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Abstract

Background

The problems of correlation and classification are long-standing in the fields of statistics and

machine learning, and techniques have been developed to address these problems. We

are now in the era of high-dimensional data, which is data that can concern billions of vari-

ables. These data present new challenges. In particular, it is difficult to discover predictive

variables, when each variable has little marginal effect. An example concernsGenome-
wide Association Studies (GWAS) datasets, which involve millions of single nucleotide
polymorphism (SNPs), where some of the SNPs interact epistatically to affect disease sta-

tus. Towards determining these interacting SNPs, researchers developed techniques that

addressed this specific problem. However, the problem is more general, and so these tech-

niques are applicable to other problems concerning interactions. A difficulty with many of

these techniques is that they do not distinguish whether a learned interaction is actually an

interaction or whether it involves several variables with strong marginal effects.

Methodology/Findings

We address this problem using information gain and Bayesian network scoring. First, we

identify candidate interactions by determining whether together variables provide more

information than they do separately. Then we use Bayesian network scoring to see if a can-

didate interaction really is a likely model. Our strategy is called MBS-IGain. Using 100 simu-

lated datasets and a real GWAS Alzheimer’s dataset, we investigated the performance of

MBS-IGain.

Conclusions/Significance

When analyzing the simulated datasets, MBS-IGain substantially out-performed nine

previous methods at locating interacting predictors, and at identifying interactions exactly.

When analyzing the real Alzheimer’s dataset, we obtained new results and results that sub-

stantiated previous findings. We conclude that MBS-IGain is highly effective at finding
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interactions in high-dimensional datasets. This result is significant because we have

increasingly abundant high-dimensional data in many domains, and to learn causes and

perform prediction/classification using these data, we often must first identify interactions.

Introduction
We are in the era of high-dimensional or “big” data. We have data on the gene expression levels
of thousands of gene which can be exploited to help provide personalized medical treatments
[1]; we have data on millions of single nucleotide polymorphisms which can help us determine
the genetic basis of disease [2]; we have abundant passive internet data which can be used for
many purposes including learning an individual’s preferences [3] and detecting outbreaks [4];
we have abundant hospital data concerning workflow which can be used to determine good
personnel combinations and sequencing [5].

There are several learning tasks involving data. The most straightforward task is simply to
look for correlation. For example, we may test a drug versus a placebo, and perform a chi-
square test to see if the desired health outcome is correlated with use of the drug. A related task
is prediction. For example, we can analyze data on gene expression levels in breast cancer
patients not only to see if certain genes are correlated with survival, but also to predict whether
a given patient will survive [1]. Going a step further, we can learn a detailed model of the rela-
tionships among many variables to develop a rule-based expert systems [6] or a Bayesian net-
work/influence diagram [7]. The model learned can then be used to perform numerous
predictions and make decisions. Finally, we can use data to discover causal relationships
among variables [8].

Numerous techniques have been developed to perform these learning tasks using low-
dimensional data including linear regression and logistic regression, the perceptron [9], sup-
port vector machines [10], neural networks [11], and strategies for learning Bayesian network
[7]. These techniques do not automatically handle high-dimensional data. However, some
have been modified to do so. Techniques include regularized regression and lasso [12], which
perform shrinkage. Furthermore, strategies such as ReliefF [13], have been developed to iden-
tify possible good predictors in high-dimensional datasets, which can then be provided to
another method.

These techniques require that a predictor of a given target has a relatively strong correlation
with that target. So, if two or more predictors interact with little marginal effects, the predictors
would not be discovered. Table 1 illustrates an interaction with little marginal effects. Variables
X and Y are both trinary predictors of a binary target Z. The number next to each variable
value shows the fraction of occurrence of that value in the population, and the entries in the

Table 1. An interaction with little marginal effect. Variables X and Y are both trinary predictors of a
binary target Z. The number next to each variable value shows the fraction of occurrence of that value in the
population, and the entries in the table show the probability Z equals z1 given each combination of the
predictors.

x1 (.25) x2 (.5) x3 (.25)

y1 (.25) 0.0 0.1 0.0

y2 (.5) 0.11 0.0 0.11

y3 (.25) 0.0 0.1 0.0

doi:10.1371/journal.pone.0143247.t001
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table show the probability Z equals z1 given each combination of the predictors. For example,

Pðz1jx1; y2Þ ¼ 0:11

We have

Pðz1jy1Þ ¼ 0:0� 0:25þ 0:1� 0:5þ 0:0� 0:25 ¼ 0:05

Pðz1jy2Þ ¼ 0:11� 0:25þ 0:0� 0:5þ 0:11� 0:25 ¼ 0:055

Pðz1jy3Þ ¼ 0:0� 0:25þ 0:1� 0:5þ 0:0� 0:25 ¼ 0:05:

So although X and Y together have a strong predictive strength for Z, Y exhibits little mar-
ginal effect. Similarly, X also exhibits little marginal effect. We say that X and Y interact to
affect Z, where the interaction may or may not be causal.

Epistasis is the interaction of two more genes to affect phenotype. Biologically, epistasis is
believed to occur when the effect of one gene is modified by one or more other genes. It is
thought that much of genetic risk for disease is due to epistatic interactions with little or no
marginal effects [14–17]. The advancement of high-throughput technologies has enabled
Genome Wide Association Studies (GWAS). A single nucleotide polymorphism (SNP) results
when a nucleotide that is typically present at a specific location on the genomic sequence is
replaced by another nucleotide. These high dimensional GWAS datasets can concern millions
of SNPs, and provide researchers unprecedented opportunities to investigate the complex
genetic basis of diseases. By looking at single-locus associations using standard analyses such as
chi-squared tests, researchers have identified over 150 risk loci associated with 60 common dis-
eases and traits [18–21]. However, such analyses will miss SNPs that are interacting epistati-
cally with little marginal effect. So, researchers endeavored to develop methods for learning
epistasis from high-dimensional GWAS datasets. Traditional techniques such as logistic regres-
sion (LR) [22], logistic regression with an interaction term (LRIT) [23], penalized logistic regres-
sion [24] and Lasso [25] were applied to the task. Other techniques includemultifactor
dimensionality reduction (MDR) [26], full interaction modeling (FIM) [27], using information
gain (IG) alone to investigate only 2-SNP interactions [28], SNP Harvester (SH) [29], the use of
ReliefF [30], random forests [31], predictive rule inference [32], Bayesian epistasis association
mapping (BEAM) [33],maximum entropy conditional probability modeling (MECPM) [34],
and Bayesian network learning [35–37].

The problem of identifying interactions is not limited to SNPs. Predictors could be interact-
ing in all of the situations discussed earlier. So this research on SNP-SNP interactions is appli-
cable to all the problems involving high-dimensional datasets discussed above.

Next, we briefly discuss themultiple beam search algorithm (MBS), which was developed in
[35], to illustrate a difficulty inherent in its methodology. When there are many possible pre-
dictors, MBS first uses a Bayesian network scoring criterion (discussed in the Methods Section)
to identify the best set of possible predictors. It then initiates a beam from each member of this
set. On this beam, it does greedy forward search, adding the predictor that increases the score
the most, until no addition increases the score. It then greedily deletes the predictor such that
the deletion increases the score the most, until no deletion increases the score. The final set of
predictors is a candidate interaction.

There are two problems with this strategy. First, if two predictors each have a strong individ-
ual effect, then the model that includes both of them will have a high score and will end up
being identified as an interaction, even if they do not interact at all. Second, if several predictors
have very strong effects by themselves, they will be chosen on every beam, thereby blocking the
beam from finding a lower scoring interacting SNP. The recently developed interaction
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discovery algorithm REGAL [37] repeatedly runs MBS, each time deleting the SNPs in the
highest scoring model. This strategy addresses the second problem, but not the first one.

In this paper we again using MBS to investigate beams, and we use Bayesian network scor-
ing to decide when to stop our search. However, we use information gain to decide which pre-
dictor to add instead of adding the predictor that most increases the score. We call the method
MBS-IGain. We present the results of experiments using 100 simulated datasets comparing
MBS-IGain to MBS, REGAL, and 7 other methods.

We note that no method, including ours, can overcome the “curse of dimensionality.” That
is, if we have many possible predictors, it is not computationally possible to even investigate
every two-predictor combination. We apply MBS-IGain to a real GWAS late onset Alzheimer's
disease (LOAD) data set that concerns data on 312,260 SNPs. In order to obtain computational
feasibility, we first determine the 10,000 SNPs with the greatest marginal effect. So, if two SNPs
interact with no marginal effect they would likely be missed. Regardless, we obtain interesting
results in this real application. Another strategy for pre-processing SNP data is to use to restrict
the search space by using knowledge about molecular pathways [38].

Methods
Our method utilizes Bayesian networks and information gain. So, first we review these two.

Bayesian Networks
Bayesian networks [6,7,39,40] are increasingly being used for uncertain reasoning and machine
learning in many domains including bioinformatics [41–48]. A Bayesian network (BN) consists
of a directed acyclic graph (DAG) G = (V, E), whose nodeset V contains random variables and
whose edges E represent relationships among the random variables, and a conditional proba-
bility distribution of each node X 2 V given each combination of values of its parents. Often
the DAG is a causal DAG, which is a DAG containing an edge from X to Y only if X is a direct
cause of Y [7].

Fig 1 shows a causal BN modeling the relationships among a small subset of variables
related to respiratory diseases (developed using Netica). The values shown at each node are the
alternatives and the prior probabilities of the alternatives (times 100). The value h1 means the
patient has a smoking history and the value h2 means the patient does not. The other values
have similar meaning.

Using a BN, we can determine conditional probabilities of interest with a BN inference algo-
rithm [7]. For example, using the BN in Fig 1, if a patient has a smoking history (h1), a positive
chest X-ray (x1), and fatigue (f1), we can determine the probability of the individual having
lung cancer. That is, we can compute P(l1|h1, x1, f1). Algorithms for exact inference in BNs
have been developed [7]. However, the problem of doing inference in BNs is NP-hard [49]. So,
approximation algorithms are often employed [7].

The task of learning a BN from data concerns learning both the parameters in a BN and the
structure (called a DAG model). Specifically, a DAG model consists of a DAG G = (V, E) where
V is a set of random variables, and a parameter set θ whose members determine conditional
probability distributions for G, but without specific numerical assignments to the parameters.
The task of learning a unique DAG model from data is calledmodel selection. As an example, if
we had data on a large number of individuals and the values of the variables in Fig 1, we might
be able to learn the DAG in Fig 1 from these data.

In the score-based structure learning approach, we assign a score to a DAG based on how
well the DAG fits the data. Cooper and Herskovits [50] developed the Bayesian score, which is
the probability of the data given the DAG. This score uses a Dirichlet distribution to represent
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prior belief for each conditional probability distribution in and contains hyperparameters rep-
resenting these beliefs. The score is as follows:

scoreBayesðG : DataÞ ¼ PðDatajGÞ ¼
Yn

i¼1

Yqi

j¼1

GðPri
k¼1 aijkÞ

GðPri
k¼1 aijk þ

Pri
k¼1 sijkÞ

Yri

k¼1

Gðaijk þ sijkÞ
GðaijkÞ

; ð1Þ

where ri is the number of states of Xi, qi is the number of different instantiations of the parents
of Xi, aijk is the ascertained prior belief concerning the number of times Xi took its kth value
when the parents of Xi had their jth instantiation, and sijk is the number of times in the data
that Xi took its kth value when the parents of Xi had their jth instantiation. The parameters aijk
are known as hyperparameters.

When using the Bayesian score we often determine the values of the hyperparameters aijk
from a single parameter α called the prior equivalent sample size [51]. If we want to use a prior
equivalent sample size α and represent a prior uniform distribution for each variable in the net-
work, for all i, j, and k we set aijk = α / riqi. In this case Eq 1 is as follows:

scoreaðG : DataÞ ¼ PðDatajGÞ ¼
Yn

i¼1

Yqi

j¼1

Gða=qiÞ
Gða=qi þ

Pri
k¼1 sijkÞ

Yri

k¼1

Gða=riqi þ sijkÞ
Gða=riqiÞ

: ð2Þ

This version of the score is called the Bayesian Dirichlet equivalent uniform (BDeu) score.
TheMinimum Description Length (MDL) score is based on information theory and tries to

determine the model that minimizes the number of bits necessary to encode both the model

Fig 1. Bayesian networkmodeling relationships among respiratory diseases.

doi:10.1371/journal.pone.0143247.g001
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and the data. Suzuki [52] developed the following version of this score:

scoreMDLðG : DataÞ ¼ d
log2m
2
�m

Xn

i¼1

Xqi

j¼1

Xri

k¼1
Pðxik; paijÞ log2

Pðxik; paijÞ
PðxikÞPðpaijÞ

; ð3Þ

where d is the number of parameters necessary to store the probability distributions,m is the
number of data items, ri is the number of states of Xi, xik is the kth state of Xi, qi is the number
of instantiations of the parents of Xi, paij is the jth instantiation of the parents PAi of Xi, and
the probabilities are computed using the data.

Note that when we are searching for the best model, we maximize the BDeu score but mini-
mize the MDL score.

To learn a DAG from data we can score all DAGs using the Bayesian or MDL score and
then choose the best scoring DAG. However, if the number of variables is not small, the num-
ber of candidate DAGs is forbiddingly large. Furthermore, the BN model selection problem has
been shown to be NP-hard [53]. So heuristic algorithms have been developed to search over
the space of DAGs during learning [7]. These heuristic algorithms assume each parent has a
significant marginal effect on the child, and so they cannot learn BNs in which some variables
interact with little marginal effect.

Information Gain
Information theory [54] is the discipline that deals with the quantification and communication
of information. If Z is a discrete random variable withm alternatives, we define the entropy H
(Z) as follows:

HðZÞ ¼ �
Xm

i¼1
PðziÞ log2PðziÞ:

Shannon [54] showed that if we repeat n trials of the experiment having outcome Z, then
the entropy H(Z) is the limit as n!1 of the expected value of the number of bits needed to
report the outcome of each trial of the experiment. Entropy is a measure of our uncertainty in
the value of Z since, as entropy increases, on the average it takes more bits to resolve our
uncertainty. Entropy is maximized when P(zi) = 1/m for all i, and is minimized with value 0
when P(zi) = 1 for some i.

The conditional entropy of Z given X is the expected value of the entropy of Z conditional
on X. It is defined as follows (where X has k alternatives):

HðZjXÞ ¼
Xk

j¼1
HðZjxjÞPðxjÞ;

By learning the value of X, we can reduce our uncertainty in Z. We define the information
gain of Z relative to X as the expected reduction in the entropy of Z conditional on X:

IGðZ;XÞ ¼ HðZÞ � HðZjXÞ:

The conditional information gain of Z relative to X conditional on Y is the expected value of
the information gain conditional on Y. It is as follows (where Y has l alternatives):

IGðZ;XjYÞ ¼
Xl

i¼1
IGðZ;XjyiÞPðyiÞ

The following are some important properties of information gain:
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1. IG(Z; X)� 0 with equality holding if and only if Z and X are independent.

2. IG(Z; X) = IG(X; Z).

3. IG(Z; X, Y) = IG(Z; X | Y) + IG(Z; Y). (chain rule for information gain).

4. IG(Z; X, Y)� IG(Z; Y).

The 4th property follows easily from the 1st and 3rd ones.

Using Information Gain to Measure Interaction Strength
If we have three variables X, Y, and Z, we define the interaction strength of X and Y relative to
Z as follows:

ISðZ;X;YÞ ¼ IGðZ;X;YÞ � IGðZ;XÞ � IGðZ;YÞ:

We can generalize this definition to measure interaction strength of X and a set of variables
A.

ISðZ;X;AÞ ¼ IGðZ;X;AÞ � IGðZ;XÞ � IGðZ;AÞ:
Technically since A is set, we should write {X} [ A in the IG expression. However, we use

the more succinct notation. Finally, we can define the interaction strength of the set A as fol-
lows:

ISðZ;AÞ ¼ IGðZ;AÞ �
X

X2A
IGðZ;XÞ: ð4Þ

Interaction strength measures the increase in information gain obtained by considering X
and A together relative to considering them separately. We can use the interaction strength to
investigate interactions. The greater its value, the more indication we have that X and the vari-
ables in A are interacting to affect Z. In this way, we can discover variables that have little mar-
ginal effect while have a large effect together. Furthermore, we should be less likely to conclude
that two non-interacting variables with strong individual effects are interacting because their
individual information gains will be high, while their joint gain should not add much. In this
next section we develop an algorithm for learning interactions that uses the interaction
strength.

In general, the interaction strength can be positive or negative. Fig 2 shows three causal BN
DAGmodels illustrating some of the possibilities. In Fig 2(A), X and Z are independent condi-
tional on Y. We then have by Properties (1) and (3) above

IGðZ;X;YÞ ¼ IGðZ;XjYÞ þ IGðZ;YÞ
¼ 0þ IGðZ;YÞ ¼ IGðZ;YÞ:

We therefore have by Property (1) above

ISðZ;X;YÞ ¼ IGðZ;X;YÞ � IGðZ;XÞ � IGðZ;YÞ
¼ IGðZ;YÞ � IGðZ;XÞ � IGðZ;YÞ
¼ �IGðZ;XÞ � 0:

Learning Interactions Using Information Gain and Bayesian Networks
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On the other hand, in Fig 2(B) X and Y are independent causes of Z. If X and Y are indepen-
dent, we have the following by Properties (1) and (3) above

IGðX;ZjYÞ ¼ IGðX;Z;YÞ � IGðX;YÞ
¼ IGðX;Z;YÞ:

So, by Properties (2), (3) and (4)

ISðZ;X;YÞ ¼ IGðZ;X;YÞ � IGðZ;XÞ � IGðZ;YÞ
¼ IGðZ;XjYÞ þ IGðZ;YÞ � IGðZ;XÞ � IGðZ;YÞ
¼ IGðX;Z;YÞ � IGðZ;XÞ
¼ IGðX;Z;YÞ � IGðX;ZÞ
� 0:

In many applications the variables that we are investigating for interactions are known to be
independent possible causes. For example, in a GWAS data set, the causal SNPs are often inde-
pendent possible causes of the disease. In these cases we can be assured that the interaction
strength is non-negative.

We stress that, in general, a high value of the interaction strength does not imply that the
investigated variables are causes of the target. Consider the causal DAG model in Fig 2(C).
Since this complete DAG can represent any joint probability distribution of three variables, we
could have the same interaction strength with this underlying causal mechanism as we would
have when X and Y have a strong interactive causal effect on Z. So, in an agnostic search for
interactions, we cannot assume that a discovered interaction is causal. For example, if we are
searching for interactions when developing a BN DAGmodel and make every variable a target,
we cannot assume that what appears to be a discovered interaction is a causal interaction.

Information Gain and the MDL Score
Suppose we have the simple DAGmodel in which there is a target Z with parent set PA. Then
the local MDL score at node Z is as follows:

scoreMDLðZ; PA : DataÞ ¼ d
log2m
2
�m

Xq

j¼1

Xr

k¼1
Pðzk; pajÞ log2

Pðzk; pajÞ
PðzkÞPðpajÞ

;

Fig 2. Causal BN DAGmodels.

doi:10.1371/journal.pone.0143247.g002
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where d is the number of parameters necessary to store the conditional distributions for Z,m is
the number of data items, r is the number of states of Z, and q is the number of values the
parents of Z can take. By scoreMDL (Z; PA: Data) we mean the MDL score of the model that has
the variables in PA as the parents of Z and no other edges.

It is possible to show that

Xq

j¼1

Xr

k¼1
Pðzk; pajÞ log2

Pðzk; pajÞ
PðzkÞPðpajÞ

¼ IGðZ; PAÞ:

Note that in this context the IG also depends on Data since we use the data to compute the
probabilities. However, we do not show that dependency. So, the MDL score is given by

scoreMDLðZ; PA : DataÞ ¼ d
log2m
2
�m� IGðZ; PAÞ;

Recall that smaller scores are better. So, larger information gain improves the score.

Algorithm for Discovering Interactions
We assume that we have possible predictors Xi and a target variable Z. We want to find predic-
tors that interact to affect Z. The algorithm that follows does this.
Algorithm Jiang-MBS-IGain
Determine the set Best of n highest scoring predictors Xi using score(Z;Xi);
for each predictor Xi 2 Best

Gi = {Xi};
flag = 0;

while flag = 0
Determine predictor X that maximizes IS(Z;Gi, X);
if

ISðZ;Gi ;XÞ
IGðZ;GiÞþIGðZ;XÞ � T or scoreðZ;Gi;XÞ < scoreðZ;GiÞ

flag = 1;
else

add X to Gi;
endelse

endwhile
endfor
Sort the n models by score(Z;Gi);
Output the sorted list;

The score(Z;Gi) in AlgorithmMBS-IGain is either the MDL score or the BDeu score of the
BN DAGmodel that has the variables in Gi as parents of our target variable Z. By score(Z:Xi)
we mean only Xi is the parent of Z. This algorithm synergistically use Bayesian network scoring
criteria and the IS and IG functions. First, if there are too many predictors to investigate all of
them, the most promising predictors are selected using the scoring criterion. A beam is then
started from each of these predictors. On each beam, we greedily select the predictor that has
the highest IS with the set of predictors chosen so far. We end the search when either the IS is
small relative to the individual IGs (as determined by a threshold T), or when adding the pre-
dictor decreases the score of the model. This latter exit criterion is important because we not
only want to discover predictors that appear to be interacting, but we also want to discover
likely models. Fig 3 illustrates the situation. Suppose our current model Gi is the one in Fig 3
(A), and we find that X3 has the greatest interaction strength with variables already in the
model, and the interaction is sufficiently strong that we exceed the threshold. If the model in
Fig 3(B) has a lower score than the one in Fig 3(A), then it is less likely that all three nodes are
parents of Z, and so we do not add X3 in spite of the interaction strength being relatively large.

Learning Interactions Using Information Gain and Bayesian Networks
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On the other hand, the check for a sufficiently large IS is important because two or more SNPs
could score very high as parents of Z when there is no evidence of an interaction. An example
would be when X and Y each have strong causal strengths for Z but affect Z independently, as
specified in the Noisy-OR model [3,7]. In this case the model X!Z Y has a high score, even
though there is no interaction.

Let n be the number of predictors investigated. There are n passes through the for-loop in
MBS-Gain. In the worst case, there are n(n-1)/2 passes through the while-loop for each pass
through the for-loop. So, technically the algorithm is O(n3). However, we stop developing each
model afterM predictors are added, whereM is a parameter. In our experiments,M = 4. So in
practice the algorithm is O(n2).

We noted previously that the MDL score can be expressed in terms of IG as follows:

scoreMDLðZ; PA : DataÞ ¼ d
log2m
2
�m� IGðZ; PAÞ;

Using this equality and some algebraic manipulation, it is possible to show the following
(We do not show the dependence on Data for the sake of brevity):

ISðZ;X;AÞ ¼ ðscoreMDLðZ;XÞ þ scoreMDL ðZ;AÞ � scoreMDLðZ;X;AÞÞ=mþ C

where C is a constant. Since C andm are the same for all predictors X, when doing our search
in AlgorithmMBS-IGain, we could just find the predictor that maximizes the following expres-
sion:

scoreMDLðZ;XÞ þ scoreMDLðZ;AÞ � scoreMDLðZ;X;AÞ:

This result motivates investigating the use of the BDeu score in our search instead of the
MDL score. That is, we find the predictor X that maximizes this expression:

ln scoreaðZ;X; AÞ � ln scoreaðZ;XÞ � ln scoreaðZ;AÞ:

Jiang et al. [55] had better results discovering interactions using the BDeu score than using
the MDL score. So, we might obtain improved results by using the BDeu score in our interac-
tion strength formula. However, when we tried doing this in our studies, our results were
worse than those obtained using the true IS. So, we do not include this strategy in the experi-
mental results that follow.

Fig 3. If the DAGmodel in (b) has a lower score than the one in (a), we do not add node X3.

doi:10.1371/journal.pone.0143247.g003
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Experiments
Chen et al. [56] generated datasets based on two 2-SNP interactions, two 3-SNP interactions,
and one 5-SNP interaction, making a total of 15 causative SNPs. The effects of the interactions
were combined using a Noisy-OR model [3,7]. The specific interacting SNPs were as follows:

1. {S1, S2, S3, S4, S5}

2. {S6, S7, S8}

3. {S9, S10, S11}

4. {S12, S13}

5. {S14, S15}

Three parameters were varied to create the interactions: 1) θ, which determined the pene-
trance; 2) β, which determined the minor allele frequency; and l, which determined the linkage
disequilibrium of the true causative SNPs with the observed SNPs. See [56] for details concern-
ing these parameters. For various combinations of these parameters, Chen et al. [56] developed
datasets containing 1000 cases and 1000 controls. In our evaluation, we used the 100 1000-SNP
datasets they developed with θ = 1, β = 1, and l = null.

We compared the performance of MBS-IGain, MBS [35], and REGAL [37] using these 100
datasets. MBS is similar to MBS-IGain except that in the forward search it adds the predictor
that increases the score rather than the interaction strength the most. It also does backward
search deleting the predictor that increases the score the most. REGAL repeatedly runs MBS,
each time deleting the predictors in the highest scoring interaction. By eliminates the predictors
in the highest scoring interaction, we guarantee that in the next iteration they won’t be chosen
on any of the beams. In this way, lower scoring interacting predictors can be found in the sub-
sequent iteration.

We ran all three methods with the MDL score and the BDeu score with α = 1, 4, 9, 54, and
128. For MBS-IGain we used threshold values of T = 0.01, 0.05. 0.1, 0.15, 0.2, 0.3, 0.4, 0.5. We
configured REGAL to repeatedly run MBS 5 times. For all three methods, we limited the num-
ber of SNPs in a model to 5, which means at mostM = 4 SNPs were added on each beam.

The experiments were run on three computers. JLJ69-dt contains an Intel i7 4790k with
32GB of memory which runs on Linux Mint 17.1 and Oracle Java 8 64-bit. The two others,
DBGAP and DBGAP2, contain identical two AMD Opteron 4280s per computer with 128GB
of memory, 64GB per NUMA node, which run onWindows Server 2008 R2 and Oracle Java 8
64-bit. Each experiment involving the 100 datasets was run using a shell script to run a java-
runtime file which iterated on the datasets in question, with each parameter on its own thread
spread among the three computers. The script was run the same for each of the configurations
mentioned above.

We compared the methods using the following two criteria:
Criterion 1. This criterion determines how well the interacting predictors (SNPs), are dis-

covered without regard to whether the actual interactions themselves are discovered. It mea-
sures the frequency with which the interacting predictors are ranked among the first K
predictors. First, the learned interactions are ordered by their scores. Then the predictors are
ordered according to the first interaction in which each appears. Finally, the power according
to criterion 1 is computed as follows:

Power1ðKÞ ¼
1

R�M

XR

i¼1
NKðiÞ
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where NK(i) is the number of interacting predictors appearing in the first K predictors for the
ith dataset,M is the total number of interacting predictors, and R is the number of datasets. In
our comparison experiments using the 100 1000 SNP datasetsM = 15 and R = 100.

Criterion 2. This criterion measures how well each of the given interactions is discovered.
Each interaction is investigated separately. The power is computed using the Jaccard index
which is as follows:

JaccardðA;BÞ ¼ #ðA \ BÞ
#ðA [ BÞ :

This index is 1 if the two sets are identical and is 0 if they have no items in common. First,
the learned interactions are ordered by their scores for each dataset i. LetMj (i) denote the jth
learned interaction in the ith dataset, and C denote the true interaction we are investigating.
For each i and j we compute Jaccard(Mj(i), C). Then we set

JKði;CÞ ¼ max
1�j�K

JaccardðMjðiÞ;CÞ

Then the power according to criterion 2 is computed as follows:

Power2ðK;CÞ ¼
1

R�M

XR

i¼1
JKði;CÞ

whereM is the total number of interacting predictors, and R is the number of datasets.
Reiman et al. [57] developed a GWAS late onset Alzheimer's disease (LOAD) data set that

concerns data on 312,260 SNPs and contained records on 859 cases and 552 controls. We
applied MBS-IGain to this dataset to investigate how well it can learn interactions in a real set-
ting. In order to apply MBS-IGain to this dataset, it was necessary to first filter the SNPs
because 312,260 is too many SNPs to handle. One of the 312,260 loci is the APOE gene; how-
ever, we still use the terminology “SNP” to refer to the loci. We filtered by choosing the 1000
top-scoring 1-SNP models, the 5000 top-scoring 1-SNP models, and the 10,000 top-scoring
1-SNP models, and ran MBS-IGain with each of these sets of SNPs. We also ran the top-scor-
ing 100 SNP models with all the remaining SNPs. We used the BDeu Score with α = 4, the
MDL score, and thresholds of 0.05 and 0.1. We limited the size of the models to 5, which
means at most M = 4 SNPs were added on each beam.

Ethics Statement
This research uses only simulated datasets and a real de-identified dataset. So it does not
require IRB approval.

Results

Simulated Datasets
First, we compare the result of using MBS-IGain with the MDL score to its results using the
BDeu score. For values of the threshold that are not extreme (0.05 to 2), the results were the
best and were very similar. Furthermore for smaller values of α in the BDeu score (1, 4, 9), the
results were the best and were very similar. We show the results that were obtained with
T = 0.1 for both methods and with α = 4 for the BDeu score. S1 Fig shows Power1(K) for
K� 100 for the two scores. S2 Fig shows Power2(K,C) for K� 100 for each of the 5 interactions
for the two scores; S2 Fig (f) shows the average of Power2(K,C) over all 5 interactions. We see
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that the BDeu score sometimes performed slightly better and the MDL score sometimes per-
formed slightly better. Overall, the two scores yield very comparable results.

Next, we compare the results for MBS-IGain, REGAL, and MBS. Like MBS-IGain, the per-
formances of REGAL and MBS were best when using the MDL score or the BDeu score with
smaller values of α. The results we show are for when all three methods use the MDL score and
MBS-IGain uses a threshold of T = 0.1. Fig 4 shows Power1(K) for K� 100 for the three meth-
ods. Fig 5 shows Power2(K,C) for K� 100 for each of the 5 interactions C for the three meth-
ods; Fig 5(F) shows the average of Power2(K,C) over all 5 interactions. Looking at Fig 4 and Fig
5(F) we see that REGAL performs notably better than MBS both at locating the interacting
SNPs and at identifying the interactions exactly. So, the strategy of removing interactions and
repeatedly running MBS seems to pay off. However, MBS-IGain performs notably better than
REGAL at both these tasks. So, it appears that a much better strategy than repeatedly running
MBS is to use information gain to identify interactions and then using BN scoring to decide
whether the learned interaction is a likely model. MBS-IGain locates over half of the interacting
SNPs within the first 10 predictors identified, and locates almost 2/3 of them in the first 100
predictors.

We now discuss the results for each interaction individually to illustrate the advantage of
using information gain and BN scoring instead of using BN scoring alone. We look at the inter-
actions in the order in which MBS-IGain is capable of identifying them. Fig 5(D) shows that
MBS-IGain always locates interaction {S12,S13} exactly and it is the highest scoring interaction.
That is, the average Jaccard Index for this interaction jumps to 1 at K = 1. Both REGAL and
MBS are fairly good at locating this interaction early, but their Jaccard Indices are smaller
(MBS actually performs better than REGAL for this interaction). The problem is that they
include extra SNPs (ordinarily S6) in the model because the extra SNP increases the score.
MBS-IGain does not add this extra SNP because it has weak interaction strength with {S12,
S13}. Fig 5(B) shows that MBS-IGain is good at locating interaction {S6,S7,S8} early, but
REGAL and MBS are not. The problem is that they usually group S6 with {S12,S13}, and then
often do not find S7 and S8 at all. We see from Fig 5(C) that both MBS-IGain and REGAL are
good at locating interaction {S9,S10,S11} early but MBS is not. According to that figure
REGAL outperforms MBS-IGain slightly. However, this is a little misleading because

Fig 4. Comparison of MBS-IGain, REGAL, and MBS all using the MDL score (with T = 0.1 for
MBS-IGain) according to performance Criterion 1.

doi:10.1371/journal.pone.0143247.g004
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MBS-IGain always ranks {S12,S13} first and often ranks {S6,S7,S8} second. REGAL does not
do this as often. So it identifies {S9,S10,S11} slightly earlier. Fig 5(A) reveals none of the meth-
ods are very good at identifying {S1,S2,S3,S4,S5}; however, overall MBS-IGain does best. Again,
REGAL does slightly better early. We see from Fig 5(E) that both REGAL and MBS cannot
identify {S14,S15} at all, whereas MBS-IGain identifies it to a limited extent. This interaction is
particularly difficult to learn because the penetrance for the interacting SNPs is only 0.07. By

Fig 5. Comparison of MBS-IGain, REGAL, and MBS all using the MDL score (with T = 0.1 for MBS-IGain) according to performance Criterion 2.

doi:10.1371/journal.pone.0143247.g005
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way of contrast, the penetrances for interaction {S12,S13} are 0.5 and 0.7. See [46] for the
details of the 5 models.

S1 Table shows the average running times for the three methods when analyzing the 100
1000 SNP datasets. Not only did MBS-IGain perform substantially better than the other meth-
ods, but it also was the fastest. This result is apparent based on a simple analysis of the algo-
rithms. MBS-IGain only does a forward search, whereas MBS does forward and backward
search, and REGAL repeatedly runs MBS (in our experiments 5 times). Since the algorithms
are quadratic-time, an extrapolation of the results for the MDL score in S1 Table indicates that
it would take MBS-IGain about 12 days to handle 20,000 predictors, while it would take
REGAL around two months. This time difference could be significant in a real search. The
computation of the BDeu score appears to be faster than that of the MDL score based on S1
Table.

Fig 6 shows a comparison of MBS-IGain to 7 other methods according to performance Cri-
terion 1. The 7 methods are as follows: logistic regression (LR) [22],multifactor dimensionality
reduction (MDR) [26], full interaction modeling (FIM) [27], information gain (IG) [28], SNP
Harvester (SH) [29], Bayesian epistasis association mapping (BEAM) [33], andmaximum
entropy conditional probability modeling (MECPM) [34]. The same 100 1000 SNP datasets
were used in the comparison. That is, they are the datasets developed by Chen et al. [56] with
θ = 1, β = 1, and l = null. The results for the other 7 methods were obtained from Chen et al.
[56]. As we see from Fig 6, MBS-IGain exhibited substantially better performance than the
other 7 methods according to performance Criterion 1.

Six of the 8 methods produce a total ranking of all the SNPs while learning interactions. For
these methods we can develop ROC curves. To obtain one point on the ROC curve, we deter-
mine the number x of true SNPs (ones involved in interactions) and the number y of false
SNPs in the topm SNPs. Based on this value ofm, the true positive rate (sensitivity) is x/15 and
the false positive rate (1-specificity) is y/985. We repeat this calculation for many values ofm
spaced between 0 and 1000. Fig 7 shows the ROC curves for the 6 methods. MBS-Gain has a

Fig 6. Comparison of MBS-IGain to 7 other methods according to performance Criterion 1. SNP
Harvester (SH), maximum entropy conditional probability modeling (MECPM), Bayesian epistasis
association mapping (BEAM), logistic regression (LR), full interaction modeling (FIM), information gain (IG),
multifactor dimensionality reduction (MDR).

doi:10.1371/journal.pone.0143247.g006
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true positive rate of about 0.5 with a negligible false positive rate. SH has only around a 0.4 true
positive rate with a negligible false positive rate. However, by the time we get to a false positive
rate of 0.1, SH overtakes MBS-IGain, and SH is in turn overtaken by BEAM at a false positive
rate of 0.4. So, if we can tolerate a 10% false positive rate, LH might be a better choice. However,
ordinarily we want to keep the false positive rate much smaller than 10%.

Real Datasets
When analyzing the real LOAD GWAS dataset with MBS-IGain, the BDeu score discovered a
total of 14,818 unique models and the MDL score discovered a total of 10,141 unique models.
Fig 8A shows a histogram of the BDeu scores and Fig 8B shows the percentile distribution. We
see that the vast majority of the BDeu score approximately follow a normal distribution; how-
ever, there are 14 outliers with much higher scores. Fig 8C shows a histogram of the MDL
scores and Fig 8D shows the percentile distribution. Although the distribution of the MDL
scores is not a close to being normal as that of the BDeu score, most of the scores are clumped
together and there are 21 outliers. The outliers for both scores constitute notable findings.

Table 2 shows the notable interactions discovered by the BDeu score, and Table 3 shows the
notable interactions discovered by the MDL score. For both scores the notable finding distrib-
ute into two groups. The first group contains higher-scoring interactions involving the APOE
gene, and the second group contains lower-scoring interactions involving the APOC1 gene.
APOE is the strongest genetic predictor of LOAD. Furthermore APOE and APOC1 are in link-
age disequilibrium, and APOC1 predicts LOAD almost as well as APOE [58]. Our results indi-
cate that every notable interaction includes one of them.

All the notable findings can provide LOAD researchers with candidate interactions which
they can investigate further. We discuss some of the more interesting ones. The MDL score,
with its larger DAG penalty, discovers two 2-locus models involving the GAB2 gene. A good
deal of previous research has indicated that GAB2 and APOE interact to affect LOAD [57].
The MDL score also discovers several other 2-locus models containing APOE. The BDeu score,
with its smaller DAG penalty, discovers as its highest scoring interaction, a 4-locus interaction

Fig 7. ROC curves for MBS-IGain and 5 other methods. SNP Harvester (SH), Bayesian epistasis
association mapping (BEAM), full interaction modeling (FIM), information gain (IG), multifactor dimensionality
reduction (MDR).

doi:10.1371/journal.pone.0143247.g007
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containing GAB2, rs10510511, and rs197899; and discovers as its second highest scoring
model, a 3-locus interaction containing GAB2, SPAG16, and APOE. The MDL score also dis-
covers this latter interaction. The interaction strengths (IS) of these two models is much greater
than the IS of the 2-SNP models. So, our results support that there might be other loci involved
in the GAB2/APOE interaction. We know of no previous research indicating this. Further-
more, there is previous research indicating APOE and the SPAG16 gene interact to affect
LOAD, but not with GAB2 [59].

Table 4 shows all the loci that appeared in learned interactions and their individual informa-
tion gains. The third locus shown is the locus providing the most information gain other than
APOE and APOC1. This locus does not appear in an interaction. We include it to show that,
other than APOE and APOC1, no locus provides substantial information gain by itself. On the
other hand several of the interactions provide substantially more information gain that APOE
or APOC1 do individually. For example, the fifth model in Table 2 includes APOE and has an
IS of 0.049. Recall that the IS is the information gain provided by all the loci in the model taken
together minus the sum of their individual information gain. Since the information gain

Fig 8. Histograms and percentile distributions when determining interactive models from the LOAD dataset.

doi:10.1371/journal.pone.0143247.g008
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provided by APOE by itself is 0.121 (see Table 4), this fifth model provides better than a 0.049/
0.121 = 0.40 increase in information gain over APOE by itself. The seventh model in Table 2
includes APOC1 and also has an IS of 0.49. Since the information gain provided by APOC1 by

Table 2. Interactions learned from the LOAD dataset using the BDeu score with α = 4. The third column shows gene on which the SNP resides if it is
located in a gene; otherwise it shows the chromosome. The fourth column shows the BDeu score of the interaction, and the fifth column shows the interaction
strength of the interaction (See Eq 4).

Rank Interaction Genes BDeu IS

1 rs10510511, rs197899, rs7115850, APOE Chrome 3, Chrome 6, GAB2, APOE -824.6 0.042

2 rs11895074, rs7115850, APOE SPAG16, GAB2, APOE -827.1 0.035

3 rs536128, rs7115850, APOE CALN1, GAB2, APOE -827.3 0.020

4 rs7101429, rs10510511, rs197899, APOE GAB2, Chrome 3, Chrome 6, APOE -828.7 0.039

5 rs11122116, rs16856748, rs734600, rs16992170, APOE NPHP4, LRP2, EYA2, EYA2, APOE -828.9 0.049

6 APOE APOE -836.3 0

7 rs41369150, rs2265264, rs11217838, rs4420638 FNDC3B, Chrome 10, ARHGEF12, APOC1 -861.8 0.049

8 rs7355646, rs41369150, rs4420638 Chrome 2, FNDC3B, APOC1 -863.4 0.023

9 rs7355646, rs41528844, rs4420638 Chrome 2, ADAMTS16, APOC1 -865.6 0.018

10 rs2265264, rs4420638 Chrome 10, APOC1 -865.9 0.026

11 rs41369150, rs4420638, rs6121360 FNDC3B, APOC1, TM9SF4 -866.1 0.019

12 rs10922885, rs7355646, rs4420638 Chrome 1, Chrome 2, APOC1 -867.3 0.023

13 rs41369150, rs4420638 FNDC3B, APOC1 -867.4 0.010

14 rs7355646, rs4420638 Chrome 2, APOC1 -868.6 0.012

doi:10.1371/journal.pone.0143247.t002

Table 3. Interactions learned from the LOAD dataset using the MDL score. The third column shows the gene on which the SNP resides if it is located in
a gene; otherwise it shows the chromosome. The fourth column shows the negative MDL score of the interaction, and the fifth column shows the interaction
strength of the interaction (See Eq 4).

Rank Interaction Genes MDL IS

1 rs7115850, APOE GAB2, APOE 160.5 0.013

2 rs197899, APOE Chrome 6, APOE 158.3 0.009

3 rs1785928, APOE ELP2, APOE 157.6 0.008

4 rs10793294, APOE GAB2, APOE 156.0 0.012

5 rs41491045, APOE Chrome 2, APOE 155.3 0.009

6 rs2057537, APOE TCP11, APOE 155.2 0.007

7 APOE APOE 154.7 0

8 rs12421071, APOE Chrome 11, APOE 154.2 0.007

9 rs891159, APOE ATG10, APOE 154.2 0.009

10 rs12674799, APOE Chrome 8, APOE 153.4 0.010

11 rs1957731, APOE Chrome 4, APOE 153.3 0.009

12 rs1389421, APOE Chrome 11, APOE 153.0 0.007

13 rs986647, APOE Chrome 4, APOE 153.0 0.009

14 rs17095891, rs8108841, APOE Chrome 10, Chrome 19, APOE 152.8 0.016

15 rs2717389, rs10130967, APOE Chrome 3, Chrome 14, APOE 140.7 0.022

16 rs898717, rs16975605, APOE FRMD4A, Chrome 15, APOE 140.5 0.020

17 rs11895074, rs7115850, APOE SPAG16, GAB 2, APOE 138.2 0.035

18 rs11676052, rs6719419, APOE Chrome 2, Chrome 2, APOE 138.1 0.020

19 rs2265264, rs4420638 Chrome 10, APOC1 104.9 0.026

20 rs41369150, rs4420638 FNDC3B, APOC1 99.7 0.010

21 rs4420638 APOC1 97.1 0

doi:10.1371/journal.pone.0143247.t003
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itself is 0.080 (see Table 4), this seventh model provides better than a 0.049/0.080 = 0.61
increase in information gain over APOC1 by itself.

Table 5 lists the genes that appeared in learned interactions, and shows whether previous
research indicated associations of those genes with LOAD. We see that many of our findings
are new; however, we have also substantiated previous research.

Table 4. The loci involved in the 14 interactions learned using the BDeu score or the 21 interactions
learned using the MDL Scored. The second column shows their rank when we score all 312,260 1-SNP
models using the MDL score. The third column shows the information gain provided by the SNP by itself. The
SNP in the third row is not in a learned interaction. It is included to show the highest scoring SNP other than
APOE or APOC1.

Locus Rank Info Gain

APOE 1 0.121

rs4420638 (APOC1) 2 0.080

rs6784615 3 0.016

rs1785928 111 0.010

rs41528844 449 0.008

rs7355646 968 0.007

rs1389421 966 0.007

rs8108841 994 0.007

rs11895074 1085 0.007

rs7115850 1384 0.006

rs891159 1599 0.006

rs41369150 1781 0.006

rs898717 2731 0.006

rs17095891 2817 0.006

rs10510511 2901 0.006

rs16975605 3404 0.005

rs197899 3915 0.005

rs6719419 4219 0.005

rs536128 4841 0.005

rs2057537 4813 0.005

rs1957731 5781 0.005

rs6121360 6887 0.005

rs10130967 6901 0.005

rs986647 7820 0.005

rs10793294 7983 0.004

rs10922885 8045 0.004

rs2717389 8314 0.004

rs41491045 8527 0.004

rs12421071 8736 0.004

rs12674799 8741 0.004

rs11676052 8804 0.004

rs7101429 11208 0.004

rs11122116 13898 0.004

rs16992170 18747 0.004

rs11217838 20371 0.004

rs2265264 99260 0.001

rs16856748 108717 0.001

rs734600 138078 0.001

doi:10.1371/journal.pone.0143247.t004
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S2 Table shows the running times in the various analyses performed in the LOAD study.
These results seem to contradict those in S1 Table. That is, in the real analysis the MDL score
seems more efficient that the BDeu score. The explanation would be that in the real study the
MDL score usual ends its search much sooner due to its larger DAG penalty. Tables 2 and 3
show that the MDL score does learn smaller models.

Discussion
We presented MBS-IGain, a method for identifying interactive effects in high-dimensional
datasets. Based on our experiments, MBS-IGain is highly effective at doing this, substantially
exceeding other methods. The effectiveness of MBS-IGain is owing to its three components.
First, if possible MBS-IGain initiates a beam from every predictor because we have no way of
determining if it is involved in an interaction without investigating its effect in combination
with other predictors. We noted that MBS-IGain should be able to handle 20,000 predictors in
about 12 days. Nevertheless, in studies such as GWAS we often have millions of predictors. In
these cases, we must prune the number down to a manageable size. In our investigation we did
this by scoring all one-predictor models, and choosing the ones with the best score. Other strat-
egies, such as the use of ReliefF [13] could be employed. Second, MBS-IGain uses information
gain to determine whether to add a predictor on a given beam rather than using the score. In
this way, we identify predictors that are interacting rather than merely identifying high scoring
models. Third, MBS-IGain uses the score to end its search on each beam. In this, we only iden-
tify interactions that are likely models. These three components together are essential to the
performance of MBS-IGain.

We applied MBS-IGain to a real LOAD dataset. We obtained new results, most notable are
results indicating that there are more loci involved in the APOE/GAB2 interaction; and we also

Table 5. The genes involved in the 14 interactions learned using the BDeu score or the 21 interactions
learned using the MDL Scored. The second column whether previous research indicated whether they
were involved in an interaction concerning LOAD, and the third column shows whether previous research
indicated that they had an effect on LOAD when interactions were not considered.

Gene Prev. Int. Effect Previous No Int. Effect

APOE Yes Yes

APOC1 Yes Yes

GAB2 Yes No

SPAG16 Yes No

CALN1 No No

NPHP4 No No

LRP2 No Yes

EYA2 No No

FNDC3B No No

ARHGEF12 No No

ADAMTS16 No Yes

TM9SF4 No No

ELP2 No Yes

TCP11 No No

ATG10 Yes No

ZNF77 No No

FRMD4A No Yes

doi:10.1371/journal.pone.0143247.t005

Learning Interactions Using Information Gain and Bayesian Networks

PLOS ONE | DOI:10.1371/journal.pone.0143247 December 1, 2015 20 / 23



substantiated previous findings. These results not only substantiate the efficacy of MBS-IGain,
but also provide LOAD researchers with avenues for further investigation.

In related research, Hu et al. [60] used information gain to link interacting SNPs in statisti-
cal epistasis networks. However, their technique was limited to investigating two-SNP interac-
tions for the purpose of constructing a network. It did not search multiple beams, investigate
higher-order interactions, or use the Bayesian score to judge whether an apparent interaction
was a likely model.
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