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Abstract

Background

Influenza infection is associated with myocardial infarction (MI), suggesting that respiratory

viral infection may induce biologic pathways that contribute to MI. We tested the hypotheses

that 1) a validated blood gene expression signature of respiratory viral infection (viral GES)

was associated with MI and 2) respiratory viral exposure changes levels of a validated

platelet gene expression signature (platelet GES) of platelet function in response to aspirin

that is associated with MI.

Methods

A previously defined viral GES was projected into blood RNA data from 594 patients under-

going elective cardiac catheterization and used to classify patients as having evidence of

viral infection or not and tested for association with acute MI using logistic regression. A pre-

viously defined platelet GES was projected into blood RNA data from 81 healthy subjects

before and after exposure to four respiratory viruses: Respiratory Syncytial Virus (RSV)

(n=20), Human Rhinovirus (HRV) (n=20), Influenza A virus subtype H1N1 (H1N1) (n=24),

Influenza A Virus subtype H3N2 (H3N2) (n=17). We tested for the change in platelet GES

with viral exposure using linear mixed-effects regression and by symptom status.

Results

In the catheterization cohort, 32 patients had evidence of viral infection based upon the viral

GES, of which 25% (8/32) had MI versus 12.2% (69/567) among those without evidence of

viral infection (OR 2.3; CI [1.03-5.5], p=0.04). In the infection cohorts, only H1N1 exposure

increased platelet GES over time (time course p-value = 1e-04).
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Conclusions

A viral GES of non-specific, respiratory viral infection was associated with acute MI; 18% of

the top 49 genes in the viral GES are involved with hemostasis and/or platelet aggregation.

Separately, H1N1 exposure, but not exposure to other respiratory viruses, increased a

platelet GES previously shown to be associated with MI. Together, these results highlight

specific genes and pathways that link viral infection, platelet activation, and MI especially in

the case of H1N1 influenza infection.

Introduction
Influenza viral infections are associated with an increased risk of myocardial infarction (MI),
in part, due to an association with platelet activation [1][2][3][4]. The H1N1 strain of influenza
has been associated with an acute MI in one case report of a young patient without coronary
artery disease [5]. Similar associations may exist for other influenza strains (e.g., H3N2) and
other respiratory viruses, but are not as frequently reported [6][7][8]. These associations sug-
gest that viral infection (or exposure) may induce biologic pathways that contribute to MI.

Microarray analysis is used as a genome-wide assessment of gene expression. Compared
with individual gene expression, the use of gene-expression “signatures”, or groups of genes
with similar expression patterns, can be used to represent the activities of certain biological
pathways, some of which have yet to be functionally defined. We have recently identified a
peripheral blood gene expression signature (GES) of viral infection that can identify individuals
with symptomatic, respiratory viral infection with>95% accuracy and classify viral versus non-
viral acute respiratory infection with>93% accuracy [9][10][11][12] (viral GES). In a separate
study, we used peripheral blood gene expression profiling to identify and to validate a GES cor-
relative of platelet function in response to aspirin (platelet GES). This signature was primarily
made up of platelet genes and was predictive of death or MI in patients with cardiovascular dis-
ease [13]. Because the platelet GES was not correlative of platelet function in the absence of aspi-
rin, the platelet GES can be thought of as being reflective of aspirin’s effect on platelet function;
lower levels are indicative of a greater aspirin effect on platelets and lower risk for death/MI.

Here we test the hypotheses that 1) biological pathways that change in response to viral
infection are associated with MI and 2) viral exposure and/or viral infection are associated with
an aspirin-responsive platelet pathway that is associated with MI.

Materials and Methods

Overview
We used existing microarray data from two prior studies: 1) gene expression data from patients
at the time of cardiac catheterization (Database of Genotypes and Phenotypes accession num-
bers: phs000548.v1.p1 and phs000551.v1.p1) [9] to test Hypothesis #1 and 2) serial gene
expression from prospective cohorts of healthy volunteers exposed to four different respiratory
viruses (Gene Expression Omnibus database accession numbers GSE17156 and GSE52428)
[11] to test Hypothesis #2.

CATHGEN Cohort
From 2004–2010, the Catheterization Genetics (CATHGEN, http://cathgen.duhs.duke.edu)
biorepository banked whole blood RNA in PAXgene blood tubes from Duke University

Gene Expression in Viral Infection and Myocardial Infarction

PLOS ONE | DOI:10.1371/journal.pone.0132259 July 20, 2015 2 / 15

Competing Interests: The authors have declared
that no competing interests exist.

http://cathgen.duhs.duke.edu


Medical Center patients at the time of cardiac catheterization [10]. Baseline medical history,
medication usage, clinical and procedural characteristics are available through the Duke Data-
bank for Cardiovascular Disease. Two previously defined cohorts of CATHGEN participants
with available microarray data were combined for analysis, yielding 594 unique patients [13]
[14]. The primary outcome was MI in the CATHGEN cohort. All potential MI cases were veri-
fied by chart and laboratory data review through chart review by an unblinded internist. MI
occurring after the initial catheterization was excluded. The following criteria were used to
determine MI: 1) MI was the indication for catheterization, 2) myocardial infarction listed in
the discharge summary or admission history and physical, and 3) elevated of CK-MB or tropo-
nin above the local upper limit of normal. Eighty potential MI cases were identified and
selected for chart review, of which 3 were excluded (not considered MI cases), leaving 77 con-
firmed MI cases. The remaining 517 patients served as non-MI controls. Because ST-segment
elevation myocardial infarction (STEMI) is a more homogeneous clinical condition that is less
likely to be confused with non-thrombotic causes of MI (such as demand ischemia or myocar-
ditis), we further classified MI as STEMI if the following criteria were met: 1) meeting criteria
for MI and 2) STEMI diagnosis listed in the discharge summary and/or admission history. Of
the 77 MI cases (which included non-ST segment elevation myocardial infarction (NSTEMI)
and STEMI), 12 (15.6%) were determined to be STEMI based on chart review and the remain-
ing classified as NSTEMI.

Viral Infection Cohorts
Four separate healthy volunteer cohorts were each exposed to a different viral strain, and then
monitored for symptoms, and RNA was ascertained at different time points as previously
described [9][11] (Fig 1). In general, “healthy” was defined as absence of any significant acute
or chronic, uncontrolled medical or psychiatric illness, that in was associated with increased
risk of complications of respiratory viral illness (subjects with uncomplicated chronic diagno-
ses stable and treated for three [3] months, e.g., mild hypertension well-controlled with medi-
cation, were enrolled—provided the condition and its therapy are not known to be associated
with an immunocompromised state or increased risk of complications of respiratory viral ill-
ness). Although certain concomitant medications were allowed, none were on aspirin at the
time of viral challenge. Subjects were classified as symptomatic vs. asymptomatic based on the
Modified Jackson Score [15][16][17].

Definition of Viral GES
We have previously used two approaches, factor modeling and factor model projection [13]
[18] to reduce the dimensionality of microarray data and to generate gene expression signa-
tures. Briefly when applied to a microarray datasets, a factor model generates a series of “fac-
tors”, which are sets of coexpressed transcripts representative of a potentially unknown
biological pathways. Each sample can be assigned a “factor score”, which represents the aggre-
gate expression of each of the transcripts within a factor. The factor scores can then be used for
association testing with phenotypes of interest. In order to estimate factor scores in new data-
sets, factor model projection is used.

In the infection cohorts, we previously identified a factor that discriminated symptomatic
(infected) subjects (HRV, RSV or influenza A) from asymptomatic (uninfected) individuals.
However, because the normalization procedures in the infection cohorts differed from that in
the CATHGEN cohort, we were unable to directly project the factors from the infection
cohorts onto the CATHGEN cohort microarray data. To use the same normalization proce-
dure on both the infection and CATHGEN cohorts, we re-derived the infection cohort factors
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using the same methodology, and projected this re-derived factor model on the CATHGEN
datasets. Using this approach we were able to derive a factor based on the RNA data collected
at baseline, 72-77h, and 93-96h after exposure that, we have previously shown, clearly discrimi-
nated those with/without viral infection (p-value = 3.9e-17 and FDR q-value = 5.28e-16) [9].
This factor included 957 genes, including 38 of the top 40 genes used for factor loading for the
RSV, HRV, Influenza, Panviral cohorts in Zaas et al [9]. Therefore, this re-derived factor reca-
pitulates the original Zaas et al signature with respect to gene membership as well as ability to
discriminate between symptomatic and asymptomatic viral infection. This factor is defined as
the “viral GES” used in the infection and CATHGEN cohorts for all statistical analyses
(Table 1).

Viral GES “cut-off”
To determine a “cut-off” value of viral GES to classify viral infection in the CATHGEN cohort
we generated a receiver operating characteristics (ROC) curve using microarray data from the
infection cohorts to discriminate between asymptomatic and symptomatic subjects (Fig 2).
The area under the ROC curve in the infection cohorts was 0.91 and the optimal cutoff (calcu-
lated as the value that achieved the maximum sum of sensitivity and specificity) was a viral
GES of� 0.63. The distribution of the viral GES score was approximately the same in the
CATHGEN (median viral GES score = -0.56 interquartile range (IQR) [-0.84, -0.23] vs. asymp-
tomatic time points from viral infection cohorts (median viral GES = -0.51, IQR [-0.64, -0.18].
Therefore, we directly applied the cutoff derived in the viral infection cohorts to the CATH-
GEN data to classify individuals as having molecular evidence of viral infection (viral
GES� 0.63, “positive”) or no molecular evidence of viral infection (viral GES< 0.63, “nega-
tive”). Sensitivity analyses were performed by varying the cutoff level in the CATHGEN
cohort.

Fig 1. Design of viral exposure of infection cohort patients. Four cohorts of healthy volunteers were
exposed to different viruses (H1N1—Influenza A (A/Brisbane/59/2007); H3N2—Influenza A A/Wisconsin/67/
2005 (H3N2); HRV—Human rhinovirus; RSV—Respiratory Syncytial Virus). Blood RNA data were collected
at baseline and at additional timepoints following viral exposure to assess for changes in the platelet gene
expression signature (platelet GES) (S1 Table) Median time post exposure for peak symptom of each
respective virus is shown (in hours). The point of treatment with Tamiflu (H1N1 and H3N2) or release from
quarantine is shown as end of arrow (in hours). The final numbers of symptomatic (symp) or a symptomatic
(asymp) status of each cohort is also shown.

doi:10.1371/journal.pone.0132259.g001
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Platelet GES
The platelet GES is a factor containing 62 genes, primarily of platelet origin, that was validated
in two independent cohorts as a set of co-expressed genes associated with platelet function in
response to aspirin (Table 1)[13]. In the same combined CATHGEN cohort used in the current
work, a higher platelet GES was associated with a higher risk of death/MI following cardiac
catheterization. We projected the platelet GES into the infection cohorts test for changes fol-
lowing viral exposure.

Statistical Methods

CATHGEN Cohort
Baseline characteristics are presented as medians (25th, 75th percentiles) for continuous vari-
ables and frequencies for categorical variables in those positive vs. negative viral GES. The chi-
square test was used to identify differences in categorical variables between groups. For contin-
uous data, a student’s t-test was used test for differences in means; a Wilcoxon rank sum test
was used for significant deviations from normality. We performed logistic regression in the
CATHGEN cohorts to test the association of viral GES with MI or STEMI. Results are reported
as odds ratios (OR) with 95% confidence interval (CI) and p-values. Student’s t-test was used
to compare mean platelet GES in those with a positive vs. negative viral GES. Pearson correla-
tion was used to test for association between the viral GES and the platelet GES.

Infection cohorts
We used linear mixed-effects regression with random effects for subject to model the platelet
GES score over time, modeled as time + time2. To determine the association between platelet
GES and viral exposure we compared an intercept only model vs. a model with time. To assess
for homogeneity of the effects of viral exposure models with and without interactions between

Table 1. List of 72 Genes in Platelet GES and top 49 genes in the Viral GES.

Platelet GES Viral GES

FSTL1 CPNE5 TPM1 CDC14B IFI35 COX4I1 STAT1

CTTN CLEC1B MGLL C6ORF79 MAK8 RPl12 HNRNPC

CTDSPL SELP CLU TTC7B FAM102A HNRNPU CALU

TREML1 IGF2BP3 THBS1 ARHGAP6 Elf1 EIF3A CTNNA1

SPARC SH3BGRL2 MYL9 PARVB CD3D CLTC ZYX

ITGA2B PROS1 PF4 TUBB1 IFIH1 WARS PSME1

CMTM5 ALOX12 GP1BB GNG11 ELF4 SOD1 RPS15

SLC24A3 JAM3 TGFB1I1 PRSS1 STAT1 GLUL RPL29

MPL LRRC32 PCSK6 PRKAR2B GAS6 S100A11 PRDX6

CLU ITGB3 CALD1 MFAP3L RPL18 DNAJB1 H2AFZ

TMEM64 PPBP GUCY1B3 ENDOD1 RpL19 SPARC CNOT1

BEND2 RAB27B PDE5A FRMD3 RPS11 PPP2R1A RNF114

MYLK ELOVL7 PBX1 CLEC4D RPl10a NPC2 PSAP

C12ORF39 RHOBTB1 MMD SDPR C22ORF28 ACADVL

PCGF5 HIST1H3H PF4V1 HIST1H2AG HSP90AB1 RPL13A

RAB4A HIST1H2BG LGALSL ARHGAP18 SNX3 RPL10

FSTL1 CPNE5 TPM1 CDC14B USP22 ACTR2

CTTN CLEC1B MGLL C6ORF79 PTP4A1 GNB1

doi:10.1371/journal.pone.0132259.t001
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symptom status and time were compared. All model comparisons were performed using an
ANOVA likelihood ratio test. The prediction curves included in each plot are predictions
made on the fixed effects only.

All analyses were performed using SAS Enterprise Guide 4.3 (SAS Institute Inc, Cary, North
Carolina, USA) or R (version 2.8.1). Results were declared significant at a two-sided p-value
<0.05. As this was a hypothesis generating study, no adjustments were made for multiple
testing.

Institutional Review Board (IRB) Approval
The Influenza challenge (H1N1, H3N2) protocols were approved by the East London and City
Research Ethics Committee 1 (London, UK), an independent institutional review board
(WIRB: Western Institutional Review Board; Olympia, WA), the IRB of Duke University Med-
ical Center. (Durham, NC), and the SSC-SD IRB (US Department of Defense; Washington,
DC) and were conducted in accordance with the Declaration of Helsinki. The other viral chal-
lenge studies (HRV, RSV) were approved by the respective site IRB/ethics boards—WIRB
(RSV) and the University of Virginia IRB (HRV). All subjects enrolled in viral challenge studies
and CATHGEN were provided written informed consent per standard IRB protocol. The cur-
rent analyses using the databases from these trials were approved by the IRB of Duke Univer-
sity Medical Center.

Results

Hypothesis #1: Viral GES is associated with MI in CATHGEN cohorts
Of the 594 patients in the CATHGEN cohorts, 32 (5.39%) had evidence of viral infection—as
determined by the presence of a viral GES score� 0.63. There were no significant differences
in baseline, medication, or clinical characteristics between those with positive vs. negative viral
GES scores (Table 2). We assessed for the imbalance in aspirin use at the time of cardiac cathe-
terization and found no statistically significant difference in aspirin use between the groups.

To test the hypothesis that prior viral infection was associated with MI, we tested for the
association between molecular evidence of viral infection (positive/negative viral GES) and MI
in the CATHGEN cohort (Table 3). Among the 32 with a positive viral GES, 8 (25.0%) had MI
vs. 69 of 562 (12.3%) in those with a negative viral GES (OR = 2.3 [95% CI = 1.03–5.51],
p = 0.04). To determine the extent to which the cut-off value influenced our results, we per-
formed a sensitivity analysis by adjusting the threshold and found similar associations with MI
across a range of values. (Table 3) Because STEMI is a more homogenous and readily identified
clinical condition, we next limited our analysis to those with STEMI (remaining non-STEMI
cases excluded). We found that 3/32 (9.38%) of those with positive viral GES had STEMI

Fig 2. Experimental Design for CATHGEN cohort. Viral GES is projected on the 594 patients from
CATHGEN, then separated into positive or negative viral GES based on a previously defined cutoff (see
Methods). Baseline characteristics and MI status were compared between groups. LHC—Left Heart
Catheterization

doi:10.1371/journal.pone.0132259.g002
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compared to 9/562 (1.60%) in those with a negative viral GES (OR = 6.36 [95% CI = 1.63–
24.74] p = 0.008).

The CATHGEN cohort has no direct measures of platelet function. However, to further
examine the extent to which the association of MI and viral infection was due to a potential
platelet-related biological pathway, we compared the platelet GES in those with a positive ver-
sus negative viral GES and found no association (p = 0.70). Further, we found no correlation
between the platelet GES score and viral GES (p = 0.70).

Hypothesis #2: Platelet GES changes in response to viral exposure in
infection cohorts

H1N1. Exposure to HIN1 was associated with an increasing platelet GES over time (time
course p-value = 1e-04) (Fig 3). To confirm that the individual genes represented by the platelet

Table 2. Baseline characteristics of the CATHGEN cohort. Continuous variables reported as mean values, categorical variables reported as
percentages.

Positive viral GES (n = 32) Negative viral GES (n = 562) p-value
Characteristic N or Mean (% or Q1,Q3) N or Mean (% or Q1,Q3)

Demographics

Age 63 (53,71) 62 (54,71) 0.59*

BMI 26.4 (25,31) 28.7 (25,33) 0.12*

Female Gender 12 (37.5%) 195 (34.7%) 0.48

AA Ethnicity 11(34.3%) 123 (21.9%) 0.13

Medical History

HTN 27 (84.4%) 391 (69.6%) 0.075

CHF 12 (37.5%) 169 (30.1%) 0.41

FH CAD 10 (31.3%) 199 (35.4%) 0.63

DM 9 (28.1%) 188 (33.2%) 0.53

History MI 12(37.5%) 173(30.8%) 0.42

Hyperlipidemia 17(53.1%) 348 (61.9%) 0.32

Smoker 18 (56.3%) 278 (49.5%) 0.46

Medications

ACEi 20 (66.7%) 358 (68.8%) 0.80

Beta Blocker 23 (76.7%) 361 (69.4%) 0.40

Statin 18 (60.0%) 358 (68.8%) 0.31

Aspirin 22 (73.3%) 430 (82.7%) 0.19

Clopidogrel 7 (23.3%) 200 (38.5%) 0.10

Catheterization data

EF 52.4 56.14 0.47*

CAD Index [49] 32 (0,63) 32(0,63) 0.52*

# Diseased Vessels 0.44

0 13 (44.8%) 188 (34.6%)

1 4 (13.8%) 100 (18.42%)

2 6 (20.7%) 99 (18.2%)

3 6 (20.7%) 152 (28.0%)

#
—Number; AA—African American; ACEi = Angiotensin converting enzyme inhibitor; BMI—body mass index in kg/m^2; CAD—coronary artery disease;

HTN—hypertension; CHF—congestive heart failure; EF—Left Ventricular Ejection Fraction; F—female; DM—history of diabetes mellitus; FH CAD—family

history of coronary artery disease; MI—myocardial infarction; Angiotensin Converting Enzyme Inhibitor;

* indicates non-parametric, Wilcoxon rank-sum test used to test for differences between groups due to deviations from normality.

doi:10.1371/journal.pone.0132259.t002
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GES also changed in response to H1N1 exposure we tested each probe set within the signature
and found that, 40 of 50 probe sets were significantly (p< 0.05) up regulated in response to
H1N1 viral exposure (S1 Fig). When comparing the symptomatic vs. asymptomatic subsets, we
observed that symptomatic subjects differed at baseline with no significant differences across
time (Fig 3, symptom by time interaction p-value = 0.1).

Remaining Viral Exposures
For the H3N2, RSV, and HRV cohorts we did not observe a significant association of viral
exposure with platelet GES (time course p-values = 0.1, 0.2, and 0.09, respectively).

Table 3. Sensitivity analysis of viral threshold on association with MI.

Threshold value Viral GES status* MI cases Non-MI controls Logistic regression p-value for association with MI Odds Ratio 95% CI

0.70 (+) 8 23 0.03 2.5 1.01–5.6

(-) 69 494

0.65 (+) 8 23 0.03 2.5 1.01–5.6

(-) 69 494

0.63** (+) 8 24 0.04 2.3 1.03–5.5

(-) 69 493

0.60 (+) 8 26 0.06 2.2 0.89–4.8

(-) 69 497

0.55 (+) 11 27 0.004 3.0 1.4–6.2

(-) 66 490

*Viral GES status was determined by a viral GES greater than or equal to (+) or less than (-) a threshold value (see Methods for more details).

**Predetermined threshold value; GES = Gene expression Signature; MI = myocardial infarction; CI = confidence interval

doi:10.1371/journal.pone.0132259.t003

Fig 3. Distribution of platelet GES score by time point in the H1N1 exposure cohort. Individual platelet
gene expression signature values (platelet GES, y-axis) are plotted over time (hours, x-axis) following H1N1
viral exposure and by symptom status (symptomatic/dashed thin lines; asymptomatic/solid thin lines).
Prediction curves (thick lines) for the symptomatic (dashed) vs. asymptomatic (solid) subsets are plotted
based on predictions made frommixed-effects regression model (see Methods). P-values represent the
association between platelet GES over time and differences over time between symptomatic vs.
asymptomatic subjects.

doi:10.1371/journal.pone.0132259.g003
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Discussion
Despite the epidemiologic link between respiratory viral infections, including influenza, and
myocardial infarction (MI), the biological pathways that underlie these associations are
unknown. We hypothesized that patients with molecular evidence of viral infection would be
more likely to have an MI in our cohort. We found that those patients with molecular evidence
of viral infection were twice as likely (25.0% vs. 12.3%) to present with MI compared to those
without. Separately, in an experimental model of viral infection we hypothesized that viral
infection would affect a previously described platelet pathway of aspirin response that was
associated with MI [13]. We found that H1N1 influenza exposure increased expression of
genes in this aspirin response, platelet pathway. Taken, together, these findings suggest that
specific biologic pathways that may mechanistically link influenza and MI.

Respiratory viral infections, in general, and influenza infection, specifically H1N1 and H3N2,
are associated with an increased risk of MI [2][3][4][6][7][8][19] for up to 2 weeks after infec-
tion [20][6]. Remote infection with influenza A and B (i.e., presence of positive IgG antibodies)
is also associated with acute MI [21]. These prior observations suggest that there is an initial and
continued heightened risk of MI following viral infection, in particular influenza. Although
H1N1 and H3N2 have both been associated with MI [7], we only found evidence that H1N1
changed platelet GES. Prior studies demonstrated that different influenza strains can produce
differential effects on gene expression and cytokine induction [22][23][24]; therefore, this may
not be unexpected. Alternatively, given the small numbers in each cohort we may have been
underpowered to detect more subtle changes in gene expression in the non-H1N1 cohorts. Fur-
ther validation will be required to confirm the H1N1 specific effects we observed in this study.

It is well known that platelets play a critical role in the development of MI. Viral infection,
particularly with influenza, results in platelet hyperreactivity and activation in both human and
animal models [1][25][26]. The introduction of inactivated influenza vaccine itself has been
associated with platelet activation [27]. Influenza has also been shown to influence hemostasis
and endothelial activation/dysfunction [28][29]. Of the 62 genes in the platelet GES up to 31
overlapped with platelet or megakaryocyte specific genes [13]. Therefore, our findings that
H1N1 influenza exposure alters a platelet GES add to existing data linking influenza and plate-
let activation by highlighting specific platelet genes/proteins connected to this response.

The viral GES contains a large number of genes from biologically plausible gene networks
involved in host viral response [30]. Of the top 49 genes, 9 (18%) are related to platelets or
hemostasis (Table 4). Of particular interest is growth arrest-specific 6 (GAS6), which appears to
link viral infection andMI. GAS6 plays a key role in platelet aggregation and vascular homeosta-
sis [31][32] by amplifying endothelial cell activation in response to inflammatory stimuli [33].
In our study, we observed that H1N1 viral infection increases GAS6 expression and higher
GAS6 expression is associated with a higher risk of MI (Fig 4) which is consistent prior work
demonstrating that GAS6 deficient mice are protected from thrombosis [31]. Infection then the-
oretically increases GAS6 which may increase thrombosis risk versus lower levels of GAS6; this
could potentially be a target pathway for future study [34]. Inflammation has long been postu-
lated to be associated with atherosclerosis, and the host inflammatory response to influenza
infection may represent an alternative biological pathway by which influenza leads to MI [35].
In a case control series, patients with influenza antibodies indicative of prior influenza infection
had a higher risk of MI in addition to increased levels of multiple inflammatory cytokines [36].
Therefore, the viral GES represents multiple inflammatory, coagulation, and platelet pathways
that together may contribute to contribute to the development of MI after viral infection.

There are several, potential clinical implications if our findings are confirmed by others.
Because of the strength of evidence surrounding H1N1 and H3N2 vaccination and a reduced
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risk of MI, vaccination is recommended in patients with coronary or atherosclerotic vascular
disease [37][38][39]. Our findings provide additional, complementary data, to support current
recommendations for vaccination, although vaccination itself may increase platelet activation
[27]. Further, in the H1N1 infection cohort, we observed that those that did vs. did not develop
symptoms after H1N1 viral exposure had similar increases in the platelet GES (Fig 3), suggest-
ing that viral exposure even in the absence of infectionmay be associated with increased cardio-
vascular risk. Therefore in addition to vaccination programs that prevent viral infection, our
findings suggest that prevention of viral exposure (i.e. though infection control programs) may
additionally prevent MI in patients at risk for cardiovascular disease. Second, several studies
have shown statins reduce morbidity and mortality in patients with influenza infections [40]
[41]. Statins have acute effects in reducing inflammation and platelet activation—two pathways
represented by viral GES genes—and stabilizing atherosclerotic plaque. Therefore, there may
be role for statin therapy following influenza infection for CVD prevention. Last, prior work by
others links platelet activation with influenza infection [42]. Our findings link an aspirin-

Table 4. Potential role of viral GES genes in platelet activation, thrombosis or hemostasis

Gene Description

GNB1 Gene involved in platelet activation pathway, thrombin signaling and hemostasis [50][51]

CALU Released by activated platelets, Expressed in atherosclerotic lesions but not normal
vasculature [52][53]

PRDX6 Protective versus oxidant injury, Decreased in Influenza [54][55]

PPP2R1A Involved in thromboxane A2 synthesis (thrombin activated platelets) [56]

PSAP Sphingolipid metabolism, sphingolipids are involved with ischemia/reperfusion injury of the
heart, found in platelets and plasma, metabolism altered in MI models [57][58]

SPARC Glycoprotein secreted by platelets, maintains cardiac extracellular matrix after MI, down
regulated in ACS patients versus controls [59][60]

ACTR2 Gene involved in hemostasis [51]

ZYX Thrombin signaling via interaction with PAR-1 receptor, upregulated in ACS versus non-ACS
patients [61][62]

GAS6 Elevated in septicemia and general inflammation, involved in vascular homeostasis and
platelet aggregation, deficient mice are protected against thrombosis [31][32][33][34]

doi:10.1371/journal.pone.0132259.t004

Fig 4. Association of selected viral gene expression signature genes with myocardial infarction.
Genes from the viral gene expression signature (viral GES) were selected based on their role in platelet
activation, thrombosis, and hemostasis (Table 4 and Discussion). The association between gene expression
and myocardial infarction (MI) is plotted as the standardized odds ratio (y-axis) for each gene (x-axis). Higher
odds ratio imply that higher gene expression is associated with higher risk of MI. * indicate genes that are
significantly (p-value < 0.05) associated with MI.

doi:10.1371/journal.pone.0132259.g004
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responsive pathway to the heightened platelet activation observed with H1N1 exposure. There-
fore, a potential therapeutic strategy reduce the burden on influenza-related CVDmay be to
prescribe aspirin. There is an aversion to starting new aspirin therapy in influenza patients
with the classic association of aspirin, influenza and Reye’s Syndrome (which does occur in
adults) [43]. Retrospective evidence suggests patients who use aspirin have higher mortality
compared to those who do not [44][45]; however, these associations may be confounded by
concomitant risk factors associated with aspirin use. Recent studies have proposed mechanisms
by which aspirin could have anti-viral and anti-inflammatory effects in influenza infections
[46][47]. Therefore the effect of starting aspirin therapy for CVD risk reduction as well as influ-
enza-related outcomes in the peri-influenza period is not known and warrants further study.

Limitations
The primary limitation in the CATHGEN cohort is that we have no laboratory or clinical infor-
mation of viral exposure or infection. As a consequence, we cannot confirm the molecular evi-
dence of viral infection by viral GES with any laboratory/clinical data. Further, we do not know
what type of respiratory virus patients may have been exposed to. This additional information
could help explain the lack of correlation between the viral and platelet GES in the CATHGEN
cohorts. We found evidence for primarily an H1N1 effect on the platelet GES in the infection
cohorts. In contrast the viral GES is a non-specific respiratory viral infection classifier. There-
fore, if there were a predominance of non-H1N1 viral exposure in CATHGEN patients then
we would not expect to find a correlation between the viral and platelet GES. Second, the
CATHGEN cohort study was performed as a cross sectional study; hence, we cannot know if
the MI led to an increased viral GES or vice versa. Longitudinal studies could help provide evi-
dence of causality. Third, it is possible that the changes in the viral GES could be, in part, due
to 1) vaccination because 57% (n = 28/49) of genes in the viral GES do overlap with genes that
change in response to influenza vaccination [48] or 2) concomitant medications used to pre-
vent MI. Because the viral GES is an acute response signature, vaccination would have had to
occur within days of catheterization and thus it is unlikely to confound the association we
found between viral GES and MI. We assessed for an imbalance in concomitant medication
use at the time of cardiac catheterization and found none between those with a positive vs. neg-
ative viral GES (Table 3). Last, influenza is associated with peri-/myocarditis, which clinically
may mimic MI. Therefore a portion of our MI cases may have represented myocarditis and not
thrombosis of a coronary artery. However, when we analyzed the STEMI subgroup, which is a
clinical condition more clearly linked to thrombosis and less likely to be confused with pericar-
ditis or myocarditis, we found a similar association with viral GES.

Among the viral exposure studies, the main limitation is that we did not measure traditional
measures platelet function such as platelet aggregometry; however, we have previously shown
that the platelet GES is a reproducible biomarker for platelet aggregation in response to aspirin
[13].

In both the CATHGEN and infection cohorts, the samples sizes were relatively small, there-
fore independent validation in other cohorts is critical to confirm (or refute) our observations.

Conclusions
A blood GES of viral infection was associated with MI. Separately, H1N1 exposure was associ-
ated with changes in a platelet GES that reflects higher levels of platelet function and an associ-
ated risk for MI. Together, these results highlight specific genes and pathways that explain the
known relationship between viral infection, platelet activation, and MI especially in the case of
H1N1 influenza infection.
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