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Abstract
The assessment of inter-rater reliability is a topic that is infrequently addressed in Caenor-
habditis elegans research, despite the existence of sophisticated statistical methods and

the strong interest in the field in obtaining reliable and accurate data. This study applies sta-

tistical modeling as a robust means of analyzing the performance of worm researchers mea-

suring the stage of worm development in terms of the two independent factors that

comprise “agreement”, which are (1) accuracy, representing trueness, a lack of systematic

differences, or lack of bias, and (2) precision, representing reliability or the extent to which

random differences are small. In our study, multiple raters assessed the same sample of

worms to determine the developmental stage of each animal, and we collected data linking

each scorer with their assessment for each worm. To describe the agreement of the raters,

we developed a structural equation model with latent variables and thresholds, which

assumes that all the raters are jointly scoring each worm. This common factor model sepa-

rately quantifies the two aspects of agreement. The stage-specific thresholds examine

accuracy and characterize the relative biases of each rater during the scoring process. The

factor loadings for each rater examine the precision and characterizes the random error of

the rater. Within our group, we found that the overall agreement was good, while certain

adjustments in particular raters would have decreased systematic differences. Hence, the

use of developmental stage as an experimental outcome can be both accurate and precise.
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Introduction
The ability to quickly, accurately, and precisely classify the stages of development for the nem-
atode Caenorhabditis elegans is crucial for many aspects of worm research, including moni-
toring development, stock maintenance, crossing, and stage synchronization. In addition, the
measurement of developmental stages within a population is useful in many studies. For
example, mutations in genes, such as the daf-2 insulin-like receptor pathway, alter normal
development and lead to inappropriate arrest in the dauer stage [1] Further, a class of genes
known as heterochronic genes result in abnormal development by disrupting the normal pat-
terns of cell division and differentiation steps in specific stages [2]. Consequently research
focused on these classes of genes have used visual assays to classify the stages of worm devel-
opment and then to draw conclusions about both the individual genes involved in these path-
ways and gene-gene interactions between them. One common method for identifying and
measuring the numbers of dauer stage animals within a population has been the use of
sodium dodecyl sulfate (SDS) selection to kill non-dauer worms, and followed by recording
the number of dauer and non-dauer larvae identified [3]. However, this method does not dis-
tinguish between other stages of development (L1, L2, L3, L4 and adult), and it is not able to
identify partially-formed dauers, that show many but not necessarily all of the features for the
dauer larva, in the count. A second approach is the use of a stage-specific reporter gene, such
as the col-19p:gfp reporter which allows adult animals to be readily visualized by fluorescence
[4]. But, this approach requires the prior identification of a gene showing stage-specific
expression, and the ability to generate a reporter that exhibits both highly specific and readily
visible fluorescent protein expression. A third approach is the use of imaging techniques and
computer software, such as the WormSizer ImageJ plug-in, to measure worm size in an objec-
tive manner [5]. While the use of measurements can demonstrate differences in the develop-
mental rate or body size of mutants, determining if the differences reflect alterations in
specific growth and/or developmental processes could be more challenging using this
approach alone. Consequently, visual assessment is an attractive way to obtain detailed infor-
mation about larval development within a population both quickly and without the need for
specialized strains or equipment.

However, a drawback to this method is the potential for variability arising from differences
in how individual raters perceive each stage of development. The issue of potential disagree-
ment between raters on the developmental stage of the same worm, also known as inter-rater
agreement, has been addressed and analyzed in other fields such as psychology and medicine
[6, 7]. However, there is little mention of formal statistical modeling of inter-rater agreement
in C. elegans publications using measurements of developmental stage. Given both concerns
about data reproducibility and the interest in inter-rater agreement in other fields, we sought
to apply statistical analysis to this basic aspect of worm research to explore the operating
parameters of visual scoring.

To address the variability between different researchers evaluating stage of development by
eye, it is necessary to generate a dataset consisting of the developmental stage assigned to each
animal within a sample of worms by multiple raters. The developmental stage assessment is an
outcome consisting of an ordered categorical variable, given that the different stages are
recorded as discrete qualities, with a natural order based on the progression between L1, L2,
dauer, L3, L4, and adult. A computationally simple and commonly used statistical method for
describing inter-rater agreement utilizing this type of ordered categorical data is through the
calculation of the kappa statistic [6, 8]. This statistic is a single value that is interpreted as the
amount of agreement exceeding that which is expected by chance alone. While the kappa sta-
tistic is a popular type of analysis due to the ease of computation, and the apparent simplicity

Modeling of Observer Scoring of C. elegansDevelopment

PLOS ONE | DOI:10.1371/journal.pone.0132365 July 14, 2015 2 / 19



of interpretation, there are also a number of criticisms that make use of the kappa statistic
problematic. Important problems with the kappa statistic are two-fold. First, the kappa statistic
sometimes may give rise to paradoxical or misleading results with certain arrangements of
data, and second, it combines the two independent components of agreement (accuracy and
precision) into one parameter which precludes a clear description of how the raters disagree
[9–12]. Latent variable modeling provides a more insightful method for analyzing inter-rater
agreement for ordered categorical measurements [9]. This approach has the advantage of pro-
viding information concerning the accuracy and precision of each rater. However, it should be
noted that in most applications, the true developmental stage of each worm is unknown, so
that only relative accuracy can be assessed.

The basic concept of agreement among measurements is relevant whether the measure-
ments are of a discrete, ordinal nature or whether they are continuous and quantitative. A sim-
ple but limited approach to assessing agreement between two continuous and quantitative
measurements consists of making a plot of the pairwise differences versus the corresponding
pairwise averages. In the medical literature, this approach was championed by Bland and Alt-
man and the plots are often referred to as Bland-Altman plots [13]. If the pairwise differences
are normally distributed, then it is easy to compute the “limits of agreement” that demarcate
where 95% of the differences will tend to fall. If the limits of agreement are very narrow with
regards to the outcome, then for all intents and purposes, the measurements made by the two
methods are interchangeable. When this is not the case, then it is necessary to characterize
what part of the difference is systematic and what part is random. This is important because
the systematic error can be removed by determining the appropriate calibration equation.
Unfortunately, when the limits of agreement are too large to be considered negligible, the limi-
tations of this approach are readily apparent because with only two measurements, it is impos-
sible to apportion the error into systematic and random parts. As Bland and Altman (and
many others) have pointed out, the usefulness of conducting a measurement error study of two
methods without repeats of at least one of the measurements is questionable [13]. To have a
useful study, at least one of the methods must be repeated (Bland and Altman suggested that
both methods be repeated) or if neither method is repeated, at least three methods must be
simultaneously compared.

Because of the discrete nature of ordinal measurements, Bland-Altman plots are of limited
usefulness for studying agreement among the raters of worm development stages. However,
the relevance and importance of apportioning the error into its systematic and random compo-
nents persists. This knowledge will guide efforts to remove the tendency for raters to disagree.
For example, the prescription for removing disagreement among raters will differ if there is lit-
tle systematic error but high imprecision (tendency for large random errors) versus the reverse
situation.

To overcome the limitations of the kappa statistic and Bland-Altman plots and to
provide ``an analysis of the precision and accuracy of the individual raters, we describe how
the common factor model with thresholds can be applied to the ratings of worm developmen-
tal stage performed by members of a C. elegans research group. We then further use the
model to perform a detailed evaluation the precision and accuracy of the individual raters as
a means of studying the reliability and limitations of visual scoring of worm development in a
research setting. Our methods and findings are relevant for understanding the performance
of visual scoring of development as an experimental outcome, and provide a means to evalu-
ate the assessment of other phenotypes that depend on rater performance in C. elegans
research.
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Results

Development of the common factor model
The common factor model approach assumes that all of the raters are jointly rating the same
worm, and hence this model is applicable to the experimental design used in this work. The
common factor model permits (assuming there are three or more raters and multiple worms)
the decomposition of the rater differences into the part due to systematic error and the part
due to random error. This decomposition is indirect in the sense that the scores are discrete
ordinal categories, i.e., the L1, L2, dauer, L3, or L4 larval stages, and an underlying continuous
scale must be assumed for the purposes of the model. Fig 1 illustrates the common factor
model for an example involving three raters. The common factor is envisioned as the true
worm stage but on a continuous scale, which is denoted by μ. Each rater judges the stage on his
or her own continuous scale, shown as χ1, χ2, and χ3 in the model. Both variables μ and χ are
latent, meaning that they are not directly observable, but are included in the model since they
underlie the actual observable values. The true stage of worm development, μ, is assumed to be
normally distributed with a mean of zero and a standard deviation of one. This standard devia-
tion is denoted by the curved arrow adjacent to μ in Fig 1. Each rater then assesses worm devel-
opment using their individual rating scale, denoted by χ1, χ2, or χ3. The variable χ1, χ2, or χ3 is
related to μ via a linear function with an intercept of zero and a slope of ρ1, ρ2, and ρ3, respec-
tively. This results in χ having a standard deviation of 1-ρ2, which is denoted by the curved
arrows. The discrete ordinal ratings for an individual worm that are assigned by a rater are
derived from each rater’s underlying latent continuous scale by applying the rater’s thresholds,
which lie along the normal distribution. Because there are five categories, there will be four
thresholds between them. The stages of development fall in regions along a standard normal
distribution, and values for these threshold cutoffs are estimated from the observed ratings.

Summary of rater data
To use the common model to compare inter-rater agreement, we asked seven different individ-
uals, who had a range of experience in C. elegans research, to score 60 worms with regards to
developmental stage (Table 1). To ensure that all raters scored the same worms, as required by
the assumptions of the model, we used files consisting of both still and video images of each
worm, and the individuals were asked to score each animal with regards to the stage of develop-
ment (L1, L2, dauer, L3, or L4) (Fig 2). Review of the ratings showed that 42% of the time there
was complete agreement among the raters, 35% of the time only a single rater differed from the
group by a single stage, 12% of the time multiple raters differed with a split between them of a
single stage, and 12% of the time multiple raters differed with a split of two stages (S1 Table).
We then determined the frequency with which each rater scored the animals into each develop-
mental stage. For the L1 stage, the highest and lowest frequencies were 0.36 and 0.20, for L2
these were 0.13 and 0.20, 0.10 and 0.23 for dauer, 0.08 and 0.20 for L3, and 0.18 and 0.30 for L4
(Observed column in Table 2). Hence, the largest discrepancy in scoring was present for the L1
stage, and among raters, individuals 1 and 4 showed the largest discrepancy. Additionally, rat-
ers 3, 4, 5, and 7 tended to place a larger fraction of worms in the extreme larval stages (L1 or
L4) compared to the other individuals.

The discrepancy between individual raters can also be seen using pairwise error plots show-
ing the results of one rater on the x-axis versus another rater on the y-axis (Fig 3). We used jit-
tering to add a small amount of noise to the horizontal and vertical coordinates for the points
to facilitate the visualization of data points that would otherwise be overlapping. In these
graphs, any points falling away from the diagonal line correspond to discrepancies between the
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Fig 1. A common factor ordinal model to analyze rater agreement. This model describes the ordinal
measurements (R1, R2, and R3) made by three raters (1, 2, and 3), which are observed (manifest) variables
denoted by squares. These variables are related to the variables μ and χ, which are latent, meaning that they
are not directly observable, but are included in the model since they underlie the actual observable values.
The latent variable μ corresponds to the true worm stage but on a continuous scale. The variable μ is defined
as being normally distributed with a mean of zero and a standard deviation of one. This standard deviation is
represented by the curved arrow showing the value one (“1”) that is adjacent to μ. Each rater judges the stage
of worm development on his or her own continuous scale, shown as the latent variables χ1, χ2, and χ3 in the
model. Each rater’s unknown continuous scale is a linear function of μ as indicated by the single arrow paths
pointing from μ to each χ. The slopes (path coefficients) for these linear functions are denoted by ρ1, ρ2, and
ρ3 and the intercepts are equal to zero. These functions result in χ1, χ2, and χ3 having a residual standard
deviation of 1-ρ1

2, 1-ρ2
2, and 1-ρ3

2, respectively, which are denoted by the labelled curved arrow beside each
variable. The directed path from each rater’s continuous scale, χ, and the observed ordinal measurement, R,
is nonlinear as denoted by the sinusoidal path. The nonlinear relationship can be described as a threshold
model where the thresholds (ci1, ci2, ci3, and ci4) for rater i control the marginal probability of each observed
ordinal measurement (denoted by P(L1), P(L2), P(dauer), P(L3), and P(L4)) under the assumption that each
rater’s continuous judgment is normally distributed with mean of zero and a standard deviation of one.

doi:10.1371/journal.pone.0132365.g001
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two raters, whereas points falling along the diagonal line demonstrate agreement. The pairwise
plots show many points along the diagonal indicating agreement. No discrepancies were
greater than two stages with most differences being just one stage (e.g., L1 larva versus L2) as
opposed to two stages. The points tend to align best for the extreme stage (L1 and L4), whereas
most of the discrepancies appear in the middle stages (L2, L3, and dauer) (Fig 3). These plots
also demonstrate that for each pair of raters, there is variability regarding whether the disagree-
ments fall above or below the diagonal line of agreement. For the pairs of raters where most of
the discordant points lie either above or below the diagonal, this is suggestive of a directional
bias of one rater compared to the other. For instance, in the plot comparing rater 2 versus rater
5 (Fig 3), the points fall roughly equally above or below the diagonal line, while in the plot com-
paring rater 3 versus rater 7, most of the discordant points lie below the diagonal line, suggest-
ing a tendency of rater 3 to score the animals in later developmental stages compared to rater 7.
Visualizing the data in these pairwise plots can suggest a bias or directionality to the disagree-
ments as discussed above, and also can suggest random differences. The problem is that these
plots cannot indicate how much of the observed difference is due to systematic error and how

Table 1. Description of raters.

Rater Years of Experience

1 10

2 5

3 1

4 2

5 <1

6 2

7 <1

Rater numbering with the number of years of C. elegans research experience.

doi:10.1371/journal.pone.0132365.t001

Fig 2. Sample still image of the sample of worms used for scoring by the raters. Each rater was
assigned the same sample of worms to score for developmental stage. The worms were shown in both a 40X
magnification image (illustrated) as well as a short video recording of each animal. Each worm was identified
by a number to facilitate each rater evaluating identical animals in the same order.

doi:10.1371/journal.pone.0132365.g002
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much is due to random error. In order to fully describe these two types of error among the
seven raters, it is necessary to model the data, as described below.

Fitting the data to the common factor model with thresholds
To further explore inter-rater agreement in terms of the bias and random error of the raters,
we fit a common factor model similar to that shown in Fig 1 to the ordinal measurements, but

Table 2. Expected proportions of larval stages for each rater based onmodel, and observed proportions.

Rater L1 L2 Dauer L3 L4

exp. obs. exp. obs. exp. obs. exp. obs. exp. obs.

1 0.185 0.20 0.249 0.20 0.154 0.20 0.123 0.10 0.288 0.30

2 0.255 0.27 0.189 0.13 0.161 0.23 0.152 0.10 0.244 0.27

3 0.273 0.28 0.229 0.18 0.080 0.15 0.181 0.12 0.236 0.27

4 0.379 0.36 0.158 0.17 0.055 0.10 0.150 0.08 0.258 0.29

5 0.295 0.30 0.191 0.13 0.068 0.15 0.220 0.15 0.226 0.27

6 0.276 0.28 0.191 0.15 0.131 0.18 0.226 0.20 0.177 0.18

7 0.234 0.25 0.241 0.18 0.089 0.15 0.171 0.13 0.265 0.28

Average 0.270 0.28 0.210 0.16 0.110 0.17 0.170 0.13 0.240 0.27

Proportions of larval stages for each rater, as predicted by the model, and observed values.

doi:10.1371/journal.pone.0132365.t002

Fig 3. Head-to-head comparison of ratings from pairs of observers. Each of the 60 animal developmental
stage ratings from a pair of reviewers is compared via the use of a pair-wise scatter plot matrix. The axis
showing numbers 1 through 5 represents the animal stage with 1 representing L1, 2 representing L2, 3
representing dauer, 4 representing L3, and 5 representing L4. The green line represents perfect agreement
between the two observers, and points along this line represent animals that are scored similarly by each
observer. In contrast points either above or below the line represent disagreement between the raters. The
ordinal values are slightly “jittered” to make it easier to discern the varying density of the ratings.

doi:10.1371/journal.pone.0132365.g003

Modeling of Observer Scoring of C. elegansDevelopment

PLOS ONE | DOI:10.1371/journal.pone.0132365 July 14, 2015 7 / 19



with the seven raters instead of the three raters depicted. The parameters in this model are the
standardized factor loadings ρ1 through ρ7, as well as four threshold values for each rater, ci1
through ci4. In this model, the factor loadings can be interpreted as the correlation between
each rater’s stage assignments and the true developmental stage of the animals since all of
the latent variable μ, which represents the true developmental stage of the animal has been
standardized to have a mean of zero and a standard deviation of one. Further, the use of a stan-
dardized latent variable constrains the residual error standard deviations σi to be equal toffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
. The thresholds can be interpreted as dividing the continuous latent scales into the

ordered categories representing each developmental stage. In this model, there are seven factor
loadings, one for each rater, and 28 (4 × 7) thresholds for a total of 35 parameters to be
estimated.

Factor loading estimates
We estimated each of the parameters including the factor loadings along with their corre-
sponding 95% confidence intervals and the results are shown in Table 3. The residual error
standard deviations that describe the rater imprecision were computed using the factor load-
ings using the formula in the previous section. Because of the inverse relationship between
the factor loadings and the residual error standard deviations, a higher factor loading value
results in a lower residual error standard deviation. The residual error standard deviation
describes the raters imprecision while, conversely the factor loading describes the rater’s
precision.

At the same time, the factor loading describes the latent measurement scale for each rater,
i.e., the size of the measurement unit. That is, differences in ρi among the raters imply different
scales for the raters. On the latent scale, the marginal distribution for each rater has a standard
deviation of one and a mean of zero. As a result, the residual error standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
represents the uncertainty in the rater's latent continuous measurement conditional on the true
latent value ρ and thus describes the imprecision, or lack of repeatability, of the rater's measure-
ment process. The larger the residual error standard deviation or imprecision, the more likely
that repeated measurements of an animal would fall into different ordinal categories. In order
to compare raters in terms of imprecision, the differences in the raters’ scales (ρi) must be
taken into account. This is easily accomplished simply by dividing the residual error standard

Table 3. Factor loading estimates ρ for the one factor ordinal model with seven raters.

95% Confidence Interval
Bounds for ρ

Rater Estimate of ρ Lower Upper Estimate of ρ2 Residual Error
SD

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p Scale Adjusted Residual

Error SD
ffiffiffiffiffiffiffi
1�r2

p
r

ffiffiffi
2

p
Residual Error

SD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2r3

p

1 0.982 0.971 0.989 0.964 0.189 0.192 0.267

2 0.989 0.986 0.992 0.978 0.148 0.150 0.209

3 0.995 0.990 0.996 0.990 0.100 0.101 0.141

4 0.997 0.994 NA1 0.994 0.077 0.077 0.109

5 0.999 0.999 0.999 0.998 0.045 0.045 0.063

6 0.988 0.979 0.990 0.976 0.154 0.156 0.218

7 0.991 NA 0.993 0.982 0.134 0.135 0.189

Factor loading parameter estimates for the one-factor ordinal model, with the 95% confidence intervals, and the computed residual error for each rater.
1NA indicates instances where the computational algorithm could not obtain a lower bound or an upper bound for the likelihood-based confidence interval.

doi:10.1371/journal.pone.0132365.t003
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deviation by the corresponding factor loading:ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

i

p
ri

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2
i

� 1

s

and is referred to as the “scale-adjusted imprecision.” As the factor loading approaches 0, the
scale-adjusted imprecision increases without bound. When the factor loading equals 1, the
scale-adjusted imprecision equals 0 indicating perfect precision. As shown in Table 3, the raters
in this study had scale-adjusted imprecision standard deviations that ranged from 0.045 to
0.192, with rater 5 being the most precise and rater 1 being the least precise. Overall, the order
of rater precision (best to worst), based on lowest to highest residual error values is rater 5, 4, 3,
7, 2, 6, and then 1, which correspond to residual error values of 0.045, 0.077, 0.101, 0.135, 0.15,
0.156, 0.192, respectively. To facilitate comparison of the residual errors between raters, Fig 4
and Table 4 show the ratio of the residue error estimates between pairs of raters (columns
divided by rows). The rater who stands out is rater 5, who has a considerably lower residual
error estimate (as much as three times lower than other raters). Raters 1 and 2 have the highest
residual error rates, and these differ the most with raters 3, 4, and 5. The magnitude of these
error rates are discussed in more detail below.

Threshold estimates
The factor loading estimates indicate how closely each rater’s assessment of developmental
stage for a worm correlates with its true developmental stage and represents only random
error, providing a description as to how consistently or reliably an individual rater classifies
each worm. By contrast, the thresholds represent systematic differences among the raters in

Fig 4. Heat map showing the pairwise ratio of the residual error estimates for all raters. The residual
error estimate for the rater indicated in each row was divided by the rater in each column, and then was
displayed as a heat map to highlight similarities and differences between raters. Each ratio is shown as the
number inside of the colored box. The brightness of the color indicates relative strength of difference between
raters, with red representing a ratio greater than one and green representing a ratio less than one.

doi:10.1371/journal.pone.0132365.g004
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the location and width defining the ordinal stages on the latent continuous scale. In this model,
threshold 1 divides the L1 stage from stage L2 stage on the latent continuous scale. Threshold 2
divides L2 from dauer, and so forth. The estimated thresholds based on the fitted model are
shown in Table 5 and graphed in Fig 5. Based on these estimated thresholds, it is possible to
determine the proportion of worms a particular rater would be expected to classify into a par-
ticular stage of development providing an alternative way of comparing the performance of the
raters. Each proportion is simply the area under the unit-standard normal curve corresponding
to the particular stage. The expected proportions of each stage of development for each rater
are shown in Table 2 (Expected column). Comparing the expected proportions from rater to
rater gives an indication of where particular raters systematically differ in how they classify
worms. Fig 6 shows a visual heatmap display of the differences in expected proportion between
raters (columns minus rows), with red indicating a positive difference and green indicating
negative, and the brighter the color, the greater the difference. This display provides a means of
quickly assessing the rater or raters that stand out as being considerably different from the oth-
ers in the scoring of a particular stage of development. In our group data, for the L1 stage, rater
4 and rater 1 stand out as showing the highest and lowest proportion of animals being assigned
to this stage, respectively. For the L2 stage, all raters are relatively similar, for the dauer stage,
rater 2 and 4 have a relatively large difference in animals assigned to this stage, and for the L3
and L4 stages, rater 6 stands out as assigning considerably more animals to the L3 stage and
correspondingly fewer to the L4 stage.

Table 4. Ratios of residual standard errors for each rater pair.

Rater 1 2 3 4 5 6 7

1 1.00 0.78 0.53 0.41 0.24 0.81 0.71

2 1.00 0.68 0.52 0.30 1.04 0.91

3 1.00 0.77 0.45 1.54 1.34

4 1.00 0.58 2.00 1.74

5 1.00 3.42 2.98

6 1.00 0.87

7 1.00

Ratios of the residual standard errors, displaying the ratio of column divided by row value of the residual error for each rater, as calculated in Table 2

doi:10.1371/journal.pone.0132365.t004

Table 5. Expected and observed threshold values for each rater.

Threshold

Rater 1 2 3 4

exp. obs. exp. obs. exp. obs. exp. obs.

1 -0.897 -0.84 -0.165 -0.25 0.223 0.25 0.558 0.52

2 -0.658 -0.61 -0.142 -0.25 0.266 0.33 0.695 0.61

3 -0.605 -0.58 0.005 -0.10 0.208 0.28 0.718 0.61

4 -0.307 -0.36 0.092 0.08 0.233 0.33 0.650 0.55

5 -0.538 -0.52 -0.035 -0.18 0.137 0.20 0.753 0.61

6 -0.594 -0.58 -0.083 -0.18 0.247 0.28 0.928 0.88

7 -0.725 -0.67 -0.062 -0.18 0.162 0.20 0.629 0.55

Threshold values for each rater, predicted by the fitted model (exp.) and calculated from observed proportions of each stage (obs.)

doi:10.1371/journal.pone.0132365.t005
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Assessing the relevance of rater differences
While the estimated factors discussed above provide a means of comparing different aspects of
how each rater in a group scores worm developmental stage, it is important to consider
whether these differences make a notable change in the experimental data collected by each
rater. Specifically, one would want to know how much imprecision or bias may be shown by a
rater without compromising the ability to produce reliable measurements of stages of worm
development. To make this determination, one should consider both the residual error of each
rater as well as the threshold estimates for each stage of development. If a rater were to make
two independent, repeated measurements of the same worm, the standard deviation of the
expected difference in the continuous latent measurements would be about 1.41 times the
residual error standard deviation. These values would be for raters 1 through 7, 0.27, 0.21, 0.14,
0.11, 0.06, 0.22 and 0.19, respectively. These values may then be compared to the differences

Fig 5. Rater-specific thresholds estimated using the common factor model. The thresholds classify the worms into the L1, L2, dauer, L3, or L4 stages.
Each stages represents an abstract concept encompassing size, morphologic, and behavioral features of the worm that can be perceived by a rater relative
to each threshold. Threshold 1 (A) separates the L1 and L2 categories, threshold 2 (B) separates the L2 and dauer categories, threshold 3 (C) separates the
dauer and L3 categories, and threshold 4 (D) separates the L3 and L4 categories.

doi:10.1371/journal.pone.0132365.g005
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between the thresholds for a given rater. The smaller the threshold differences are compared toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2r2

p
, then the more likely imprecision is to result in repeated judgments that produce dif-

ferences in the worm's developmental stage. This propensity varied depending on rater and
stages. However, we found that for all of the raters, the threshold widths tended to be large
compared to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2r2

p
, which suggests that rater bias plays a larger role in discrepancies in

scoring than does imprecision. But, there are a few instances when threshold width was similar
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2r2

p
, such as the interval between threshold 2 and threshold 3 for rater 4 (Table 5). In

these circumstances imprecision can play a larger role in the observed differences than seen
elsewhere.

To investigate the impact of rater bias, it is important to consider the differences between
the raters’ estimated proportion of developmental stage. For the L1 stage rater 4 is approxi-
mately 100% higher than rater 1, meaning that rater 4 classifies worms in the L1 stage twice as
often as rater 1. For the dauer stage, the proportion of rater 2 is almost 300% that of rater 4. For
the L3 stage, rater 6 is 184% of the proportion of rater 1. And, for the L4 stage the proportion
of rater 1 is 163% that of rater 6. These differences between raters could translate to unwanted
differences in data generated by these raters. However, even these differences result in modest
differences between the raters. For instance, despite a three-fold difference in animals assigned
to the dauer stage between raters 2 and 4, these raters agree 75% of the time with agreement

Fig 6. Heat map showing differences between raters for the predicted proportion of worms assigned
to each stage of development. The brightness of the color indicates relative strength of difference between
raters, with red as positive and green as negative. Result are shown as columnminus row for each rater 1
through 7.

doi:10.1371/journal.pone.0132365.g006
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dropping to 43% for dauers and being 85% for the non-dauer stages. Further, it is important to
note that these examples represent the extremes within the group so there is in general more
agreement than disagreement among the ratings. Additionally, even these rater pairs might
show better agreement in a different experimental design where the majority of animals would
be expected to fall in a specific developmental stage, but these differences are relevant in experi-
ments using a mixed stage population containing fairly small numbers of dauers.

Evaluating model fit
To examine how well the model fits the collected data, we used the threshold estimates to cal-
culate the proportion of worms in each larval stage that is predicted by the model for each rater
(Table 2). These proportions were calculated by taking the area under the standard normal dis-
tribution between each of the thresholds (for L1, this was the area under the curve from nega-
tive infinity to threshold 1, for L2 between threshold 1 and 2, for dauer between threshold 2
and 3, for L3 between 3 and 4, and for L4 from threshold 4 to infinity). We then compared the
observed values to those predicted by the model (Table 2 and Fig 7). The observed and
expected patterns from rater to rater appear roughly similar in shape, with most raters having a
larger proportion of animals assigned to the extreme categories of L1 or L4 larval stage, with
only slight variations being seen from observed ratios to the predicted ratio. In addition, model
fit was assessed by comparing threshold estimates predicted by the model to the observed
thresholds (Table 5), and similarly we observed good concordance between the calculated and
observed values.

Discussion
The aims of this study were to design and carry out an experiment for measuring inter-rater
agreement among C. elegans researchers, to evaluate these data using a common factor latent
variable model with thresholds, to draw conclusions about relative accuracy and precision
among a group of raters, and to generate a protocol for measuring inter-rater agreement that
other labs can follow. The major findings were that: 1) it is possible to quickly obtain data from
multiple raters assessing the same sample of worms for five stages of development; 2) that
visual assessment of pairwise error plots reveals some degree of differences among the seven
raters, especially for the L2, dauer and L3 stages; and 3) that in the one factor model, raters
tend to have high reliability (precision) but there are larger differences between raters in the
threshold values for the stage boundaries (accuracy).

Measuring inter-rater agreement in C. elegans researchers using visual
assessment
The goal of our experimental design was to minimize any sources of variability in the animals
used for scoring that would then be confounded by rater error. To ensure that each rater was
making an assessment under the same visual conditions, a video recording of a magnified pop-
ulation of worms was used instead of having the raters look at live worms under a microscope.
This both presented an identical animal for scoring to each rater, and enabled each worm to be
given a unique identifier to eliminate the possibility that raters were assessing a different worm,
or inadvertently scored the same worm twice. One criticism of this design is that by using a
pre-recorded image, this could take away certain aspects of a visual assessment a rater may use
when looking under a microscope, such as adjusting the amount zoom and focus. These adjust-
ments may contribute to rater’s ability to make an accurate judgment, and hence this study
design does not evaluate these aspects of rater behavior that might facilitate reaching a judg-
ment. However, our approach helps to promote consistency in the worm sample being assessed
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Fig 7. Comparison of the common factor model with rater behavior. Shown are bar-graphs depicting the
percentages predicted for the assignment of animals to each stage by individual reviewers from the estimated
common factor model (left column), and the observed percentage of animals assigned to each of the
developmental stages for the raters (right column).

doi:10.1371/journal.pone.0132365.g007
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by the observers, and was likely essential to make gathering data from multiple raters feasible.
By providing both a still image and movie, it is hoped that the range of views and behaviors
available would be at least somewhat similar to what is available to a researcher making an
assessment in the lab.

Sources of inter-rater differences
Our findings suggest that differences in accuracy between the raters play a larger role than
imprecision. In considering the threshold values, which characterize the differences in accu-
racy, a large number of comparisons may be made between the seven raters. However, in our
study, we found that the distinction between the L1 and L2 and the L2 and dauer stages seemed
to be most problematic as shown by the larger spread in the threshold values for the overall
group (Table 5). Also contributing to these differences were specific large differences between
pairs of raters (Fig 6). Our study was not focused on the origins of the differences in rater
behavior, but given the finding that accuracy was more important than precision. Subsequent
work that seeks to understand the visual cues involved in scoring would be of value. It is possi-
ble that the raters use the parameters of size, morphology of the gonad or other internal struc-
tures, and animal behavior to varying degrees in determining the developmental stage of the
worms, and that the individual’s approach and weighting produces the observed differences.
There may also be knowledge and experience differences that contribute as some of the raters
in our group routinely staged animals in their research while others had other areas of
expertise.

Regardless of the cause, the model provides specific information for how particular raters
could adjust how they categorize worms, in order to agree more closely with the other raters in
their lab. For example, rater 4 could review how to distinguish the younger larval stages from
the older stages, due to his/her tendency to assign more worms to the L1 stage. Furthermore,
rater 6 has a much higher threshold 4 value compared to the other raters, and rater 1 has a con-
siderably lower threshold 1 value. This information would suggest that rater 6 tends to rate
worms that have reached the L4 stage in earlier stages, and that rater 1 tends to rank L1 worms
into higher categories. These raters could be mindful of these tendencies during subsequent
scoring sessions.

Despite both computational and model complexity, this assessment is a worthwhile means
of obtaining detailed and informative descriptions of inter-rater agreement, information that is
not available by oversimplified and often misleading methods such as the computation of
kappa coefficients. The results obtained can both provide confidence with regards to the suc-
cess of the research team in accurately scoring the parameter of interest, and additionally the
modeling approach provides insights into specific ways to improve the reliability of the raters.

Materials and Methods

Collecting worm rater data
To obtain a mixed stage population of worms containing dauer larvae as well as L1, L2, L3 and
L4 stages, wild type N2 worms were grown at 20°C on nematode growth agar (NGA). This
population was then supplemented with dauer larvae that were transferred from an eak-4;
tatn-1 double mutant stock, grown at 25°C. The eak-4; tatn-1 double mutant will produce
approximately 90% dauer larva when grown at 25°C [14]. Movies focused on small groups of
worms within the mixed-stage NGA plate were obtained at 40X magnification using a Zeiss
Stemi 2000 stereomicroscope with a color video camera attached. The I.C. capture 2.0 software
was used to record the movies and still images. There were 9 separate 5 to 30 second movie
files made, and each movie containing 3 to 10 worms that a rater would score. To ensure that
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all raters were scoring the same individual worms, the worms in these movies were each given
a unique identifying number, and these were labeled in a separate image of a still from the first
frame of each movie (Fig 2). The still images and movies were scored by seven individuals who
had some amount of C. elegans research experience (Table 1). Before rating the worms, each
rater was given a five-minute refresher tutorial by the author, explaining the qualifying features
of each stage of development, and showing an example video containing each stage. Raters
then were given a score-card, and for each movie file, were asked to identify the particular
worm to be rated, and then play the video as needed in order to make a decision on the stage of
development, and recording the result. This decision was typically reached after only a second
or two of viewing the worm, and often a rating was reached after only viewing the still frame
from the movie. These data were tabulated with a column for each rater. A total of seven raters
were recruited for this study, and each rater was asked to judge the larval stage of 60 different
worms. Hence each rater had 60 observations, with the larval stage of development coded by
ordinal values one through five (S1 Table).

Describing Agreement Using a Calibration Model with Thresholds
Although rating a worm for its stage of development depends on complex judgments, the
resulting measurements are on a cruder scale compared to measurements of the worms’ length
or weight. Length and weight are measured on a continuous, quantitative scale while determi-
nations of the developmental stage are discrete measurements on an ordinal scale. Determining
the agreement among measurements of length or weight made by different methods on the
same set of items requires a measurement error model. The measurement error model
describes how the common factor (the true values of the common items each method mea-
sures) influences each observed measurement. The measurement error model describes both
the systematic differences (accuracy or relative bias) among the methods and the differences
due to random error (imprecision). The relative bias between any two methods can then be
removed by calibration. The same basic approach will work with ordinal ratings but the relative
bias and random error are assumed to occur on an underlying continuous scale represented by
continuous latent variables. The continuous latent variables then are translated to the observed
discrete ordinal ratings via rater-specific threshold models.

The calibration model for three raters i = 1, 2, and 3 making measurements on a continuous
scale for the jth worm, can be described by a set of three simultaneous equations:

X1j ¼ a1 þ b1mj þ �1j

X2j ¼ a2 þ b2mj þ �2j

X3j ¼ a3 þ b3mj þ �3j

Here, the true quantity is denoted by μ. The measurements are denoted by X. The systematic
bias is described by α and β, and the random error by 2. These equations relate the measure-
ments to the underlying, unknown true values. Because μ appears in all three equations, it is
possible to relate X1 with X2, X1 with X3, and X2 with X3 –the μ drops out. That is, we can com-
pare the raters even though the true values are never known. We can also describe the random
error even though no item is measured more than once. (In effect, conditional on μ, we effec-
tively have repeats for each method.)

A path diagram can be used to illustrate the calibration model, as shown in Fig 1. In this dia-
gram, the quantity to be measured (the “true” value—a latent variable) is represented by the
circle and the measurements by squares. The true value “causes” the observed measurements
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so there are single-sided arrows pointing from μ to each measurement. The ith rater distorts the
true values and this distortion is quantified by αi and βi. The double-sided arrow pointing to
the circle for μ denotes the standard deviation σ for the true values. In a similar fashion, the
standard deviations for each 2i are denoted as σi next to the rectangle for each measurement
Xi. In this model, the scale bias parameter βi and the random error parameter 2i.

When the measurements (Xi) are ordinal, the calibration model can still be used but the
ordinal categories (k = 1, . . ., 5) need to be modeled as outcomes based on an underlying
(unobserved) normally distributed variable χi (mean of zero, standard deviation of one). We
assume that the continuous true values μ are normally distributed with mean 0 and variance 1.
It is convenient to constrain the unconditional normal distributions for each χ to a mean of
zero and standard deviation of one. These constraints result in the following model:

w1j ¼ r1mj þ �1j

w2j ¼ r2mj þ �2j

w3j ¼ r3mj þ �3j

The intercepts vanish and the factor loadings (β) are equivalent to correlation coefficients
and have been denoted by ρs. These parameters represent the correlation between each unob-
served continuous rating χ with the unobserved true value μ. The constraints effectively remove
any systematic error between the true values and the unobserved χ. Any systematic error is
transferred to the kth threshold for subject i tik. The area under the marginal distribution of χi
below ti1 is the proportion of observations Xi for the first category labeled zero (0). Similarly,
the area under the marginal distribution between ti1 and ti2 is the proportion of observations Xi

for the second category labeled one (1), and so on. If there arem ordered categories, then there
arem-1 thresholds for each rater. Because the χi are latent variables, additional constraints are
required to allow them to be identified. This requires that scale parameter ρi and the residual
error 2i standard deviation σi being related so that:

si ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

i

p
This constraint effectively means that ρi represents the inverse of the random error or preci-

sion (so that σi is the imprecision) while the thresholds tik represent the systematic error (bias).
This threshold model can be fitted using structural equation modeling software and the

OpenMx R package was used. Full information maximum likelihood was used to estimate the
model parameters. The one factor ordinal model with seven raters and four ordinal categories
was adapted from code available from (http://openmx.psyc.virginia.edu/docs/OpenMx/latest/
FactorAnalysisOrdinal_Matrix.html) [15, 16]. A detailed annotated version of the code used to
produce the final results is shown in the supplemental material (S1 Text).

Computational challenges in modeling worm rater data
There are definite benefits to fitting this type of model to the data, however, one challenge of
this approach is the potential technical difficulty in achieving model convergence via the neces-
sity of using an iterative solution. When iterative procedures are used, the software used to
implement the procedure typically tries to assess whether or not convergence has been
achieved. It should be remembered that this assessment is fallible. Just because no warning
message was generated does not necessarily imply convergence and conversely, a warning mes-
sage does not necessarily imply that convergence was not reached. In all cases, the output from
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iterative estimation procedure must be verified for convergence regardless of any warning mes-
sages or not. Iterative solutions typically require starting values for each parameter. The better
the starting values, the more likely convergence will be achieved (and achieved in fewer itera-
tions). Providing good starting values is akin to knowing the answer before having the answer.
Many times determining good starting values is difficult so that random starting values are
used. When using random starting values, it is customary to use a number of sets. When the
common factor model (or similar) is used with continuous measurements, convergence is typi-
cally easier and faster to achieve. Threshold models needed for ordinal measurements are more
challenging so that it is a good idea to run a larger number of sets of random starting values.
The output of these random starts are collected and ordered by likelihood function value. Ide-
ally, the outcome with the highest likelihood value should be the maximum likelihood solution.
Often, with a large number of random sets the highest likelihood value will occur multiple
times. Also, often very small differences in the likelihood value are connected with parameter
estimates that are virtually identical, all leading to the conclusion that the maximum likelihood
solutions has been achieved. Checking the parameter estimates to the observed data summaries
(as we did) also helps confirm a reasonably correct solution. Additional techniques are to use
software that implements the iterative procedure in an alternative fashion, and seeing that the
solutions are either identical or very similar. We used all of these techniques to ensure the max-
imum likelihood solution was achieved.

Supporting Information
S1 Table. Primary data showing the scoring of individual worms by each rater. The numeric
scores represent 1 for L1, 2 for L2, 3 for dauer, 4 for L3, and 5 for L4.
(DOCX)

S1 Text. OpenMX code used for model fitting.
(DOCX)
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