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Abstract
Interferon stimulated genes (ISGs) target viruses at various stages of their infectious life

cycles, including at the earliest stage of viral entry. Here we identify ArfGAP with dual pleck-

strin homology (PH) domains 2 (ADAP2) as a gene upregulated by type I IFN treatment in a

STAT1-dependent manner. ADAP2 functions as a GTPase-activating protein (GAP) for

Arf6 and binds to phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and PI(3,4)P2. We

show that overexpression of ADAP2 suppresses dengue virus (DENV) and vesicular sto-

matitis virus (VSV) infection in an Arf6 GAP activity-dependent manner, while exerting no

effect on coxsackievirus B (CVB) or Sendai virus (SeV) replication. We further show that

ADAP2 expression induces macropinocytosis and that ADAP2 strongly associates with

actin-enriched membrane ruffles and with Rab8a- and LAMP1-, but not EEA1- or Rab7-,

positive vesicles. Utilizing two techniques—light-sensitive neutral red (NR)-containing

DENV and fluorescence assays for virus internalization—we show that ADAP2 primarily

restricts DENV infection at the stage of virion entry and/or intracellular trafficking and

that incoming DENV and VSV particles associate with ADAP2 during their entry. Taken

together, this study identifies ADAP2 as an ISG that exerts antiviral effects against RNA

viruses by altering Arf6-mediated trafficking to disrupt viral entry.

Author Summary

The induction of antiviral innate immune signaling is a primary defense strategy employed
by host cells to restrict virus infections. This system is triggered by the presence of ‘non-
self’ components such as viral nucleic acids and culminates in the induction of type I inter-
ferons (IFNs). Type I IFNs themselves possess no direct antiviral activity and instead exert
their potent antiviral effects via the induction of hundreds of interferon-stimulated genes
(ISGs) that directly antagonize viruses at a variety of steps in their infectious cycles. Here
we identify ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2) as an ISG
whose expression restricts the replication of dengue virus (DENV), which infects as many
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as 400 million people worldwide annually, at the stage of virion entry and/or trafficking.
Our study thus not only identifies ADAP2 as a previously uncharacterized ISG, but also
points to its role in the inhibition of DENV replication at the earliest stages of the DENV
life cycle.

Introduction
The induction of innate immune signaling is critical for host defense against viral infections,
and is most commonly initiated by the detection of foreign nucleic acids as non-self. Once this
system is activated, host cells orchestrate an array of signaling pathways that culminate in the
induction of type I interferons (IFNs), which include IFNα and IFNβ. Type I IFNs themselves
possess no antiviral activity and instead exert their potent antiviral effects by the induction of
hundreds of interferon-stimulated genes (ISGs) that can be induced by secreted IFNs in either
an autocrine or paracrine manner. ISGs can function in a pan-viral manner or can target spe-
cific virus species and/or families [1]. Although the mechanisms by which several ISGs func-
tion to suppress viral infections have been well documented, the functions of many ISGs
remain largely undefined.

ISGs function to restrict viral replication at various stages of the viral life cycle, with some
ISGs targeting the earliest event associated with infection—viral entry into the host cell. Some
of the best-characterized ISGs that target viral entry belong to the interferon-inducible trans-
membrane protein (IFITM) family, which includes IFITM1, IFITM2, IFITM3, and IFITM5
(reviewed in [2, 3]). IFITM family members exert broad antiviral effects against a diverse range
of viruses including influenza A virus [4], HIV [5], dengue virus (DENV) [4], and Ebola virus
[6]. Although expressed at basal levels in many cell types, IFITM family members are induced
by type I IFNs and may inhibit viral entry by direct alterations of cellular cholesterol homeosta-
sis [7], by alterations in the fusion between vesicular compartments that may favor a non-
infectious entry pathway [8], and/or by preventing fusion between viral and host-derived
membranes while still permitting hemifusion [8, 9]. The targeting of viruses at the earliest
stages of their infectious life cycles serves as a potent step at which ISGs can antagonize viral
infections.

Viruses enter host cells through a variety of mechanisms. In some cases, viruses enter cells
through similar means across multiple cell types, whereas in others, they utilize cell type-spe-
cific mechanisms for their entry. For example, vesicular stomatitis virus (VSV) exclusively uti-
lizes a clathrin-mediated pathway for its entry [10, 11], whereas the enterovirus coxsackievirus
B (CVB) enters via a dynamin II GTPase-independent pathway in polarized intestinal cells
[12], but enters nonpolarized epithelial cells and polarized epithelial cells through a dynamin
II-mediated pathway [13, 14]. Some viruses, such as Sendai virus (SeV) fuse directly at the host
cell plasma membrane [15]. In the case of viruses that infect across diverse species, such as
DENV that gains entry into both mosquito and human cells during its life cycle, viruses also
exhibit species-specific entry mechanisms. In mosquito cells, DENV has been proposed to both
enter via a clathrin-mediated pathway that requires delivery of incoming virions to a low pH
endolysosomal compartment for fusion [16], and possibly also by direct fusion at the plasma
membrane [17]. In human cells, data support an uptake pathway for DENV that requires both
clathrin coated pits and delivery of incoming virions to late endosomes [16, 18]. Cellular fac-
tors that restrict virus entry may thus exhibit virus and cell-type specificity depending on the
mechanism by which the virus gains entry into the host cell and/or mediates its uncoating
and/or fusion.
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The process of endocytosis is tightly regulated by diverse cellular factors that specifically
control the complex stages of the endocytic process. Many of these factors are GTP-binding
proteins whose activity is regulated by both guanine nucleotide exchange factors (GEFs) and
GTPase-activating proteins (GAPs). Members of the ADP-ribosylation factor (Arf) family of
Ras-related proteins are expressed in all eukaryotic cells and regulate both secretory pathway
trafficking (as is the case for Arf1) as well as cortical actin rearrangements and endocytosis (as
is the case for Arf6). Arf6 influences cell migration, polarization, endocytosis, and endosomal
trafficking via its direct impact on both regulators of the actin cytoskeleton [19, 20] and the
lipid membrane [21, 22]. Thus, the expression of regulators of Arf6 activity, such as Arf6 GEFs
and GAPs, can induce pronounced effects on a multitude of cellular events converging on
uptake from the plasma membrane and/or endosomal trafficking.

To identify additional ISGs that might directly impact virus entry and/or intracellular traf-
ficking, we performed microarray analyses in control and signal transducer and activator of
transcription (STAT)-1 signaling deficient cells exposed to purified IFNβ. Using this approach,
we identified ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2) as a gene
upregulated by IFNβ exposure in a STAT1-dependent manner. ADAP2 (also known as cen-
taurin-α2, CENTA2) is a phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and PI(3,4)P2
binding protein whose expression alters Arf6 membrane localization [23–25]. However,
ADAP2 has not been fully characterized and relatively little is known regarding its role in
endocytosis or endosomal trafficking. Here we show that expression of ADAP2 suppresses
DENV and VSV infection in an Arf6 GAP activity-dependent manner, while exerting no effect
on CVB or SeV replication. We further show that expression of ADAP2 induces pronounced
effects on the actin cytoskeleton and that it directly associates with actin-enriched membrane
ruffles, macropinosomes, and lysosomes. Utilizing two techniques—a light-sensitive neutral
red (NR)-containing DENV and fluorescence assays for virus internalization-—we show that
ADAP2 primarily restricts DENV and VSV infection at the stage of virion entry or trafficking.
Taken together, this study identifies an ISG that exerts its effects on DENV replication by alter-
ing Arf6-mediated trafficking to disrupt viral entry/trafficking.

Results

ADAP2 is induced by IFNβ treatment in a STAT1-dependent manner
To identify ISGs that might impact events associated with virus entry, we performed microar-
ray analysis in control (2fTGH) human fibrosarcoma HT1080 cells or cells lacking functional
STAT1 (U3A) treated with purified IFNβ. As expected, we found that many known ISGs, such
as interferon-induced protein 44-like (IFI44L), members of the interferon-induced protein
with tetratricopeptide repeats (IFIT) family, radical S-adenosyl methionine domain containing
2 (RSAD2), and members of the 2',5'-Oligoadenylate synthetase (OAS) family were upregu-
lated by IFNβ treatment in a STAT1-mediated manner (Fig 1A and S1 Table). In addition, we
noted that the expression of ADAP2, which contains Arf6 GAP activity and associates with
actin cytoskeletal rearrangements, was also enhanced by IFNβ treatment in a STAT1-depden-
dent manner both by microarray (Fig 1A) and in follow up studies by RT-qPCR (Fig 1B).
Given the association of Arf6 with events that might impact viral entry, we chose to character-
ize both the antiviral and cell biological properties of ADAP2.

Expression of ADAP2 restricts DENV and VSV replication
To determine whether ADAP2 exerts antiviral activity, we assessed the effects of its ectopic
expression on the replication of DENV, VSV, CVB and SeV. We found that ADAP2 expression
partially restricted DENV and VSV infection, but had no consistent effect on CVB or SeV
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infection (Fig 1C). Expression of ADAP2 was confirmed by RT-qPCR (S1A Fig). We also
found that ADAP2 expression restricted DENV infection across a variety of multiplicity of
infections (MOIs) (S1B Fig). In addition, we found similar antiviral effects when EGFP-fused
ADAP2 was ectopically expressed (S1C and S1D Fig). Although overexpression of ADAP2
restricted DENV and VSV infection, we found that silencing of ADAP2 led to a mild increase

Fig 1. ADAP2 is induced by IFNβ treatment in a STAT1-dependent manner and restricts DENV and
VSV infection. (A), Table of select genes enhanced by IFNβ exposure of control (2fTGH), but not STAT1
signaling deficient (U3A) HT1080 cells. Shown are log scale expression of the indicated genes following IFNβ
relative to mock-treated controls. Green shading indicates the magnitude of unregulation whereas red
shading indicates the magnitude of downregulation (top left). ADAP2 is shown in bold and is denoted by an
arrow. (B), RT-qPCR analysis for IFI44L and ADAP2 in 2fTGH (dark grey) or U3A (light grey) HT1080 cells
treated with 100U of purified IFNβ for 24hrs. Expression is shown as fold change relative to untreated cells.
(C), Infection of DENV (1 FFU/cell for 24hrs, dark grey), VSV (0.2 PFU/cell for 8hrs, light grey), CVB (0.2
PFU/cell for 8hrs, white), or SeV (100HAU/mL for 24hr, hatched) as assessed by RT-qPCR in 293T cells
transfected with V5-fused ADAP2 or vector control. Data are normalized to vector control-infected cells. (D),
DENV (1 FFU/cell for 24hrs) and VSV (0.2 PFU/cell for 8hrs) infection as assessed by RT-qPCR in wild-type
(WT) or MAVS-deficient (MAVS-/-) 293T cells transfected with vector control or V5-fused ADAP2. Data are
shown as percent infection of vector controls. Inset, immunoblot for MAVS (top panel) or GAPDH (bottom
panel) in WT or MAVS-/- cells. Data in (C) and (D) are shown as mean ± standard deviation and are from three
independent experiments. Data in (B) are representative of three independent experiments. In (C) and (D),
*p<0.05.

doi:10.1371/journal.ppat.1005150.g001
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in DENV infection (S1H Fig). We attribute this result to the hundreds of other ISGs that are
induced in response to viral infection and work in parallel to suppress viral infections.

To exclude any impact of antiviral signaling on the restriction of DENV replication by
ADAP2, we next assessed the impact of ADAP2 overexpression on DENV and VSV replication
in 293T cells depleted of the RIG-I-like receptor (RLR) adaptor mitochondrial antiviral signal-
ing (MAVS) by CRISPR Cas9 genome editing. We found that expression of ADAP2 restricted
DENV and VSV replication in both control cells and in cells lacking the expression of MAVS
(Fig 1D), supporting a RIG-I-like receptor (RLR)-independent pathway in the antiviral effects
of ADAP2. Expression of ADAP2 was confirmed by RT-qPCR (S1E Fig). In addition, expres-
sion of ADAP2 has no impact on the induction of ISGs during DENV infection and instead
reduced the induction given the inhibition of viral replication (S1F and S1G Fig). Taken
together, these data implicate a non-IFN-based mechanism of antiviral activity of ADAP2.

ADAP2 associates with actin-enriched membrane ruffles
Relatively little is known regarding the localization and trafficking of ADAP2. Therefore, we
defined the localization of ADAP2 using real-time fluorescence microscopy in cells transfected
with GFP-fused ADAP2 over the course of 48hrs post-transfection. Utilizing this approach, we
found that expression of ADAP2 induced pronounced membrane ruffling and that it associ-
ated with both membrane ruffles and the vesicles that internalized from these ruffles (Fig 2A,
S1 Movie). Unfortunately, immunostaining with all commercially available ADAP2 antibodies
was unsuccessful, thus we proceeded to characterize the cell biological localization of ADAP2
with ectopically expressed fusion proteins.

To determine whether the ruffles induced by ADAP2 expression were actin-enriched, we
also performed extended real-time fluorescence microscopy in cells transfected with YFP-fused
actin and DsRed-fused ADAP2. We found that DsRed-ADAP2 was associated with YFP-actin
both at membrane ruffles and with vesicles internalizing from these ruffles (Fig 2B, S2 Movie).
In addition, we noted that in approximately 5–10% cells, ADAP2 overexpression induced the
formation of very large actin-coated vacuoles that accumulated in large clusters (Fig 2C).

We next performed single vesicle-tracking analyses in cells expressing ADAP2 over an
extended period (~4hrs) to determine the pattern of movement exhibited by ADAP2-contain-
ing vesicles (S3 Movie). We found that ADAP2-containing vesicles exhibited three distinct pat-
terns of movement—(1) vesicles originating at the cell periphery/membrane ruffles that
quickly internalized to the perinuclear region (Fig 2D, pink tracings), (2) preformed vesicles
that exhibited free movement within the cell (Fig 2D, dark blue tracings), and (3) vesicles that
were largely stationary and exhibited restricted movements (Fig 2D, light blue tracings). Taken
together, these data implicate ADAP2 in the enhancement of actin-enriched membrane
ruffling.

ADAP2 associates with macropinosomes
A hallmark of internalized macropinosomes is their association with actin. Given that we
found that ADAP2 associated with actin-enriched membrane ruffles and internalized vesicles,
we next assessed whether these vesicles were macropinosomes. To do this, we analyzed the
localization of ADAP2 with fluorescently-labeled dextran, which serves as a marker for fluid-
phase uptake. We found that expression of ADAP2 not only enhanced the extent of dextran
uptake, but that ADAP2-containing cytoplasmic vesicles were enriched in dextran (Fig 3A).

Next, we determined the impact of expression of wild-type or constitutively-active (Q111L)
and dominant-negative (T66N) mutants of Rab34, a GTPase that has been specifically associ-
ated with macropinocytosis [26], on the ability of ADAP2 to induce vesicles. We found that
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Fig 2. ADAP2 associates with membrane ruffles and actin. (A), Selected frames (captured every 10min) from time-lapse movies of U2OS cells expressing
GFP-ADAP2. See S1Movie for complete movie. At top, differential interference contrast (DIC). (B), Selected frames (captured every 10min) from time-lapse
movies of U2OS cells expressing YFP-actin and DsRed-ADAP2. See S2 Movie for complete movie. At top, differential interference contrast (DIC). Newly formed
actin-enrichedmembrane ruffles associated with DsRed-ADAP2 are denoted by white arrows. (C), Immunofluorescence microscopy for actin (in green) in
U2OS cells transfected with ADAP2-V5. Cells were fixed and immunostained ~48hrs post-transfection. Areas of colocalization appear as yellow. White
box denotes zoomed image at bottom right of merged image. Xy image shown at top and xzy cross-section shown at bottom (cross-section corresponds to the
white line shown in the merged panel). (D), Single particle tracking from time-lapse movies of U2OS cells expressing DsRed-ADAP2 over the period of ~3.5hrs.
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Three independent vesicles were tracked and are shown in light blue, dark blue, or pink. At top, initial image acquired prior to particle tracking (0hr) and at
bottom, image acquired at the conclusion of image acquisition. At left, DIC image. See S3Movie for complete movie.

doi:10.1371/journal.ppat.1005150.g002

Fig 3. ADAP2 inducesmacropinocytosis and associates with macropinosomes. (A), Uptake of
fluorescently-labelled 70kD dextran (green) in U2OS cells transfected with DsRed-ADAP2. Approximately
48hrs following transfection, U2OS cells were incubated with dextran (0.1 mg/ml) for 45 min. White areas
denote areas of colocalization. (B), Confocal micrographs of U2OS cells transfected with wild-type (WT),
constitutively-active (Q111L), or dominant-negative (T66N) EGFP-Rab34 and DsRed-ADAP2. Areas of
colocalization appear as yellow. White boxes denote zoomed images shown at bottom left. (C) Pearson
correlation coefficient to assess the colocalization between ADAP2 and wild-type, T66N, or Q111L Rab34.
Each point represents a unique cell that coexpressed both constructs. Line indicates the mean. (D), Selected
frames (captured every 10min) from time-lapse movies of U2OS cells expressing EGFP-Rab34WT and
DsRed-ADAP2. See S4 Movie for complete movie. Newly formed Rab34-enriched membrane ruffles
associated with DsRed-ADAP2 are denoted by white arrows. (E, F),Quantification of the number of
ADAP2+ vesicles (E) or the sizes of ADAP2+ vesicles (F) in U2OS cells transfected with the indicated Rab34
constructs. (G),U2OS cells transfected with DsRed-ADAP2 were treated with EIPA (102 μM) for 1hr ~48hrs
post-transfection. Cells were fixed and the number of ADAP2+ vesicles calculated (graph at left). At right,
representative confocal micrograph of mock- or EIPA-treated cells. DAPI-stained nuclei are shown in blue
and DsRed-ADAP2 is in red. Data in (E-F) are shown as mean ± standard deviation and are from at least 20
independent vesicles from at least three independent fields. In (D) and (E), *p<0.05 and **p<0.01.

doi:10.1371/journal.ppat.1005150.g003
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ADAP2 associated with Rab34-containing vesicles when both wild-type (Fig 3B and 3C, S4
Movie) and Q111L mutant (Fig 3B and 3C) were expressed. In addition, we found that expres-
sion of Rab34 Q111L enhanced the numbers and sizes of ADAP2-containing vesicles whereas
expression of T66N Rab34 significantly reduced these vesicles and induced the accumulation
of ADAP2 at cell-cell contacts and membrane ruffles (Fig 3B–3F).

Further supporting a role for macropinocytosis in the formation of ADAP2-enriched vesi-
cles, we found that treatment of cells with 5-(N-ethyl-N-isopropyl)-Amiloride (EIPA), an
inhibitor of macropinoctyosis [27], led to the accumulation of ADAP2 at the cell periphery and
inhibited the formation of ADAP2-enriched vesicles (Fig 3G). Taken together, these data sup-
port a role for ADAP2 in the induction of macropinocytosis, or a macropinocytosis-like pro-
cess, in a Rab34-mediated manner.

ADAP2 associates with Rab8a-positive recycling endosomes
Rab8a GTPase localizes to membrane ruffles and macropinosomes as well as to tubular recycling
endosomes that lead to membrane delivery back to the cell membrane [28, 29]. Given that Rab8a
localizes to macropinosomes, and that Arf6 functions upstream of Rab8a in this pathway [28], we
next determined whether ADAP2 associates with Rab8a. We found that Rab8 and ADAP2 exhib-
ited significant colocalization in intracellular vesicles both in fixed (Fig 4A) and living (Fig 4B and
4E, S5 Movie) cells. In addition, we found that expression of a constitutively active mutant of

Fig 4. ADAP2 associates with Rab8a-positive membrane ruffles and recycling endosomes. (A),
Confocal micrographs of U2OS cells transfected with wild-type GFP-Rab8a and DsRed-ADAP2. Areas of
colocalization appear as yellow. DAPI-stained nuclei are shown in blue. (B, C), Selected frames (captured
every 10min) from time-lapse movies of U2OS cells expressing GFP-Rab8aWT (B) or constitutively-active
GFP-Rab8aQ67L and DsRed-ADAP2. See S5 and S6 Movies for complete movies. (D),Quantification of the
number of ADAP2+ vesicles in cells expressing either wild-type or Q67L Rab8a. (E), Pearson correlation
coefficient to assess the colocalization between ADAP2 and wild-type, or Q67L Rab8a. Each point
represents a unique cell that coexpressed both constructs. Line indicates the mean. Data in (D) are shown as
mean ± standard deviation and are from at least 20 independent vesicles from at least three independent
fields (*p<0.05).

doi:10.1371/journal.ppat.1005150.g004
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Rab8a (Q67L) also highly associated with ADAP2-containing vesicles (Fig 4C, S6 Movie) and
enhanced the numbers of total ADAP2 vesicles (Fig 4D). As we detected ADAP2 at membrane ruf-
fles and within intracellular cytoplasmic vesicles, these data suggest that ADAP2 localizes to
Rab8a-positive recycling endosomes in addition to macropinosomes.

ADAP2 associates with LAMP1-positive lysosomes
Once internalized, conventional macropinosomes often fuse with one another, but generally
exhibit little fusion with endosomes or lysosomes [30]. However, in some circumstances, inter-
nalized macropinosomes fuse directly with tubular lysosomes following their maturation [31].
To define the maturation process of ADAP2-containing macropinosomes, we assessed the
localization of GFP-ADAP2 with markers of early endosomes (early endosome antigen-1
(EEA1)), late endosomes (Rab7), and lysosomes (LAMP1). We found that whereas ADAP2-
containing vesicles were excluded from EEA1- and Rab7-containing vesicles, they exhibited a
strong association with LAMP1-containing vesicles in both fixed (Fig 5A–5D) and living

Fig 5. ADAP2 associates with LAMP1-positive lysosomes, but not early or late endosomes. (A-C),Confocal micrographs of U2OS cells transfected
with mRFP-EEA1 (A), GFP-Rab7 (B), or mRFP-LAMP1 (C) and either GFP-ADAP2 (A, C) or DsRed-ADAP2 (B). Areas of colocalization appear as yellow.
DAPI-stained nuclei are shown in blue. White boxes denotes zoomed areas shown in bottom left (A) or right (B, C) corners. (D),Quantification of the extent of
colocalization (as assessed by Pearson’s correlation coefficients) in cells transfected with ADAP2 and the indicated endosomal or lysosomal markers. Data
are shown as individual Pearson’s correlation coefficients quantified from individual cells. Coefficients >0 indicated positive colocalization. (E-G), Selected
frames (captured every 10min) from time-lapse movies of U2OS cells expressing mRFP-EEA1 (E), GFP-Rab7 (F), or mRFP-LAMP1 (G) and either
GFP-ADAP2 (E, G) or DsRed-ADAP2 (F). See S7–S9Movies for complete movies. In G, the newly formed ADAP2-positive vesicles are highly associated
with LAMP1 and are denoted by white arrows.

doi:10.1371/journal.ppat.1005150.g005
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(Fig 5E–5G, S7–S9 Movies) cells. These data indicate that upon their internalization, ADAP2--
containing vesicles strongly associate with LAMP1-positive lysosomes.

The Arf6 GAP activity of ADAP2 is required for its induction of
macropinocytosis
ADAP2 contains an Arf6 GAP domain and two PH domains. We next determined whether the
Arf6 GAP activity of ADAP2 was required for its induction of macropinocytosis. To do this,
we constructed ADAP2 mutants in which the entire Arf6 GAP domain was deleted (ΔARF
GAP) or the Arf6 GAP activity was abrogated by mutagenesis (R53Q, a mutant described pre-
viously [23]) (Schematic, Fig 6A). Removal of the entire Arf6 GAP domain led to the appear-
ance of largely immobile intracellular vesicles as analyzed by real-time fluorescence
microscopy (Fig 6B, S10 and S11 Movies) and inhibited the ADAP2-mediated enhancement of
macropinocytosis (Fig 6C). In addition, an Arf6 GAP activity mutant of ADAP2 (R53Q) did
not induce cytoplasmic vesicles and exhibited a strong association with the cell periphery (Fig
6B, S12 Movie) and did not induce macropinocytosis (Fig 6C).

Because we found that the Arf6 GAP activity of ADAP2 was required for its induction of
macropinocytosis, we next assessed whether expression of Arf6 would impact ADAP2-me-
diated vesicle induction and whether the Arf6 GAP activity of ADAP2 was required for its vesi-
cle induction. We found that expression of wild-type ADAP2 with wild-type Arf6 enhanced

Fig 6. The Arf6 GAP activity of ADAP2 is required for its induction of macropinocytosis and antiviral
effects. (A), Schematic of full-length ADAP2 or mutants lacking either the entire Arf6 GAP domain (ADAP2
ΔArf GAP) or the second PH domain (ADAP2 ΔPH2). (B),Selected frames (captured every 10min) from time-
lapse movies of U2OS cells expressing wild-type, Arf6 GAP inactive (R53Q), or ΔArf GAP GFP-ADAP2. See
S10–S12Movies for complete movies. (C),Quantification of the extent of dextran uptake in U2OS cells
transfected with vector control or EGFP-fused wild-type, R53Q, or ΔARFGAP ADAP2. Following transfection
with the indicated constructs for ~48hrs, cells were incubated with Alexa Fluor 594 dextran (0.1 mg/ml) for 45
min, then fixed, and images captured. The numbers of dextran+ vesicles in each condition was then measured.
Each point represents a unique cell that expressed the indicated constructs (>20 total cells from at least three
independent experiments were calculated). ***p<0.001, ns (not significant). (D), DENV infection (1 FFU/cell for
24hrs) as assessed by RT-qPCR in 293T cells transfected with vector control or either wild-type (WT) or R53Q
V5-fused or GFP-fused ADAP2. (E), VSV infection (0.2 PFU/cell for 8hrs) as assessed by RT-qPCR in 293T
cells transfected with vector control or either wild-type (WT) or R53QV5-fused ADAP2. Data in (D) and (E) are
shown asmean ± standard deviation (*p<0.05, **p<0.01).

doi:10.1371/journal.ppat.1005150.g006
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the formation of ADAP2-containing vesicles, although these vesicles were devoid of Arf6 (S2A
and S2B Fig).

The Arf6 GAP activity of ADAP2 is required for its restriction of DENV
replication
As the Arf6 GAP activity of ADAP2 was required for its induction of macropinocytosis, we
next assessed whether this activity was also required for its restriction of DENV and VSV repli-
cation. We found that whereas expression of wild-type V5- or GFP-fused ADAP2 restricted
DENV replication, expression of either the R53Q or ΔARF GAP mutants of ADAP2 had
no significant effect on viral replication (Fig 6D). Similarly, we found that expression of
R53Q-ADAP2 had no effect on VSV infection (Fig 6E). In both cases, transfection efficiency
was verified by RT-qPCR (S3A–S3C Fig). Taken together, these data implicate ADAP2 in the
induction of marcopinocytosis and restriction of DENV and VSV replication via its Arf6 GAP
activity.

ADAP2 inhibits DENV and VSV entry
DENV gains entry into mammalian cells via a clathrin-mediated pathway that delivers incom-
ing viral particles to late endosomes [16, 18]. Likewise, VSV also enters cells via a clathrin-
mediated pathway [10] and undergoes uncoating in early endosomes [32]. We found that
expression of ADAP2 induced macropinocytosis through its Arf6 GAP activity, which was also
required to restrict DENV and VSV replication. Given that DENV enters cells through a cla-
thrin pathway, we next determined whether ADAP2 expression would alter clathrin-mediated
endocytosis and/or DENV and VSV entry. We found that expression of wild-type ADAP2, but
not R53Q ADAP2, altered the internalization of transferrin and prevented its perinuclear accu-
mulation (S4A and S4B Fig), suggesting that it alters cargo internalizing via the clathrin path-
way. To determine if ADAP2 restricts DENV infection at the stage of viral entry, we first
generated neutral red (NR) containing DENV particles (DENV-NR). NR is an RNA-binding
dye that has been used extensively in the field of picornavirus entry to identify inhibitors of
virus entry [33–37], but has not been used previously in the field of flavivirus entry. When
viruses are propagated in the presence of NR, the dye associates with vRNA and renders the
resulting NR-containing viral particles sensitive to light. Upon virus entry and RNA release,
the NR dye diffuses away from the vRNA and replication continues in a light-insensitive man-
ner. Thus, this method is a useful tool to establish the kinetics of viral entry and/or identify
agents that inhibit and/or alter the release of vRNA. By propagating DENV in the presence of
NR, we successfully generated light sensitive viral particles as confirmed by a greater than two-
log drop in titer when fluorescent focus forming assays were performed under illuminated con-
ditions (Fig 7A).

To determine whether ADAP2 restricts DENV entry, we performed a modified neutral-red
infectious center (NRIC) assay [33] using DENV-NR particles (a schematic of this assay is
shown in Fig 7B). If ADAP2 restricts DENV entry, we would expect that exposure of ADA-
P2-expressing cells to light early in infection (2hrs p.i.), would elicit a greater inhibition of
DENV infection than when cells are infected under non-illuminated conditions. Using this
assay, we found that expression of ADAP2 inhibited DENV-NR replication under both non-
illuminated and illuminated (at 2hrs p.i.) conditions (Fig 7C). However, importantly, we found
that the restriction of DENV-NR replication by ADAP2 was significantly enhanced under the
illuminated (at 2hrs p.i.) condition (Fig 7C), supporting a role for ADAP2 in the restriction of
DENV entry.
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Next, we assessed whether incoming DENV and VSV associated with ADAP2 during
their entry, as would be expected if it directly impacted their entry/trafficking. Similar to a pre-
vious study [18], we found that DENV associated with early endosomes (as assessed by its asso-
ciation with early endosome antigen-1 (EEA1)) early in its entry (Fig 7D and 7G). However,
we found that when ADAP2 was expressed, it exhibited a strong association with DENV parti-
cles early in its entry (<30min p.i.) (Fig 7E and 7G). Similar to our findings with DENV, we
found that ADAP2 also associated with VSV during its entry (Fig 7F and 7G). As we have
shown that ADAP2 does not associate with early endosomes, these DENV and VSV vesicles

Fig 7. ADAP2 restricts DENV entry. (A),Titer of NR-DENV (shown as log FFU/mL) under non-illuminated or
illuminated (at 0hr) conditions. (B), Schematic of experiments measuring DENV RNA release using NR-DENV.
(C),NR-DENV infection as assessed by RT-qPCR in 293T cells transfected with vector control or ADAP2-V5
under non-illuminated (dark grey) or illuminated at 2hr (light grey) or 0hr (white) post-infection. (D),Confocal
micrographs from U2OS cells transfected with vector control (for~48hrs) at 30min following the initiation of
DENV entry. Cells were fixed and immunostained with antibodies against EEA1 (in red) and DENV (in green).
DAPI-stained nuclei are shown in blue. White box denotes zoomed area shown at right. White arrows denote
areas of colocalization. (E),Confocal micrographs fromU2OS cells transfected with EGFP-ADAP2 (for~48hrs)
at 30min following the initiation of DENV entry. Cells were fixed and immunostained with antibodies against
DENV (in red). DAPI-stained nuclei are shown in blue. White box denotes zoomed area shown at right. White
arrows denote areas of colocalization. (F),Confocal micrographs from U2OS cells transfected with vector
control or EGFP-fused ADAP2 (for~48hrs) at 30min following the initiation of VSV entry. Cells were fixed and
immunostained with antibodies against VSV-G (in red). DAPI-stained nuclei are shown in blue. White
box denotes zoomed area shown at right. White arrows denote areas of colocalization. (G), Pearson correlation
coefficient to assess the colocalization between DENV and EEA1 or ADAP2 and VSV and ADAP2, as indicated
Each point represents a unique cell (>20 cells from three independent experiments). Line indicates the mean.
Data in (A) and (C) are shown asmean ± standard deviation. *p<0.05 and **p<0.01.

doi:10.1371/journal.ppat.1005150.g007
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likely represent macropinosomes and/or lysosomes and suggest that ADAP2 alters the endocy-
tic uptake of viral particles.

Discussion
Inhibition of viral entry by ISGs is an effective strategy utilized by host cells to inhibit viral
infection at the earliest stages of the viral life cycle. Here we show that ADAP2 expression is
induced by type I IFNs in a STAT1-dependent manner and restricts DENV and VSV replica-
tion using an Arf6 GAP-mediated pathway, likely via the induction of macropinocytosis. Thus,
our results point to a previously uncharacterized ISG that restricts DENV and VSV entry to
limit viral replication.

ADAP2 is ubiquitously expressed, with the highest levels of expression in the fat, heart, and
skeletal muscle [38, 39]. Unlike ADAP2, the expression of the related ADAP1 (also known as
centaurin-α1) is largely restricted to the brain [25, 40, 41]. Although ADAP2 and ADAP1
share ~60% sequence identity and contain N-terminal ARF GAP domains and two PH domains,
ADAP1 contains a nuclear localization signal and localizes primarily to the cytosol or nucleus
whereas ADAP2 localizes predominantly to membrane ruffles. Sequence analysis of the promoter
sequences of ADAP2 and ADAP1 revealed the presence of a conserved IFN-stimulated response
element (ISRE) in the promoter of ADAP2, but not in the promoter of ADAP1 (S5 Fig). The
induction of genes in response to type I IFNs is controlled by the presence of a conserved pro-
moter sequence (GAAA(N)GAAA, where N is any nucleotide) termed the ISRE. Indeed, ADAP2
has been shown to be upregulated by IFN treatment in various human cells, such as primary
hepatocytes [42] and PBMCs isolated frommultiple sclerosis patients undergoing IFN treat-
ments [43]. Taken together, our findings thus suggest that ADAP2 is specifically upregulated in
response to type I IFN signaling, likely due to the presence of an ISRE.

Our data suggest that ADAP2 inhibits DENV and VSV replication at the stage of viral
entry. DENV enters mammalian cells by a clathrin-mediated endocytic pathway that delivers
incoming viral particles to Rab7 positive late endosomes [16, 18, 44]. Although a small portion
(<20%) of viral particles undergo membrane fusion in Rab5 early endosomes or Rab5/Rab7
intermediate endosomes, the majority (>80%) of membrane fusion occurs in Rab7 late endo-
somal compartments [35]. Thus, the delivery of incoming DENV particles to a late endosomal
compartment is required for efficient membrane fusion and perturbation of this pathway could
dramatically impact subsequent viral replication. Similarly, VSV enters cells via a clathrin-
dependent pathway and requires Rab5-mediated delivery to an endosomal compartment (with
a pH of 6.2) to trigger G-protein-mediated fusion [11, 45, 46], which is required to deliver par-
ticles into the host cell cytoplasm [32]. We show that expression of ADAP2 robustly induces
macropinocytosis and that ADAP2-positive vesicles associate with Rab8a and the lysosomal
marker LAMP1, but not Rab7 or Rab5. Our results therefore suggest that the induction of
ADAP2 would serve to enhance macropinocytosis in cells exposed to type I IFN and that this
would alter the trafficking of incoming DENV and VSV particles to preclude their delivery to
Rab7 late endosomes. Moreover, the association of ADAP2-positive vesicles with LAMP1-posi-
tive compartments would serve to deliver any cargo, including viruses, contained within these
vesicles to the degradative environment of lysosomes.

Similar to our findings with DENV, we found that expression of ADAP2 partially restricted
VSV infection. In contrast, ADAP2 expression had no effect on CVB or SeV replication. Unlike
both DENV and VSV, CVB enters nonpolarized cells via a clathrin-independent pathway and
does not require specific delivery to endosomal compartments for uncoating [14]. In addition,
SeV fusion occurs at the host cell surface and does not rely on specific delivery to endosomal
compartments for its entry. Thus, the differential effects of ADAP2 on viruses that require
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delivery to an endosomal compartment (DENV and VSV) and those that do not (CVB, SeV)
support a role for ADAP2 in the mislocalizing of incoming virions to non-endosomal compart-
ments, thus preventing their uncoating/fusion. This is supported by our findings that ADAP2
expression also led to the mislocalization of transferrin, which is specifically internalized by a
clathrin-mediated pathway and delivered to the endosomal network. Consistent with this, we
also found that expression of wild-type or Q67L Rab8a and wild-type or Q111L Rab34, all of
which induce macropinocytosis, restrict DENV infection (S6 Fig).

We found that both the anti-DENV and VSV and macropinocytosis-inducing effects of
ADAP2 required its Arf6 GAP activity. The cycling of Arf6 between GTP and GDP bound
states is a primary determinant for its impact on actin cytoskeletal dynamics and endosomal
recycling. For example, expression of a constitutively active Arf6 mutant (Q67L) induces the
accumulation of clathrin cargo in intracellular endosomal compartments, likely due to alter-
ations in endosomal fusion [47, 48]. In contrast, expression of a dominant inactive mutant
(T157N) has no effect on intracellular accumulation of cargo, but instead exhibited overall
lower levels of signal, presumably due to increases in endosomal recycling [49]. These data sug-
gest that in cells expressing ADAP2, Arf6 is maintained in a GDP-bound state, leading to both
increases in macropinocytosis and endosomal recycling. Collectively, the promotion of these
pathways would induce dramatic alterations in the uptake and intracellular trafficking of viral
particles. Consistent with this, we found that expression of wild-type Arf6 had no effect on
DENV infection whereas expression of Q67L Arf6, which dramatically enhances vesicle invagi-
nations from the plasma membrane in actin-coated vesicles [50], potently restricted infection
(S6 Fig). In some scenarios, the maintenance of Arf6 in a GDP bound state may serve in a pro-
viral, or promicrobial, manner. Recently, several Arf GAP domain-containing molecules,
including ADAP1, were shown to directly facilitate the uptake of Salmonella into host cell via
their effects on the actin cytoskeleton [51].

Our findings presented here implicate ADAP2 as an ISG specifically induced to alter host
cell endocytic and intracellular trafficking pathways to restrict viral entry. We show that the
expression of ADAP2 dramatically induces macropinocytosis via an Arf6 GAP-dependent
pathway, which correlates to alterations in the uptake of transferrin and in an inhibition of
DENV and VSV entry and/or intracellular trafficking.

Materials and Methods

Cells and viruses
U2OS, 293T, Vero, 2fTGH (STAT1 wild-type) and U3A (STAT1 mutant) fibrosarcoma cells
(described previously [52]) were grown in DMEM-H supplemented by 10% FBS and penicil-
lin/streptomycin. HeLa (CCL-2) cells were grown in MEM supplemented by 5% FBS and peni-
cillin/streptomycin. HEK293T knockout MAVS were generated as follows: cells were plated at
a density of 2×104 cells per well in a 96-well plate. The next day, CRISPR plasmids were trans-
fected using GeneJuice transfection reagent (Merk Millipore) according to the manufacturer’s
protocol. pRZ-mCherry-Cas9 and pLenti-gRNA constructs were transfected at a ratio of 3:1
(i.e. 150 ng: 50 ng). Critical exons of MAVS were targeted using a gRNA construct (sequence
available by request). Subsequently, limiting dilution cloning was performed and after 10 days,
growing monoclones were selected by bright field microscopy and positive clones trypsinized
and expanded in two separate wells. One well was used to recover gDNA as previously
described (Ablasser et al., 2013) and subsequently the target region of interest was amplified in
a two-step PCR and subjected to deep sequencing. Knockout cell clones were identified as cell
clones harboring all-allelic frame shift mutations using OutKnocker (Schmid-Burgk et al.,
2014). Genotype of the respective knockout cell line is available upon request.
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Experiments were performed with DENV-2 (16681) obtained from BEI Resources and
expanded in C6/36 mosquito midgut cells as described previously [53] and titer was deter-
mined in Vero cells by a fluorescent foci forming unit (FFU) assay, as previously described
[54]. Vesicular stomatitis virus (VSV) expressing GFP and coxsackievirus B3-RD (CVB3-RD)
have been described previously [55]. Sendai virus (SeV) was purchased from Charles River
Laboratories. Experiments measuring productive virus infection were performed approxi-
mately 48h post-transfection, at which time cells were infected with DENV-2 at a multiplicity
of infection (MOI) of 1 FFU/cell for 24h, VSV and CVB3-RD at MOIs of 0.2 PFU/cell for 8h,
SeV at 100 hemagglutination units (HAU)/mL, unless otherwise stated.

Plasmids, siRNAs, and transfections
ADAP2-V5 and GFP-ADAP2 were constructed by amplification of human ADAP2 cDNA
(clone Id: 5214358, Thermo Scientific) and cloning into pcDNA 3.1/V5-His TOPO TA Expres-
sion Kit or NT-GFP Fusion TOPO TA according to the manufacturer’s protocol (Invitrogen).
DsRed-fused ADAP2 was constructed by amplification of ADAP2 cDNA followed by insertion
into the XhoI and EcoRI sites of pDsRed2-C1 (Clontech). GFP-ADAP2-ΔArfGAP and GFP-A-
DAP2-ΔPH2 were constructed by amplification of ADAP2 cDNA with primers beginning at
residue 132 or ending at residue 254, respectively, followed by cloning into NT-GFP Fusion
TOPO TA according to the manufacturer’s protocol (Invitrogen). Mutagenesis was performed
using Quikchange (Stratagene) according to the manufacturer’s protocol. RFP-LAMP1 (plas-
mid #1817), RFP-EEA1 (plasmid #42635), GFP-Rab8a (plasmid #24898), GFP-Rab8a[Q67L]
(plasmid #24900), and pcDNA-HA-Arf6 (plasmid # 10834) were obtained from Addgene.
EGFP-tagged Rab34 and Rab7 constructs have been described previously [56]. YFP-Actin was
kindly provided by Jeffrey Bergelson, Children’s Hospital of Philadelphia.

Control (scrambled) siRNA and siRNA targeting ADAP2 (5’-GGACUGGUUCAAUGCC
CUC-3’) were purchased from Sigma.

Transfection of U2OS and 293T cells with plasmids was performed using X-tremegene 9
DNA (Roche) or X-tremegene HP DNA (Roche) transfection reagents according to the manu-
facturer’s protocol. SiRNAs were transfected using Dharmfect-1 according to the manufactur-
er’s protocol. Cells were infected and/or fixed 48h post-transfection.

Antibodies
Rabbit anti-MAVS antibody was obtained from Bethyl Laboratories. Mouse anti-HA antibody,
mouse anti-V5, goat anti-EEA1 and rabbit anti-GAPDH HRP-conjugated antibodies were pur-
chase from Santa Cruz Biotechnology. Mouse anti-VSVG (P5D4) and mouse anti-DENV
(clone D3-2H2-9-21) antibodies were purchased from Santa Cruz Biotechnology and Milli-
pore, respectively. Alexa Fluor 488 or 594 phalloidin and Alexa fluor-conjugated secondary
antibodies were purchased from Invitrogen.

Microarray analyses
We used high-throughput microarray analysis, performed as we previously described [57], to
screen for transcriptional changes in control (2fTGH) vs. STAT1 signaling deficient (U3A)
HT1080 cells, both treated with 100U of purified IFNβ (PBL) for 24hrs. In parallel, mock-
treated 2fTGH and U3A were also included and were used to identify differentially expressed
genes in IFNβ-treated cells. Briefly, the quality of all RNA samples was confirmed using an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) to ensure RNA integrity and
quality. mRNA labeling was performed using a One-Color Low Input Quick Amp Labeling Kit
(Agilent) and prepared for hybridization on SurePrint G3 Human Gene Expression 8x60K
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slides using the Gene Expression Hybridization Kit (both from Agilent). Slides were scanned
using Agilent’s SureScan Microarray Scanner System, and data extracted using Agilent’s Fea-
ture Extraction Software (version 11.0.1.1). Microarray data were normalized using the cyclic
loess normalization method [58]. The R package Limma (Linear Models for Microarray Data),
which implements a moderated t-test, was used to identify differentially expressed mRNAs
between mock- and IFNβ -treated samples [59]. Storey's q-value method [60], as implemented
in R package q-value, was used to calculate the adjusted p-values in order to control the false
discovery rate.

Live-cell imaging
U2OS cells were transfected with indicated plasmids in glass-bottom 35mm dishes (MatTek).
Approximately 48 h following transfection, plates were placed into a 37°C, CO2-controlled
incubator positioned over a motorized inverted microscope to allow for long-term time-lapse
imaging (VivaView FL; Olympus), and images captured every 10–15 min for ~24h, unless oth-
erwise stated.

Immunofluorescence microscopy
In all experiments, cells cultured in 8-well chamber slides (LabTek) were washed and fixed with
4% paraformaldehyde followed by permeabilization with 0.1% Triton X-100 in PBS. Cells were
incubated with the indicated primary antibodies for 1 hr at room temperature, washed, and then
incubated with secondary antibodies for 30 min at room temperature, washed, and mounted
with Vectashield (Vector Laboratories) containing 4’,6-diamidino-2-phenylindole (DAPI).
Images were captured using a FV1000 confocal laser scanning microscope (Olympus), analyzed
using Image J/Fiji (NIH) or Imaris (Bitplane), and contrasted and merged using Photoshop
(Adobe). For three-dimensional analysis, xy or yz series stacks were acquired at ~0.5 μm intervals
through the total thickness of the cell monolayer (~10 μm). Single particle tracking was per-
formed using the MTrackJ plugin in Image J/Fiji. For imaging quantification,>20 individual
organelles from at least three unique fields were measured using Imaris. For measurements of
colocalization,>20 individual cells from at least three experiments were used to calculate Pear-
son’s colocalization coefficients using the Coloc2 plugin in ImageJ/Fiji.

For EIPA treatment studies, U2OS cells were transfected with DsRed-ADAP2 for 48h, then
treated with EIPA (102 μM, from Sigma) for 60 min in complete medium, followed by fixa-
tion/permeabilization as described above.

For studies related to viral entry, U2OS cells were transfected with vector or ADAP2 plas-
mids, as indicated, for ~48hrs. At this time, virus (~35 FFU/cell for DENV and ~100 PFU/cell
for VSV) was preadsorbed to cells for 60mins at 16°C. Following this incubation and a brief
washing to remove unbound virus, viral entry was initiated by shifting the temperature to
37°C. At the indicated times (~30min for DENV and VSV), cells were fixed in 4% PFA and
immunostained as described above.

RT-qPCR
Total cellular RNA was extracted using TRI reagent (MRC) or a GenElute total RNA miniprep
kit (Sigma) according to the manufacturer’s protocol. RNA samples were treated with RNase-
free DNase (Qiagen or Sigma) prior to cDNA synthesis. Total RNA(1 μg) was reverse tran-
scribed by using iScript cDNA synthesis kit (Bio-Rad). RT-qPCR was performed using iQ
SYBR green supermix (Bio-Rad) in an Applied Biosystems StepOnePlus real-time PCR
machine. Gene expression was calculated using the 2-44CT method[61], normalized to actin.
QuantiTect primers against ADAP2, IFI44L, DENV, VSV, were purchased from Sigma. Primer
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sequences were as follows: ADAP2 (5’-AAGCTGTCATCAGCATTAAG-3’ and 5’-ACTATCT
CCTTCCCACTTTC-3’); IFI44L (5’-ACTAAAGTGGATGATTGCAG-3’ and 5’-TGCAGAGA
GGATGAGAATATC-3’); DENV (5’-AGTTGTTAGTCTACGTGGACCGA-3’ and
5’-CGCGTTTCAGCATATTGAAAG-3’). Actin, VSV, CVB, ISG56, ISG60 and SeV primer
sequences have been described [36, 62].

Dextran uptake assay
U2OS cells were transfected as described above. Approximately 48h following transfection,
cells were washed with PBS and incubated with complete medium containing 70,000-MW dex-
tran conjugated to Oregon green 488 (0.1 mg/ml; Invitrogen) or 10,000-MW dextran conju-
gated to Alexa Fluor 594, as indicated, for 45 min followed by fixation/permeabilization as
described above.

Neutral red (NR)-labeled DENV
For generation of NR-DENV, C6/36 cells were infected with DENV-2 at 33°C for 1 h in FBS-
free DMEM (DMEM-0) then incubated with DMEM containing 2% FBS (DMEM-2) contain-
ing 100 μg neutral red dye (Sigma) for 5 days in the dark. Following this incubation, the
medium was harvested, cleared from cellular debris by low-speed centrifugation, aliquoted,
and stored at −80°C. NR-DENV titers were measured in either dark or light-exposed condi-
tions in Vero cells using a foci forming unit assay as described [54]. All experiments with
NR-DENV were performed under semidark conditions, unless otherwise stated.

For experiments measuring NR-DENV infection, 293T cells were transfected with the indi-
cated plasmids and ~ 48h post-transfection, cells were infected with NR-DENV (MOI = 5) for
2 h in the dark. At this time, cells were illuminated on a light box for 20 min. In parallel, mono-
layers were maintained in the dark to control for effects unrelated to entry or illuminated at
0hr post-infection to verify the light sensitivity of NR-DENV. Cells were then washed, collected
by manual pipetting, and then transferred onto naive 293T cells. Cells were infected for
approximately 48h, washed and infection levels assessed by RT-qPCR.

Immunoblots
Cells were grown in 24-well plates and lysed in RIPA buffer [50 mM Tris-HCl (pH 7.4); 1%
NP-40; 0.25% sodium deoxycholate; 150 mMNaCl; 1 mM EDTA; 1 mM phenylmethanesulfo-
nyl fluoride; 1 mg/ml aprotinin, leupeptin, and pepstatin; 1 mM sodium orthovanadate].
Lysates were sonicated and insoluble material was cleared by centrifugation. Protein concentra-
tion of lysates was determined by BCA protein assay (Thermo Scientific). Lysates containing
equal amounts of protein were loaded onto 4 to 20% Tris-HCl gels (Bio-Rad) and transferred
to nitrocellulose membranes. Membranes were blocked in 5% nonfat dry milk, probed with the
indicated antibodies, and developed with horseradish peroxidase-conjugated secondary anti-
bodies (Santa Cruz Biotechnology), and SuperSignal West Pico or Dura chemiluminescent
substrates (Pierce Bio-technology).

Statistical analysis
Data are presented as mean ± SD unless otherwise stated, and were analyzed with Prism soft-
ware (Graphpad) by two-tailed unpaired Student’s t-test. A p value<0.05 was considered
significant.
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Supporting Information
S1 Table. List of genes frommicroarray analyses in control (TGH) HT1080 or STAT1--
signalinf deficient (U3A) HT1080 cells exposed to 100U of purified IFNβ for ~24hrs.
Expression is shown as fold change relative to untreated (CON) cells. Gene names and acces-
sion numbers are shown at right.
(XLSX)

S1 Fig. (A), Level of ADAP2 expression in 293T cells transfected with vector control or
V5-ADAP2. Shown is a representative graph from the pooled data shown in Fig 1C. (B), Infec-
tion of DENV as assessed by RT-qPCR in 293T cells transfected with ADAP2-V5 or vector
control and infected with the indicated MOI of DENV. Data are normalized to vector control-
infected cells. (C), Infection of DENV (1 FFU/cell for 24hrs) and VSV (0.2 PFU/cell for 8hrs)
as assessed by RT-qPCR in 293T cells transfected with vector control, or ADAP2-V5 or
GFP-ADAP2. Data are normalized to vector control-infected cells. (D), Level of ADAP2
expression in 293T cells transfected with vector control, ADAP2-V5, or GFP-ADAP2. Shown
is a representative graph from the pooled data shown in panel (C). (E), Level of ADAP2 expres-
sion in wild-type or MAVS-/- 293T cells transfected with vector control of V5-ADAP2. Shown
is a representative graph from the pooled data shown in Fig 1D. (F), Induction of ISG56 and
IFI44L (left y-axis) in 293T cells infected with DENV (1 FFU/cell) for 24hrs that had been
transfected with vector control, ADAP2-V5, or GFP-ADAP2. Data are presented as a fold ISG
induction (as assessed by RT-qPCR) compared to uninfected control cells. DENV replication
(right y-axis) in 293T cells infected with DENV (1 FFU/cell) for 24hrs that had been trans-
fected with vector control, ADAP2-V5, or GFP-ADAP2. (G), Level of ADAP2 expression in
293T cells transfected with vector control, ADAP2-V5, or GFP-ADAP2. Shown is a representa-
tive graph from the pooled data shown in panel F. (H), HeLa cells were transfected with control
(scrambled) siRNA CONsi) or ADAP2 siRNA (ADAP2si) for ~48hrs and then infected with
DENV (0.3 FFU/cell) for 24hrs. Infection (left y-axis) and level of ADAP2 expression (right
y-axis) were measured by RT-qPCR and normalized to CONsi-transfected cells.
In all, data in are shown as mean ± standard deviation. �p<0.05, ��p<0.01, ���p<0.001.
(TIF)

S2 Fig. (A), Confocal micrographs of U2OS cells transfected with wild-type, R53Q, or
ΔArf GAP GFP-fused ADAP2 and wild-type Arf6. (B), Quantification of the numbers of
ADAP2+ vesicles in cells transfected with either wild-type ADAP2 (left) or R53Q ADAP2
(right) and either vector control or Arf6. Shown are the numbers of ADAP2+ vesicles per cell
from individual cells expressing the indicated constructs. �p<0.01.
(TIF)

S3 Fig. (A, B), Level of ADAP2 expression in 293T cells transfected with vector control or
V5-fused wild-type or R53Q V5-ADAP2 (A) or EGFP-fused wild-type or ΔArfGAP ADAP2
(B). Shown is a representative graph from the pooled data shown in Fig 6D. (C), Level of
ADAP2 expression in 293T cells transfected with vector control or V5-fused wild-type or
R53Q V5-ADAP2. Shown is a representative graph from the pooled data shown in Fig 6E.
(TIF)

S4 Fig. (A), U2OS cells transfected with GFP-ADAP2 were incubated with Alexa Fluor 594
transferrin (red) for 45 min at 37°C and then fixed and processed for confocal microscopy
as described in Materials and Methods.DAPI-stained nucleo are shown in blue. (B), Quanti-
fication of perinuclear Alexa Fluor 594 transferrin localization in U2OS cells transfected with
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vector control or wild-type or R53Q GFP-ADAP2. A total of fifty cells were quantified.
(TIF)

S5 Fig. Promoter sequences of ADAP2 (top) or ADAP1 (bottom). ISRE in ADAP2 is
highlighted in blue.
(TIF)

S6 Fig. DENV infection as assessed by RT-qPCR in 293T cells transfected with vector con-
trol (black bar) or V5-ADAP2 (grey bar), HA-Arf6 wild-type or Q67L (blue bars), EGF-
P-Rab8a wild-type or Q67L (orange bars), or EGFP-Rab34 wild-type of Q111L (green
bars). Data are shown as percent infection relative to vector transfected controls and are
shown as mean ± standard deviation (�p<0.05, �� p<0.01, ���p<0.001).
(TIF)

S1 Movie. Real-time imaging of U2OS cells transfected with GFP-ADAP2. Approximately
48hrs post-transfection, images were captured every 10 minutes. Shown are movies for differ-
ential interference contrast (DIC, right) and GFP (left).
(MOV)

S2 Movie. Real-time imaging of U2OS cells transfected with DsRed-ADAP2 and YFP-Ac-
tin. Approximately 48hrs post-transfection, images were captured every 10 minutes. Shown
are movies for differential interference contrast (DIC, second from left), YFP (third from left),
DsRed (right), and merged (left).
(MOV)

S3 Movie. Real-time imaging of U2OS cells transfected with DsRed-ADAP2. Approximately
48hrs post-transfection, images were captured every 10 minutes. Shown are movies for differ-
ential interference contrast (DIC, right) and DsRed (left).
(MOV)

S4 Movie. Real-time imaging of U2OS cells transfected with wild-type GFP-Rab34 and
DsRed-ADAP2. Approximately 48hrs post-transfection, images were captured every 10 min-
utes. Shown are movies for GFP (middle), DsRed (right), and merged (left).
(MOV)

S5 Movie. Real-time imaging of U2OS cells transfected with wild-type GFP-Rab8a and
DsRed-ADAP2. Approximately 48hrs post-transfection, images were captured every 10 min-
utes. Shown are movies for GFP (middle), DsRed (right), and merged (left).
(MOV)

S6 Movie. Real-time imaging of U2OS cells transfected with Q67L GFP-Rab8a and DsRed-
ADAP2. Approximately 48hrs post-transfection, images were captured every 10 minutes.
Shown are movies for GFP (middle), DsRed (right), and merged (left).
(MOV)

S7 Movie. Real-time imaging of U2OS cells transfected with GFP-ADAP2 and
mRFP-EEA1. Approximately 48hrs post-transfection, images were captured every 10 minutes.
(MOV)

S8 Movie. Real-time imaging of U2OS cells transfected with GFP-Rab7 and DsRed-
ADAP2. Approximately 48hrs post-transfection, images were captured every 10 minutes.
(MOV)
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S9 Movie. Real-time imaging of U2OS cells transfected with GFP-ADAP2 and mRFP-
LAMP1. Approximately 48hrs post-transfection, images were captured every 10 minutes.
(AVI)

S10 Movie. Real-time imaging of U2OS cells transfected with wild-type GFP-ADAP2.
Approximately 48hrs post-transfection, images were captured every 10 minutes.
(MOV)

S11 Movie. Real-time imaging of U2OS cells transfected with GFP-ADAP2 lacking the Arf
GAP domain (ΔArfGAP). Approximately 48hrs post-transfection, images were captured
every 10 minutes.
(MOV)

S12 Movie. Real-time imaging of U2OS cells transfected with R53Q GFP-ADAP2. Approxi-
mately 48hrs post-transfection, images were captured every 10 minutes.
(MOV)
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