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Abstract
Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) is a scaffolding protein containing 2 PDZ

domains that coordinates the assembly and trafficking of transmembrane receptors and ion

channels. Most target proteins harboring a C-terminus recognition motif bind more-or-less

equivalently to the either PDZ domain, which contain identical core-binding motifs. However

some substrates such as the type II sodium-dependent phosphate co-transporter (NPT2A),

uniquely bind only one PDZ domain. We sought to define the structural determinants re-

sponsible for the specificity of interaction between NHERF1 PDZ domains and NPT2A. By

performing all-atom/explicit-solvent molecular dynamics (MD) simulations in combination

with biological mutagenesis, fluorescent polarization (FP) binding assays, and isothermal ti-

tration calorimetry (ITC), we found that in addition to canonical interactions of residues at 0

and -2 positions, Arg at the -1 position of NPT2A plays a critical role in association with

Glu43 and His27 of PDZ1 that are absent in PDZ2. Experimentally introduced mutation in

PDZ1 (Glu43Asp and His27Asn) decreased binding to NPT2A. Conversely, introduction of

Asp183Glu and Asn167His mutations in PDZ2 promoted the formation of favorable interac-

tions yielding micromolar KDs. The results describe novel determinants within both the PDZ

domain and outside the canonical PDZ-recognition motif that are responsible for discrimina-

tion of NPT2A between two PDZ domains. The results challenge general paradigms for

PDZ recognition and suggest new targets for drug development.

Introduction
Na+/H+ Exchanger Regulatory Factor-1 (NHERF1), also known as the 50-kDa ezrin-binding
protein EBP50, is a multi-domain scaffolding protein that coordinates the assembly and traf-
ficking of transmembrane receptors and ion channels [1–3]. NHERF1 possesses two tandem
PDZ (PSD-95/Drosophila disk large/ZO-1) domains of ~90 amino acids and an ezrin-binding
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domain (EBD), through which it binds the actin cytoskeleton (Fig 1). PDZ domains of
NHERF1 recognize the X-S/T-X-FCOO

- sequence of target partners (class I PDZ-binding mo-
tifs), where X is promiscuous and F is a hydrophobic residue. By convention, ligand residues
are numbered backwards from zero at the carboxy terminus [4–8]. NHERF1 binds an extensive
set of proteins including the parathyroid hormone receptor (PTHR), the β2-adrenergic receptor
(β2-AR), the cystic fibrosis transmembrane regulator (CFTR), the P2Y1 receptor, and the
thromboxane A2 receptor, among others, that harbor a PDZ ligand. These and most target sub-
strates bind to PDZ1 or PDZ2 with more-or-less comparable affinity [9,10]. PDZ1 and PDZ2
of NHERF1 possess identical (GYGF) core-binding motifs [4,10–12] (Fig 1). Primary, or ca-
nonical, interactions occur through the GYGF core-binding motif of NHERF1 PDZ domains
and the carboxy-terminal hydrophobic residue at ligand position 0. Another canonical interac-
tion occurs between Ser/Thr at ligand position -2 and the structurally conserved His72 (PDZ1)
or His212 (PDZ2) [4,10,13]. Despite the sequence and structural similarity of PDZ1 and PDZ2
a subset of ligands uniquely binds only PDZ1 or PDZ2. The type II sodium-dependent phos-
phate co-transporter (NPT2A, SLC34A1), for instance, binds only PDZ1 [10,14–16]. Hence,
structure- and sequence-based algorithms [6,10,17–21] that have been advanced to predict
PDZ-binding specificity are insufficient to explain instances of unique binding to PDZ1 or
PDZ2. Recent observations suggest that extended sequences beyond the canonical PDZ do-
main fold, as well as outside the short carboxy-terminal motifs of target ligands, can partially
address these shortcomings [4,10–13,22,23]. Clearly, additional structural determinants and
interactions distant from the core-binding motif differentiate sequence recognition of the two
PDZ domains of NHERF1. The goal of the present study was to determine and characterize the
binding factors that confer specificity of NPT2A to PDZ1. We applied a two-pronged approach
of molecular dynamics simulation and experimental measurements.

The three-dimensional structures of ligand-bound isolated PDZ domains provide the key
atomic details about the binding interface and insights into the mechanism of complex forma-
tion. Few X-ray and NMR structures of the NHERF1 PDZ domains with peptides mimicking
the PDZ-binding motifs of target ligands are available [4,10–13,22]. Most investigations ad-
dress the interaction between the core residues forming the PDZ domain binding site with the
four or five terminal amino acids of the ligand PDZ-recognition motif [11,13]. However, speci-
ficity of the interaction can be modulated by extended and remote binding determinants of
the PDZ domains with carboxy-terminal ligand residues [10,19,22,23]. Here we sought to de-
termine noncanonical elements outside the core-binding motif and beyond the formal car-
boxy-terminal PDZ ligand that are responsible for the specificity of interaction between PDZ1
domain of NHERF1 and NPT2A. By performing extensive all-atom molecular dynamics (MD)
simulations of the 22-residue carboxy-terminal tail of NPT2A and NHERF1 PDZ domains we
identified the specific determinants of PDZ1-NPT2A interactions. Based on these findings, we
then introduced in PDZ2 the residues discovered in PDZ1 predicted to be required for NPT2A
binding. These mutations now conferred NPT2A binding on PDZ2. The combined approach
of computational modeling and experimental testing allowed prediction of the structural deter-
minants and unique interactions underlying the PDZ1-NPT2A complex formation.

Fig 1. Schematic representation of NHERF1.NHERF1 possesses two tandem PDZ domains and a
carboxy-terminal ezrin binding domain (EBD).

doi:10.1371/journal.pone.0129554.g001
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Results

Structure and dynamics of the PDZ1-NPT2A complex
The core-binding residues of PDZ1 that recognize the limited carboxy-terminal motif-NATRL
of NPT2A were suggested by our prior molecular dynamics simulation study [24] (S1 Fig). To
elucidate the features responsible for PDZ1 binding specificity of NPT2A and characterize the
structural determinants of the NPT2A recognition we performed the extensive MD simulations
of PDZ1 bound to the carboxy-terminal 22-residue peptide of NPT2A. A representative snap-
shot from the MD simulation is shown in Fig 2A and referred to as the wild-type (WT)
PDZ1-NPT2A complex. To monitor the stability of the system during MD simulations, we
first performed an equilibration run that analyzed the root mean square deviation (RMSD) of
Cα atoms of PDZ1 domain (residues 13–91) relative to the starting structure. The average
RMSD value along the equilibration phase was 1.1 ± 0.1Å. The RMSD remains stable between
1.1 and 1.4 ± 0.1Å over the production MD simulation.

The binding of the NPT2a ligand does not cause conformational changes of the binding
pocket of PDZ1. The average RMSD value of the Cα atoms of residues formed a binding pocket
(Gly23, Tyr24, Gly25, Phe26 (GYGF loop), Leu28, Val76 and Ile79) was 0.47Å and 0.55Å
throughout the equilibration phase and production simulation, respectively.

We also calculated the RMSDs of the backbone atoms for the ligand residues located in the
binding pocket (position 0 to -4) relative to their starting position. Small fluctuations in the
range of 0.6–1.4Å during the first 25 ns of the equilibriumMD simulation were observed. The
five carboxy-terminal residues of the NPT2A peptide then reach a stable conformation with an
average RMSD value of the backbone atoms of 0.9 ± 0.1Å over the entire MD trajectory. The
absence of backbone conformational changes for the core of PDZ1, as well as for the carboxy-
terminal motif of the bound peptide during equilibration and production simulations is evident
from the low RMSD values and indicates that the resulting complex is stable and remains close
to the initial structure.

The local mobility of each protein residue obtained from the RMSF calculation of the Cα
atoms with respect to the starting structure throughout the trajectory is illustrated in S2 Fig.
The result suggests that the structure of PDZ1 rather rigid. RMSF values increase up to 3 and
5Å for the N- and C-terminal regions. High RMSF values are displayed by turns and loops.
Flexibility of residues from the carboxylate-binding loop and β2 sheet (residues 23–29) creates
a favorable binding pocket to accept the carboxy-terminal Leu of NPT2A. The β2-β3 loop (resi-
dues 31–35) is flexible and therefore may accommodate bulky amino acid residues after ligand
position -4. With the exception of the β2-β3 loop (residues 31–35) and carboxylate-binding
loop (residues 19–23), PDZ1 bound NPT2A displays rather low RMSF values (RMSF< 1Å).
The comparative rigidity of PDZ1-bound peptide is corroborated by the analysis of canonical
and specific interactions that are observed in the MD simulation.

According to the MDmodel, the hydrophobic side chain of Leu0 settles deep in a hydropho-
bic cavity formed by the side chains of Tyr24, Phe26, Leu28 of the β2 sheet, and Val76 and
Ile79 of the α2-helix (Fig 2A and S1 Fig). The side chain conformations of these residues are in
a favorable orientation to form both hydrophobic contacts as well as hydrogen bonds with
Leu0 (Fig 2A and S3 Fig). Another conserved interaction is formed between the imidazole
group of His72 at the top of the α2-helix and the OH group of Thr-2. The high probability of
canonical interactions involved Leu0 and Thr-2 along the MD simulation (Fig 2B and S1 Table)
is in strong agreement with the conserved contacts observed by X-ray and NMR and provides
a structural basis for the recognition of the carboxy-terminal motif of target ligand [10,24].
Structural superposition of the average structure of the PDZ1 domain from the MD simulation
and X-ray structure (PDB code: 1GQ4) is presented in S2 Fig. Both structures show similar
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backbone conformations with an RMSD value of 1.1Å (residues 13–91). Also, the side chain
conformations of residues forming the binding groove (Phe26, Leu28, Ile79 and Val76) are
very similar. The side chain of Tyr24 shows a small rotation toward the carboxy-group of Leu0

compared to the X-ray structure.

Fig 2. Model structure of PDZ1 in complex with the NPT2A peptide. (A) PDZ1 and NPT2a are shown in
grey and wheat, respectively. The NPT2A peptide is shown in stick representation and numbered from 0 to
-6. Residues forming the canonical hydrophobic pocket of PDZ1 are shown in yellow (stick representation).
A salt bridge between the carboxylate group of Glu43 and the guanidino group of Arg-1 of NPT2A, carbon-
carbon interactions between His27 and Arg-1 as well as hydrophobic interactions between His29 and His-5,
and His72 and His-6 are shown as black dotted lines. Hydrogen atoms are white, oxygens red, and
nitrogens blue. (B) Positions pairs that predict NPT2A selectivity for PDZ1 are illustrated. The orange lines
indicate the pairs involved in canonical interactions. The blue and green lines indicate the pairs involved in
noncanonical interactions. Residue positions in the PDZ1 domain and NPT2A are highlighted in red and
black, respectively.

doi:10.1371/journal.pone.0129554.g002
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Specific Binding determinants for the PDZ1–NPT2A complex
Amajor interest for us is specific binding determinants which may explain the selectivity of
PDZ1 for NPT2A. These determinants directly contact target ligand and locate beyond the hy-
drophobic cavity of PDZ1 (Fig 2B). For instance, Glu43 from the first α-helix (αA) of PDZ1 is
involved in the electrostatic interaction with Arg-1 of NPT2A (Fig 2A) [24]. The 100 ns MD
simulations permit detailed evaluation of the formation and dynamics of this interaction. Dur-
ing the first 15 ns of the MD simulation we observed rotation of the side chain of Arg-1 toward
the carboxylate group of Glu43. The carboxyl oxygen atoms (Oε1 and Oε2) of Glu43 were sub-
sequently close to the guanidino group of Arg-1 and form electrostatic interactions. During the
next 15 ns of the MD simulation, the distance between two charged groups stabilizes between
2Å and 3Å and remains stable along the rest of the simulation. Analysis of non-covalent inter-
actions predicts formation of a bifurcated salt bridge between the carboxylate oxygens (Oε1

and Oε2) of Glu43 and the NHη2 group of Arg-1 during the course of the simulation (Fig 2A
and S1 Table).

MD simulations performed here reveal a novel and specific role of His27 for the formation
of an electrostatic interaction between Glu43 and Arg-1. Analysis of the orientation of His27
shows that the imidazole ring faces toward the side chain of Arg-1 (Fig 2A). The ring Cδ2 atom
forms a hydrophobic interaction with the Cβ atom of Arg-1. The ring Cε1 atom is in hydropho-
bic contact with the Cγ atom of Arg-1 (Fig 2A and S1 Table). The distance between the C-C
pairs stabilizes after approximately 20 ns of MD simulation and varies between 4–5Å along the
balance of the MD simulation. Thus, His27 may provide local stability by facilitating salt bridge
formation between the positively charge guanidino group of Arg-1 near the negatively charged
carboxylate group of Glu43.

To validate the computational results that His27 and Glu43 of PDZ1 are essential for
NPT2A binding, we generated recombinant PDZ1 with His27Asn and Glu43Asp mutations
and measured their effect on NPT2A peptide binding by FP (Table 1) and ITC (Table 2).
WT PDZ1 interacts with the NPT2A peptide with a KD of 3.1–5.5 ± 0.6 μM, whereas both
Glu43Asp and His27Asn mutations decrease the interaction with NPT2A (Fig 3, Table 1 and
Table 2) confirming the predictions from the modeling. By applying the relation (Eq 3), we cal-
culated the free energy (ΔG°) and evaluated the entropy (ΔS°) using Eq 4 (Table 2).

Notably, His27Asn and Glu43Asp effectively convert these residues to their naturally occur-
ring counterparts in PDZ2, where the positions occupied by His27 and Glu43 in PDZ1 are

Table 1. Binding affinity of NHERF1 PDZ constructs and NPT2Ameasured by FP.

PDZ construct KD/EC50, μM
a

PDZ1 (1–140) 1.7 ± 0.2

PDZ1 (1–140) pH 5.5 16.1 ± 3.3

PDZ1 (1–140) pH 6.0 8.0 ± 1.8

PDZ1 (11–120) 5.5 ± 0.6

PDZ1 H27N (11–120) N/Da

PDZ1 E43D (11–120) N/D

PDZ2 (133–300) N/D

PDZ2 D183E 20.0 ± 10

PDZ2 N167H/D183E 11.7 ± 2.0

a N/D No detectable binding

doi:10.1371/journal.pone.0129554.t001
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Asn167 and Asp183 in PDZ2. Thus, both mutations alter the sequence of PDZ1 to resemble
that of PDZ2.

Interaction between the double PDZ2 mutant and NPT2A
We reasoned that if the specificity of NPT2A binding to PDZ1 was attributable to the presence
of His27 and Glu43 (Fig 2A), then mutating Asn167 to His (Asn167His) and Asp183 to Glu
(Asp183Glu), that is, introducing in PDZ2 the key residues from PDZ1 (S3 and S4 Figs),
should now permit NPT2A to bind PDZ2. To test this idea we generated recombinant
Asp183Glu PDZ2 alone or in combination with Asn167His. The binding affinity of Asp183Glu
and Asn167His/Asp183Glu to the NPT2A peptide was measured by FP. The Asp183Glu

Table 2. Binding affinity of NHERF1 PDZ1 constructs and NPT2Ameasured by ITC.

PDZ1 construct Ka, μM ΔHo, kcal/mol ΔSo,cal/mol/K ΔGo,kcal/mol N

PDZ1 (1–120) 3.1 ± 0.3 -8.2± 0.8 -2.1±0.2 -7.6±0.8 0.92

PDZ1 H27N (1–120) 5.3 ± 0.5 -7.5±0.7 -0.86±0.08 -7.2±0.7 0.61

PDZ1 E43D (1–120) 10.4 ± 0.8 -3.0±0.3 12.7±1.0 -6.8±0.7 0.60

PDZ1 H27N/E43D (1–120) 17.9 ± 0.9 -5.8±0.6 2.3±0.3 -6.5±0.6 0.60

doi:10.1371/journal.pone.0129554.t002

Fig 3. Fluorescent polarization binding studies of the modified PDZ1 domain.Representative
fluorescence anisotropy binding curves for the labeled NPT2A peptide (1 μM) to WT PDZ1 (11–120),
His27Asn (11–120), or Glu43Asp (11–120) PDZ1 mutants of NHERF1 are shown.

doi:10.1371/journal.pone.0129554.g003
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mutant interacts with the NPT2A peptide with micromolar affinity (Fig 4 and Table 1). The
combined effect of the double mutation (Asn167His/Asp183Glu) may explain the further en-
hancement of the binding affinity for NPT2A (Fig 4 and Table 1).

To explore interactions between the double mutant and the NPT2A peptide, MD simulation
was performed over 150 ns. MD simulation showed that the double PDZ2 mutant engages the
NPT2A peptide at virtually identical binding site residues as in PDZ1 (S4 and S5 Figs). The pep-
tide clearly maintains the same binding orientation in the double PDZ2 mutant as inWT PDZ1
(Fig 2A and S5 Fig). The NPT2A peptide now establishes interactions with the residues from the
carboxylate binding loop (GYGF), α2-helix and β2 sheet of PDZ2, as well as forms a salt bridge
with Asp183Glu (S2 and S3 Figs), functionally equivalent to the PDZ1-NPT2A complex (Fig
2A). We monitored the distance between the carboxylate group of Asp183Glu and the guanidino
group of Arg-1 (S6A Fig) along the MD simulation. The distance is stable after approximately 30
ns of the MD simulation and reflects the formation of a salt bridge (S6A and S6B Fig). Our result
also indicates that hydrophobic contacts between Asn167His and Arg-1 occur through the ring
Cδ2 and Cε1 atoms of Asn167His and the Cβ and Cγ atoms of Arg-1, respectively (S6B Fig).
After approximately 30 ns of MD simulation both distances stabilized between 4–5Å. The aver-
age values of 4.6 ± 0.6Å and 4.5 ± 0.5Å along the last 40 ns of MD simulation was calculated for
the Cδ2-Cβ and Cε1-Cγ pairs, respectively.

Fig 4. Fluorescent polarization binding studies of the modified PDZ2 domain.Representative
fluorescence anisotropy binding curves for the labeled NPT2A peptide (1 μM) to WT PDZ2, Asp183Glu, or
Asn167His/Asp183Glu PDZ2 mutants of NHERF1 are shown.

doi:10.1371/journal.pone.0129554.g004

Structural Origins of PDZ Specificity

PLOS ONE | DOI:10.1371/journal.pone.0129554 June 12, 2015 7 / 17



The MD simulation was repeated with the shorter–NATRL sequence of the NPT2A peptide
to verify the formation of a salt bridge between Asn183Glu and Arg-1 (see Supporting Informa-
tion for details). The MD simulation results revealed that the–NATRL peptide binds the double
PDZ2 mutant in an orientation and conformation similar to those identified for the NPT2A
peptide (S5 Fig). As before, we observed a strong tendency for the formation of electrostatic in-
teractions between the carboxylate group of Asp183Glu and the guanidino group of Arg-1 as
well as hydrophobic contacts between the ring Cδ2 and Cε1 atoms of Asn167His and the Cβ
and Cγ atoms of Arg-1, respectively. We also modeled the interaction between WT PDZ2, the
single Asp183Glu PDZ2 mutant, and the–NATRL ligand. Notably, the limited–NATRL ligand
was released from the PDZ2 binding pocket of both the WT PDZ2 and the single Asp183Glu
PDZ2 mutant after approximately 30 ns of MD simulation.

His-His interactions in PDZ1-NPT2A
Rotation of the His-5 side chain and formation of orientated stacking with His29 was observed
during the first 40 ns of the MD simulation. Further calculations reveal that the imidazole ring
of His-5 is close to the imidazole ring of His29 (Fig 2A) with an average ring centroid-centroid
distance of 5.0 ± 0.3Å over the course of the MD simulation. We observed a stable parallel
stacking arrangement of the imidazole ring of His-5 over the ring of His29 with the average
angle between the normal vectors of two ring planes of 160 ± 20°. The MD simulations also
showed that the side chain of His-5 could potentially attract the carboxylate group of Glu31, as
well as the positively charged guanidino group of Lys32 from the β2-β3 loop. However, due to
fluctuations of the carboxylate group of Glu31 as well as the guanidino group of Lys32, the
bond length between the potential donor-acceptor pairs often exceeded 3.5Å.

Analysis of the MD simulation data predicts that the imidazole ring of His-6 rotates toward
the imidazole ring of His72 during the first 15 ns of the simulation. The distance and angle be-
tween two rings then does not change conspicuously through the remainder of the simulation.
An average ring centroid-centroid distance computed along the equilibriumMD simulation
trajectory, yields an average value of 5.2 ± 0.3Å with an average angle between the normal vec-
tors of two ring planes of 160 ± 10°. The favorable distance and angle between His-6 and His72
as well as His-5 and His29 strongly indicates a formation of stacking imidazole-imidazole inter-
actions [24–26].

To determine the impact of the His residues at position -5 and -6 on the stability of the
PDZ1-NPT2A complex, we computationally replaced these residues with Ala. MD simulations
of the modified system (see Supporting Information for details) showed that substitution of
Ala for His destabilizes the NPT2A peptide. The calculated RMSF of the Cα atoms per residue
of the WT complex and for the modified system is presented in S7 Fig. We did not observe sig-
nificant fluctuations over the MD simulation for WT PDZ1-NPT2A, whereas the Ala variants
display higher RMSF values, especially for the loop regions. The major contribution to the
higher RMSF comes from the loop between α2 and β5 (residues 61–78), partial β2 strand and
β2-β3 loop (residues 27–35) as well as partial β3 and α1-helix (residues 40–47). Also, the Ala
substitution imparts greater backbone flexibility, which increases the RMSF for the peptide res-
idues at position -2, as well as upstream of position -8 (S7B Fig).

The pKa values of His-5 and His-6 of NPT2A and His27, His29, and His72 of PDZ1 were es-
timated using PROPKA 3.1 [27] (S2 Table). We reasoned that if His-His interactions contrib-
ute to stabilizing the PDZ1-NPT2A interaction, then decreasing the pH should diminish the
strength of these interactions. FP binding experiments performed at an acidic pH confirmed
that the binding affinity between the PDZ1 domain and the NPT2A peptide is significantly re-
duced compared to pH 7.4 (Fig 5 and Table 1).
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Discussion
The two PDZ domains of NHERF1 share extensive similarity and identical GYGF core-binding
motifs. Nonetheless, PDZ1 interacts with a larger and more diverse set of ligands compared to
PDZ2 [9,10,28,29]. A far smaller subset of ligands exhibit preferential or unique binding to
PDZ1 or PDZ2. The basis for this specificity is unknown and may hold considerable potential
for understanding the basis of PDZ-ligand binding and targeting novel compounds to these
sites. The primary goal of the present study was to identify the structural determinants that
confer selective binding of NPT2A to PDZ1 of NHERF1.

MD simulations provide an atomic-level description of the principal interactions involved
in assembling the PDZ1-NPT2A complex. The results predicted that a salt bridge between
Glu43 and Arg-1 imparts a large stabilizing effect on PDZ1-NPT2A binding. The enthalpy
(ΔΔHo = 5.2 kcal/mol) and entropy (ΔΔSo = 14.8 cal mol-1 K-1) changes for Glu43Asp
PDZ1-NPT2A (Table 2) are consistent with this observation. The stability of the PDZ1-
NPT2A complex decreases by ΔΔGo = 0.8 kcal/mol (ΔΔGo = ΔGo

E43D - ΔGo
WT) if this salt

bridge is disrupted.
The presence of His27 was also projected to be required for stabilizing the PDZ1-NPT2A

complex. The difference in ΔΔGo (ΔΔGo = ΔGo
H27N - ΔGo

WT) caused by mutation of His to
Asn is estimated to be about 0.4 kcal/mol (Table 2). ΔΔHo = 0.7 kcal/mol (ΔΔHo = ΔHo

H27N -
ΔHo

WT) and ΔΔSo = 1.3 cal mol-1 K-1 (ΔΔSo = ΔSoH27N - ΔSoWT) are consistent with our

Fig 5. pH Dependence of PDZ1 binding to NPT2A. Representative fluorescence anisotropy binding curves
for the labeled NPT2A peptide (0.5 μM) toWT PDZ1 (1–140) at pH 7.4; 6.0 and 5.5 are shown.

doi:10.1371/journal.pone.0129554.g005
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prediction that hydrophobic contacts formed between the ring C-atoms of His27 and Cβ and
Cγ atoms of Arg-1 restrict the dynamic behavior of the side chain of Arg-1 and orientate the
positively charged guanidine group of Arg-1 near the negatively charged side chain of Glu43.
The formation of the His27Asn/Glu43Asp PDZ1-NPT2A complex is enthalpically (the domi-
nant contribution of hydrogen bonds) and entropically (loss of hydrophobic contacts) unfavor-
able. The difference in the free energy of binding (ΔΔGo) upon replacement of His27 by Asn
and Glu43 by Asp is 1.1 kcal/mol. FP experiments performed for H27N and E43D PDZ1 mu-
tants confirmed that the presence of both residues is essential for NPT2A binding (Fig 4). To-
gether, our results point to a critical role of Glu43 and His27 for PDZ1-NPT2A binding. We
propose that these residues uniquely stabilize the binding of NPT2A and define the specificity
of the PDZ1 domain.

PDZ2 harbors Asn167 and Asp183 at the positions corresponding to His27 and Glu43 in
PDZ1. MD simulations of PDZ2 with the bound–NATRL peptide predict that the side chain of
Asp183 is too short to form an electrostatic interaction with Arg-1. The analysis of non-cova-
lent interactions showed that Asn167 does not interact with the–NATRL peptide. The side
chain of Asn167 is polar and preferentially surrounded with water molecules rather than estab-
lishing interactions with the ligand. Thus, the MD simulation does not predict an impact of the
side chains of Asn167 and Asp183 on the PDZ1-NATRL binding, whereas the side chains of
His27 and Glu43 establish stable interactions with the ligand. The computational predictions
agree well with the binding experiments, showing only a very weak interaction between PDZ2
and the NPT2A peptide (Fig 4), whereas PDZ1 binds NPT2A with a KD of 5.5 μM [22] (Fig 3
and Table 1). We reasoned that if the limited binding of NPT2A to PDZ2 stems from these
structural considerations, then the conservative replacement of Asp183 with Glu, and Asn167
with His should then impart NPT2A binding to PDZ2. Our modelling analysis established that
the double PDZ2 mutant (Asn167His/Asp183Glu) interacts with NPT2A in a structurally sim-
ilar manner to the naturally occurring PDZ1-NPT2A complex (S3 and S4 Figs). The longer
side chain of Asp183Glu forms an electrostatic interaction with the side chain of Arg-1 (S5 Fig)
compared to the shorter side chain of Asp183. The imidazole ring C-atoms of Asn167His form
multiple hydrophobic contacts with the Cβ and Cγ atoms of Arg-1, similar to those found in
the PDZ1-NPT2A complex. These predictions were borne out by the biochemical experiments,
where the single (Asp183Glu) and double mutations (Asn167His/Asp183Glu) in recombinant
PDZ2 stabilized the NPT2A peptide in the binding site with EC50s of 20.0 and 11.7 μM, respec-
tively. The notable difference in the binding affinity between the double mutant andWT PDZ2
strengthens the conclusion that His27 and Glu43 are essential for NPT2A binding. Further-
more, these two residues differentiate the binding properties of NHERF1 PDZ domains for the
NPT2A ligand and explain the observed binding specificity of PDZ1 for NPT2A.

The computational and experimental results allowed us predict the role of His-His interac-
tions in the formation of the PDZ1-NPT2A complex. Based on our working model we theorized
that His-5 and His-6 form hydrophobic interactions with His29 and His72 of PDZ1, respectively,
and, therefore, may be necessary to stabilize the PDZ1-NPT2A complex. The His-5His-6 -alanine
substitution indicates that alanine residues do not interact with NPT2A and destabilize the pep-
tide in the binding site and beyond compared to theWT system. The KD values measured by FP
at acidic pH 5.5 and pH 6.0 suggest that interactions between the protonated histidine pairs are
unfavorable compared to physiological pH. At pH 5.5, the population of the protonated form of
His-5 and His-6 (pKa of 6.11 and 5.83, respectively) of NPT2A is high. Under these conditions we
assume that His-5 tends to be far fromHis29 (pKa of 5.98) due to the electrostatic repulsion of
their positive charges. We further speculate that when the side chain of His-6 is protonated, the
fraction of the protonated His72 is very small (pKa of 4.90). The side chain of His72 is involved
in the canonical interaction with the ligand residue at position -2 (Thr in the case of NPT2A)

Structural Origins of PDZ Specificity

PLOS ONE | DOI:10.1371/journal.pone.0129554 June 12, 2015 10 / 17



[4,24] and is unlikely to be protonated under these conditions. If the interaction between PDZ1
and NPT2a occurs near the apical membrane, where the pH is 6.3–6.9 [30], then the probability
is high that His27 (pKa of 6.49) may be protonated. Overall, the measured binding affinities at
pH 5.5, 6.0, and 7.4 suggest decreased binding affinity between PDZ1 and the NPT2A peptide
under acidic conditions. Thus, PDZ1may explore the ionization behavior of the histidine resi-
dues at different pHs (6.0� pH� 7.4) as a proton sensor to initiate association or dissociation of
target ligands in the cell environment, where the cytoplasmic pH is 7.4–7.5 and the endosomal
pH is 6.3 or less [31,32].

Notably, these two His residues are a unique feature of the NPT2A carboxy-terminal motif
that is not found in other NHERF1 target ligands. In this respect the PDZ1-NPT2A complex
differs significantly from other PDZ-ligand binary complexes, and the His residues may play a
critical role in NHERF1-NPT2A recognition. We note that for the double PDZ2 mutant
(Asn167His/Asp183Glu) bound NPT2A stacking between His-His pairs was not observed. We
conjecture that natural mutation of Gly28 and Thr71 in PDZ1 to Ser168 and Gln211 in PDZ2
may screen His-His interactions. Future experimental work will be necessary to elucidate the
role of His-5 and His-6 on PDZ1-NPT2A binding.

In summary, we applied a combined approach involving MD simulation with site-specific
mutagenesis of recombinant proteins and biochemical measurements to identify structural de-
terminants that define binding specificity of PDZ1 to NPT2A. The MD simulations and experi-
mental results reveal that Glu43 and His27 control the interaction between PDZ1 with
NPT2A. To verify that the presence of these features is critical for the NPT2A recognition we
experimentally introduced single (Asp183Glu) and double mutations (Asn167His/Asp183Glu)
that conferred binding of the NPT2A peptide to PDZ2 with micromolar affinity. Our study
demonstrates that the PDZ1-NPT2A binding is pH dependent and may be regulated by
His-His interactions. Our results establish that combined MD simulation and experimental
measurements offers a powerful strategy to define the structural elements underlying the PDZ-
ligand interaction and advance the molecular-level understanding of PDZ domain specificity.

Materials and Methods

Model preparation and MD simulation
The 22-residue carboxy-terminal fragment of NPT2A (-ELPPATPSPRLALPAHHNATRL)
was built using the Leap program (AMBER 9 [33]) (see Supporting Information for details).
To model the pose of the NPT2A peptide in PDZ1, we used the PDZ1-NATRL complex from
our prior MD simulation study [24] as a template. After superposing the carboxy-terminal
motif of the–NATRL (22-residue peptide) over the carboxy-terminal motif of the–NATRL
peptide (using backbone atoms), the short peptide was removed from the system. The final sys-
tem includes PDZ1 and the 22-residue carboxy-terminal NPT2A motif (PDZ1-NPT2A com-
plex). By convention, the carboxy-terminal residue is numbered starting at zero with upstream
residues designated as -1, -2, -3, -4 etc. (Fig 2A). His residues in the PDZ1-NPT2A complex
were treated as neutral by protonation at Nδ1.The PDZ1-NPT2A complex was solvated with
TIP3P water molecules in a periodically replicated box, neutralized with a chloride ion and en-
ergy minimized over 500 steps including 100 steps of steepest descent minimization using the
sander module of AMBER 9 [33]. Then equilibration and production simulations were run
along 25 ns and 100 ns, respectively (see Supporting Information for details). As could be ex-
pected, N-terminal end (residues at position -7 to -21) of NPT2A does not reach a stable con-
formation at the end of the simulation at 125 ns and are not included for further analysis. MD
trajectories obtained after equilibration were used for calculation non-covalent interactions
(hydrogen bonds, salt bridges and hydrophobic contacts) [24,34] between PDZ1 and the
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bound NPT2A ligand as well as between PDZ2, a double PDZ2 mutant and NPT2A (see Sup-
porting Information for details). We used the geometrical criteria (the donor-acceptor distance,
donor-hydrogen-acceptor distance and the donor-hydrogen-acceptor angle) [10,24,34–37] to
identify hydrogen bonds, salt bridges and hydrophobic contacts between PDZ1 and NPT2A.

The next series of MD simulations were performed for a mutant PDZ1-NPT2A complex. A
double substitution of alanine residues for histidine residues at position -5 and -6 of the bound
NPT2A peptide was computationally performed (His-5His-6/Ala-5Ala-6) using the Leap module
AMBER 9 [33]. Energy minimization of the system performed by conjugate gradient method
was followed by 20 ns and 50 ns equilibration and production MD simulations, respectively.

The initial PDZ2-NPT2A complex was generated using the PDZ1-NPT2A structure as a
template. The initial coordinates for the PDZ2 domain were taken from our prior MD simula-
tion study [24]. PDZ2 was overlaid with the PDZ1-NPT2A complex using the protein back-
bone atoms. After that the coordinates of PDZ1 were removed. The final complex includes the
PDZ domain with the bound NPT2A peptide ligand. Based on this model, a double mutant
PDZ2 with the bound NPT2A peptide was generated by a substitution of His for Asn167
(Asn167His) and Asp by Glu183 (Asp183Glu) using the Leap module of AMBER 9 [33]. Both
systems were solvated with TIP3P water molecules in a periodically replicated box and neutral-
ized with a chloride ion. The simulation set up for WT PDZ2 and the double PDZ2 mutant
with the bound NPT2A peptide, as well as a protocol for energy minimization, equilibration
and production simulations was similar as those for WT PDZ1-NPT2A (see Supporting Infor-
mation for details). Equilibration and production simulations were run along 20 ns and 130
ns, respectively.

Expression and purification of wild-type and mutant NHERF1
Plasmids for PDZ1 (11–120), His27Asn, and Glu43Asp were previously described [22]. The ex-
pression plasmids pET16-N1P1 encoding PDZ1 (1–140) and pET16-N1P2 encoding PDZ2
(133–300) of NHERF1 were kindly provided by Dr. Dale F. Mierke (Department of Chemistry,
Dartmouth College, Hanover, NH, USA). The Asp183Glu and Asn167His/Asp183Glu muta-
tions were introduced into pET16-N1P2 using the QuickChange mutagenesis kit (Stratagene)
in order to generate the single and double mutant PDZ2. Plasmid fidelity was confirmed by
DNA sequencing (ABI PRISM 377, Applied Biosystems, Foster City, CA) and subsequent se-
quence alignment (NCBI BLAST) with human NHERF1 (GenBank AF015926) to ensure the
accuracy of the constructs. The recombinant proteins were expressed in E. coli BL21 (DE3)
cells (Novagen) and purified using Ni-NTA-agarose (Qiagen) [28]. The resulting proteins were
divided into aliquots and stored in phosphate buffer (25 mMNaH2PO4, 10 mMNaCl, pH 7.4)
at -80°C until used for FP experiments.

Peptide synthesis
The 22-residue NPT2A peptide was synthesized by solid phase methodology using standard
Fmoc (N-(9-fluorenyl)methoxycarbonyl) chemistry (0.1 mmol scale) on an Applied Biosys-
tems AB433 peptide synthesizer. After synthesis, the peptidyl resin was treated overnight with
4 eq of 5-(and 6)-carboxytetramethylrhodamine in the presence of HBTU/HOBt/DIEA. Fol-
lowing standard trifluoroacetic acid cleavage, the product was purified by HPLC on a Vydac C-
18 reverse phase column and lyophilized. The final product was characterized by electron
spray mass spectrometry. The rhodamine-labeled peptide was dissolved in acetic acid (0.1%).
Peptide concentration was determined from the molar extinction coefficient for rhodamine.
Then the rhodamine-labeled NPT2A peptide was serially diluted in storage buffer (25 mM
NaH2PO4, 10 mM NaCl, pH 7.4).
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Fluorescence Polarization (FP) saturation binding assay
A solution phase direct binding assay was used to characterize the affinity of NHERF1 con-
structs to fluorescently labeled peptides [38]. FP measurements were performed following the
protocol described by Madden and co-workers [10]. All measurements were performed in FP
buffer (storage buffer, supplemented to a final concentration of 1 mM DTT, 0.1 mg/ml bovine
IgG (Sigma) and 0.5 mM Thesit (Fluka) containing 0.5 μM or 1 μM fluorescent peptide for
WT or mutant systems, respectively. Polarized fluorescence intensities were measured at 25°C
with a Perkin Elmer Wallac Victor3 multilabel plate reader using excitation and emission
wavelengths of 544 nm and 595 nm for the rhodamine-labeled peptide. FP assays were run in
triplicate, with error bars representing the standard deviation. All measurements are reported
as fluorescent anisotropy rather than polarization. Anisotropy was calculated using Eq 1 from
the measured fluorescence emission intensities that are polarized parallel (Ik) and perpendicu-
lar (I) to the plane of the incident light [39]:

r ¼ Ijj � I?
Ijj þ 2I? ð1Þ

The equilibrium dissociation constant (KD) for interaction between PDZ domain and pep-
tide was determined by fitting the fluorescent anisotropy data to Eq 2 by non-linear regression
analysis and assuming formation of a 1:1 complex [39].

A ¼ A0 þ
Kd þ ½L� þ ½PDZ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKd þ ½L� þ ½PDZ�Þ2 � 4½L�½PDZ�

q

2½L� ðAm � A0Þ ð2Þ

where, A is the measured anisotropy, [L] and [PDZ] are the total concentration of peptide li-
gand and PDZ construct, A0 and Am are low and upper anisotropy. All calculations were per-
formed using Prism (GraphPad).

Isothermal Titration Calorimetry (ITC)
ITC measurements were performed with a MicroCalTM Auto-iTC200 system (GE Healthcare)
at 25°C. Before measurement, samples were dialyzed overnight at 4°C in a buffer containing 10
mMHepes (pH 7.5), 10 mMNaCl, 0.5 mM EDTA, and 0.5 mM ββ-mercaptoethanol. For de-
termining NPT2A binding to PDZ constructs, the reaction cells were filled with 460 μl of
25 μM of the indicated PDZ protein. The ligand NPT2A (200–250 μM), was titrated into the
cell in 19 injections of 2 μl each, with 150 s intervals between each injection. To remove the
contribution of NPT2A dilution heat, a control experiment has been performed by titrating
NPT2A into the buffer, which was then subtracted from the actual experimental data.

The ITC data were analyzed using Microcal Origin 7.0 and the manufacturer's provided
VPViewer module to yield the association constant (Ka), stoichiometry (n), and the observed
enthalpy change (ΔH°) for the binding reactions. Analysis of ITC data directly yielded ΔH° and
Ka. The Gibbs energy calculated using the equation:

DG� ¼ �RTlnKa ð3Þ

The entropy change was then obtained using the standard thermodynamic expression.

DG� ¼ DH� � TDS� ð4Þ
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Supporting Information
S1 Fig. The binding pocket of PDZ1. Overlay of the two PDZ1 structures, illustrating similar
orientation of side chains involving in canonical interactions with target ligands. The light blue
structure corresponds to the X-ray structure of PDZ1 (PDB code: 1GQ4, PDZ1-DSLL com-
plex). The cyan structure corresponds to the average structure of PDZ1 from MD simulation
(PDZ1-NPT2A complex). Overlay was performed using the Cα backbone atoms (residues 13–
91). Peptide ligands are not shown in the PDZ1 binding site for simplicity.
(PDF)

S2 Fig. Change in RMSFs of PDZ1 upon the NPT2A binding. The RMSF values of the Cα
atoms of PDZ1 (black) and the PDZ1 bound to NPT2A (blue) with respect to the starting
structure are presented.
(PDF)

S3 Fig. Superimposing of structures of PDZ1 and PDZ2. Superimposing of the PDZ1 (cyan)
and PDZ2 domains (pink) in complex with the NPT2A peptide (left). Key residues of PDZ1 in-
volved in the interaction with NPT2A and corresponding residues in PDZ2 are shown in stick
representation (right). Key differences are Glu43 and His27 in PDZ1 and Asp183 and Asn167
in PDZ2. The NPT2A peptide is not shown for simplicity. Hydrogen atoms are white, oxygens
are red, and nitrogens are blue.
(PDF)

S4 Fig. Superimposing of structures of PDZ1 and the double PDZ2 mutant. Superimposing
of the PDZ1 domain (cyan) and the double PDZ2 mutant (Asn167His/Asp183Glu) (wheat) in
complex with the NPT2A peptide (left). Stick representation of key residues of PDZ1 and the
double PDZ2 mutant that rescues the interaction with the NPT2A peptide (right). The NPT2A
peptide is not shown for simplicity. Atoms are colored as described in the legend to S3 Fig.
(PDF)

S5 Fig. A representation of the structure of the double PDZ2 mutant-NPT2A complex. The
NPT2A peptide is shown (wheat) within the canonical binding pocket between the α2-helix
and β2-strand of the double PDZ2 mutant (Asn167His/Asp183Glu) (grey). The last five car-
boxy-terminal residues of the NPT2A peptide are shown in stick representation. Electrostatic
interactions between the carboxylate group of Asp183Glu and Arg-1 of NPT2A as well as car-
bon-carbon interactions between Asn167His and Arg-1 are shown as black dotted lines. Atoms
are colored as described in the legend to S3 Fig.
(PDF)

S6 Fig. Interactions between the double PDZ2 mutant and NPT2A. S6A Fig. The evolution
of an electrostatic interaction between Asp183Glu.Oε1 and Arg-1.NHη21 along the last 5 ns of
MD simulation of the double PDZ2 mutant (Asn167His/Asp183Glu) in complex with the
NPT2A peptide. S6B Fig. A salt bridge between the NHη22 group of Agr-1 and the carboxylate
group of Asp183Glu is shown as a black dotted line (2.0Å). The 4.5Å carbon-carbon distance
between the Cδ2 atom of Asn167His and the Cβ atom of Arg-1 and the Cε1 atom of Asn167His
and the C atom of Arg-1 is shown as a black dotted line. Asp183 (green) and Asn167 (green) of
WT PDZ2 do not form interactions with Arg-1 of NPT2A (green). Atoms are colored as de-
scribed in the legend to S3 Fig.
(PDF)

S7 Fig. His-5/Ala-5 and His-6/Ala-6 mutations in NPT2A destabilize the PDZ1-NPT2A com-
plex. The RMSF values of the Cα atoms of PDZ1 (A) and the NPT2A peptide (B) with respect
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