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Although there has been a vast amount of research into improving CMOS technology and 

computer architecture to make more powerful and efficient systems, the trends of decreasing 

sizes and energy and increasing power and speed are plateauing. Major roadblocks hindering the 

progression of Boolean logic based computing are transistor size, heat dissipation, clock speed, 

and computation power. This has inspired investigation into new methods for performing, 

complex operations not based on logic gates, or non-Boolean computations.  

 

One such method is coupled oscillator arrays. Instead of a logic gates to compute 

complex functions, the intrinsic physical properties of the oscillators can be used for computation 

making them more efficient for non-Boolean computations. This thesis will explore the use of 

coupled oscillator arrays to perform convolution, a primitive operation that plays a central role in 

many signal and image processing algorithms. Real-world circuit model parameters will be 

discussed and their impact on the circuit will be analyzed. In addition, this thesis will show the 

use of oscillators in Degree of Match (template matching), discrete cosine transform, discrete 

Fourier transform, Gabor filtering, and image compression. The effects of the model parameters 

on the will be examined on these implementations. 
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1.0  INTRODUCTION 

Complementary metal–oxide–semiconductor (CMOS) is the current standard technology 

used in designing integrated circuits, composed of tiny devices known as transistors. These 

transistors dictate the flow of electricity through circuits. This current control property of the 

transistors enables the design of logic gates such as AND, OR, and inverter gates to perform 

Boolean algebra. In Boolean algebra, the values are denoted by 1’s and 0’s represented by the on 

(1) and off (0) switching of the transistors. Multiple and a wide variety of logic gates can be 

arranged in different fashions to perform different kinds of operations. This is essentially the 

framework of modern computers.  

 

Although there has been a vast amount of research into improving CMOS technology and 

computer architecture to make more powerful and efficient systems, the trends of decreasing 

sizes and energy and increasing power and speed are plateauing. Major roadblocks hindering the 

progression of Boolean logic based computing are transistor size, heat dissipation, clock speed, 

and computation power. This has inspired investigation into new methods for performing 

complex operations not based on logic gates, also called non-Boolean computations.  

 

One such method is coupled oscillator arrays. Instead of a logic gates to compute 

complex functions, the intrinsic physical properties of the coupled oscillators can be used for 
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computation. This thesis will explore the use of coupled oscillator arrays to perform convolution, 

a primitive operation that plays a central role in many signal and image processing algorithms. 

Real-world circuit model parameters will be discussed and their impact on the circuit will be 

analyzed. In addition, this thesis will show the use of coupled oscillator arrays in Degree of 

Match (template matching), discrete cosine transform (DCT), discrete Fourier transform (DFT), 

Gabor filtering, and image compression. The effects of the model parameters on the will be 

examined on these implementations.  

1.1 GOALS 

The first goal of this thesis is to validate the feasibility of performing mathematical 

convolution using coupled oscillator arrays. This will be accomplished by exhaustive analysis of 

the parameters of coupled oscillator arrays and observing how they impact the fidelity of the 

model. The second goal of this master’s thesis is to demonstrate the use of oscillator-based 

convolution in image processing functions, such as image filtering, discrete cosine transform, 

image compression, and discrete Fourier transform. The parameters of the oscillator model and 

their effect on the accuracy of the image processing functions will be analyzed. 

1.2 STATEMENT OF WORK 

The following steps were taken to accomplish the goals mentioned in the previous 

section: 
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1. Show that an oscillator-based Degree of Match (DOM) circuit can be characterized by a 

squared Euclidean distance equation, and therefore used for template matching. 

2. Using this characterization, build a real-world circuit model with parameters for 

coupling asymmetry, locking region, input noise, and output noise. 

3. Define how the DOM model can be used to compute convolution. 

4. Using convolution, show how oscillator-based DCT can be implemented and how the 

convolution can be further optimized to improve design and mitigate error. 

5. Using convolution, show how oscillator-based DFT can be implemented and how the 

convolution can be further optimized to improve design and mitigate error. 

6. Analyze the impact of the parameter variation on Degree of Match using randomly 

generated input vectors of various sizes and test over a range of parameter values. 

7. Analyze the impact of the parameter variation on convolution using randomly generated 

input vectors of various sizes and test over a range of parameter values. 

8. Show how convolution can be used to implement Gabor filtering and analyze the impact 

of the parameter variation on filtering a 120x120 greyscale image and test over a range 

of parameter values. 

9. Analyze the impact of the parameter variation on DCT using randomly generated input 

vectors of various sizes and frequencies and test over a range of parameter values. 

10. Show how DCT can be implemented in image compression and analyze the impact of 

the parameter variation on compressing a 256x256 greyscale image and test over a 

range of parameter values. 
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11. Analyze the impact of the parameter variation on DFT using randomly generated input 

vectors of various sizes and frequencies and test over a range of parameter values. 

1.3 CONTRIBUTION 

This thesis provides an exhaustive analysis demonstrating the use of coupled oscillators 

to perform non-Boolean operations such as Degree of Match (template matching), convolution, 

DCT, and DFT. It presents a thorough investigation of the circuit model parameters, showing 

that their impact on the circuit will vary depending not only on the parameters themselves but 

also on additional factors such as oscillator array size, input vectors values, and type of image 

processing primitive. This thesis is organized as follows: Section 2 gives the background, 

Section 3 describes the approach, Section 4 lays out the experimental design, Section 5 presents 

the results and analysis, and Section 6 lists the conclusion. 



 5 

2.0  BACKGROUND 

Inspired by the work of Christian Huygens [1], in which he observed the behavior of 

coupled pendulums spontaneously synchronizing, there has been much work in studying models 

of coupled oscillators. Oscillators have shown promise for use in various non-Boolean 

computations in different domains such as magnetic, electric, and biological. Horvath [2] models 

the interaction of spin torque coupled oscillators via their magnetic field and demonstrate the use 

of this dynamic in an edge detection application. Shibata [3] emulated the behavior of oscillators 

using a CMOS ring oscillators and supporting CMOS circuitry to produce associative memory 

function.  Hoppensteadt [4] proposed that coupled microelectromechanical oscillators can be 

useful to efficiently process analog information and theorize that they can function as a 

neurocomputer having oscillatory autocorrelative associative memory. 

 

Nikonov et al. [5] proposed using weakly coupled voltage controlled oscillators to 

approximate convolution. They demonstrate the use of oscillators through Gabor filtering. 

Unlike most of the previous schemes based on Phase-Shift Keying, this work focuses on 

Frequency-Shift Keying, where the frequency shifts of the oscillators are used to encode image. 

The authors show that coupled oscillator arrays can be used for an approximation of convolution 

and that this analog method is a more energy efficient alternative to the digital algorithm. 
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Building on this work, Chiarulli et al. [6] demonstrated using oscillators to perform an 

exact convolution based on a coupled oscillator degree of match (DOM) metric. Simulation of 

the DOM circuit showed that the behavior of the coupled oscillators was similar to that of a 

squared Euclidean distance metric (L2
2), which alone can be a computational primitive for 

template matching and distance metrics, like the ones used in image processing pipelines such as 

HMAX [7]. But as this thesis shows, it can also be used to directly compute convolution. 

Parameters were added to the model to analyze real-world circuit characteristics: the relative 

strength of each oscillator to other oscillators in the cluster (coupling asymmetry), the range of 

frequencies over which the oscillators synchronize and lock (locking region), noise on the two 

input channels to the oscillators, and noise on the DOM circuit output. It was shown the circuit 

has a relatively strong robustness to the parameters and their impact on the circuit vary 

depending on size of the array and DOM values between the two input vectors.  

 

Part of this thesis will also explore other convolution-based primitives. Gabor filters 

[8][9] are linear filters resembling the human visual system used for feature extraction in image 

processing, most commonly used for edge detection, by convolving the filters with an image. 

The discrete cosine transform [10] is an extremely useful transform that is used in many 

applications such as image processing, as it segregates the low and high frequencies. It is a 

Fourier analysis that performs a convolution operation on a discrete set of data points and a 

series of cosine functions that oscillate at increasing frequencies. An important use of DCT is in 

lossy image compression [11], where sections of an image are transformed so that less important 

information can be removed in the frequency domain which reduces the size of the file. DFT is 

similar to the DCT, but instead of cosines it utilizes complex sinusoids [12]. There is current 
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work that seeks to improve algorithms and hardware implementations of these primitives [13] – 

[17], however oscillators show a potential to be an efficient method to compute them. 

 

This thesis extends the work from [6] even further by exploring the use of the DOM 

circuit to compute not only standalone convolution, but convolution involved in primitives such 

as Gabor filtering, discrete cosine transform, image compression, and discrete Fourier transform. 

The same parameters are swept and an in-depth analysis is done. 
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3.0  APPROACH 

In this section, the approach will begin with the characterization of the DOM circuit. 

Next, the parameterized model will be discussed. Then, convolution will be defined given the 

DOM model. A discussion of oscillator-based discrete cosine transform will follow. Finally, 

there is a discussion of oscillator-based discrete Fourier transform. 

3.1 DEGREE OF MATCH 

The coupled oscillator array model used in this thesis is based on an array of electrically 

coupled nano-oscillators, depicted in Figure 1[6]. The input to this circuit is two vectors of 

analog (pixel) voltages (v1…vn) and (v1’...vn’). The oscillators are simple 2-port voltage 

controlled oscillators with an input control port and bidirectional-output coupling port. Each 

oscillator is driven by the pairwise difference of the individual voltages (vi’-vi). The oscillator 

outputs are directly coupled though a resistor network and the voltage at the common node is 

integrated as a measure of the relative synchronization of the oscillators and hence the degree of 

match of the input vectors.  
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Figure 1: DOM Circuit Model 

 

 

In order to observe the behavior of the oscillators, a simulation was conducted of a cluster 

of three oscillators. Two of the oscillators were held at a voltage such that their frequency 

matched the synchronization frequency F, while the third oscillator’s input is swept. The blue 

dots are subtracted from the maximum output to give inverted simulation results from the DOM 

circuit output. As the input of the third oscillators swept, the oscillators begin to synchronize and 

then unsynchronize, causing the parabolic shape on the DOM output shown in Figure 2[6].  
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Figure 2: Simulation of 3-oscilator array, with two oscillators synchronized while sweeping the third. 

 

Fitting a curve to the data yields a polynomial equation similar to x2, where x is a vector 

of the differences between the two vectors. Thus, the output of the circuit can be modeled as the 

squared Euclidean distance metric: 

  

 

Equation 1: Euclidean distance metric  

 

Equation 2: Degree of match with oscillators. 
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The Euclidean distance metric is a commonly used method for template matching as it 

quantifies how similar two vectors (images) are. Thus, the DOM model can be used as a distance 

metric for template matching. 

3.2 PARAMETERIZED DOM MODEL 

Beginning with Equation 2 on page 10, this provides a base case that assumes ideal 

conditions. However, there are real-world parameters that can have an impact on the DOM 

circuit. Given a particular circuit and its implementation, these circuit parameters can cause 

variability in the output of the circuit. There are four parameters modeled and analyzed in this 

thesis: coupling asymmetry (CA), locking region (LR), input noise (IN), and output noise (ON). 

Figure 3 is a simulation of the DOM model with the parameters. 

 

 

Figure 3: Simulation of 3-oscillator array with parameters. 
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Coupling asymmetry (CA) captures the difference in coupling strength between the 

individual oscillators. Conditions can exist where not all of the oscillators in a cluster have the 

same relative strength; one oscillator may be stronger than another by a fraction. The CA 

parameter models this variance in the relative strength of the oscillators as an array of coupling 

asymmetry coefficients.  

 

Locking region (LR) represents the range of the frequencies over which a cluster of 

oscillators will synchronize. In ideal conditions, the oscillators will synchronize at a single 

frequency as shown in the Figure 2. However, based on the strength of the coupling network (the 

resistors connecting the oscillators depicted in the Figure 1) the oscillators will synchronize over 

a small range of frequencies. Larger resistors mean smaller amounts of current, making the 

oscillator less likely to couple. Conversely, smaller resistors yield larger amounts of current, 

making the oscillator more likely to couple. Oscillators in a cluster exhibiting frequency values 

within the locking region would synchronize since the input values become indistinguishable on 

the output of the circuit. The LR parameter models this locking region.  

 

Input and output noise are common in any circuit, causing variation in the circuit 

behavior. Random noise can appear on any input or output channel. To model this Gaussian 

white random noise was added to the channels. Taking these parameters into consideration, the 

new parameterized DOM becomes 
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Equation 3: Parameterized DOM model 

 

where cai is a value from a coupling asymmetry vector, nA
i and nB

i are elements from an input 

noise vector added to input vectors A and B respectively, NO is output noise and LR is locking 

region. For future reference, CA refers to coupling asymmetry, LR refers to locking region, IN 

refers to input noise, and ON refers to output noise.  

3.3 CONVOLUTION 

In this section, convolution will be defined in terms of the DOM model. The first 

subsection is an overview of convolution. The second subsection describes oscillator based 

convolution. 

3.3.1 Convolution 

Convolution is a widely used mathematical operation that is merely a summation of the 

dot products of two vectors. It is expressed by the generic equation 

 

 

Equation 4: 1-D Convolution 
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where ai and bi are elements of input vectors A and B of size n. Convolution iteratively pairwise 

multiplies the values of the input vectors indexed at i and then sums the products. In some signal 

processing applications, input vector B is inverted though it is not the case for image processing. 

An example is shown in Figure 4. 

 

 

Figure 4: Example of 1-D convolution 

 

Convolution operations are used in many different fields such as statistics, differential 

equations, image and signal processing and detection. A common example of convolution in 

image processing is filtering. Filtering, in this context, is a two dimensional convolution 

operation between an input array and a special type of kernel chosen depending on the kind of 

filtering to be performed (edge detection, sharpening, blurring, etc.). It can be expressed by 
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Equation 5: 2-D convolution. 

 

where ai,j and bi,j are elements of input arrays A and B of size m  n. The filter kernel is laid on 

top of the image such that the middle of the filter is centered upon a particular pixel. Each value 

of the filter is then multiplied with its corresponding value in the image and summed together to 

result in a new pixel value. Figure 5 shows an example of two dimensional filtering. Though this 

example fits the filter within the bounds of the image, there are various techniques one can use to 

handle edge cases, where the filter is centered such that the edge of the filter is off the image.  

 

 

Figure 5: Example of 2-D convolution. 

3.3.2 Oscillator-Based Convolution 

Equation 6 is an algebraic expansion of the DOM model. There are two observations. The 

first is that there are two DOM terms in the form of A2 and B2, which are the equivalent of 

two DOM models where one accepts A and a zero vector as its inputs and the other one accepts B 
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and a zero vector. The second observation is that a convolution of input vectors A and B is 

present in the form of 2AB.  

 

 

Equation 6: Expanded DOM equation. 

 

Therefore, convolution can be computed using three oscillator clusters. In addition to an 

oscillator cluster that takes A and B as inputs to compute DOM(A, B), two more clusters are 

needed that only take either A or B and a zero vector as inputs, to compute DOM(A, 0) and 

DOM(B, 0). Hence, the convolution becomes 

 

 

Equation 7: Convolution with oscillators. 

 

Unlike the previous work in [2], which only approximated convolution, this convolution 

is precise provided that the DOM model fits to a squared Euclidean distance metric. 
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3.4 DISCRETE COSINE TRANSFORM 

This section describes oscillator-based DCT. The first section discusses how oscillators 

can be used to compute DCT. The second section discusses how to improve the computation. 

3.4.1 Oscillator-Based DCT 

The discrete cosine transform is an extremely useful transform that is used in many 

applications such as audio and image processing. It is a Fourier analysis that performs a 

convolution operation on a discrete set of data points and a series of cosine functions that 

oscillate at increasing frequencies. It is expressed as 

 

 

Equation 8: DCT convolution. 

where 

 

and where y is a vector of same length as x. Because oscillators can be used to perform 

convolution, then by extension they can be used to perform discrete cosine transforms, with an 

input vector and and computer cosines.  
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As shown in Equation 8, the DCT involves multiple convolutions. In fact, on a one 

dimensional vector, a DCT requires n convolutions, where n is the size of the transform vector. 

Each of the n elements in output vector y is a convolution of input vector x and different vectors 

of cosine values. To design a full hardware DCT implementation, 3n oscillator clusters of size n 

are required, for a total of 3n2 oscillators. However, the next section describes a way to 

significantly reduce this number. 

3.4.2 DCT Optimization 

There are a couple of ways oscillator-based DCT can be improved. First, mathematically 

the DOM(0, B) = 1 because each of the cosine terms is multiplied by w(k) and then squared 

before summed. Since it is a constant, this term can be removed and replaced with a pre-

computed value as shown in Equation 9, which will in turn reduce the amount of error in the 

convolution and the number of oscillators required is reduced to 2n2
 since only two clusters are 

required. 

 

 

Equation 9: Oscillator-based DCT convolution. 

 

Next, because input vector A never changes, the DOM(A, 0) term can be reused in each 

of the convolutions. Since there is only one DOM(A, 0) cluster, this further reduces the number 

of oscillators to n2 + n. This is a significant decrease in size from the original 3n2.  
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3.5 DISCRETE FOURIER TRANSFORM 

This section describes oscillator-based DFT. The first section discusses how oscillators 

can be used to compute DFT. The second section discusses how to improve the efficiency of the 

computation. 

3.5.1 Oscillator-Based DFT 

The DFT, similar to the DCT, characterizes data in the frequency domain, however the 

DFT represents the data using complex sinusoids of various frequencies. It is characterized as 

 

 

Equation 10: DFT convolution 

where 

 

Oscillators can be used to perform convolution between a dynamic input vector and pre-

computed complex sinusoids. Because the DFT involves complex sinusoids, the complex terms 

need to be decomposed into real and imaginary components, treated in separate convolutions, 

then constructed back into a complex term, shown in Equation 11 
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Equation 11: Oscillator-based DFT convolution. 

 

Just as in DCT, there are n convolutions in one DFT operation, each of size n. Because of 

the complex values in the DFT, more oscillator clusters are needed since each convolution 

requires four pairwise convolutions, introducing more error in the computations and requiring a 

greater number of oscillators. Using four convolutions, the DFT needs 12 oscillator clusters per 

convolution, for a total of 12n clusters for a DFT operation and 12n2 oscillators. However, this 

number can be further reduced. 

3.5.2 DFT Optimization 

Like DCT, the DFT convolution operation can be improved to reduce error and size. 

Typically, the input vector used with the DFT is a real signal and does not contain any imaginary 

components. This means that the convolutions involving the imaginary component of the input 

vector, considered input vector A for example, will be zero.  

 

 

Equation 12: A is not complex and has no imaginary parts. 

 

Therefore, these two convolutions can be removed, resulting in Equation 13 which 

reduces the effects from parameter variations and the number of oscillators to 6n2. 
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Equation 13: Optimized DFT equation, for when A is real. 

 

For DFT, mathematically DOM(Breal,0) and DOM(Bimag,0) are also constants. The first 

frequency of Breal equal to the size of B and the others equal to half the size of B. The first 

frequency of Bimag is equal to 0 and the rest are equal to half the size of B. DOM(Breal,0) and 

DOM(Bimaginary,0) can be replaced with pre-computed values to further reduce the impact of 

parameters on the convolution. 

 

Equation 14: Optimized convolution between real parts of input vectors. 

 

 

Equation 15: Optimized convolution between real part of A and imaginary part of B. 

 

Again, the same DOM(A, 0) cluster can be used in both convolutions since input vector A 

does not change. The total number of oscillators has now been reduced to 2n2 + n. 
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4.0  EXPERIMENTAL DESIGN 

In this section the experimental design of the studies is discussed. All simulations were 

done in MATLAB. The first section defines the parameters and their values. The next section 

outlines the design of the template matching and convolution studies. The last section outlines 

the design of the DCT and DFT studies.  

4.1 PARAMETERS AND OTHER STUDY CONFIGURATIONS 

In this section, the model parameters are defined and the inputs and oscillator array sizes 

are determined. 

4.1.1 Model Parameters 

This section begins with a discussion of how the model parameters CA, LR, IN, and ON 

are encoded in the study simulations. In each case the magnitude of the parameter is expressed as 

a fraction p of the dynamic range of the input/output. The base case is when p = 0 and it ranges 

from 0 to 0.25. CA is a vector of the same size as input vectors A and B with values of 1p, 

where the values are from a Gaussian distribution centered about 1. LR is a scalar ranging from 0 

to p times the maximum output. IN is a vector of the same size as input vectors A and B with 
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values 0 0p, where the values are from a Gaussian distribution centered about 0. ON is a scalar 

ranging from 0 to p times the maximum output and is generated from a Gaussian distribution 

centered about 0. 

4.1.2 Array Sizes and Inputs Tested 

For all studies in this thesis, the oscillator array sizes used are squared values ranging 

from 4 to 169 and all input values range from 0 to 1, unless otherwise specified. This means that 

the maximum input value is 1 and the maximum output ranges from 4 to 169 (corresponding 

with each array size), since it is possible for every input difference is 1.  

4.2 SIMULATION STUDY: DOM/CONVOLUTION 

This section outlines the experimental design for DOM and convolution. The first 

subsection describes the input vectors generated for these studies. The second subsection 

discusses the error metric used. The same input vectors and error metric were used in both 

studies. 

4.2.1 Input Generation 

Since the input values range from 0 to 1, the DOM values for a given size range from 0 to 

N, the size of the array. To test the full range of possible DOM values between the input vectors, 

random input vector pairs were generated such that for each size there are 101 input vector pairs 
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that have DOM values ranging from 0 to N. Each size is divided by 100 so that there is an equal 

number of input vectors generated for each size. This was accomplished by first generating a 

vector of squared difference values whose sum is the desired DOM value. In other words, a 

vector v is generated such that vi = (ai – bi)2 and vi = DOM(A, B). This is done using  a 

MATLAB function randfixedsum(n, m, s, a, b), based on the Randfixedsum Algorithm by Roger 

Stafford [18][19], that returns an n  m array where each m column has n random values on the 

interval [a, b] that sum to s. This algorithm generates only the possible random values given the 

initial conditions. 

 

With this vector v of squared difference terms, input vectors A and B can be derived. The 

square root of vi is taken resulting in vi = (ai – bi). The signs of these values (vi) are 

randomized (it is possible for ai > bi or ai < bi) and values are assigned to ai and bi. If vi is 

negative, then bi  ai. The value of bi is then randomly chosen between -vi and 1 and ai becomes 

bi + vi. If vi is positive, then bi  ai. The value of bi is then randomly chosen between 0 and (1 – 

vi) and ai becomes bi + vi.  

4.2.2 Output and Error Metric 

The error metric used in these studies is a normalized root mean squared error that 

compares values computed from the base-case model to values computed from the parameterized 

model. 
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Equation 16: Normalized root mean square error. 

 

where xref is a vector of DOM/convolution values computed from the base-case model, x is a 

vector of DOM/convolution values computed from oscillator-based DOM for various parameter 

values, and || indicates the 2-norm, or Euclidean distance. NRMSE was used in these studies 

because, given our input constraints, they test over the entire range of inputs. And because that 

range changes between sizes, the error needs to be normalized. 

4.3 SIMULATION STUDY: DISCRETE COSINE TRANSFORM/DISCRETE 

FOURIER TRANSFORM 

This section outlines the experimental design for DCT and DFT. The first subsection 

describes the input vectors generated for these studies. The second subsection discusses the error 

metric used. The same input vectors and error metric were used in both studies. 

4.3.1 Input Generation 

The DCT and DFT only take one input vector, as the other is predetermined because it is 

a vector of cosines/complex sinusoids of various frequencies. Similar to the DOM and 

convolution studies, multiple random input vectors of various sizes are generated. However, 
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unlike the DOM and convolution studies, the input vectors for this study are not based on 

particular DOM values. 

4.3.2 Output and Error Metric 

The error metric used in these studies is a mean squared error that compares values 

computed from the base-case model to values computed from the parameterized model. 

 

 

Equation 17: Mean squared error. 

 

 

where xref is a vector of DCT/DFT computed from the base-case model, x is a vector of 

DCT/DFT values computed from the parameterized model, N is the number of values, and || 

indicates the 2-norm, or Euclidean distance. MSE was used in this study each element of the 

DCT/DFT is a separate convolution and are not related to one another. The MSE is calculated for 

each of the DCT/DFT input vectors for each size and then the average of MSE values over all of 

the frequencies are taken. This was done so that a comparison can be made between different 

input vector sizes without having to consider a particular frequency, since different sizes have a 

different number of possible frequencies. It also mitigates the case where different frequencies 

could be affected differently by the parameters, though in practice it is not the case. 
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5.0  RESULTS AND ANALYSES 

This section presents the results and analyses. It shows histograms and error plots to 

demonstrate the impact of the parameters on the accuracy of the circuit model performing DOM, 

convolution, DCT, and DFT, as well as Gabor filtering and image compression implementations. 

The subsections present results in the following order: DOM, convolution, Gabor filtering, DCT, 

image compression, and DFT. 

5.1 DOM (TEMPLATE MATCHING) 

In this section, the effects of the model parameters on DOM are analyzed. Each of the 

following subsections analyzes a different parameter in the following order: coupling 

asymmetry, locking region, input noise, and output noise. 

5.1.1 Coupling Asymmetry 

Figure 6 shows the response of the DOM circuit with varying CA. The plot shows the 

polynomial shape that characterizes the circuit. The variation in the general shape of the curve, 

specifically why it is stair-stepped as opposed to smooth, is caused because there are multiple 

possible combinations of values for both input vectors that correspond to a particular DOM 
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value. The minimum and maximum points on the x-axis will always remain 0 and maximum 

DOM value, respectively, though the points in between can vary, causing the stair-stepped shape 

in the response.  

 

Figure 6: DOM(A, B) circuit response with CA variation. 

 

There is also more variation for larger DOM values for particular CA. This is explained in 

Figure 7, which shows a histogram of the (ai – bi)2 terms to which the CA parameter is applied 

according to Equation 3 for an array size of 64. Larger DOM values obviously have larger (ai – 

bi)2 terms thus there is a larger difference between the base case values and the parameterized 

values. When DOM = 0, all of the (ai – bi)2 terms are 0 and when DOM = 64 they are 1. 
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Figure 7: Histogram of (ai – bi)2 values for particular DOM(A,B) values for an array size of 64. 

 

Figure 8 shows the NRMSE of CA variations on DOM(A, B) for different oscillator array 

sizes. It is observed that the smaller oscillator array sizes are more sensitive than larger array 

sizes. This is because the average of the random CA approaches 1 as the number of oscillators 

increase. However, the CA variation has minor impact on the DOM output for all array sizes 

tested, with smaller sizes having error scores better than 0.2 in the extreme case where oscillators 

can experience a 25% relative strength.  
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Figure 8: NRMSE of DOM(A, B) with CA variations for different array sizes. 

5.1.2 Locking Region 

Figure 9 shows the response of the DOM circuit for varying LR. When a DOM value is 

determined to be below the threshold LR, it is considered a match, or 0. As the locking region 

parameter increases, it results a step shape seen in the response as more values are set to 0.   
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Figure 9: DOM(A, B) circuit response with LR variation. 

 

Figure 10 shows the NRMSE of LR variation on DOM(A, B) for different oscillator array 

sizes. There is virtually no difference in the amount of error between array sizes. This is because 

LR is relevant outside of the summation of the convolution and its value is proportional to the 

size of the array. Each array sizes loses the same number of values, in this case 25%.   
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Figure 10: NRMSE of DOM(A, B) with LR variations for different array sizes. 

5.1.3 Input Noise 

Figure 11 shows the response of the DOM circuit for varying IN. Like the CA response in 

Figure 6, the response shows more variation for larger DOM values and similarly, as the (ai – bi) 

terms increase for the same input noise value, there is a larger difference between the outputs 

from the base case model and the parameterized model. 
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Figure 11: DOM(A, B) circuit response with IN variation.  

Considering the DOM model with only the input noise parameter, Equation 3 becomes 

 

 

Equation 18: DOM with input noise. 

 

Expanding this new equation gives  

 

 

Equation 19: Expanded DOM with input noise. 
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where NA-B is the total added noise NA – NB. The range of values presented by NA-B increases as 

(ai – bi) increases. 

 

Figure 12 shows the NRMSE of IN variations  on DOM(A, B) for different oscillator 

array sizes. It shows that similarly to CA, smaller array sizes are more sensitive to input noise 

than the larger array sizes because as the array size increases, the average of the input noise 

approaches 0. However, IN variation has slightly more impact on the DOM circuit output than 

CA variation. 

 

Figure 12: NRMSE of DOM(A, B) with IN variations for different array sizes. 
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5.1.4 Output Noise 

Figure 13 shows the response of the DOM circuit for varying ON.  Output noise inflicts 

greater variation on the DOM output than input noise because it is added at the end of the 

summation and is a percentage of the maximum DOM value.  

 

Figure 13: DOM circuit response with ON variation. 

Figure 14 shows the NRMSE of ON variation on DOM for different oscillator array sizes. 

Because the noise is a percentage of the maximum output, which is proportional to array size, 

different array sizes experience relatively the same amount of error. Overall, for all sizes tested it 

has a greater impact than IN because it is a fraction of the dynamic output range and does not 

average.  
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Figure 14: NRMSE of DOM(A, B) with ON variation for different array sizes. 

5.2 CONVOLUTION 

In this section, the effects of the parameters on convolution are analyzed. Each of the 

following subsections analyzes a different parameter in the following order: coupling 

asymmetry, locking region, input noise, and output noise. 

5.2.1 Coupling Asymmetry 

Figure 15 shows the NRMSE of CA variation on convolution for different oscillator array 

sizes. Just as in DOM, it shows that smaller array sizes are more sensitive than larger array sizes. 

As the number of oscillators increase, the average of the asymmetry approaches 1. Because there 
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are three DOM clusters, it might seem intuitive that convolution should have greater error than 

DOM. However, according to Equation 7, the error attributed by DOM(A, 0) and DOM(0, B) 

gets subtracted out. Figure 16 shows a comparison of the amount of error in all three DOM 

clusters. The amount of error from each cluster is similar, with more error in DOM(A, 0) and 

DOM(0, B).  

 

Figure 15: NRMSE of convolution with CA variation for different array sizes. 
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Figure 16: NRMSE of other DOM clusters in convolution with CA variation for different array sizes. 

Figure 17 shows a histogram of the squared difference values from DOM(A, 0) and 

DOM(0, B) clusters for an array size of 64. The other array sizes tested, though not shown, have 

the same distribution. Unlike Figure 7, the distribution for these values is relatively uniform for 

small DOM values and skew in opposite directions as the DOM values increase. This means that 

there is less variation between different DOM values for these clusters. 
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Figure 17: Histogram of (ai – 0)2 and (bi – 0)2 values for particular DOM values. 

5.2.2 Locking Region 

Figure 18 shows the NRMSE of LR variation on convolution for different oscillator array 

sizes. It shows that for smaller LR parameter values, array size and locking region are 

independent. However, as the parameter increases in value, locking region has more effect on 

convolution for smaller sizes. This is because for smaller array sizes, there are more DOM(A, 0) 

and DOM(0, B) values below the threshold, driving them to 0 and introducing even more error to 

the convolution, as shown in Figure 19 and Figure 20. 
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Figure 18: NRMSE of convolution with LR variation for different array sizes. 
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Figure 19: Histogram of DOM(A, 0) values in convolution for various sizes, where the x-axis is percentage of 

dynamic range. 
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Figure 20: Histogram of DOM(0, B) values in convolution for various sizes, where the x-axis is percentage of 

dynamic range. 

5.2.3 Input Noise 

Figure 21 shows the NRMSE of IN variation on convolution for different oscillator array 

sizes. There is less discernable trend between oscillator array sizes for convolution because 

according to Figure 22, larger array sizes are more sensitive to IN for DOM(A, 0) and DOM(0, 

B). Where as for CA, the same proportional amount of error was being subtracted out, for IN this 

is not the case. Because the noise in larger array sizes for DOM(A, B) average out, the noise 

from the 0 input in DOM(A, 0) and DOM(B, 0), is not subtracted out in the DOM model. 
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Figure 21: NRMSE of convolution with IN variation for different array sizes. 

 

Figure 22: NRMSE of other DOM clusters in convolution with IN variation for different array sizes. 
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5.2.4 Output Noise 

Figure 23 shows the NRMSE plot of ON on convolution for different array sizes. It is 

shown that, similar to IN, there is less discernibility between oscillator array sizes. However, the 

smallest array size, 4, generally performs better than the others. Figure 24 shows that also similar 

to IN, DOM(A, 0) and DOM(0, B) are more sensitive for larger array sizes. This is because 

according to Figure 19 and 20, the range of values for DOM(A, 0) and DOM(0, B) is similar to 

DOM(A, B). Even though the fraction of noise being added is relative, larger array sizes have a 

smaller range of DOM values, so the noise added to the DOM values for those clusters is 

relatively higher. 

 

 

 

Figure 23: NRMSE of convolution with ON variation for different array sizes. 
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Figure 24: NRMSE of DOM clusters in convolution with ON variation for different array sizes. 

5.3 GABOR FILTERING 

To further demonstrate oscillator-based convolution, in this section it is implemented in Gabor 

filtering. The effects of the parameters on Gabor filtering are analyzed. 

5.3.1 Implementation Design 

. Figure 25 shows examples of Gabor filters of various orientations used in edge 

detection. The 0 filter can be used to detect horizontal edges, the 90 filter can be used to detect 

vertical edges and the 45 and 135 filters can be used to detect diagonal edges.  
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Figure 25: Example Gabor filters for edge detection. 

 

Gabor filtering was implemented by applying an 8x8 45 Gabor filter to the 120x120 

greyscale image of a vehicle in Figure 26.  

 

 

Figure 26: Input image used for Gabor filtering. 
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5.3.2 Filtering Output 

Figure 27 shows the result of the image filtered with parameter variations. The image is 

severely washed out by input and output noise after only increasing p to 0.05, however it is still 

useful with CA variation where p = 0.25. Although LR distorts the image by making more pixels 

black, the image may still be useful for some filtering applications as much of the shape of the 

image is still visible. 

 

Figure 27: Image results from filtering with model parameter variation. 

Figure 28 shows a histogram the DOM values from each cluster of the convolution in the 

Gabor filter study. Although LR and ON are fractions of 64, the dynamic range based on 8x8 

convolutions, the DOM values computed in this study exceed 64 because the inputs are not 

bounded and some filter values are less than 0. The DOM(A, 0) cluster is the most impacted by 

LR because many of the DOM values fall below the threshold values, where DOM(A, B) and 

DOM(0, B) values remain above the threshold.  
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Figure 28: Histogram of DOM values from each cluster in the convolution for Gabor filtering, where the x-

axis is percentage of dynamic range. 

5.4 DISCRETE COSINE TRANSFORM 

In this section, the effects of the parameters on DCT are analyzed. Each of the following 

subsections analyzes a different parameter in the following order: coupling asymmetry, locking 

region, input noise, and output noise. 



 49 

5.4.1 Coupling Asymmetry 

Figure 29 shows the MSE plot of CA variation on DCT for different array sizes. It shows 

that CA variation has little impact on DCT because the squared difference values in the DCT are 

small for DCT because one of the input vectors contains cosine values. 

 

 

Figure 29: MSE of DCT with CA variation for different array sizes. 

5.4.2 Locking Region 

Figure 30 shows MSE for LR variation on DCT for different array sizes. It shows DCT is 

fairly resistant to LR variation for smaller values of p and becomes more sensitive as p increases. 

Figure 31 shows that a majority of the DOM(A, B) values for most of the sizes are around 30% 
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of the dynamic range. Any sizes with values below the threshold only have one. Figure 32 shows 

that DOM(A, 0) does not have any values below the threshold for this particular vector. Given 

the uniform randomness of the input vectors, it is extremely unlikely to have a vector that is 

similar to cosines. 

 

Figure 30: MSE of DCT with LR variation for different array sizes. 
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Figure 31: Histogram of DOM(A, B) values in the convolution for DCT of one vector for different image sizes, 

where the x-axis is percentage of dynamic range. 
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Figure 32: Histogram of DOM(A, 0) values in the convolution for DCT of one vector for different image sizes, 

where the x-axis is percentage of dynamic range. 

5.4.3 Input Noise 

Figure 33 shows IN on DCT for various oscillator array sizes. It shows that for DCT, 

larger array sizes experience more error. This is because the cosine values get smaller as the 

array size increases, increasing the difference between input vectors A and B. This increases the 

variation in the DCT, as discussed in Section 5.1.3. In addition, larger array sizes involve more 

convolutions in DCT, since there are n DCT operations for any problem size. 
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Figure 33: MSE of DCT with IN variation for different array sizes. 

5.4.4 Output Noise 

Figure 34 shows ON on DCT for various sizes. Again, it is shown that there is more error 

experienced by the larger array sizes. This is because there is more noise added to larger array 

sizes because the noise is a fraction of a larger dynamic range. As mentioned before, there are 

also more operations for larger array sizes. Unlike the DOM and convolution studies, the error 

for this study was measured with MSE which is is not normalized. 
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Figure 34: MSE of DCT with ON variation for different array sizes. 

5.5 IMAGE COMPRESSION 

To further demonstrate oscillator-based DCT, in this section DCT is implemented in an 

image compression algorithm. DCT is used in many image compression algorithms. It can be 

used to remove the high frequencies from an image and reduce the density of the image, in turn 

reducing the number of bits to store it. 

5.5.1 Implementation Design 

The compression algorithm used for this implementation performs 2-D DCT on the 

original image and removes the high frequencies by zeroing the DCT values in the lower right-
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hand side of the DCT matrix. Then the 2-D inverse DCT (IDCT) returns the image without the 

information from those frequencies. The image is encoded using a technique known as run-

length encoding in which sequential data of the same value is stored as a single value and a 

count. Removing the higher frequencies reduces the length of the encoding.  

 

 

Figure 35: Image used for DCT compression 

 

For this oscillator-based compression implementation, the 256x256 image pictured in 

Figure 35 was used. The image is 64KB. MSE was used to measure error. 2-D DCT/IDCT are 

implemented by computing two 1-D DCT/IDCT operations.  

5.5.2 Results 

 Figure 36 shows the images resulting from the compression with paramater variations. 

CA variation shows minor impact on the image quality because of the small squared difference 
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values. LR does degrade the image, though not as much as Gabor filtering because as seen in 

Figure 37 many of the DOM values are close to 0 before they are cutoff by LR, and the images 

may still be useful depending on the application. In compression, IN and ON do not washout the 

image as much as Gabor filtering because of the definition of oscillator-based DCT in Equation 

9; some of the impact of noise is subtrated between the two DOM clusters. 

 

Figure 36: Image results from compression with model parameter variation. 
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Figure 37: Histogram of DOM values from each cluster in the convolution for compression, where the x-axis 

is percentage of dynamic range. 

Figure 38 shows how the file size of the compression was impacted by the model 

parameter variations. CA, IN, and ON change the pixel values and adds more data to the image, 

thus, more bits are required to represent the image. The opposite if true for LR, which removes 

data in the DCT, reducing the bits required to represent the image. This figure shows that despite 

the relatively strong visual integrity of compression, methods would be necessary to mitigate the 

increase in file size from parameter variation.  
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Figure 38: Image file size with model parameter variatoin. 

5.6 DISCRETE FOURIER TRANSFORM 

In this section, the effects of the parameters on DFT are analyzed. Each of the following 

subsections analyzes a different parameter in the following order: coupling asymmetry, locking 

region, input noise, and output noise. 

5.6.1 Coupling Asymmetry 

Figure 39 shows CA variation on DFT for various oscillator array sizes. There is notably 

more error present in DFT operations compared to DCT because each DFT operation involves 

two convolutions according to Equation 13 and the error becomes additive. This is also because 



 59 

of the larger difference squared values from the complex sinusoids that range on the interval [-1 

1], as opposed to the smaller intervals of the cosines in DCT. Like DCT, larger array sizes 

experience more error because larger array sizes involve more DFT operations. 

 

Figure 39: MSE of DFT with CA variation for different array sizes. 

5.6.2 Locking Region 

Figure 40 shows LR variation on DFT for various oscillator array sizes. It shows that 

DFT is less sensitive to LR for smaller p values and more sensitive for larger p values. Because 

of the greater difference between the input vectors and the complex sinusoids, the DFT 

experiences greater DOM values as shown in Figure 41 – Figure 42 and, just as in DCT, it 

becomes unlikely to have DOM values below 25% threshold.  
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Figure 40: MSE of DFT with LR variation for different array sizes. 

 

Figure 41: Histogram of DOM(Areal, Breal) values in the convolution for DFT for different image sizes, where 

the x-axis is percentage of dynamic range. 
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Figure 42: Histogram of DOM(Areal, Bimag) values in the convolution for DFT for different image sizes, where 

the x-axis is percentage of dynamic range. 
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Figure 43: Histogram of DOM(Areal, 0) values in the convolution for DFT for different image sizes, where the 

x-axis is percentage of dynamic range. 

 

5.6.3 Input Noise 

Figure 44 shows IN variation on DFT for various oscillator array sizes. Again, as the 

array sizes increase, the differences between the input vector and the complex sinusoids increase, 

causing more variation in the DFT. In addition, there are more DFT operations for larger sizes. 
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Figure 44: MSE of DFT with IN variation for different array sizes. 

5.6.4 Output Noise 

Figure 45 shows ON variation on DFT for various oscillator array sizes. More noise is 

added to the larger array sizes because of a larger dynamic range and thus experience a greater 

difference. As in DCT, the DFT is measured with a MSE and is not normalized and larger array 

sizes involve more operations. 
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Figure 45: MSE of DFT with ON variation for different array sizes. 
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6.0  CONCLUSION 

In this thesis, it has been shown that a Degree of Match circuit built using oscillator 

arrays can be characterized by a squared Euclidean distance equation, a commonly used distance 

metric, and therefore can be used for template matching. A real-world circuit model was then 

built with parameters for coupling asymmetry, locking region, input noise, and output noise. It 

was shown that using this DOM model, an exact convolution can be computed using three DOM 

oscillator clusters. From here, convolution-based signal processing primitives discrete cosine 

transform and discrete Fourier transform can be computed; it was shown how these primitives 

can be optimized to reduce the number of required oscillators and the amount of error cause from 

model parameter variation. 

The impact of these variations on the DOM circuit was analyzed and it was determined 

that CA and IN become less important as the array size increases, where as LR and ON are 

parameters are unrelated to array size. Parameter variation impact was then analyzed for 

convolution and it was found that, again, CA and IN impact is greater for smaller array sizes, 

however LR variation also has greater impact for smaller array sizes for greater p. Convolution 

was then implemented in a Gabor filtering application where it was shown that CA variation had 

negligible impact on filtering, and that though LR variation degraded the image, visually the 

filtered images were could still usable depending on the application. IN and ON both rendered 

the image unrecognizable with relatively small values of p. 
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Convolution was used to perform DCT and the results showed that CA variation had little 

impact and LR had minor impact for low parameter variation values. Input and output noise 

impacted DCT the most and showed that larger sizes performed worse because more variation is 

added. DCT was then implemented in a compression application and it was shown that although 

the output images from the compression were still viable even with high levels of parameter 

variations, CA, IN, and ON variation added more information to the images and caused their file 

sizes to increase during compression. LR variation in fact significant reduced the file size. 

Convolution was lastly used to compute DFT and the results were similar to that of DCT, only 

worse because more convolutions were involved with the operation. 

The viability of computing image processing primitives using coupled oscillator arrays 

has been proven, provided that the oscillator arrays behaves as the squared L2
2 norm. In the 

future, it is hoped that hardware implementations these of coupled oscillators will be designed 

and analyzed, verifying this distance metric model. This will allow for more opportunities to 

exploit the benefits of the technology by integrating them into full systems such as image 

processing pipelines and classifiers and building high power, low energy nano-devices. 
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