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Abstract
The 2012 Teach-Discover-Treat (TDT) community-wide experiment provided a unique

opportunity to test prospective virtual screening protocols targeting the anti-malarial target

dihydroorotate dehydrogenase (DHODH). Facilitated by ZincPharmer, an open access

online interactive pharmacophore search of the ZINC database, the experience resulted in

the development of a novel classification scheme that successfully predicted the bound

structure of a non-triazolopyrimidine inhibitor, as well as an overall hit rate of 27% of tested

active compounds from multiple novel chemical scaffolds. The general approach entailed

exhaustively building and screening sparse pharmacophore models comprising of a mini-

mum of three features for each bound ligand in all available DHODH co-crystals and itera-

tively adding features that increased the number of known binders returned by the query.

Collectively, the TDT experiment provided a unique opportunity to teach computational

methods of drug discovery, develop innovative methodologies and prospectively discover

new compounds active against DHODH.

Introduction
The Teach-Discover-Treat (TDT) competition was created to encourage the development of
high-quality computational chemistry tutorials within the context of drug discovery for
neglected diseases. Here we present our winning interactive pharmacophore modeling virtual
screening workflow for targeting the anti-malaria dihydroorotate dehydrogenase (DHODH)
enzyme and report the results of the follow-on experimental validation from the 2012 TDT
competition.

Unlike mammalian cells, which have salvage enzymes, the malarial parasite Plasmodium fal-
ciparum depends on de novo synthesis of pyrimidines [1]. DHODH catalyzes the rate-limiting

PLOSONE | DOI:10.1371/journal.pone.0134697 August 10, 2015 1 / 13

a11111

OPEN ACCESS

Citation: Koes DR, Pabon NA, Deng X, Phillips MA,
Camacho CJ (2015) A Teach-Discover-Treat
Application of ZincPharmer: An Online Interactive
Pharmacophore Modeling and Virtual Screening Tool.
PLoS ONE 10(8): e0134697. doi:10.1371/journal.
pone.0134697

Editor: Robert W Sobol, University of South Alabama
Mitchell Cancer Institute, UNITED STATES

Received: May 15, 2015

Accepted: July 13, 2015

Published: August 10, 2015

Copyright: © 2015 Koes et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data and
methods are within the paper and its Supporting
Information files. Educational materials are available
at: http://www.tdtproject.org.

Funding: This work was supported by National
Institute of Health [R01GM097082] (to CJC),
[R01GM097082] and R01AI103947 (to MAP),
Commonwealth of Pennsylvania Department of
Health Grant SAP 4100062224 (to CJC), and
National Science Foundation CNS1229064. MAP
acknowledges the support of the Welch Foundation
(I-1257). The funders had no role in study design,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0134697&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.tdtproject.org


fourth step of pyrimidine synthesis and inhibitors of this enzyme are effective against both nor-
mal and drug-resistant strains of the parasite in mouse models [2, 3]. The challenge addressed
in the TDT competition was to use existing structures of DHODH [3, 4] to identify commer-
cially available inhibitors with chemical scaffolds distinct from existing inhibitors [2, 5–7]. In
addition to the publically available DHODH structures, the TDT challenge provided a conge-
neric series of 192 triazolopyrimidine DHODH inhibitors with activities that spanned four
orders of magnitude. Besides the virtual screening component, the TDT competition included
a binding pose prediction exercise for a non-triazolopyrimidine inhibitor [8], N-(3,5-dichloro-
phenyl)-2-methyl-3-nitrobenzamide, referred to by the TDT organizers as compound 6, that,
at the time of the exercise, had no published structure.

To address the dual education and drug discovery goals of TDT, we leverage the user
friendly and interactive capabilities of our server ZincPharmer [9] to introduce students to the
problem of virtual screening and computational drug discovery. More specifically, ZincPhar-
mer supports the design of pharmacophore models for a given protein ligand interaction struc-
ture. A pharmacophore describes the spatial arrangement of the essential features of a
biological interaction, such as the hydrophobic, hydrogen bond, charged, or aromatic features.
Thus, in the present challenge, the students created pharmacophore models by identifying the
most relevant features from co-crystals of the DHODH enzyme with known small molecule
inhibitors and tested their models against a benchmark compound database.

The goal of the teaching unit we developed is to introduce students to computational drug
discovery while teaching basic fundamentals of molecular interactions. Students are actively
engaged in the material through a competitive, interactive pharmacophore modeling exercise
targeted at the DHODH enzyme. The best identified pharmacophore, shown in Fig 1, was the
result of a novel approach that entailed exhaustively building and screening sparse pharmaco-
phore models comprising of a minimum of three features for each bound ligand in all available
DHODH co-crystals and iteratively adding features that increased the number of known bind-
ers returned by the query. This design was then used to screen a large collection of commer-
cially available compounds and to predict the bound structure of a non-triazolopyrimidine
inhibitor. The matching compounds were then energy minimized and ranked with respect to
DHODH using two distinct scoring functions. Two ranked sets of the top 1,000 compounds
identified by each scoring function were submitted as part of our entry in the TDT submission.
As one of the winners of the TDT competition, a subset of 167 of our virtual screening hits was
selected for experimental validation. Among the screened compounds, 27% demonstrated inhi-
bition of at least 10μM and several have novel chemical scaffolds. Moreover, the prospective
prediction of the bound structure of a novel non-triazolopyrimidine inhibitor resulted in a
model with a heavy atom RMSD of 1.2 Å compared to the crystal structure.

The TDT experiment provided the first independent validation of ZincPharmer, the only
open access interactive technology capable of screening the ZINC database [10] in tens of sec-
onds. Our user-friendly platform allowed for a crowd-sourcing [11] experiment that success-
fully potentiated iterative and exact pharmacophore matching [12], model modification and
fast database query for the given target. These properties, which are not readily available with
other technologies, ultimately led to the implementation of an innovative and easily applicable
methodology. Alternative approaches typically emphasize discretization, scoring, statistical
methods, and fingerprints that are often challenging to apply for non-expert [13, 14]. Ulti-
mately, very few screening technologies are independently validated to the scale afforded by
TDT, and the successful predictions prospectively confirmed here speak to the usefulness of
the technology. Equally important, several new hits to this target with unmet clinical needs
were uncovered from historical libraries, and could hopefully spear efforts to new therapies.
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Materials and Methods

Teaching Unit
The teaching unit can be administered in a single 90–120 minute session and consists of a
didactic lecture and a hands-on component. Only a basic, high-school level of scientific under-
standing is required from the students. Since the unit is self-contained, it is particularly well-
suited for scientific outreach or other venues where in-depth follow-up (e.g., homework) is not
an option. Students are taught the basic physical and biological properties of the most common
pharmacophore features (hydrophobics, hydrogen bonds, charges, aromatics). As much as
possible, the effects of these microscopic interactions are connected to commonplace macro-
scopic observations. The PowerPoint slides for this lecture are available at http://zincpharmer.
csb.pitt.edu/tdt/TDT_computational_drug_discovery_lecture.pptx and are licensed under the
Creative Commons Attribution 3.0 License.

Fig 1. A pharmacophore derived by a student from a structure of DHODH bound to an inhibitor (PDB 3I65). The pharmacophore consists of
hydrophobic features (green spheres) and a hydrogen donor feature (white sphere). This pharmacophore was used as part of a virtual screen for novel
inhibitors.

doi:10.1371/journal.pone.0134697.g001
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Interactive and Competitive Pharmacophore Modeling
After the molecular interaction lecture, students are tasked with finding an informative phar-
macophore model for DHODH. Pharmacophore models are developed using a structure-based
approach where students examine the interactions of DHODH inhibitors of known structure,
choose what they think are the most significant features of the interaction, and then use this
pharmacophore model to screen a benchmark library of inactive and active compounds. The
quality of the model is assessed, and students post their results in real-time to an online leader-
board as part of a class-wide competition that serves to further engage the students in the
activity.

Benchmark Library
In order to evaluate the quality of the models developed by students, we created a database of
inactive and active compounds. We used both the inactive and active compounds of PubChem
BioAssay 1175, which targeted the inhibition of DHODH in Plasmodium falciparum, as well as
the 193 active compounds provided by the TDT organizers. This resulted in a set of 5495 com-
pounds, of which 276 were active. Three-dimensional conformers were generated from this set
using OpenEye's omega program (version 2.4.6) with the options-maxconfs 25-rms
0.7-strict false resulting in 113,648 conformers. Pharmer [15] was then used to build a
pharmacophore database of these conformers to support rapid searching (less than a second
for most queries).

Students used a modified version of the ZINCPharmer [9] online pharmacophore visualiza-
tion and editing platform, shown in Fig 2, to interactively search this benchmark library using
any modern web browser. The quality of a pharmacophore model was assessed by computing
its recall, precision, specificity, accuracy, enrichment factor, and F1 score with respect to the
benchmark library. The F1 score, the geometric mean of the precision and recall, was used to
rank the quality of the pharmacophore models. Students competed in real-time to produce a
pharmacophore that maximized the F1 score while still retrieving compound 6. Retrieval of
compound 6 was required since part of the TDT competition was predicting its pose.

Fig 2. The ZINCPharmer based interactive pharmacophore modelling interface used by the students
to competitively develop an informative pharmacophore model.

doi:10.1371/journal.pone.0134697.g002
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Additionally, this requirement had the side-effect of eliminating pharmacophores that are
overly specific to triazolopyrimidine scaffolds.

Structure-Based Modeling
As a basis for structure-based pharmacophore modeling, we selected six PDB structures of
bound DHODH (1TV5, 3I65, 3I68, 3I6R, 3O8A, 3SFK). Students then worked to identify the
most relevant pharmacophore features present in each complex. The general approach used by
the winning student was to construct a sparse pharmacophore model that returned all or most
known DHODH-active compounds, including compound 6, and then to iteratively refine the
model to improve the enrichment of actives vs. non-actives in the query results, as measured
by the F1 score. Sparse pharmacophore models, comprised of three features, were built for
each bound ligand in all available DHODH co-crystals. Limiting the number of pharmaco-
phore features in these initial models reduced the number of possible models and allowed
more rapid sampling of the search space via a simulated annealing-like procedure. This facili-
tated the discovery of optimal sparse queries for each co-crystal that returned the maximal
number of known binders including compound 6. At this stage in the process, query results
were evaluated only in terms of the presence of compound 6 and the total number of active
compounds returned; inactive compounds in the query results were ignored.

In what follows we describe in detail the procedure that led to the design of the optimal
model. Inhibitor-bound DHODH co-crystal PDB: 3I65 resulted in the best pharmacophore
models, while the other co-crystals failed to consistently retrieve compound 6 among the hits.

The initial model space considered for PDB: 3I65 consisted of six pharmacophores, which
were rationally chosen based on the inhibitor chemistry and the chemical environment of the
binding site. This limited the search space to a total of 20 sparse models–each containing three
pharmacophores, which could be rapidly evaluated and ranked by recall and the presence of
compound 6. Fig 3 depicts the structure of the DHODH inhibitor on which the pharmaco-
phore model was based.

The six pharmacophores used to define our sparse model search space are labeled in Fig 3,
and are described below. Of the initial six pharmacophores considered, two comprised the
polar contacts made between DHODH and the small molecule inhibitor: (3) a hydrogen donor
at the central N1 atom, which forms a hydrogen bond (HB) with HIS185, and (6) a hydrogen
acceptor at the terminal N5 atom, which forms a HB with ARG265. Two additional pharmaco-
phores (1,2) are hydrophobic groups on the inhibitor’s naphthalene rings, chosen because they
fit favorably in the hydrophobic cavity made by DHODH residues PHE188, LEU189, LEU197,
PHE1127, ILE237, LEU240, LEU531, and MET536 (see Fig 2). The final two pharmacophores
(4,5) are hydrophobic groups on the nitrogen rings of the inhibitor, chosen because they sit
favorably in the hydrophobic cavity made by LEU172, LEU176, CYS184, ILE272, and VAL532.

The twenty possible sparse models were used to screen the virtual library and were then
ranked by recall–the fraction of true binders returned in search results. Models that did not
return compound 6 were discarded. The top five sparse models are listed in Table 1. It was
noted that 7/10 sparse models containing the hydrogen acceptor feature number 6 did not
return compound 6 in the query results, suggesting that the structure of compound 6 was gen-
erally incompatible with pharmacophore models containing this feature.

For each of these top five sparse models, we then added the remaining pharmacophore fea-
tures one by one to identify the optimal 4-feature models. These models were evaluated with
the F1 score and the presence of compound 6. The process was then repeated with top two
4-feature models in order to find the optimal 5-feature model. The top 4- and 5-feature models
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are listed in Table 2. This approach resulted in the model shown in Fig 1, consisting of pharma-
cophores 1-to-5.

Virtual Screening
Pharmacophore models can quickly filter a large library of compounds, but are less useful for
rank ordering the results and refining the pose. The virtual screen requested by the TDT

Fig 3. Chemical structure of DHODH inhibitor 5-methyl-7-(naphthalene-2-yl-amino)-1H-[1,2,4]triazolo
[1,5-a]pyrimidine-3,8-diium. The six pharmacophore features used to define the sparse model search
space are labeled. Green labels refer to hydrophobic groups, blue labels refer to hydrogen bond features.

doi:10.1371/journal.pone.0134697.g003

Table 1. Query results for the top five sparse pharmacophore models.

Model Features Recall F1 Score Compound 6

1,2,4 89.49 .124 yes

1,2,5 86.59 .117 yes

1,5,6 90.94 .102 yes

2,4,5 89.86 .116 yes

2,5,6 98.91 .102 yes

doi:10.1371/journal.pone.0134697.t001

Table 2. Query results for top four- and five-feature pharmacophore models.

Model Features Recall F1 Score Compound 6

2,3,4,5 60.51 .592 yes

1,2,3,4,5 47.46 .642 yes

doi:10.1371/journal.pone.0134697.t002
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challenge required 1,000 rank ordered compounds selected from a provided eMolecules com-
pound set. To perform this virtual screen, we generated conformers using OpenEye omega ver-
sion 2.4.3 and the command-line options-maxconfs 10-rms.7. These conformers were then
incorporated into a Pharmer database and screened using the pharmacophore shown in Fig 1
resulting in 44,809 unique hits. The returned poses were then minimized using smina [16], a
fork of AutoDock Vina [17]. We filtered out any compound poses where the RMSD between
the pharmacophore aligned pose and the minimized pose was greater than 1Å so that the
results remained faithful to the pharmacophore model.

We generated two sets of rank ordered compounds. The first set consisted of the top thou-
sand compounds as determined by the default AutoDock Vina scoring function [17], which
was parameterized to maximize docking pose prediction performance and contains terms for
steric complementarity, undirected hydrogen bonds, hydrophobic interactions, and the num-
ber of rotatable bonds. The second set consisted of the top thousand compounds as determined
by a custom scoring function[16] that was parameterized for affinity prediction against the
2010 CSAR-NRC HiQ dataset[18] and includes terms for desolvation, van der Waals, undi-
rected hydrogen bonds, and the number of rotatable bonds. All compounds were energy mini-
mized with respect to the 3I65 receptor structure that the pharmacophore model was based on.

Pose Prediction
In order to predict the pose of compound 6, we minimized the pharmacophore aligned pose of
this compound, shown in Fig 4(a), using smina [16] with the AutoDock Vina scoring function
[17]. However, as shown in Fig 4(b), the resulting minimized pose deviated from the pharma-
cophore-aligned pose by more than 2.5Å RMSD, as computed by the obrms tool of the Open-
Babel toolkit [19]. In particular, the minimized pose moved the requested hydrogen donor
away from the accepting histidine (HIS-185). Since these movements seemed to be motivated
by a clash with ARG 265, we minimized with the side chain of this residue set as flexible. The
result is shown in Fig 4(c). Although this pose deviates from the pharmacophore-aligned pose
by 2.0 Å RMSD, it maintains the correct orientation to make a hydrogen bond with HIS-185.

Experimental Validation
After the conclusion of the TDT competition, compounds were selected from the winning
entries for testing.

Enzyme kinetic analysis
Protein PfDHODHΔ384–413 (amino acids 162–565) was expressed and purified from E. coli
BL21 phage-resistant cells (Novagen) using plasmid (pET28b-TEV- PfDHODΔ384–413) as
described previously [20]. Compounds that resulted from the TDT competition were ordered
from eMolecules and were dissolved to 10 mM using methanol. An end-point assay monitor-
ing the reduction of 2,6-dichloroindophenol (DCIP) was used for the 384-well plates high-
throughput screening. The DCIP dye-based assay was performed as previously described [21]
using the following assay buffer (100 mMHEPES pH 8.0, 150 mMNaCl, 10% glycerol, and
0.1% Triton) and substrates (0.2 mM dihydroorotate (DHO), 0.02 mM CoQD, and 0.12 mM
DCIP). Reduction was followed at 600 nm (ε = 18.8 mM–1 cm–1). To screen for compound
activity, 40μl of assay buffer and 1μl of compound (2 final different concentrations were
screened, 10 and 1 μM) were transferred into 384-wells plate using a Biomek FX robotic liquid-
handling device (Beckman Instruments), then 10 μl of enzyme solution (20 nM final enzyme
concentration in assay buffer) was transferred to the plate. The reaction was incubated for
10 min at room temperature and then stopped by the addition of 10 μl 10% SDS. The
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absorbance of each well was measured at OD595 nm using a microplate reader (Bio-Tek
Instruments), and the data were exported to an Excel spreadsheet for analysis. No-drug
Me2SO and 0.33 μMDSM1 were used in the experiment as controls. A hit was recorded when
compound (10 μM) reached 40% of DSM1 inhibition of enzymatic activity.

Results

Pedagogical Evaluation
We presented our teaching unit to a class of undergraduate researchers and a class of high
school researchers who were involved in summer programs at the University of Pittsburgh.
Students remained engaged with the pharmacophore modeling exercise for the full duration of
the class. Overall, the class was well-received and ranked highly in student evaluations (third
out of eleven lectures). In fact, one student noted: “This was my favorite class presented in the
series.” The majority of high school students could correctly identify the definition of a phar-
macophore at the conclusion of the program several weeks later.

Comparison of the prospective structure prediction and the
subsequently resolved crystal structure
The predicted poses are compared to the actual crystal pose (PDB: 4RYH) in Fig 5. The phar-
macophore-aligned pose has a heavy atom RMSD of 1.7Å, which is improved to 1.18Å by the
pose minimized with a flexible ARG-165. As predicted by the pharmacophore model, com-
pound 6 makes a hydrogen bond to HIS-185. Unsurprisingly, ARG-265 exhibits a significantly
different side-chain conformation than in 3I65. The minimized residue, shown in Fig 5(b) does
not recapitulate this conformation, as it seems that a smaller movement was sufficient to elimi-
nate the steric clash with the nitro group of compound 6. Interestingly, when smina is used to
dock compound 6 to its cognate receptor, the top ranked pose has an RMSD of 2.0Å. In con-
trast, when the pose of Fig 5(b) is further minimized against the cognate receptor, its RMSD
improves to 0.93Å. This illustrates the benefit of incorporating information from known struc-
tures such as pharmacophoric constraints when performing pose prediction.

Fig 4. Pose prediction of compound 6.Receptor structure and binding site residues of 3I65 are shown in blue. Compound 6 is shown in magenta sticks. (a)
Compound 6 aligned to the pharmacophore of Fig 1. The compound makes a hydrogen bond with HIS-185. (b) After minimization, the pose has twisted so
that the hydrogen bond to HIS-185 is broken. (c) When the pharmacophore aligned posed is minimized with a flexible ARG-265, which sterically clashes with
the initial pose, a less dramatic movement is observed and the hydrogen bond to HIS-185 is maintained.

doi:10.1371/journal.pone.0134697.g004
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Experimental Validation
The TDT organizers selected a total of 167 compounds for purchase and testing. 120 com-
pounds were selected from the ranked list generated with Vina scoring while 72 compounds
were selected from the custom scoring list. 25 selected compounds were present in both lists.
The available compounds that were ranked in the top 20 in both lists were selected and then
additional compounds were selected randomly from the remainder. The distribution of tested
and active compounds for both rankings and their relationship to the predicted binding affinity
is shown in Fig 6.

As shown in Table 3, the overall hit rate was 27%, with the compounds selected by Vina
demonstrating a hit rate of 33%. Neither ranking method produced a statistically significant
correlation between predicted affinity and measured affinity. However, the Vina ranking was
capable of identifying an enriched subset: 15 of the 30 best ranked tested compounds were
active while only 7 of the 30 lowest ranked tested compounds were active. In contrast, active
compounds were essentially uniformly distributed throughout the custom ranked set.

Of the 45 identified active compounds, 9 differed significantly from previously published
chemical scaffolds. These novel compounds are shown in Fig 7. Interestingly, the most potent
novel compound was the only compound of these 9 that was selected by both the Vina ranking
and the custom ranking. The difference in hit rates between the two rankings for novel com-
pounds, as shown in Table 3, was less pronounced than the overall hit rate. This may be par-
tially due to the fact than the Vina ranking selected twice as many triazolopyrimidine
containing compounds. In fact, the compound top ranked by Vina scoring was the same triazo-
lopyrimidine compound that was used to build the pharmacophore model and the co-crystal
of which was used for minimization. This suggests that the Vina scoring function, which was
largely parameterized on redocking performance, may have a bias towards compounds with
high structural similarity to the cognate ligand of the receptor used for minimization. Given
the propensity of similar compounds to have similar activities, such a similarity bias is likely to
improve hit rates. However, this bias may also prove counter-productive in the search for

Fig 5. Pose prediction results. The crystal structure of compound 6 (pink sticks) bound to its receptor (silver) is compared to the predicted poses. Pose
alignments were obtained by aligning the crystal receptor with 3I65 using PyMOL [22]. (a) The pharmacophore-aligned pose has a heavy-atom RMSD to the
crystal pose of 1.77Å while (b) the pose minimized with a flexible ARG-265 has an RMSD of 1.18Å.

doi:10.1371/journal.pone.0134697.g005
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novel compounds, as indicated by the differing hit rates for novel compounds shown in
Table 3.

Discussion
The 2012 TDT competition provided a unique opportunity to evaluate the effectiveness of
interactive drug discovery within an educational setting. With limited experience, undergradu-
ate and high school students were able to generate informative pharmacophores with high
retrieval rates on a benchmark database through iterative experimentation. The best pharma-
cophore identified in this exercise was incorporated in a virtual screening exercise that ulti-
mately achieved an overall hit rate of 27%. It was clear from the classroom interactions that the
students would not have been able to identify informative pharmacophores without the real-
time, interactive feedback they received from the online pharmacophore screening tools. We
speculate that expert users would stand to gain even more from such tools as they have the
experience and understanding to optimize for features beyond a simple F1 score.

Fig 6. The distribution of tested and active compounds within the submitted (a) Vina ranked and (b) custom ranked compounds. For each ranking
1000 compounds were submitted from which the TDT organizers sampled a total of 167 compounds for testing. Within the Vina ranking, better scoring
compounds are more likely to be active. No such enrichment is observed for the custom ranking.

doi:10.1371/journal.pone.0134697.g006

Table 3. The number of compounds found to demonstrate inhibition at 10μM overall and with respect to the two different methods of ranking
compounds.

Screened Active Hit Rate Novel Actives Novel Hit Rate

Total 167 45 26.9% 9 5.4%

Vina 120 40 33.3% 5 4.2%

Custom 72 13 18.1% 5 6.9%

Both 25 8 32% 1 4%

doi:10.1371/journal.pone.0134697.t003
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The TDT competition provided a unique opportunity to participate in a truly blinded, pro-
spective evaluation of virtual screening. We took advantage of this opportunity by submitting
two rankings of compounds. Compounds were selected and ranked purely on their minimized
score with respect to one of two scoring functions after being aligned to the pharmacophore.
Since no other criteria were used in selecting compounds, the results provide an unbiased view
of the efficacy of the two scoring functions at selecting active compounds. Interestingly, there
was no clearly superior scoring function. Although the Vina scoring function achieved the
highest hit rate and compounds that scored better with Vina were more likely to be active, the
Vina scoring function wasn't as successful at identifying novel compounds that were structur-
ally distinct from the reference structure used for pharmacophore modeling and minimization.

Fig 7. The nine active compounds with unpublished chemical scaffolds identified by the exercise.
Compounds are shown with their measured IC50 and their rank within the Vina ranked list and the custom
scored list (italic). The one compound present in both lists was the only novel compound to demonstrate sub-
micromolar affinity. All compounds have a Tanimoto similarity coefficient of less than 0.16 with respect to the
ligand used to define the pharmacophore as computed by OpenBabel with FP2 fingerprints.

doi:10.1371/journal.pone.0134697.g007
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This underscores that the development of effective and predictive scoring functions remains a
challenging task [23].

Despite the challenges, the independent and blind validation of our predictions provides
strong support for the robustness of our approach. Moreover, our submission succeeded in its
dual goals of drug discovery and education. Several novel inhibitors of DHODH were identi-
fied. Interactive pharmacophore modeling proved a powerful, engaging and instructive exer-
cise. Full tutorial materials are available from the TDT website (http://www.tdtproject.org).

Acknowledgments
We would like to thank the TDT steering committee for organizing the competition and the
sponsors for supporting the TDT project. We would also like to thank the students of the Uni-
versity of Pittsburgh TECBio REU and the UPCI Summer Academy.

Author Contributions
Conceived and designed the experiments: DRK NAPMAP CJC. Performed the experiments:
NAP XD. Analyzed the data: DRK NAP XDMAP CJC. Wrote the paper: DRK NAPMAP
CJC.

References
1. Gero AM, O'SullivanWJ. Purines and pyrimidines in malarial parasites. Blood cells. 1990; 16(2–

3):467–84; discussion 85–98. Epub 1990/01/01. PMID: 2257323.

2. Coteron JM, Marco M, Esquivias J, Deng X, White KL, White J, et al. Structure-guided lead optimization
of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydro-
genase inhibitors with clinical candidate potential. J Med Chem. 2011; 54(15):5540–61. Epub 2011/06/
24. doi: 10.1021/jm200592f PMID: 21696174; PubMed Central PMCID: PMC3156099.

3. Booker ML, Bastos CM, Kramer ML, Barker RH Jr., Skerlj R, Sidhu AB, et al. Novel inhibitors of Plasmo-
dium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J Biol
Chem. 2010; 285(43):33054–64. Epub 2010/08/13. doi: 10.1074/jbc.M110.162081 PMID: 20702404;
PubMed Central PMCID: PMC2963363.

4. Deng X, Gujjar R, El Mazouni F, KaminskyW, Malmquist NA, Goldsmith EJ, et al. Structural plasticity of
malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. J Biol
Chem. 2009; 284(39):26999–7009. Epub 2009/07/31. doi: 10.1074/jbc.M109.028589 PMID:
19640844; PubMed Central PMCID: PMC2785385.

5. Phillips MA, Gujjar R, Malmquist NA, White J, El Mazouni F, Baldwin J, et al. Triazolopyrimidine-based
dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite
Plasmodium falciparum. J Med Chem. 2008; 51(12):3649–53. Epub 2008/06/05. doi: 10.1021/
jm8001026 PMID: 18522386; PubMed Central PMCID: PMC2624570.

6. Gujjar R, Marwaha A, El Mazouni F, White J, White KL, Creason S, et al. Identification of a metabolically
stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in
mice. J Med Chem. 2009; 52(7):1864–72. Epub 2009/03/20. doi: 10.1021/jm801343r PMID: 19296651;
PubMed Central PMCID: PMC2746568.

7. Gujjar R, El Mazouni F, White KL, White J, Creason S, Shackleford DM, et al. Lead optimization of aryl
and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehy-
drogenase with antimalarial activity in mice. J Med Chem. 2011; 54(11):3935–49. Epub 2011/04/27.
doi: 10.1021/jm200265b PMID: 21517059; PubMed Central PMCID: PMC3124361.

8. Baldwin J, Michnoff CH, Malmquist NA, White J, Roth MG, Rathod PK, et al. High-throughput Screening
for Potent and Selective Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Journal
of Biological Chemistry. 2005; 280(23):21847–53. doi: 10.1074/jbc.M501100200 PMID: 15795226

9. Koes DR, Camacho CJ. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic acids
research. 2012; 40(Web Server issue):W409–14. Epub 2012/05/04. doi: 10.1093/nar/gks378 PMID:
22553363; PubMed Central PMCID: PMC3394271.

10. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for
biology. J Chem Inf Model. 2012; 52(7):1757–68. Epub 2012/05/17. doi: 10.1021/ci3001277 PMID:
22587354; PubMed Central PMCID: PMC3402020.

Interactive Drug Discovery for All

PLOS ONE | DOI:10.1371/journal.pone.0134697 August 10, 2015 12 / 13

http://www.tdtproject.org
http://www.ncbi.nlm.nih.gov/pubmed/2257323
http://dx.doi.org/10.1021/jm200592f
http://www.ncbi.nlm.nih.gov/pubmed/21696174
http://dx.doi.org/10.1074/jbc.M110.162081
http://www.ncbi.nlm.nih.gov/pubmed/20702404
http://dx.doi.org/10.1074/jbc.M109.028589
http://www.ncbi.nlm.nih.gov/pubmed/19640844
http://dx.doi.org/10.1021/jm8001026
http://dx.doi.org/10.1021/jm8001026
http://www.ncbi.nlm.nih.gov/pubmed/18522386
http://dx.doi.org/10.1021/jm801343r
http://www.ncbi.nlm.nih.gov/pubmed/19296651
http://dx.doi.org/10.1021/jm200265b
http://www.ncbi.nlm.nih.gov/pubmed/21517059
http://dx.doi.org/10.1074/jbc.M501100200
http://www.ncbi.nlm.nih.gov/pubmed/15795226
http://dx.doi.org/10.1093/nar/gks378
http://www.ncbi.nlm.nih.gov/pubmed/22553363
http://dx.doi.org/10.1021/ci3001277
http://www.ncbi.nlm.nih.gov/pubmed/22587354


11. Norman TC, Bountra C, Edwards AM, Yamamoto KR, Friend SH. Leveraging crowdsourcing to facili-
tate the discovery of newmedicines. Sci Transl Med. 2011; 3(88):88mr1. doi: 10.1126/scitranslmed.
3002678 PMID: 21697527.

12. Haigh JA, Pickup BT, Grant JA, Nicholls A. Small molecule shape-fingerprints. J Chem Inf Model.
2005; 45(3):673–84. Epub 2005/06/01. doi: 10.1021/ci049651v PMID: 15921457.

13. Shim J, Mackerell AD Jr. Computational ligand-based rational design: Role of conformational sampling
and force fields in model development. Medchemcomm. 2011; 2(5):356–70. doi: 10.1039/
C1MD00044F PMID: 21716805; PubMed Central PMCID: PMC3123535.

14. Sheridan RP, Kearsley SK. Why do we need so many chemical similarity search methods? Drug dis-
covery today. 2002; 7(17):903–11. PMID: 12546933

15. Koes DR, Camacho CJ. Pharmer: Efficient and Exact Pharmacophore Search. Journal of Chemical
Information and Modeling. 2011:null–null. doi: 10.1021/ci200097m

16. Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the
CSAR 2011 benchmarking exercise. J Chem Inf Model. 2013; 53(8):1893–904. Epub 2013/02/06. doi:
10.1021/ci300604z PMID: 23379370; PubMed Central PMCID: PMC3726561.

17. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring
function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455–61. Epub 2009/
06/06. doi: 10.1002/jcc.21334 PMID: 19499576; PubMed Central PMCID: PMC3041641.

18. Dunbar JB Jr., Smith RD, Yang CY, Ung PM, Lexa KW, Khazanov NA, et al. CSAR benchmark exer-
cise of 2010: selection of the protein-ligand complexes. J Chem Inf Model. 2011; 51(9):2036–46. Epub
2011/07/07. doi: 10.1021/ci200082t PMID: 21728306; PubMed Central PMCID: PMC3180202.

19. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open
chemical toolbox. J Cheminform. 2011; 3:33. Epub 2011/10/11. doi: 10.1186/1758-2946-3-33 PMID:
21982300; PubMed Central PMCID: PMC3198950.

20. Deng X, Kokkonda S, El Mazouni F, White J, Burrows JN, KaminskyW, et al. Fluorine modulates spe-
cies selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase
inhibitors. Journal of medicinal chemistry. 2014; 57(12):5381–94. doi: 10.1021/jm500481t PMID:
24801997; PubMed Central PMCID: PMC4079327.

21. Baldwin J, Michnoff CH, Malmquist NA, White J, Roth MG, Rathod PK, et al. High-throughput screening
for potent and selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. The Jour-
nal of biological chemistry. 2005; 280(23):21847–53. doi: 10.1074/jbc.M501100200 PMID: 15795226.

22. Schrödinger L. The PyMOLMolecular Graphics System, Version 1.6. 2014.

23. Smith RD, Dunbar JB Jr., Ung PM, Esposito EX, Yang CY, Wang S, et al. CSAR benchmark exercise
of 2010: combined evaluation across all submitted scoring functions. J Chem Inf Model. 2011; 51
(9):2115–31. Epub 2011/08/04. doi: 10.1021/ci200269q PMID: 21809884; PubMed Central PMCID:
PMC3186041.

Interactive Drug Discovery for All

PLOS ONE | DOI:10.1371/journal.pone.0134697 August 10, 2015 13 / 13

http://dx.doi.org/10.1126/scitranslmed.3002678
http://dx.doi.org/10.1126/scitranslmed.3002678
http://www.ncbi.nlm.nih.gov/pubmed/21697527
http://dx.doi.org/10.1021/ci049651v
http://www.ncbi.nlm.nih.gov/pubmed/15921457
http://dx.doi.org/10.1039/C1MD00044F
http://dx.doi.org/10.1039/C1MD00044F
http://www.ncbi.nlm.nih.gov/pubmed/21716805
http://www.ncbi.nlm.nih.gov/pubmed/12546933
http://dx.doi.org/10.1021/ci200097m
http://dx.doi.org/10.1021/ci300604z
http://www.ncbi.nlm.nih.gov/pubmed/23379370
http://dx.doi.org/10.1002/jcc.21334
http://www.ncbi.nlm.nih.gov/pubmed/19499576
http://dx.doi.org/10.1021/ci200082t
http://www.ncbi.nlm.nih.gov/pubmed/21728306
http://dx.doi.org/10.1186/1758-2946-3-33
http://www.ncbi.nlm.nih.gov/pubmed/21982300
http://dx.doi.org/10.1021/jm500481t
http://www.ncbi.nlm.nih.gov/pubmed/24801997
http://dx.doi.org/10.1074/jbc.M501100200
http://www.ncbi.nlm.nih.gov/pubmed/15795226
http://dx.doi.org/10.1021/ci200269q
http://www.ncbi.nlm.nih.gov/pubmed/21809884

