, f2 ∈ C(G), the

convolution product of f1 and f2 is defined as

(f1 ∗ f2)(g) =

ˆ
G

f1(x) · f2(x−1g) dx,

where dx denotes the motivic Haar measure on G, normalized such that K gets volume 1.

More precisely, in terms of pullbacks and pushforwards, it is given by the formula 4.5 that

appears below.

Observe that the convolution product of two constructible motivic functions is a con-

structible motivic function since it is the integral over a definable set of a constructible

motivic function. Note that the map (x, g) 7→ x−1g is a definable morphism.

Let Cbd(G) be the ring of bounded constructible motivic functions on G. By Proposition

19, all such functions are integrable.

61



The ring Cbd(G) is a (possibly non-associative) algebra under convolution. There is a

morphism C(pt)→ (C(G), ·) of algebras given by

c 7→ ϑ∗c

where ϑ : G→ {pt}.

If f ∈ Cbd(G) and c ∈ C(pt), then

ϑ∗c · f ∈ Cbd(G).

So Cbd(G) is a C(pt)-module. This allows us the following definition.

Definition 71. Let G, K be a split reductive group defined over F , and a hyperspecial

subgroup of G. Let Hpt(G,K)mot be the convolution subalgebra of (Cbd(G), ∗) generated by

ϑ∗c · 1Gλ

with λ ∈ P+ and c ∈ C(pt). This algebra is called the C(pt)-motivic spherical Hecke algebra

of G with respect to K. The motivic spherical Hecke algebra of G with respect to K is defined

as

H(G,K)mot := Hpt(G,K)mot ⊗Z C.

See §2.9 in [10] for details and comments of this tensoring with C.

Lemma 72. Let G, K be a split reductive group defined over F , and a hyperspecial subgroup

of G. If c, c1, c2 ∈ C(pt) and f, f1, f2 ∈ C(G) then

a) ˆ
G

ϑ∗c · f dx = c

ˆ
G

f dx.

b)

(ϑ∗c1 · f1) ∗ (ϑ∗c2 · f2) =

ˆ
G

ϑ∗(c1c2) · f1(x) · f2(x−1g) dx = ϑ∗(c1c2) · (f1 ∗ f2).

Proof. This is the projection formula on Theorem 17.
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We stress the fact that H(G,K)mot is a field independent object. The following lemma

states that the convolution product in H(G,K)mot specializes to the convolution product

on the Hecke algebra of H(G,K). Thus, we see that the motivic spherical Hecke algebra is

related with the p-adic spherical Hecke algebra in an expected and desirable way.

Lemma 73. Let G, K be a split reductive group defined over F , and a hyperspecial subgroup

of G. Let λ, µ ∈ P+. The constructible motivic function 1Gλ ∗ 1Gµ specializes to

char(K$λK) ∗ char(K$µK).

Proof. We have that (
1Gλ ∗ 1Gµ

)
(g) =

ˆ
G

1Gλ (x) · 1Gµ (x−1g) dx.

By Lemma 63 and the defining formula of the convolution product, we get that 1Gλ ∗ 1Gµ

specializes to char(K$λK) ∗ char(K$µK). The specialization result on generators implies

the result for any two elements in H(G,K)mot.

Some basic questions on the structure of H(G,K)mot arise. Can we prove motivically

that this product is associative? Is there an identity element? Is it commutative? Of course

the first attempt to answer each of these questions is to look at the proof in the p-adic setting

and then try to put that proof in the motivic setting. The properties of H(G,K)mot can be

thought as universal properties for spherical Hecke algebras over p-adic fields.

The next proposition shows the existence of an identity element in H(G,K)mot.

Proposition 74. Let G, T , K be a split reductive group defined over F , a Cartan subgroup

of G and a hyperspecial subgroup of G. The element ε = 1
vol(K)

1K is a constructible motivic

function on G and it is a left and right identity for the elements in H(G,K)mot.

Proof. By Lemma 68 and the definability of K, it is clear that ε is a constructible motivic

function on G. It is enough to prove the result for the generators ofH(G,K)mot. Let λ ∈ P+.
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Then

ε ∗ 1Gλ =

ˆ
G

ε(x) · 1Gλ (x−1g) dx

=
1

vol(K)

ˆ
G

1K(x) · 1Gλ (x−1g) dx

=
1

vol(K)

ˆ
K

1Gλ (x−1g) dx

=
1

vol(K)

ˆ
Kg

1Gλ (y) dy

= 1Gλ (g).

The change of variables used was y = x−1g, which is justified by Lemma 66. The proof of

1Gλ ∗ ε = 1Gλ is similar and it is omitted.

Remark 75. What is the representation theory of H(G,K)mot? Given the relation between

representations of G(F ) and representations of the corresponding Hecke algebra or some

spherical Hecke algebra, the study of representations of H(G,K)mot might lead to a reasonable

study of representations of p-adic groups in a field independent way.

Remark 76. It is natural to wonder about the existence of a motivic object corresponding to

the Hecke algebra H(G). We do not develop this but we notice that any reasonable attempt

should include the definability of a basis of open and compact subgroups of G. Our discussion

in §3.2.1 might be a good starting point.

The next result shows that the convolution product in the torus can be completely

described by a motivic identity.

Lemma 77. Let G, T , K be a split reductive group defined over F , a Cartan subgroup of

G and a hyperspecial subgroup of G. For λ, µ ∈ X∗, the following identity of constructible

motivic functions is true

1Tλ ∗ 1Tµ = 1Tλ+µ. (4.1)

Proof. Let d∗x the motivic measure on T such that the specialization of the volume of

K◦ = K ∩ T is 1. The following is the proof of the identity, notice that the proof is inside
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the motivic framework. The change of variables is justified by Lemma 66.(
1Tλ ∗ 1Tµ

)
(g) =

ˆ
T

1Tλ (x) · 1Tµ (x−1g) d∗x

=

ˆ
DTλ

1Tµ (x−1g) d∗x

=

ˆ
(DTλ )g−1

1Tµ (x−1) d∗x

=

ˆ
g(DT−λ)

1Tµ (x) d∗x

=

ˆ
g(DT−λ)∩DTµ

1 d∗x

=
(
1T(λ+µ)

)
(g).

Lemma 78. Let G, T , K be a split reductive group defined over F , a Cartan subgroup of G

and a hyperspecial subgroup of G. The specialization map

H(T,K◦)mot → H(T,K◦),

is a C-algebra epimorphism.

Proof. The result follows from Lemma 77 and the specialization Lemma 73. It is clear that

the specialization map is surjective.

Although H(T,K◦) can be canonically identified with C[X∗] (see §5.1), a field indepen-

dent object, Lemma 78 shows that H(T,K◦) and its algebraic structure come from motivic

data. One might ask about the same kind of result when G is F -split and reductive. The

situation is a bit more complicated but basically one can prove that the spherical Hecke

algebra of G and its algebraic structure are determined by motivic data. What we will call

the structure theorem (a generalization of Lemma 77) is the description of the convolution

product as a linear combination of generators in the motivic spherical Hecke algebra. This

is represented as an identity of constructible motivic functions on G, as in 4.1.

The following lemma combines a simple but useful idea of Hales on averages with the

specialization map.
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Lemma 79 (Hales’ averaging lemma on specialization). Let G, T , K be a split reductive

group defined over F , a Cartan subgroup of G and a hyperspecial subgroup of G. Let f ∈ C(G)

such that f specializes to a function in H(G,K). Let λ ∈ X∗.

a) The motivic constant

1

vol(K◦)

ˆ
DTλ

f(x) dx (4.2)

specializes to fF ($λ), where F is a non-archimedean local field of sufficiently large residue

characteristic, and $ is a uniformizer in F .

b) The constructible motivic function

1

vol(K◦)

ˆ
DTλ

f(xy) dx (4.3)

specializes to fF ($λy), where F is a non-archimedean local field of sufficiently large

residue characteristic, and $ is a uniformizer in F .

Proof. We begin with part a). Let F be a non-archimedean local field of sufficiently large

residue characteristic. The specialization of the motivic constant 4.2 is

1

volF (K◦)

ˆ
$λK◦

fF (x) dFx.

The change of variable x = $λk gives

1

volF (K◦)

ˆ
$λK◦

fF (x) dFx =
1

volF (K◦)

ˆ
K◦
fF ($λk) dFk

=
1

volF (K◦)

ˆ
K◦
fF ($λ) dFk

=
1

volF (K◦)
· fF ($λ) ·

ˆ
K◦

1G(F ) dFk

=
1

volF (K◦)
· fF ($λ) · volF (K◦)

= fF ($λ).
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Note that there is no hypothesis on the normalization of the motivic measure. The proof of

b) is basically the same. Using the change of variable x = k$λ, the constructible motivic

function 4.3 specializes to

1

volF (K◦)

ˆ
$λK◦

fF (xy) dFx =
1

volF (K◦)

ˆ
K◦
fF (k$λy) dFk

=
1

volF (K◦)

ˆ
K◦
fF ($λy) dFk

=
1

volF (K◦)
· fF ($λy) ·

ˆ
K◦

1G(F ) dFk

=
1

volF (K◦)
· fF ($λy) · volF (K◦)

= fF ($λy).

4.5 MOTIVIC K-AVERAGE PROPERTY

Definition 80. Let X be a definable set and let H be a definable group. Suppose H acts

on X in a definable way. This is, the action θ : H × X → X is a definable map. We say

f ∈ C(X) is H-invariant if

θ∗f = π∗f,

where π : H ×X → X is the projection map.

Let G be a split reductive group and let K be a hyperspecial subgroup of G. We say that

f ∈ C(G) is K-bi-invariant if it is invariant by the left and right actions of K on G.

Definition 81. Let X be a definable set and let H be a definable group. Suppose H acts on

X in a definable way. This is, the action θ : H ×X → X is a definable map. Suppose H is

bounded and with motivic Haar measure dh. The H average of f ∈ C(X) over H is

1

vol(H)

ˆ
H

f(hx) dh ∈ C(X)
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where hx := θ(h, x). More formally

1

vol(H)

ˆ
H

f(hx) dh = π!(θ
∗f) ∈ C(X).

We say that f ∈ C(X) has the H-average property if

π!(θ
∗f) = π!(π

∗f) = vol(H) · f.

Definition 82. Let Y and Z be two definable sets. Let H be a definable group. Suppose

H acts on both Y and Z in a definable way. We denote these actions by θY : H × Y → Y

and θZ : H × Z → Z. We say that φ : Z → Y is H-equivariant if the following diagram

commutes

4.5.1 K-average property

Definition 83. Let G, T , K be a split reductive group defined over F , a Cartan subgroup of

G and a hyperspecial subgroup of G. Let f ∈ C(G). We say that f has the right K-average

property if

f(g) =
1

vol(K)

ˆ
K

f(gk) dk. (4.4)

Since vol(K) =
´
K

1, the defining equation 4.4 can be rewritten as

ˆ
K

f(g) dk =

ˆ
K

f(gk) dk.

Similarly, one can define the notion of left K-average for constructible motivic functions

on G. We say that a function f ∈ C(G) has the K-average property if it has both.

Observe that the specialization of a function with the K-average property is a K-bi-

invariant function.

The following lemma has a very concrete statement. Its proof is just an observation on

the notation.

Lemma 84. If f is a motivic K-bi-invariant function, then f has the K-average property.
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Proof. We prove the left K-average property for f , the right one is similar. We want to

prove that ˆ
K

f(kx) dk =

ˆ
K

f(x) dk.

By just changing the notation, we haveˆ
K

f(kx) dk = π!(φ
∗f) and

ˆ
K

f(x) dk = π!(π
∗f).

Since f is motivic K-bi-invariant, in particular we have φ∗f = π∗f . The result is now

obvious.

Proposition 85. Let G, T , K be a split reductive group defined over F , a Cartan subgroup

of G and a hyperspecial subgroup of G. Suppose f1, f2 ∈ C(G) are bi-K-invariant. Then

f1 · f2 is bi-K-invariant.

Proof. We prove that f1 · f2 is right K-invariant. Left K-invariance is similar. Since f2 is

right K-invariant we have

f2(g) =
1

vol(K)

ˆ
K

f2(gk1) dk1.

Then,

f1(gk2) · f2(g) =
1

vol(K)

ˆ
K

f1(gk2) · f2(gk1) dk1.

Taking integral over Kˆ
K

f1(gk2) · f2(g) dk2 =
1

vol(K)

ˆ
K

ˆ
K

f1(gk2) · f2(gk1) dk1dk2.

Using the right K-invariance of f1 the left side of the equation becomes f1(g) ·f2(g) ·vol(K).

Then, using the change of variable k1 = k2k
′ we get

f1(g) · f2(g) =
1

vol(K)2

ˆ
K

ˆ
K

f1(gk2) · f2(gk1) dk1dk2

=
1

vol(K)2

ˆ
K

ˆ
K

f1(gk2) · f2(gk2k
′) dk′dk2

=
1

vol(K)2

ˆ
K

f1(gk2)

[ ˆ
K

f2(gk2k
′) dk′

]
dk2

=
1

vol(K)2

ˆ
K

f1(gk2) · f2(gk2) · vol(K) dk2

=
1

vol(K)

ˆ
K

f1(gk2) · f2(gk2) dk2.
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Proposition 86. Let G, T , K be a split reductive group defined over F , a Cartan subgroup

of G and a hyperspecial subgroup of G. Suppose f1, f2 ∈ C(G) are bi-K-invariant. Then

f1 ∗ f2 is bi-K-invariant.

Proof. The following motivic computation gives the result corresponding to leftK-invariance.

We use the change of variable y = kx, the Fubini theorem for motivic integrals and the fact

that f1 is left K invariant.

ˆ
K

(f1 ∗ f2)(kg) dk =

ˆ
K

ˆ
G

f1(x) · f2(x−1kg) dxdk

=

ˆ
K

ˆ
G

f1(k−1y) · f2(y−1g) dydk

=

ˆ
G

ˆ
K

f1(k−1y) · f2(y−1g) dkdy

=

ˆ
G

f2(y−1g)

[ˆ
K

f1(k−1y) dk

]
dy

= vol(K)

ˆ
G

f1(y) · f2(y−1g) dy

= vol(K)(f1 ∗ f2)(g).

Thus

(f1 ∗ f2)(g) =
1

vol(K)

ˆ
K

(f1 ∗ f2)(kg) dk.

4.6 MOTIVIC K-INVARIANT FUNCTIONS

Our definition of motivic K-invariance is in terms of morphisms. As usual, let G be a split

reductive group defined over F and letK be a hyperspecial subgroup ofG. Let φ : K×G→ G

be the morphism defined by (k, g) 7→ kg. Similarly, let ψ : K × G → G be the morphism

defined by (k, g) 7→ gk. Let π : K × G 7→ G be the projection on the second component

(k, g) 7→ g.
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Definition 87. Let G, K be a split reductive group defined over F and a hyperspecial sub-

group of G. Let f ∈ C(G) be a constructible motivic function on G. We say that f is K-left

invariant if

φ∗f = π∗f.

Similarly, we say that f is K-right invariant if ψ∗f = π∗f . The function f is called K-bi-

invariant if it is both, left and right K-invariant. We denote the space of K-bi invariant

functions on G by C(G)K.

Notice that if this definition were for actual functions on groups, this would be a right

definition for K-invariance because it would be the same as the standard one.

In the following lemmas we prove the basic properties of K-bi-invariant functions. The

context is always the same. Let G, K be a split reductive group defined over F and a hy-

perspecial subgroup of G.

Recall that constructible motivic functions are not actual functions so although some

results are not really complicated they are not totally straightforward.

Lemma 88. For each λ ∈ P+, the function 1Gλ is K-bi-invariant.

Proof. We prove K-left invariance, K-right invariance is similar. The function 1Gλ is a Pres-

burger function on G, that is, 1Gλ : G→ Z is a Denef-Pas definable function on G. Thus

φ∗1Gλ = 1Gλ ◦ φ and π∗1Gλ = 1Gλ ◦ π.

Now, 1Gλ ◦ φ = 1Gλ ◦ π because for any g ∈ G and any k ∈ K (in any Denef-Pas structure)

kg ∈ DG
λ if and only if g ∈ DG

λ .

Lemma 89. Let f1 and f2 be two K-bi-invariant functions. Then f1 · f2 is a K-bi-invariant

function.
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Proof. We prove K-left invariance, K-right invariance is similar. Notice that the result

follows from

φ∗(f1 · f2) = φ∗f1 · φ∗f2 and π∗(f1 · f2) = π∗f1 · π∗f2,

which are true since the pullback operation is a ring homomorphism.

Observe that constant functions on G are trivially K-bi-invariant. By the previous two

Lemmas 88 and 89 we have that motivic functions of the form

c · 1Gλ ,

where c is a motivic constant, are K-invariant.

Is the convolution product of two K-bi-invariant functions a K-bi-invariant function?

This is the question we now try to answer. Under a weak assumption, we can state a posi-

tive answer to this question. We have reasons to believe these assumptions can be removed.

As the reader will notice, the following is a bit technical.

Consider the following morphisms

• π1 : G×G→ G, (x, g) 7→ x,

• π2 : G×G→ G, (x, g) 7→ g,

• γ : G×G→ G, (x, g) 7→ x−1g,

• δ : G×G×K → K ×G, (x, g, k) 7→ (k, x−1g),

• π̇1 : G×G×K → G, (x, g, k) 7→ x,

• α : G×G×K → K ×G, (x, g, k) 7→ (1, x−1g),

• π12 : G×G×K → G×G, (x, g, k) 7→ (x, g) and

• π23 : G×G×K → K ×G, (x, g, k) 7→ (k, g).

Recall that we already defined:

• φ : K ×G→ G, (k, g) 7→ kg,

• ψ : K ×G→ G, (k, g) 7→ gk and

• π : K ×G→ G, (k, g) 7→ g.
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Then, for f1, f2 ∈ C(G) we can write

f1 ∗ f2 = π2!(π
∗
1f1 · γ∗f2). (4.5)

Lemma 90. Let f1 and f2 be two motivic K-bi-invariant functions. Then

a) α∗(ψ∗f2) = δ∗(ψ∗f2).

b) π23!(π̇
∗
1f1 · α∗(ψ∗f2)) = π23!(π̇

∗
1f1 · δ∗(ψ∗f2)).

Proof. We start with part a). Since f2 is motivic K-invariant, we have ψ∗f2 = π∗f2. Thus,

α∗(ψ∗f2) = α∗(π∗f2) and δ∗(ψ∗f2) = δ∗(π∗f2).

Now, notice that π ◦ α = π ◦ δ, which implies (π ◦ α)∗ = (π ◦ δ)∗. Therefore,

α∗(ψ∗f2) = α∗(π∗f2) = (π ◦ α)∗f2 = (π ◦ δ)∗f2 = δ∗(π∗f2) = δ∗(ψ∗f2).

Part b) follows from part a). Notice that we only use motivic K-bi-invariance for f2.

We make two assumptions in the following lemma:

• If f ∈ C(G×G×K)K for the action of K on the right of K. Then π23!(f) ∈ C(K ×G)K

for the action of K on K in K ×G.

• If f ∈ C(K ×G)K , then π∗π!(f) = vol(K)f .

Lemma 91. Assume the assumptions made above. Let f1 and f2 be two motivic K-bi-

invariant functions. Then f1 ∗ f2 is a motivic K-bi-invariant function.

Proof. We prove that f1 ∗ f2 is motivic K-right invariant. The other one is similar. We start

with the following claim

π23!(π̇
∗
1f1 · α∗(ψ∗f2)) = π∗(π2!(π

∗
1f1 · γ∗f2)). (4.6)

Consider the following commutative diagram

G×G×K G×G

K ×G G

-π12

?

π23

?

π2

-π
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It implies

π! ◦ π23! = π2! ◦ π12! . (4.7)

Consider π̇∗1f1 · α∗(ψ∗f2) ∈ C(G×G×K). If we apply π12! , calculations gives

π12!(π̇
∗
1f1 · α∗(ψ∗f2)) = π∗1f1 · γ∗f2 ∈ C(G×G). (4.8)

Applying π2! to 4.8 we get

(π2! ◦ π12!)(π̇
∗
1f1 · α∗(ψ∗f2)) = π2!(π

∗
1f1 · γ∗f2) ∈ C(G). (4.9)

By 4.7, this last equation 4.9 becomes

(π! ◦ π23!)(π̇
∗
1f1 · α∗(ψ∗f2)) = π2!(π

∗
1f1 · γ∗f2) ∈ C(G). (4.10)

Finally, we apply π∗ to 4.10 and we get

(π∗ ◦ π! ◦ π23!)(π̇
∗
1f1 · α∗(ψ∗f2)) = π∗(π2!(π

∗
1f1 · γ∗f2)) ∈ C(K ×G). (4.11)

We now prove the following

π23!(π̇
∗
1f1 · δ∗(ψ∗f2)) = ψ∗(π2!(π

∗
1f1 · γ∗f2)). (4.12)

By part b) of Lemma 90 and equations 4.6 and 4.12, we have

ψ∗(π2!(π
∗
1f1 · γ∗f2)) = π∗(π2!(π

∗
1f1 · γ∗f2)),

which with a different notation is

ψ∗(f1 ∗ f2) = π∗(f1 ∗ f2).
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4.7 THE STRUCTURE THEOREM UP TO A NULL FUNCTION

The convolution product in p-adic spherical Hecke algebras is determined by motivic data,

that is the content of the next theorem.

Theorem 92. Let G, K be a split reductive group defined over F , and a hyperspecial subgroup

of G. The function n : P+ × P+ × P+ → Z given by

(λ, µ, ν) 7→ nλµ(ν),

defined by equation 3.5, is the specialization of a constructible motivic function on P+ ×

P+ × P+. The result is still true if we consider n as a function with domain Zd × Zd × Zd.

Proof. Given λ, µ, ν ∈ P+, we know that

nλµ(ν) = (char(K$λK) ∗ char(K$µK))($ν).

By Lemma 73, the right hand side is the specialization of the constructible motivic function

1Gλ ∗ 1Gµ evaluated at $ν . We need to eliminate any p-adic reference, so here we use Lemma

79 on averages and specializations and we get that the motivic constant

1

vol(K◦)

ˆ
DTν

(
1Gλ ∗ 1Gµ

)
(x) dx

specializes to the p-adic value
(
1Gλ ∗1Gµ

)
($ν) = nλµ(ν). Thus, as a function over P+×P+×P+,

that is, letting vary λ, µ, ν ∈ P+ the constructible motivic function on P+× P+× P+ given

by

(λ, µ, ν) 7→ 1

vol(K◦)

ˆ
DTν

(
1Gλ ∗ 1Gµ

)
(x) dx

specializes to the p-adic function nλµ(ν). Therefore, nλµ(ν) is the specialization of a con-

structible motivic function on P+ × P+ × P+.

We think this is a good moment to say some words about notation.
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Remark 93. From now on, by Theorem 92, we can talk about the constructible motivic

function nλµ(ν) and its motivic definition

nλµ(ν) =
1

vol(K◦)

ˆ
DTν

(
1Gλ ∗ 1Gµ

)
(x) dx

=
1

vol(K◦)

ˆ
DTν

ˆ
G

1Gλ (y) · 1Gµ (y−1x) dydx.

Notice that here there is a slight abuse of notation since nλµ(ν) was defined as a p-adic

object. Strictly speaking we have on the left side a p-adic object and on the right a motivic

one. Since we just proved that nλµ(ν) is the specialization of a constructible motivic function,

we promote nλµ(ν) to the “level” of motivic object and we do not change its name, so we

accept the equality above. This might not be the only abuse of notation of this kind. In fact

this is the case every time we say that certain function, defined in principle by p-adic objects,

is the specialization of a constructible motivic function.

We make another comment on notation. We defined 1Gλ as a constructible function on G

and sometimes it might be written in that way even if the intension is to think of it as an

actual characteristic function of the corresponding double coset (i.e., a p-adic object). There

is no harm in this.

Theorem 94 (Structure theorem up to a null function). Let G and K be a split reductive

group defined over F and a hyperspecial subgroup of G. Let λ, µ ∈ P+. Then

1Gλ ∗ 1Gµ =
∑
ν

nλµ(ν) · 1Gν mod (null).

The sum is finite.

Proof. Notice that all the terms in the desired identity are described my motivic functions.

Here Theorem 92 is essential. Now, by construction we know that the identity holds for all

p-adic fields. This completes the proof.

76



4.8 THE STRUCTURE THEOREM AS A MOTIVIC IDENTITY

Although the structure theorem up to null functions (Theorem 94) is enough for applica-

tions regarding Cluckers-Loeser transfer principle, we believe it is true as a genuine motivic

identity.

Conjecture 95. Let G and K be a split reductive group defined over F and a hyperspecial

subgroup of G. Let λ, µ ∈ P+. Then

1Gλ ∗ 1Gµ =
∑
ν

nλµ(ν) · 1Gν

is a motivic identity. The sum is finite.
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5.0 ON THE MOTIVIC NATURE OF THE SATAKE TRANSFORM

5.1 THE SATAKE TRANSFORM

The Satake isomorphism plays an essential role in the group version of the fundamental

lemma. It gives the way to connect elements in the spherical Hecke algebra of G with el-

ements on the spherical Hecke algebra of an endoscopic group of G. The isomorphism, as

the name suggest, is due to Satake [50], and it might be viewed as the p-adic analog of a

well-known result of Harish-Chandra in the context of real Lie groups. Langlands’ interpre-

tation of the Satake isomorphism is important in the study of spherical representations of

unramified reductive groups.

Let us recall the context. Let F be a p-adic field of characteristic zero. Let G be a

connected unramified reductive group defined over F . From §5.1. until the end of this work

G will be split. Let K be a hyperspecial maximal compact subgroup of G. Let A be a

maximal F -split torus of G and let T ⊃ A be a Cartan that splits over F1.

The Satake transform

S : H(G,K)→ H(T,K◦)

defined by

f 7→
[
t 7→ δ(t)1/2 ·

ˆ
N

f(tn) dn

]
allows us to identify the spherical Hecke algebra of G with the spherical Hecke algebra of

T (K◦ = T (F ) ∩K), the latter being much simpler and with an explicit description as we

explain below. The function δ is an unramified character of T (see Definition 100). The

Haar measures are normalized so that K, T (F )∩K and N(F )∩K all get volume 1. Satake
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proved in [50] that the image of S is H(T,K◦)W and that

S : H(G,K)→ H(T,K◦)W

is an isomorphism of C-algebras.

We now explain a well-known description of H(T,K◦). Consider the Cartan decomposi-

tion

T (F ) =
∐

λ∈X∗F

$λK◦.

In particular, this decomposition implies that { char($λK◦) | λ ∈ X∗F} forms a basis for

H(T,K◦), as a vector space over C. Let C[X∗F ] be the group algebra of X∗F . The corre-

spondence

char($λK◦) 7→ λ for all λ ∈ X∗F ,

extends by linearity toH(T,K◦) and gives a bijection fromH(T,K◦) to C[X∗F ] that preserves

the C-linear structure. The following computation shows that this correspondence respects

the multiplication. Let dx be the Haar measure on T (F ) such that K◦ has measure one.

(char($λK◦) ∗ char($µK◦))(g) =

ˆ
T

char($λK◦)(x) · char($µK◦)(x−1g) dx

=

ˆ
$λK◦

char($µK◦)(x−1g) dx

=

ˆ
g−1$λK◦

char($µK◦)(x−1) dx

=

ˆ
g$−λK◦

char($µK◦)(x) dx

=

ˆ
(g$−λK◦)∩($µK◦)

1 dx

= char($λ+µK◦)(g).

Therefore, as C-algebras

H(T,K◦) ∼= C[X∗F ].

Observe that this isomorphism identifies the p-adic object H(T,K◦) with a complex (field

independent) object C[X∗F ].
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5.1.1 Choice of bases

From now on we assume G is a F -split reductive group. Almost by definition, the spherical

Hecke algebra H(G,K) is a C-algebra generated by the characteristic functions of all the

double cosets of the form K$λK for λ ∈ X∗F = X∗. The Cartan decomposition gives the

basis {1Gλ : λ ∈ P+}. The basis we use is the same but each vector (characteristic function)

is rescaled as follows. For each λ ∈ P+, we have

q−〈ρ,λ〉1Gλ .

On the W -invariant space of H(T,K◦) the basis is as follows. Given µ ∈ X∗, let Wµ be

the stabilizer of µ in W and let W (µ) be the orbit of µ in X∗ under the action of W . The

basis of H(T,K◦)W is given by

mµ =
1

|Wµ|
∑
w∈W

w(1Tµ ) =
1

|Wµ|
∑
w∈W

1Tw(µ),

for µ ∈ X∗.

5.2 MOTIVIC DATA ON THE SATAKE TRANSFORM

Proposition 96. Let G, T , K be a split reductive group defined over F , a Cartan subgroup

of G and a hyperspecial subgroup of G. For each λ ∈ P+, there exists a constructible motivic

function on T that specializes to S(1Gλ ) : T → C. Moreover, the family of constructible

motivic functions on T specializing onto the elements in the image of the Satake transform

is parametrized by the definable set P+.

Proof. The proof is simple, we just have to observe that all the ingredients in the definition

of S(1Gλ ) are motivic. This is almost straightforward. Consider the function α : T → X∗

defined as: α(t) ∈ X∗ ∼= Zr is the only element in the cocharacter group such that t ∈ DT
α(t).

The definability of the Cartan decomposition, Proposition 64, implies the definability of the

function α, notice that T and X∗ are definable sets. Then, the constructible motivic function
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L−〈ρ,α(t)〉
ˆ
N

1Gλ (tn) dn,

specializes to the function S(1Gλ ). The last part of the statement is obvious.

The remark 93 applies here, and from now on we can talk about S(1Gλ ) as a motivic

function on T .

We have the following p-adic identities.

S
(
q−〈ρ,λ〉1Gλ

)
= q−〈ρ,λ〉S

(
1Gλ

)
= q−〈ρ,λ〉

∑
µ≤λ

CG
λµmµ

S
(
1Gλ
)
($ν) =

∑
µ≤λ

CG
λµmµ($ν) (5.1)

= CG
λνmν($

ν) (5.2)

= CG
λν

1

|Wν |
∑
w∈W

w(1Tν )($ν) (5.3)

= CG
λν (5.4)

CG
λν = S

(
1Gλ

)
($ν) = q〈ρ,ν〉

ˆ
N

1Gλ ($νn)dn

CG
λλ = S

(
1Gλ

)
($λ) (5.5)

= q〈ρ,λ〉
ˆ
N

1Gλ ($λn)dn (5.6)

= q〈ρ,λ〉
ˆ
N∩($−λK$λK)

dn (5.7)

= q〈ρ,λ〉
∑
i

ˆ
N∩($−λxiK)

dn (5.8)

= q〈ρ,λ〉#{i : $−λt(xi) ∈ T ∩K} (5.9)

= q〈ρ,λ〉 (5.10)

Theorem 97. Let G, T , K be a split reductive group defined over F , a Cartan subgroup of G

and a hyperspecial subgroup of G. There exists a constructible motivic function on P+×P+

that specializes to the function P+ × P+ → C given by (λ, µ) 7→ CG
λµ.
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Proof. Let λ, µ ∈ P+. We use the Hales’ average lemma on specializations 79 with the con-

structible motivic function S(1Gλ ) which specializes to an element inH(T,K◦), by Proposition

96. Notice that this is an hypothesis on Lemma 79. Thus, the motivic constant

1

vol(K◦)

ˆ
DTµ

S(1Gλ )(x) dx

specializes to the p-adic value S(1Gλ )($µ) = CG
λµ. We let vary λ, µ ∈ P+ and the result

follows.

5.3 A MOTIVIC SATAKE TRANSFORM

In the previous chapter we described the motivic spherical Hecke algebras. They are basi-

cally the field independent description of the p-adic spherical Hecke algebras. Having these

objects, we define on them a Satake transform; we call it the motivic Satake transform. We

prove that the motivic Satake transform is an isomorphism.

The framework is as in §5.1. In particular, G is split.

Lemma 98. For each λ ∈ P+, the constructible motivic function S
(
1Gλ
)
∈ C(T ) is in

H(T,K◦)mot mod (null).

Proof. It is true in specializations of fields in CM , for some M > 0.

Definition 99. The motivic Satake transform is defined as

S : H(G,K)mot → H(T,K◦)mot mod (null),

given by

S
(
c1Gλ
)

:= cS
(
1Gλ
)

mod (null)

for each λ ∈ P+ and c a motivic constant. By Theorem 94, using linearity with respect to mo-

tivic constants, we get the definition of the motivic Satake for every element in H(G,K)mot.

Notice that Lemma 98 guarantees that this definition makes sense.
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5.4 SOME REPRESENTATION THEORY

This sections contains a brief discussion about basic representation theory of p-adic groups.

It is included in this work in regard to future possible conections with our work.

Although many of the definitions and result that we present in this section are valid in

more general contexts, we continue with our assumptions. Let G be a connected unramified

reductive group defined over F , and let K be a hyperspecial maximal compact subgroup of

G(F ). We consider G(F ) with the Haar measure that gives volume 1 to K. We fix a Cartan

subgroup T ⊂ G that splits over an unramified extension F1 ⊃ F .

A representation (π, V ) of G is a homomorphism

π : G(F )→ GL(V ),

where V is a complex vector space, which is often infinite dimensional. The space V may

have more structure e.g. a Hilbert space. The representation is called smooth if the stabilizer

of every v ∈ V is an open subgroup of G(F ). A smooth representation is called irreducible

if it has no proper nontrivial invariant subspaces. The representation is called admissible if

it is smooth, and if for every open compact subgroup D ⊂ G(F ), the space

V D := {v ∈ V | π(g)v = v ∀g ∈ D},

of D-fixed vectors is finite dimensional.

Let (π, V ) be a smooth representation of G. For f ∈ H(G), we define π(f) ∈ End(V ) by

π(f)v =

ˆ
G

f(g) π(g)v dg. (5.11)

Observe that g 7→ f(g) π(g)v ∈ V only takes finitely many values since the stabilizer of v is

open and f is locally constant and compactly supported. Therefore, the integral 5.11, for

a given v ∈ V , is just a finite sum of vectors in V . In the literature, this type of integral

is called a Bochner integral. Thus, we have described π(·) : H(G) → End(V ). It can be
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proved that this map is a representation of H(G).

An irreducible admissible representation (π, V ) of G is called K-spherical (or unramified)

if it has a non-zero K-fixed vector. These representations are important in the theory of

automorphic forms.

We recall the notion of unramified character of the Cartan subgroup T (our main reference

is Cartier’s article [6]). Recall X∗ and X∗ are the groups of F1-characters and F1-cocharacters

of T , respectively. Let X∗/F ⊂ X∗ be the group of F -characters and let X∗/F ⊂ X∗ be the

group of F -cocharacters of T . There exists a standard homomorphism

HT : T (F )→ X∗/F

given by

q〈HT (t),χ〉 = |χ(t)|F , ∀χ ∈ X∗/F

Recall that X∗F (do not confuse with X∗/F ) denotes the set of F -cocharacters of A. In

our situation where T splits over an unramified extension F1 ⊃ F , it can be proved that

HT (T (F )) = X∗F . This is explained in Borel’s paper [3], Section 9.5.

Definition 100. A character χ : T (F ) → C× is unramified if χ|Ker(HT ) = 1 i.e., factors

through HT (T (F )) = X∗F ∼= Zd,
T (F ) C×

Zd

-χ

?�
�
�
��

For a suitable choice of K, we can assume that Ker(HT ) = K◦ = K ∩ T (F ). Thus a

character χ of T is said to be unramified if it is trivial on the greatest compact subgroup K◦.

See Appendix A.1 for a discussion on multiplicative characters over p-adic fields.

We denote by Xun the set of unramified characters of T . As in the case of multiplicative

characters, one may ask about the motivic nature of characters and unramified characters.

The situation is very similar. Some unramified characters are given by constructible motivic
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functions.

The relative Weyl group WF acts on Xun by

χw(t) = χ(w−1tw),

for χ ∈ Xun, t ∈ T (F ) and w ∈ WF . If we fix a basis m1, . . . ,md of T (F )/K◦ ∼= Zd, where

d is the relative rank of G, we get an isomorphism:

(C×)d
∼→ Xun

where z = (z1, . . . , zd) ∈ (C×)d is mapped to χz given by χz(mi) = zi, for i = 1, . . . , d.

Let χ be an unramified character of T . Consider the Haar measure on T (F ) that assigns

to K◦ volume 1. The Fourier transform

f 7→
ˆ
T (F )

f(t)χ(t) dt

is an homomorphism from H(T,K◦) to C. Now, define

ωχ : H(G,K)→ C

by

ωχ(f) =

ˆ
T (F )

Sf(t)χ(t) dt.

As a consequence of the Satake isomorphism we have the next two results.

Proposition 101 (c.f. [6], Cor. 4.1). The algebra H(G,K) is commutative and finitely

generated over C.

Proposition 102 (c.f. [6], Cor. 4.2). Any algebra homomorphism from H(G,K) into C is

of the form ωχ for some unramified character χ of T . Moreover, one has ωχ = ωχ′ if and

only if there exists an element w ∈ WF such that χ
′
= χw.
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Let (π, V ) be an irreducible K-spherical representation of G. Then we have a represen-

tation of H(G,K) on the one dimensional vector space V K = 〈v0〉, for some non-zero vector

v0 ∈ V . See [6], section 4.4. We denote by λπ : H(G,K) → C this representation and it is

given by

λπ(f)v0 = π(f)v0 =

ˆ
G(F )

f(g)π(g)v0 dg

where this integral, as we observed before, is a finite sum. It can be proved (c.f. [6] §1.5)

that

λπ(f) = tr(π(f)).

By 102, there exists an unramified character χπ, unique up to conjugation by W0 such that

λπ = ωχπ .

We consider the function λπ on generators of the spherical Hecke algebra H(G,K). Let

λ ∈ X∗F .

λπ(1Gλ )v0 = π(1Gλ )v0

=

ˆ
G(F )

1Gλ (g)π(g)v0 dg

=

ˆ
K$λK

π(g)v0 dg
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6.0 TOWARDS A MOTIVIC FUNDAMENTAL LEMMA

In this chapter we discuss possible applications of our work to the fundamental lemma for

groups. We want to show that all terms describing the fundamental lemma are given by

constructible motivic functions. In the case of groups and all the elements in the spherical

Hecke algebra, the Satake transform plays a crucial role.

6.1 FROM G TO H

As above, G is a split connected reductive group. By a little abuse of notation we denote the

restriction of the inclusion ξ to T̂H by ξ : T̂H → Ĝ, so T̂H is a subtorus of Ĝ of the same rank.

By endoscopy theory, we know that rank(T̂ ) = rank(T̂H), so ξ(T̂H) = T̂H = gT̂ g−1 for some

g ∈ Ĝ. As part of our fixed choices we can take T̂H = T̂ . Notice that Ĝ is a complex group,

so no p-adic objects are involved here. Hence this fixed choice is valid. Thus C[T̂H ] = C[T̂ ].

There exists a canonical (almost tautological) way to identify the group ring C[X∗] with the

ring C[T̂ ] because X∗ is the character group of T̂ . We denote by η : C[X∗] → C[T̂ ] this

isomorphism.

On the endoscopic side we have similar identifications. Let Ẋ∗ be the character group

of TH and let Ẋ∗ be the cocharacter group of TH . We denote by SH : H(H,KH) →

H(TH , K
◦
H)WH the Satake isomorphism on the endoscopic side. Through a (fixed) choice

of generators of Ẋ∗ we identify H(TH , K
◦
H) with C[Ẋ∗] in a field independent way. There

exists a canonical isomorphism η̇ : C[T̂H ]→ C[Ẋ∗]. Thus, putting together the isomorphisms
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that we have defined we obtain

H(T,K◦) ∼= C[X∗]
η→ C[T̂ ] = C[T̂H ]

η̇→ C[Ẋ∗] ∼= H(TH , K
◦
H).

We denote by j : H(T,K◦) → H(TH , K
◦
H) the composition of these isomorphisms, it is

clearly a C-algebra isomorphism. Now, although the spherical Hecke algebras of T and TH

are p-adic objects, the identification with not p-adic objects in a field independent way allows

us to think the map j as a fixed choice. To clarify, with some abuse of notation, if we write

j : C[X∗]→ C[Ẋ∗], it is clear that this map is a fixed choice.

Since WH is a subgroup of W , H(T,K◦)W ⊂ H(T,K◦)WH , hence

j
(
H(T,K◦)W

)
⊂ H(TH , K

◦
H)WH .

We now define a map that is essential in the fundamental lemma

b : H(G,K)→ H(H,KH)

f 7→ ((SH)−1 ◦ j ◦ S) f

This function is the conection between the spherical Hecke algebra of G and the spherical

Hecke algebra of its endoscopy group H.

Theorem 103. Let G, T , K be a split reductive group defined over Q, a Cartan subgroup

of G and a hyperspecial subgroup of G. Let F be a p-adic field of characteristic zero with

uniformizer $. There exists a definable set Z ⊂ Zr × Zr in the Denef-Pas language such

that

(λ, µ) ∈ Z ⇐⇒ CG
λµ 6= 0.

Proof. Since the character δ is never zero, CG
λµ 6= 0 if and only if the integral

ˆ
N

1Gλ ($µn)dn =

ˆ
N

ˆ
DTµ

1Gλ (xn)dxdn 6= 0.

by the Lemma ??. Consider the following first-order formula

ψ(λ, µ) = ∃x ∈ N ∃y ∈ DT
µ

(
yx ∈ DG

λ

)
Since 1Gλ is K-bi-invariant, the double integral is non-zero if and only if ψ(λ, µ) holds.
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Let λ ∈ X∗. We compute b in steps. First we apply the Satake isomorphism

S(1Gλ ) =
∑
µ

CG
λµ1

T
µ ∈ H(T,K◦)W

then the map j

j(S(1Gλ )) =
∑
µ

CG
λµ1

TH
µ ∈ H(TH , K

◦
H)WH

and finally inverse Satake on the H

b(1Gλ ) =
∑
ν

dλν1
H
ν ∈ H(H,KH).

Similarly, for ν ∈ X∗

SH(1Hν ) =
∑
γ

CH
νγ1

TH
γ ∈ H(TH , K

◦
H).

Now,

SH(b(1Gλ )) =
∑
ν

dλνSH(1Hν )

=
∑
ν

dλν
∑
γ

CH
νγ1

TH
γ

=
∑
ν,γ

dλνC
H
νγ1

TH
γ

=
∑
µ

CG
λµ1

TH
µ ∈ H(TH , K

◦
H)WH

Hence, for each µ

CG
λµ =

∑
ν

dλνC
H
νµ.
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A.1 MULTIPLICATIVE CHARACTERS OF P-ADIC FIELDS

We discuss multiplicative characters on p-adic fields and their relationship with motivic func-

tions. In general, a multiplicative character is not the specialization of a motivic function

on VF×. This is the main problem with the transfer factors, the non-motivic nature of the

multiplicative characters used to describe them. Nevertheless, some multiplicative charac-

ters can be described by motivic functions. Maybe some extensions of the theory will allow

to treat an important class of multiplicative characters inside the motivic framework. We

follow Sally’s article [49].

We describe the characters of Q×p . In the case of a finite extension of Q×p , we can fix a

uniformizer $ in the field and everything follows in the same manner but with respect to

the $-adic expansion.

Recall that any x ∈ Q×p can be written uniquely in the form x = pord(x)·u, with ord(x) ∈ Z

and u ∈ Z×p . This gives an isomorphism Q×p ∼= Z × Z×p . Hence, a character χ : Q×p → C×

may be written as

χ(x) = χ(pord(x) · u) = |x|sp ω(u) = p−ord(x)s ω(u),

where s ∈ C and ω is a character of Z×p . This character is unitary if and only if s ∈ C is

pure imaginary. The character ω of Z×p is always unitary. By continuity of ω, some group

Z(n)
p = 1 + pnZp for n ≥ 1 or Z(0)

p = Z×p for n = 0 is in its kernel. Note that Z(n)
p , for n ≥ 0,

are open compact subgroups of Q×p . It is easy to see that Zp/Z(n)
p
∼= (Z/pnZ)×. Thus ω

can be viewed as a character of the finite abelian group of (Z/pnZ)×. The conductor of χ is

defined as the minimal natural number n such that Z(n)
p ⊂ Ker(χ). Our previous discussion

guarantees the existence of such a minimal number. If the conductor of χ is zero, we say

that the character χ is unramified. For a given conductor n ≥ 1, there are only finitely many

possibilities for ω. To be precise, there are p−2 possibilities if n = 1 and pn−2(p−1)2 if n > 1.
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In summary, a multiplicative character of Q×p is determined by an additive character of

Z and a character of the finite abelian group (Z/pnZ)×, for some n ≥ 0. It is completely

valid to ask about the motivic nature of the multiplicative characters. This corresponds to

a description of the multiplicative characters in a form that is independent of p. The main

obstacle for this is the character on the finite abelian group (Z/pnZ)×. We do not see how

to describe such a finite group and its character using the Denef-Pas language. In the case

of an unramified character χ there is no contribution of this finite group that depends on p.

In fact, the character depends just on Z and it has the form x 7→ |x|sp for some s ∈ C. In

other words, an unramified character χ factors through Q×p /Z×p ∼= Z,

Q×p C×

Z

-χ

?�
�
���

Therefore each unramified character can be considered as a fixed choice. Nonetheless, in

the case where s ∈ Z (fixed), the unramified character x 7→ |x|sp can be obtained by the

specialization of the constructible motivic function VF× → A given by

x 7→ L−ord(x)s.

Observe that the product ord(x)s can be represented by a formula in the Denef-Pas language

as long as s ∈ Z is fixed. So the family of unramified characters parametrized by s ∈ Z is

not definable in the Denef-Pas language.
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Paris VII, 13, 1983.

[39] R. P. Langlands and D. Shelstad, On the definition of the transfer factors, Math. Ann.
87 (1987), 219-271.

[40] I. G. Macdonald, Spherical functions on a p-adic Chevalley group, Bull. Amer. Math.
Soc. 74 (1968), 520-525.

[41] I. G. Macdonald, Spherical functions on a group of p-adic type, Ramanujan, Inst. Publ.,
Madras, 1971.

[42] D. Marker, Model theory. An introduction. Graduate Texts in Mathematics, 217.
Springer-Verlag, New York, 2002.

[43] F. Murnaghan, Representations of reductive p-adic groups. Course Notes, available at
http://www.math.toronto.edu/murnaghan/courses/mat1197/notes.pdf.

94



[44] D. Nadler, The geometric nature of the fundamental lemma, Bulletin of the American
Mathematical Society 49 (2012), 150.

[45] B. C. Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes
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