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Abstract
The purpose of this manuscript is to establish a unified theory of porohyperelasticity with

transport and growth and to demonstrate the capability of this theory using a finite element

model developed in MATLAB.We combine the theories of volumetric growth and mixed por-

ohyperelasticity with transport and swelling (MPHETS) to derive a new method that models

growth of biological soft tissues. The conservation equations and constitutive equations are

developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element

framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate

the capabilities of this model, several example finite element test problems are considered

using model geometry and material parameters based on experimental data from a porcine

coronary artery. Multiple growth laws are considered, including time-driven, concentration-

driven, and stress-driven growth. Time-driven growth is compared against an exact analyti-

cal solution to validate the model. For concentration-dependent growth, changing the diffu-

sivity (representing a change in drug) fundamentally changes growth behavior. We further

demonstrate that for stress-dependent, solid-only growth of an artery, growth of an

MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model

for the same amount of growth time using the same growth law. This may have implications

in the context of developing residual stresses in soft tissues under intraluminal pressure. To

our knowledge, this manuscript provides the first full description of an MPHETS model with

growth. The developed computational framework can be used in concert with novel in-vitro

and in-vivo experimental approaches to identify the governing growth laws for various soft

tissues.
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Introduction
The theories of mixed porohyperelasticity and growth have developed separately, and our labo-
ratory has been working to unite them into one combined theory. Porohyperelasticity and
biphasic/triphasic theory have long been used to describe the biomechanical response of hard
and soft tissues [1–4]. Meanwhile, the theory of growth and remodeling has been used to
describe things as varied as the evolution of bone and shells [5], heart [6], airways [7], arteries
[8], skin [9], muscle [10], tumors [11], and eyes [12]. In this paper we will combine the theory
of mixed porohyperelasticity with transport and swelling (MPHETS) [1, 3, 13–15] with volu-
metric growth [6, 16–18].

Modeling multiphasic soft tissues
Many soft tissues consist of a porous solid skeleton that is fully saturated by an interstitial fluid
and as such can be adequately modled as a fully saturated porohyperelastic (PHE) material.
Furthermore, one may also wish to track the behavior of a dissolved species representing a
drug, growth factor, or naturally occurring cytokines, which can be done utilizing a few differ-
ent approaches [1–4, 19–23].

The theory of saturated porous media was first developed to describe soil mechanics [24–
26] and has served as the background for applications to many problems in biomechanics. This
background resulted in the creation of multiple theoretical models to describe soft tissue as a
fully saturated porous media [2, 13, 20, 27]. Other similar approaches were also developed to
model soft tissues as triphasic materials [3, 4, 21, 22] and multiphasic materials with a charged
chemical species [1, 19, 23, 28–30].

Volumetric growth
The theory of growth and remodeling is rooted in the theory of elastoplasticity [31], which was
further applied to describe biological growth [5, 16, 32–34]. Two main theories emerged to
describe growth and remodeling. The first, which we follow in this paper, is volumetric growth
[6, 16–18, 35]. The second theoretical framework to describe growth and remodeling is via a
constrained mixture model [36–38].

Growth versus remodeling. In practice, some growth law is assigned to the system which
causes material addition or resorption. In the case of growth, the newly added material may or
may not have the same properties (e.g., density, elastic modulus) as the old material. Note that
there is some disagreement about what actually constitutes remodeling. The term “remodeling”
may be used to describe situations where the material properties change; e.g., the new material
is more dense than the original material. “Remodeling” also may be used to describe situations
where the material parameters are the same, but the system behavior changes. For example, the
addition of material to an artery causes the artery to be thicker, and hence, stiffer. However, the
material properties themselves remain the same.

For this work, we adopt the definitions that “growth” (or resorption) will indicate matter with
the same material properties being added (or resorbed) while “remodeling” will indicate a change
in density or other properties of the material. The combination of the two, “growth and remodel-
ing,” will indicate a change in the volume as well as a change in material properties [17]. For the
current work, we assume constant density, and therefore only consider the case of growth.

Growth and MPHETS
Our laboratory recently developed a preliminary one-dimensional model incorporating both
the theories of porohyperelasticity with transport and swelling as well as stress-dependent
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growth [39, 40]. That first approach used a simplistic coupling of stress-dependent growth of
the solid based on work from [6, 17]. For illustration of the theory, Harper et al.’s approach
was formulated in one dimension [40].

The present work expands on the model presented in Harper et al. [40], and incorporates
growth based on time, chemical concentration, and stress, rather than just stress. The current
theory is more sophisticated than the model presented in [40]. In this manuscript, we explicitly
calculate the grown masses of the solid and the fluid as well as the porosity change due to
growth, which allows us to include the effect of growth on bulk fluid motion and chemical con-
centration by introducing volumetric source terms. The equations in the tangent modulus are
more fully developed, and include several linear and nonlinear growth models depending on
time and concentration in addition to mechanical stress. Furthermore, the current theory is
developed for a general coordinate system and implemented in axisymmetry, and so is better
equipped to handle more anatomically complicated biological problems.

To our knowledge, there does not currently exist a growth and remodeling framework that
brings together the theories of volumetric growth and mixed porohyperelasticity with transport
and swelling. Therefore, the purpose of this manuscript is to develop a theoretical foundation
for growth of soft tissues utilizing a mixed porous media formulation, such that growth can be
a function of time, mechanical stress, or chemical species concentration. In part, the novelty of
this approach allows growth constitutive relations to be a function of large neutral mobile spe-
cies, such that future growth models can be influenced by naturally occurring cytokines,
growth factors, and/or pharmaceuticals in addition to mechanical stimuli. An axisymmetric
finite element framework is introduced and several test problems are considered in the context
of a coronary artery, including comparing the new growing porohyperelastic model with a tra-
ditional solid-only growth formulation.

Materials and Methods
The current work is deeply rooted in the theories of MPHETS and volumetric growth. For
space considerations, we have provided a brief summary of MPHETS theory in S1 Appendix.
For more detail on MPHETS, the reader is referred to [1, 3, 13–15, 40, 41]. For further back-
ground on growth, we refer the reader to [5, 6, 16, 17, 42].

Model assumptions
AnMPHETS material is a continuum made up of a fully-saturated, incompressible porous
solid; an incompressible interstitial fluid; and a neutral, mobile chemical species [15]. The pri-
mary variables are the displacement potential u, fluid potential ~m f � and chemical potential ~mc� ,
where the tilde denotes that these are Lagrangian quantities. The secondary variables are the
pore fluid pressure pf and the species concentration c. Together, the constituents form a poro-
hyperelastic compressible material: as the material is pressurized, the interstitial fluid flows,
and the chemical species is diffused and convected within the deforming porous media. The
chemical species may also induce flow via increases in osmotic pressure. Simulating the swell-
ing and transport of a chemical species may help better understand cytokine, growth factor,
and drug distribution in soft tissues [43].

Because our MPHETS model is meant to simulate in-vivo biomechanical behavior, we
assume a constant temperature of 310 K. We also assume that all MPHETS transport parame-
ters (porosity, convection coupling coefficient, and diffusivity) are isotropic in the Eulerian
frame; they are related to the Lagrangian MPHETS parameters via the deformation (Eqs (65)-
(67)). For illustration purposes, the transport parameters are further assumed to be constant in
the example problems.
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Considerations for adding growth to an MPHETSmodel
The two cases of growth considered in this paper are growth of the solid constituent only, and
growth of the porous material (addition of solid and fluid constituents). We assume density
preservation; the density in the intermediate growth configuration will be the same as the initial
density of the material. This density preservation will be discussed further below.

A fundamental constitutive equation for an MPHETS model is the effective stress principle,
which breaks the second Piola-Kirchhoff stress into a fluid stress and an effective stress. The
effective stress is defined as the stress that “has its seat exclusively in the solid phase of the
[material]”; that is, the effective stress is the excess stress in the material after subtracting out
the stress on the fluid constituent [44]. Then assuming an orthogonal curvilinear coordinate
system, the second Piola-Kirchhoff stress tensor Sij may be written in the Lagrangian frame as

Sij ¼ Seffij � JHijp
f ; S ¼ Seff � JHpf ð1Þ

where Seffij is the effective second Piola-Kirchhoff stress tensor, J is the Jacobian of the deforma-

tion gradient Fij, Finger’s strain tensor is defined as Hij ¼ F�1
ip F�1

jp , and pf is the pore fluid pres-

sure. We assume that stress-driven growth will depend on the effective mechanical stress.
In this manuscript, we consider three types of growth motivation: dependence on time (con-

stant growth), dependence on concentration, and dependence on stress in the material. Growth
dependent on time or concentration is a function of a scalar catalyst which has no directional-
ity. For stress-dependent growth of a purely solid material, the trace of the Mandel stress is
energy conjugate to the growth velocity gradient [17]; thus, the trace of the Mandel stress is an
appropriate driver for growth. For stress-dependent growth of a porohyperelastic material, we
choose to have the growth depend on the effective stress. The effective, elastic Mandel stress
Meff,e, is defined as

Meff ;e
ij ¼ Ce

ikS
eff ;e
kj ; Meff ;e ¼ CeSeff ;e ð2Þ

where Ce
ij ¼ Fe

piF
e
pj for elastic deformation gradient Fe

pi, defined below; and where S
eff ;e
kj is the

effective, elastic second Piola-Kirchhoff stress tensor, defined below. Note that the Mandel
stress, as the product of two symmetric tensors, is also symmetric. Because the trace of the
Mandel stress is a scalar, there is no directionality to this value. Thus, in all cases considered
here, isotropic growth is appropriate.

General theory for isotropic growth
As a precursor to adding growth to the MPHETS theory, in this section we summarize some
general principles of isotropic growth including densities in the different configurations associ-
ated with growth. More detail is available in [6, 17].

Total deformation may be split through the multiplicative decomposition into an elastic
part Fe and a growth part Fg such that

F ¼ FeFg ; ð3Þ

as seen in Fig 1. The Jacobian of F is the product of the elastic and growth Jacobians, J = Je Jg.
By assumption, three configurations exist: (1) original reference configuration—a physical,

possibly stressed configuration, (2) intermediate growth state—a non-physical, locally stress-
free state, and (3) final configuration—a physical, both grown and loaded state, which may
contain residual stresses.

A Finite Element Model for MPHETS with Growth
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For isotropic growth, the growth deformation gradient may be defined by Fg = ϑ I, where ϑ
is a volumetric stretch. Then for isotropic growth, the elastic deformation may be written sim-
ply as Fe = F(Fg)−1 = F/ϑ.

The growth law will be formulated as a rate that depends on some system variables; for
example,

_W ¼ kWðWÞ�gðt; c;F;Meff ; . . .Þ; ð4Þ

where kϑ is a scalar, generally non-constant parameter and ϕg is some scalar-valued growth rate
function of time t, concentration c, strain via the deformation gradient F, effective Mandel
stressMeff, or other relevant variables.

There are five different densities associated with growth, as pictured in Fig 1. The different
densities are used to calculate the growth source term. The initial material density is given by
ρ0,init; this is defined as the initial mass dM divided by the original volume dV0:

r0;init ¼ dM=dV0: ð5Þ

The grown density in the original configuration is represented by ρ0 and is given by the grown
mass dm divided by the original volume. The grown density in the intermediate configuration
and final configurations are denoted r̂0 and ρ, respectively. The grown densities in each config-
uration are related to each other via the Jacobians [17], such that

r0 ¼ dm=dV0 ¼d Jg r̂0¼d Jr: ð6Þ

Note that in general, ρ0 6¼ ρ0,init because the grown mass differs from the initial mass.

Fig 1. The total deformation gradient F maps the original material to the final grown, deformed state.
The total deformation may be split via the multiplicative decomposition into a growth deformation Fg followed
by an elastic deformation Fe. The intermediate configuration may have holes or overlapping material. The
original material has differential volume dV0 and initial density ρ0,init. The mass sourceR0 causes a grown
mass dm such that the new grown density in the reference configuration is given by ρ0 = dm/dV0. For the
assumption of density preservation, r�

0 is the density of the material that is preserved from the initial to the
grown configuration. For a single (solid) constituent, r�

0 ¼ r0;init: The intermediate growth configuration has

differential volume dV̂ and grown density r̂0 ¼ dm=dV̂ . The final (grown, deformed) configuration has
differential volume dV and grown density ρ = dm/dV.

doi:10.1371/journal.pone.0152806.g001
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By the assumption of density preservation from the initial configuration to the intermediate
configuration, the grown material is added at constant density denoted by r�

0. All densities
marked with a star will be held constant during growth. For traditional volumetric growth of a
solid, there is only one initial density, so r�

0 ¼ r0;init. Then with the assumption of density pres-

ervation, the mass sourceR0 may either be calculated as a function of the density change of the
grown material in the reference configuration _r0 or referred back to the initial density [17].
Then the mass source may be defined as

R0 ¼ _r0 ¼ 3r�
0W

2 _W ¼ 3r0;initW
2 _W; ð7Þ

as in [17]. Thus, given the time evolution of the scalar growth ϑ, we have completely deter-
mined the mass source from Eq (7) as a function of the initial density of the solid in the refer-
ence configuration and the scalar growth multiple ϑ.

Integrating the mass source termR0 from t0 to t and multiplying by the reference volume
will yield the differential mass growth element; we will use this technique below to determine
the mass source for a porohyperelastic material.

Source terms and final porosity for different growth cases of
porohyperelasticity
For porohyperelasticity, the two non-negligible mass additions are the mass of the solid and
the mass of the fluid. By assumption, the mass of the species may be neglected on the scale of
the fluid and solid mass. We consider two types of growth: adding only solid material and add-
ing a combination of solid and fluid. To determine the source terms, we must therefore care-
fully calculate the mass of the solid and the fluid during growth and elastic deformation. The
following derivations follow the pattern laid out in Himpel et al. [17], but are calculated here
for a porohyperelastic material.

Porosity and densities for MPHETS. AnMPHETS material has multiple constituents
and thus requires the definition of additional volumes and densities. The material is a combina-
tion of solid, fluid, and chemical species, but by assumption, the volume of the species can be
neglected compared to the volumes of the solid and the fluid. Then the differential volume ele-
ment for the material may be written as dV = dVs + dVf where dVs is the differential volume of
the solid and dVf is the differential volume of the fluid. The porosity of the material gives the
fraction of fluid volume to total volume in a specific frame. The Lagrangian porosity is defined

as n0 ¼ dVf
0=dV0 and the Eulerian porosity is defined as n = dVf/dV. The porosity may change

because of total deformation and growth. An explicit relationship between the two porosity val-
ues will be derived below and presented in Eq (44).

A table of the different densities used in GMPHETS may be found in S6 Appendix. The true
densities of the solid and the fluid are intrinsic properties and are defined as rs

T ¼ dMs=dVs
0

and rf
T ¼ dMf=dVf

0 for dM
s the initial mass of the solid and dMf the initial mass of the fluid.

For an incompressible constituent, the true density never changes and thus remains constant
during the entire simulation. The true density of the fluid may be taken to be the density of
water. The true density of the solid may be calculated in a two-step process: comparing the wet
vs. dry weight from a purely collagenous material and using the dry volume of the collagen
obtained through imaging.

In contrast, apparent densities change with the porosity. The apparent density of a constitu-
ent is defined as the mass of that constituent divided by the total volume, and may also be
defined via the porosity n. For the initial apparent densities of the solid and the fluid, the defini-

tions are given by rs
0;init ¼ dMs=dV0 ¼ ð1� n0Þrs

T and r
f
0;init ¼ dMf=dV0 ¼ n0r

f
T . The solid

A Finite Element Model for MPHETS with Growth
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and fluid densities that will be preserved during growth will be denoted as rs�
0 and rf �

0 , where
the star denotes density preservation. By assumption, adding solid-only material will preserve
the true density of the solid (rs�

0 ¼ rs
T) while adding a combination of solid and fluid will pre-

serve the initial apparent densities of the solid and the fluid (rs�
0 ¼ rs

0;init and r
f �
0 ¼ rf

0;init).

The growth mass element. The grown mass of the solid dms can be calculated as

dms ¼ dMs þ
Z t

t0

Rs
0d�tdV0; ð8Þ

where dMs is the initial mass of the solid at time t0 andR
s
0 is the Lagrangian volume-specific

mass source of the solid, integrated from time t0 to t.
The mass of the fluid can be calculated by tracking the change in mass over time:

dmf ¼ dMf þ
Z t

t0

Rf
0d�tdV0 � Ff ; ð9Þ

where dMf is the initial mass of the fluid,Rf
0 is the fluid’s Lagrangian volume-specific mass

source, and Ff is the total mechanical flux of fluid from time t0 to t. Note that by assumption,
this mechanical fluid flux is not associated with growth; any growth associated with the fluid

must come from the source termRf
0.

As in the general case, the grown apparent densities for constituent α in each configuration
are related to each other via the Jacobians, such that

ra
0 ¼ Jg r̂a

0 ¼ Jra; for a 2 fs; f g; ð10Þ

where ra
0 ¼ dma=dV0, r̂

a
0 ¼ dma=dV̂ , and ρα = dmα/dV. A table of the different densities used

in GMPHETS may be found in S6 Appendix. Recall that the volumetric deformation Jg does
not include flux because by assumption the growth deformation Fg does not include flux; in
this derivation we only consider growth through source terms and not through mass flux. In
contrast, the total deformation J does include the effects of flux because the total deformation
gradient F includes fluid flux via mechanical effects from the elastic deformation.

For simplicity of notation, we also define the masses added during growth for the solid and
the fluid as

dms;g ¼
Z t

t0

Rs
0d�tdV0; dmf ;g ¼

Z t

t0

Rf
0d�tdV0: ð11Þ

Solid-only growth. If we have growth of only the solid, there is only one source termRs
0.

We assume that during growth, the true density of the solid rs
T is preserved.

Dividing Eq (8) by the reference volume dV0, the grown apparent density of the solid in the
original configuration rs

0 can be written as

rs
0 ¼ rs

0;init þ
Z t

t0

Rs
0d�t ; ð12Þ

where rs
0;init is the initial apparent density of the solid at time t0.

Taking the time derivative, the growth rate of the solid density in the original configuration
is given by

_rs
0 ¼ Rs

0: ð13Þ

A Finite Element Model for MPHETS with Growth
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Following Himpel et al. [17], we use the relationships between the different densities (see Eq
(10)) to refer the local balance of mass to the intermediate growth configuration. Then

_rs
0 ¼

_
Jg r̂s

0

︵
¼ _J g r̂s

0 þ Jg _̂rs
0 ¼ Rs

0: ð14Þ

For an arbitrary value of r̂s
0, Eq (14) simplifies to yield

Rs
0 ¼ _Jg r̂s

0 þ Jg _̂rs
0 ¼ JgtrL̂g r̂s

0 þ Jg _̂rs
0 ; ð15Þ

since _Jg ¼ JgtrL̂g where L̂g ¼ _FgFg�1 [17]. For isotropic growth, we additionally have that

L̂g ¼ ð _W=WÞI and Jg = ϑ3; then Eq (15) simplifies to

Rs
0 ¼ ðW3Þð3 _W=WÞðr̂s

0Þ þ W3 _̂rs
0 ¼ 3W2 _Wr̂s

0 þ W3 _̂rs
0

ð16Þ

With the assumption of solid-only growth, the porosity in the intermediate growth configu-
ration will be different from the original configuration. Thus, we define the porosity in the

intermediate growth configuration as n̂ ¼ dV̂ f=dV̂ ; where dV̂ f is the differential volume of
the fluid in the intermediate growth configuration. For solid-only growth, the fluid volume will

be the same in the original and grown configurations (dVf
0 ¼ dV̂ f ; recall that by assumption

no mass flux occurs during growth). Then also using the definition of the growth Jacobian, the
growth porosity for solid-only growth may be written simply in terms of the initial porosity
and the growth multiplier:

n̂ ¼ dV̂ f=dV̂ ¼ dVf
0=ðJgdV0Þ ¼ n0=W

3: ð17Þ

The time derivative of Eq (17) is given by _̂n ¼ �3n0
_W=W4:

The growth porosity from Eq (17) may be used to define the intermediate grown apparent
density of the solid, where by definition

r̂s
0 ¼d

dms

dV̂
¼ dms

dV̂ s

dV̂ s

dV̂
¼ dms

dV̂ s
ð1� n̂Þ: ð18Þ

For solid-only growth, we assume that the true density of the solid is preserved in the growth

configuration, so dms=dV̂ s ¼ rs
T . Then the grown apparent density of the solid in the interme-

diate configuration may be written as

r̂s
0 ¼ rs

Tð1� n̂Þ: ð19Þ

Using this definition for the intermediate apparent solid density, Eq (16) becomes

Rs
0 ¼ 3W2 _Wrs

Tð1� n̂Þ þ W3
_

rs
Tð1� n̂Þ
︵

¼ 3W2 _Wrs
Tð1� n̂Þ � W3rs

T
_̂n : ð20Þ

Then plugging the growth porosity (Eq (17)) and its derivative into Eq (20),

Rs
0 ¼ 3W2 _Wrs

T 1� n0

W3

� �
� W3rs

T

�3n0
_W

W4

 !
¼ 3W2 _Wrs

T � 3W�1 _Wrs
Tn0 þ 3W�1rs

T
_Wn0: ð21Þ

Finally, simplifying Eq (21) yields the solid growth source term

Rs
0 ¼ 3rs�

0 W
2 _W ¼ 3rs

TW
2 _W: ð22Þ

Note that this derivation is similar to the general theory for isotropic growth. However, while

A Finite Element Model for MPHETS with Growth
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the true density of the solid is preserved by growth, the apparent density is not preserved. For
continuity with the theory from Himpel et al. [17], we write the Lagrangian density that is pre-
served during growth as rs�

0 ¼ rs
T .

Integrating the solid source from t0 to t, multiplying by the reference volume dV0, and
assuming that ϑ(t0) = 1 (thus Fg(t0) = I, so the initial condition is no growth) yields the added
mass of the solid from growth

dms;g ¼
Z t

t0

Rs
0d�tdV0 ¼ rs

T ðW3 � 1ÞdV0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
solid volume added by growth

: ð23Þ

The density-specific solid source term will be used in conservation of solid mass, and is
given by

Rs
0

rs
T

¼ 3rs
TW

2 _W
rs
T

¼ 3W2 _W: ð24Þ

Solid and fluid growth that preserves apparent densities. By assumption, solid and fluid
growth will preserve the initial apparent densities of both solid and fluid constituents. Thus,
solid growth will occur at constant growth density rs�

0 ¼ ð1� n0Þrs
T while fluid growth occurs

at constant growth density rf �
0 ¼ n0r

f
T .

The grown material density in the original configuration is defined as the total grown mass
divided by reference volume dV0. The total grown mass dmg is the sum of the grown mass of
the solid (dMs + dms,g) and the grown mass of the fluid (dMf + dmf,g). Note that the grown
mass of the fluid does not contain a flux term, because by assumption there is no mass flux dur-
ing growth. (Fluid flux only occurs during elastic deformation.) Then the Lagrangian density of
the whole material after growth may be written as

r0 ¼
dmg

dV0

¼ ðdMs þ dms;gÞ þ ðdMf þ dmf ;gÞ
dV0

: ð25Þ

The grown material density can also be written as

r0 ¼ r0;init þ
Z t

t0

R0d�t ; ð26Þ

where ρ0,init is the initial (pre-growth) density in the undeformed configuration andR0 is a
Lagrangian source term.

The total material density after growth may be split in terms of the fluid and solid (without
flux, because by assumption no flux occurs during the growth process). The grown apparent

densities of the solid and fluid in the original configuration are labeled as rs
0 and r

f
0, respec-

tively. Also recall that the Lagrangian total density of the material before growth is given by

r0;init ¼ rs
0;init þ rf

0;init ¼ ð1� n0Þrs
T þ n0r

f
T ; ð27Þ

where rs
0;init is the Lagrangian apparent density of the solid before growth, and rf

0;init is the

Lagrangian apparent density of the fluid before growth. Then we may write the grown density
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from Eq (26) as

r0 ¼ rs
0 þ rf

0 ¼ ð1� n0Þrs
T þ n0r

f
T þ

Z t

t0

Rs
0d�t þ

Z t

t0

Rf
0d�t ; ð28Þ

by separating out solid and fluid source terms.
We consider the solid and the fluid separately. For the solid, the grown apparent density in

the original configuration is given by

rs
0 ¼ ð1� n0Þrs

T þ
Z t

t0

Rs
0d�t : ð29Þ

Here, we assume density preservation of the apparent density of the solid r̂s
0 ¼ rs

0;init, which is a

constant. With this assumption, _̂rs
0 ¼ 0 and the time derivative of Eq (29) simplifies from Eq

(14) to become

_rs
0 ¼ _J grs

0;init ¼ Rs
0: ð30Þ

Then following a similar derivation to the solid-only growth above, we obtain the solid source
term

Rs
0 ¼ ðW3Þð3 _W=WÞrs

0;init ¼ 3rs
0;initW

2 _W: ð31Þ

Using the definition for initial apparent solid density, the solid source may be written as

Rs
0 ¼ 3rs�

0 W
2 _W ¼ 3ð1� n0Þrs

TW
2 _W; ð32Þ

where rs�
0 ¼ ð1� n0Þrs

T is the solid density preserved by growth.
For the grown fluid density, we may similarly write

rf
0 ¼ n0r

f
T þ

Z t

t0

Rf
0d�t : ð33Þ

Taking the time derivative, the growth rate of the apparent fluid density in the original configu-
ration is given by

_r f
0 ¼

_
Jg r̂ f

0

︵
¼ _J g r̂ f

0 þ Jg _̂r f
0 ¼ Rf

0: ð34Þ

With the assumptions of isotropic growth and density preservation of the apparent density of

the fluid from the initial state to the intermediate configuration (i.e., r̂ f
0 ¼ rf

0;init ¼ n0r
f
T , which

is a constant), Eq (34) becomes

Rf
0 ¼ _J grf

0;init ¼ 3rf �
0 W

2 _W ¼ 3n0r
f
TW

2 _W; ð35Þ

where rf �
0 ¼ n0r

f
T is the fluid density preserved by growth.

In summary, for isotropic growth and density preservation of the solid and the fluid, the
source terms may be written as

Rs
0 ¼ 3ð1� n0Þrs

TW
2 _W; Rf

0 ¼ 3n0r
f
TW

2 _W: ð36Þ

Integrating the source terms from t0 to t, multiplying by the reference volume, and assuming
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that ϑ(t0) = 1, we obtain the added masses of the solid and fluid from growth:

dms;g ¼
Z t

t0

Rs
0d�tdV0 ¼ rs

Tð1� n0ÞðW3 � 1ÞdV0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
solid volume added by growth

; ð37Þ

dmf ;g ¼
Z t

t0

Rf
0d�tdV0 ¼ rf

T n0ðW3 � 1ÞdV0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fluid volume added by growth

: ð38Þ

Recall that the final mass of the fluid after deformation may differ from the mass of the fluid
after growth because elastic deformation can cause fluid flux.

Adding the fluid and solid sources together, the total source in Lagrangian coordinates is
given by

R0 ¼ Rs
0 þRf

0 ¼ 3 ð1� n0Þrs
T þ n0r

f
T

� �
W2 _W ¼ 3½r0;init�W2 _W; ð39Þ

so growth preserves the initial density of the porous material, where ρ0,init = (dMs + dMf)/dV0

from Eq (27).
Further note that the sum of the density-specific source terms is given by

Rs
0

rs
T

þRf
0

rf
T

¼ 3 ð1� n0Þ þ n0½ �W2 _W ¼ 3W2 _W: ð40Þ

This sum of the normalized source terms will be appear in the fluid conservation equation and
is the same as the density specific term appearing in solid-only growth, as in Eq (24).

Calculation of final porosity after growth and deformation. Independently from the
type of growth considered, the mass of the grown solid may be written in Lagrangian coordi-
nates as the initial solid mass plus a growth term, as in Eq (8). The initial solid mass may be
written as the initial apparent density multiplied by the original volume:

dMs ¼ rs
0;initdV0 ¼ rs

Tð1� n0ÞdV0: ð41Þ

For isotropic growth at constant solid density rs�
0 , the grown mass element of the solid is given

by explicitly integrating the source term from Eq (8). Then also writing dMs as in Eq (41), the
expression for the grown mass may be written as

dms ¼ rs
Tð1� n0ÞdV0 þ rs�

0 ðW3 � 1ÞdV0: ð42Þ

Note that if there is no growth, then ϑ = 1 and the masses are the same: dms = dMs. Equivalently
to Eq (42), the grown mass element may be calculated in Eulerian coordinates by multiplying
the new apparent density of the solid by the deformed volume dV. Then

dms ¼ rsdV ¼ rs
Tð1� nÞdV ¼ rs

Tð1� nÞJdV0; ð43Þ

where both the definition of grown apparent density of the solid rs ¼ rs
Tð1� nÞ and the rela-

tionship dV = JdV0 have been applied.
Setting Eqs (42) and (43) equal and then solving for the Eulerian porosity n, we obtain

n ¼ 1� J�1ð1� n0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
mechanical

� J�1 rs�
0

rs
T

ðW3 � 1Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
growth

: ð44Þ
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Comparing this with the non-growth definition of the porosity n = 1 − J−1(1 − n0), we observe
that this expression represents both a mechanical change and a growth contribution.

The specific form of Eq (44) depends on the choice of constant growth density rs�
0 . The two

obvious choices are that (1) the true density of the solid is preserved (so solid mass is added at
the true density of the solid), and (2) the initial apparent density of the solid is preserved (so
solid mass is added at the original apparent density of the solid while the fluid mass is simulta-
neously added at the original apparent density of the fluid). Note that we may equivalently cal-
culate the final porosity via the final volume of the fluid. For further details of this calculation,
see Armstrong [41].

Porosity for solid-only growth. For growth at the true density of the solid, rs�
0 ¼ rs

T ; the
grown mass of the solid is given by

dms ¼ rs
TðW3 � n0ÞdV0: ð45Þ

The porosity after growth and deformation simplifies from Eq (44) to

n ¼ 1� J�1ðW3 � n0Þ: ð46Þ

If we additionally assume no volumetric change from elastic deformation, i.e. Je = 1 so J = Je Jg

= ϑ3, then the porosity becomes

n ¼ 1� W�3ðW3 � n0Þ ¼ W�3n0: ð47Þ

So for solid-only growth that preserves density, growth changes the porosity. This occurs
because adding only solid material will change the ratio of solid to fluid. Without elastic defor-
mation, the porosity would only be the same as the initial porosity with the additional assump-
tion of Jg = 1, i.e. no volumetric change from growth.

Porosity for solid and fluid growth. For growth at the apparent density of the solid, the
solid growth density is given by rs�

0 ¼ ð1� n0Þrs
T . The grown mass of the fluid (before flux

caused by elastic deformation) is given by

dMf þ dmf ;g ¼ rf
Tn0dV0 þ rf

Tn0ðW3 � 1ÞdV0 ¼ rf
Tn0W

3dV0: ð48Þ

The grown mass of the solid is given by

dms ¼ rs
Tð1� n0ÞW3dV0: ð49Þ

and Eq (44) simplifies to

n ¼ 1� J�1ð1� n0ÞW3: ð50Þ

Note that if we assume no volumetric change from elastic deformation, Je = 1 so J = Je Jg = ϑ3

and the porosity becomes

n ¼ 1� W�3ð1� n0ÞW3 ¼ n0: ð51Þ

Thus, this case (growth that preserves the apparent densities of the solid and the fluid) repre-
sents adding additional porous media with the same porosity.

Porosity constraint on the GMPHETSmodel
Without further restrictions, some growth models may cause unbounded growth (e.g., the sim-

plistic time-dependent growth law _W ¼ a). In particular, the unbounded growth may be such
that it invalidates the behavior of the model. For admissibility, the theory of porous media
requires a porosity of 0� n� 1. In particular, GMPHETS models the interaction between
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solid, fluid, and species. If the material becomes either completely fluid (n = 1) or completely
solid (n = 0), the GMPHETS porous media model is no longer valid.

For the system to be valid for GMPHETS, the porosity (from Eq (44)) must be such that

0 < 1� J�1½ð1� n0Þ þ �rsðW3 � 1Þ� < 1; ð52Þ

where �rs ¼ rs�
0 =r

s
T is the normalized solid growth density. Then equivalently, we require thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

�rs
ðJ � 1þ n0Þ3

r
> W >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

�rs
ðn0 � 1Þ3

r
: ð53Þ

Once the model reaches either limit, the porous media model is no longer valid because the
material is either purely solid or purely fluid. One approach to handle this invalidity would be
to include some sort of transitional behavior between a fluid-only model, a porous media
model, and a solid model, but that is beyond the scope of this paper. For the work presented
here, we prevent the material from reaching this critical stretch by either restricting growth
time or including a nonlinear growth parameter that bounds ϑ (introduced by Lubarda and
Hoger [33] and detailed in Eq (76)).

GMPHETS conservation and constitutive equations
For a derivation of the MPHETS conservation equations with growth, we refer the reader to S2
Appendix. We summarize the Lagrangian conservation equations here. Firstly, linear momen-
tum is conserved:

@½FipSpj�
@Xi

¼ 0; r � ðFSÞ ¼ 0; ð54Þ

for deformation gradient Fip, second Piola-Kirchhoff stress tensor Spj and undeformed configu-
ration Xi. A combination of the conservation of mass of the solid, conservation of the mass of
the fluid, and incompressibility of each constituent, becomes

@~jfrk
@Xk

þ JHij
_Eij � 3W2 _W ¼ 0; r � jfr þ JH : _E � 3W2 _W ¼ 0; ð55Þ

for relative fluid flux~jfrk ; Jacobian J = det(Fij); Finger’s strain tensor Hij ¼ F�1
ip F

�1
jp ; Green strain

Eij ¼ 1
2

FpiFpj � dij


 �
for δij the identity tensor; and ϑ the growth stretch multiplier. Eq (55) will

henceforward referred to as the fluid conservation equation.
Finally, the mass of the species is conserved:

@~jcrk
@Xk

þ JHij
_Eijc� 3�rsW2 _Wcþ Jn _c ¼ 0; r � jcr þ JH : _Ec� 3�rsW2 _Wcþ Jn _c ¼ 0; ð56Þ

for relative species flux~jcrk , concentration c, normalized solid growth density �rs ¼ rs�
0 =r

s
T , and

porosity n such that

n ¼ 1� J�1½ð1� n0Þ þ �rsðW3 � 1Þ�; ð57Þ

where n0 is the initial porosity of the material. The conservation of linear momentum Eq (54)
appears the same as in traditional MPHETS theory, but the stress will be modified by growth.
Growth adds terms that appear directly in the conservation equations for the fluid Eq (55) and
species Eq (56); these terms are not present in traditional MPHETS theory and also were not
considered in [40]. In the fluid equation, growth is a purely volumetric term; for the two cases
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discussed—growth at constant solid density (solid-only growth at rs
T) and both solid and fluid

growth at constant apparent density (solid growth at rs
Tð1� n0Þ and fluid growth at rf

Tn0)—
the volumetric term is identical. The species equation depends explicitly on the porosity, and
so differs with the particular growth case considered. Note that the porosity is not assumed to
be constant during growth, which represents a relaxation of the assumptions from [40].

Effective stress and the growth pullback. The effective stress is also modified by growth.
For example, consider a growing cube of a compressible solid material with a fixed boundary.
As the material grows and adds mass, elastic stresses compress the material back to the original
configuration. In general, standard growth theory assumes that growth occurs to bring the sys-
tem to some new fictitious, stress-free configuration that may be incompatible (as in Fig 1).
Then the elastic deformation brings the system back to a compatible configuration. So residual
elastic stresses may develop even if the boundary conditions are not fixed.

Thus, in addition to the effective stress principle splitting the stress into stress on the fluid
and the effective stress, we must also consider growth. So stress becomes a function of total
deformation and growth, S(F,Fg).

The growth pullback into the undeformed configuration is given by

Seff ¼ Fg�1Seff ;eFg�T ; ð58Þ

[17]. For isotropic growth the effective stress then becomes

Seff ¼ Fg�1Seff ;eFg�T ¼ 1

W2 S
eff ;e; where Seff ;e ¼ @Weff

@Ee ; ð59Þ

for free energyWeff. Note that the elastic portion of the effective stress Seff,e is based on the elas-
tic strain only. This elastic strain changes with growth because during a growth step, F is held
fixed; thus any changes in the growth deformation Fg cause corresponding changes in the elas-
tic deformation Fe. Hence, growth causes a change in the stress. Combining the effective stress
principle with the growth pullback, the second Piola-Kirchhoff stress is given for isotropic
growth as

SðF; W;Weff ; pf Þ ¼ Fg�1Seff ;eFg�T � JHpf ¼ 1

W2 S
eff ;e � JHpf ð60Þ

Other constitutive equations. The other constitutive equations are analogous to those
without growth, detailed in [3, 15], for example. For completeness, they are listed below.
Hyperelasticity defines the effective stress in terms of the free energyWeff as

Seff ;eij ¼ @Weff

@Ee
ij

; Seff ;e ¼ @Weff

@Ee : ð61Þ

The effective stress principle splits the stress into the pore fluid pressure and the remaining
‘effective’ stress, where

Sij ¼ Seffij � JHijp
f ; S ¼ Seff � JHpf : ð62Þ

The Onsager equations are a generalized version Darcy’s and Fick’s laws, and couple the

species and the pore fluid pressure. For~jfri the Lagrangian relative fluid flux and~jcri the
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Lagrangian relative species flux,

~jfri ¼ �~Lff
ij

@~m f �

@Xj

� ~Lfc
ij

@~mc�

@Xj

; ~j fr ¼ �~L ff @~m
f �

@X
� ~L fc @~m

c�

@X
; ð63Þ

~jcri ¼ �~Lcf
ij

@~m f �

@Xj

� ~Lcc
ij

@~mc�

@Xj

; ~jcr ¼ �~Lcf @~m
f �

@X
� ~Lcc @~m

c�

@X
; ð64Þ

where ~Lff
ij ; ~L

fc
ij ; ~L

cf
ij ; ~L

cc
ij are given material parameters that can be calculated from the isotropic

Eulerian MPHETS parameters of porosity kff, convection coupling coefficient bfc = bcf, and dif-

fusivity dcc. The Lagrangian form of the ~Lij parameters (with the assumption of isotropic Euler-

ian Darcy/Fick parameters) are given in [40] as

~Lff
ij ¼ JHijk

ff ; ð65Þ

~Lfc
ij ¼ JHijðkff bfccÞ ¼ ~Lcf

ij ; ð66Þ

~Lcc
ij ¼ JHij

c
�Ry

dcc þ cbcf kff bfcc

 �

; ð67Þ

for universal gas constant �R ¼ 8:31 ðJ=K=molÞ and material temperature θ (assumed to be
constant at 310 K).

The primary and secondary variables are linked by the standard mechano-chemical poten-
tials:

~m f � ¼ pf þ po0 � Ry�cc; ð68Þ

where po0 is a baseline osmotic potential, R is the universal gas constant, θ is the temperature
(assumed to be constant) and ϕc is the osmotic coefficient of the species in the material, and

~mc� ¼ mc
o þ Ry log ðgcmatcÞ; ð69Þ

where mc
o is a baseline chemical potential and gcmat is the activity coefficient of the species in the

material [3, 40].
In summary, the structural model is based on material displacement (Eq (54)). The displace-

ment is coupled to the pore fluid pressure through the effective stress principle (Eq (60)).
Finally, the pore fluid pressure and chemical concentration are coupled through the Onsager
Eqs (63) and (64), which provides a fully coupled system.

Material law for effective stress
To illustrate the newly developed model, we choose an isotropic Neo-Hookean form used by
Göktepe et al. [6], where for material parameters λ, μ,

WeffðI1; JeÞ ¼
1

2
l ln 2ðJeÞ þ m

2
I1 � 3� 2 ln ðJeÞ½ �: ð70Þ

Note that by definition, C10 = μ/2, D1 = 2/κ, and l ¼ k� 2
3
m, so the parameter set {λ, μ} may be

calculated from the parameter set {C10, D1}.
The effective, elastic second Piola-Kirchhoff stress is then given by

Seff ;e ¼ 2
@Weff

@Ce ¼ ðl ln ðJeÞ � mÞCe�1 þ mI; ð71Þ
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and the elastic Lagrangian tangent modulus is given as

Le
ijkl ¼ 2

@Seff ;eij

@Ce
kl

¼ lCe�1
ij Ce�1

kl þ ðm� l ln ðJeÞÞ Ce�1
ik Ce�1

lj þ Ce�1
il Ce�1

kj


 �
: ð72Þ

This constitutive model will be used in the finite element representation of the growing
MPHETS model.

Finite element theory for a growing MPHETSmaterial
In this section we introduce the finite element formulation for the growing MPHETS model.
GMPHETS theory was implemented as an in-house finite element code, programmed in
MATLAB. The elements are three-noded, linear axisymmetric triangles, where primary vari-
ables (displacement, fluid potential, and chemical potential) are defined at the nodes, and sec-
ondary variables (pore fluid pressure and concentration) are defined at the Gauss points. The
primary variables are interpolated linearly and are continuous, while the secondary variables
are piecewise constant. Though this is a low-order interpolation, our finite element implemen-
tation is sufficient to model a GMPHETS material for a dense mesh, and demonstrates the
potential of the GMPHETS theory. For integration on the axisymmetric triangles, we use
Gauss Quadrature evaluated at the single Gauss point. For additional background on finite ele-
ments, we refer the reader to [45–47].

Choice of solution variables. The partition coefficient, or the ratio of activity coefficients
on either side of a material interface, defines the relative concentration on either side material
boundaries. In general, differing activity coefficients result in a concentration discontinuity at
these locations. Because the concentration is not continuous, the osmotic pressure is also not
continuous, and hence, the pore fluid pressure is not continuous. Thus, the concentration and
pore fluid pressure are not suitable as primary variables, which must be continuous on the
nodes. To handle this discontinuity, one may wish to use a penalty method [48] or secondary
variables [3, 14, 40]. In this work, we use the latter approach. The classical mechano-chemical
potentials are defined above in Eqs (68) and (69).

The total pressure is defined in Eq (68) as the sum of the pore fluid pressure and the osmotic
pressure; note that the osmotic pressure is the sum of a datum based on the lowest concentra-
tion expected in the problem and the osmotic pressure expressed by the current chemical con-
centration. In Eq (69), the quantity gci ci represents the activity ai of the chemical species. The
term mc

0 in the chemical potential is a datum based upon the lowest concentration expected in
the problem and ensures that the chemical species concentration remains above zero; thus the
logarithm in the chemical potential is well-defined. The GMPHETS code contains both pri-
mary variables (defined at the nodes) and secondary variables (defined at the Gauss points).
The standard mechano-chemical potentials relate the primary variables to the secondary vari-
ables, as in [40]. This allows the finite element equations to be formulated as a function of the
primary variables; the secondary variables are then carried along as internal variables.

Numerical algorithm
Algorithm pseudocode. The finite element code is run with a traditional Newton-Raph-

son (NR) predictor corrector method. The full algorithm used is detailed in Fig 2. Growth has
been implemented following the algorithm from [6] (adapted for GMPHETS and detailed in
Fig 3).

The full finite element algorithm for nonlinear growth contains a nested set of two Newton-
Raphson iterations. For a given time step, local growth is iterated with Newton-Raphson on
each element—given a fixed F, the nonlinear growth stretch is iterated until convergence.
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Then, using the updated elemental growth stretch ϑ, the new stress is calculated and a single
global Newton-Raphson iteration takes place. Thus, local growth iterations are run for each ele-
ment during every global iteration.

To solve the global conservation equations, the algorithm employs a traditional predictor
corrector method to handle nonlinearity, pairing a step of forward Euler with corrections using
backward Euler time integration for stability. A backward Euler algorithm means that the cur-
rent value of all variables is used during the correction step. To obtain a prediction for the cur-
rent time step, the incremental global finite element equations are linearized to obtain stiffness

matrix K̂, dissipation matrix Ĉ, and incremental loading vector ΔP. After applying the time
integrator, the equations are then solved to obtain Δp; the predicted value of the primary dis-
placements is then given by pn+1 = pn + Δp. This predictor is then fed into the Backward Euler
algorithm until either the primary and secondary residuals (given byC,Cg, respectively) have
converged; or the primary and secondary variables have converged; or the maximum number
of iterations has been exceeded (which usually indicates that the time step is too large). A num-
ber of growth laws will be considered. For a nonlinear update, local Newton-Raphson iterations
on each element update the growth stretch.

Fig 2. Finite element pseudocode for GMPHETS. Variables without subscripts are evaluated at the current
time step and iteration. Ĉ is the global dissipation matrix, K̂ is the global stiffness matrix, p is the vector of
primary displacements,Ψ is the primary residual, andΨg is the secondary residual.

doi:10.1371/journal.pone.0152806.g002
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Local Newton-Raphson iterations to update growth stretch. If the growth rate function
chosen is nonlinear, we follow [6, 17] and use local Newton-Raphson iterations on each ele-
ment to update the growth stretch. For details of how to calculate such local Newton-Raphson
tangents and residuals, we refer the reader to [6].

Briefly, while the growth Fg is being updated, total deformation F is by assumption fixed.
Thus, all displacement values are fixed. The local Newton-Raphson iterations require a local
growth residual Rϑ and a local growth tangent modulus Kϑ for each of the nonlinear growth
cases following. Due to space considerations, the calculation of local Newton-Raphson itera-
tions is omitted. For details, see Armstrong [41].

Growth laws. Each of the growth update functions considered is summarized below.
Linear time-driven growth. The simplest growth function considered is

_W ¼ a; ð73Þ

for constant growth parameter α. Then growth is independent of time and space. This simple
linear growth may be updated via the finite difference expression

Wnþ1 ¼ Wn þ aDt: ð74Þ

Nonlinear concentration-driven growth Suppose that we have a more complicated function for
concentration driven growth, where ϕg(c) is some function of concentration, and both growth
and resorption are governed by nonlinear parameter kϑ. Let the time evolution of the growth
stretch be defined as

_W ¼ kWðWÞ�gðcÞ; where �gðcÞ ¼ c� cthresh; ð75Þ

Fig 3. Local element update for GMPHETSwith isotropic growth. The growth update algorithm is
modified for GMPHETS theory from [6]. Variables without subscripts are evaluated at the current time step
and iteration. For the linear case, growth is updated directly. For the nonlinear case, backward Euler is used
for stability.

doi:10.1371/journal.pone.0152806.g003
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for concentration threshold cthresh. The nonlinear parameter kϑ is akin to the growth stretch
coefficient used in [6, 17], originally introduced by [33] to prevent unlimited growth. It is
defined in terms of parameters τ±, ϑmax, ϑmin, γ± as

kWðWÞ ¼

1

tþ
Wmax � W
Wmax � 1

� �gþ

; for �g > 0

1

t�
W� Wmin

1� Wmin

� �g�

; for �g < 0

: ð76Þ

8>>>>><
>>>>>:

The material parameters ϑmax and ϑmin govern the maximal and minimal stretch of the mate-
rial, respectively, while parameters τ±, γ± govern the relaxation rate—the time that it takes for
the growth stretch to reach ϑmax or ϑmin [17].

Nonlinear stress-driven growth A material may respond to stress such that it grows when
under tension and resorbs when under compression to minimize the stress in the material.
Here, we adapt the approach presented by Himpel et al. [17] and Göktepe et al. [6] for a solid-
only material. Because these authors consider a purely solid material, the material stress is
equal to the effective stress [6, 17]. In contrast, our model contains an interstitial fluid, and
thus has a pore fluid pressure. We assume that growth is a function of the effective stress.

Then, let the growth function be given as

_W ¼ kWðWÞ�gðMeff ;eÞ; ð77Þ

where kϑ(ϑ) is defined above in Eq (76) and ϕg is some function dependent on stress. Recall
that the effective, elastic Mandel stress is given in Eq (2). The simplest version of Eq (77) is for
ϕg(Meff,e) = tr(Meff,e). The trace of the Mandel stress was chosen in [6, 17] because it is energy-

conjugate to the growth velocity gradient in the intermediate configuration L̂g . Then the
growth law may be written as

_W ¼ kWðWÞtrðMeff ;eÞ: ð78Þ

Incremental tangent modulus for global Newton-Raphson iterations. The weak form of
the conservation equations, used to calculate the primary residual, are located in S3 Appendix.
Incremental forms of the conservation equations, which are used to assemble the global tan-
gent modulus, are located in S4 Appendix.

Results
To illustrate the capabilities of the GMPHETS model, we consider a few different growth laws
applied to a Neo-Hookean material. For time-dependent growth, we compare a porohyperelas-
tic (PHE) model of a cylinder run with either a solid-only source term or a combined solid/
fluid source term, and match both simulations to a time-dependent analytical solution. For
stress-dependent growth, we show that after growth the gradient of the effective hoop stress for
an MPHETS model of an axisymmetric cylinder is lower than the gradient in hoop stress for a
hyperelastic (HE) model. Finally, for concentration-dependent growth, we consider how
changing the balance of permeability kff, convection coefficient bcf and diffusivity dcc can affect
the final growth outcome.
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Model geometry and parameters
Each problem simulates growth of an artery modeled as a plane-strain cylinder. The artery has
an inner radius of 1mm, an outer radius of 1.25mm, and is internally pressurized to 100
mmHg with zero external pressure. Model geometry and material parameters are derived from
experimental data of a porcine left anterior descending coronary artery [43, 49]; material
parameters are located in Table 1. The permeability kff, convection coupling coefficient bcf, and
diffusivity dcc cause the chemical species to distribute slowly across the mesh during the
simulation.

We assume the artery is sitting in a bath such that the internal bath has a concentration of
6.40e − 3mol/m3, the external bath has a concentration of 6.40e − 4mol/m3, and the partition
coefficient for both baths is given as gcmat=g

c
bath ¼ 0:5. Via the partition coefficient, the concen-

tration just inside the leftmost point of the cylinder is subject to a concentration of 0.0128mol/
m3, and the concentration just inside the external part of the cylinder is 1.28e − 3mol/m3.

By assumption, the material has an initial porosity of n0 = 0.5, indicating equal parts by vol-
ume of solid and fluid. For simplicity, all growth examples presented in this paper assume that
the osmotic coefficient ϕc is zero (i.e., there is no osmosis). Growth rate parameters {α, τ±, γ±}
are chosen arbitrarily and illustrate the capabilities of the model; future work is needed to
determine the time scale of growth for a specific physiological model. Growth may occur either
simultaneously with or after consolidation. For the time-dependent growth problem, growth
occurs after consolidation is complete, while in the stress- and concentration-driven growth
problems, growth occurs simultaneously with fluid and species transport. Unless otherwise
indicated, stress will be plotted for Gauss points averaged to the center node of adjacent trian-
gles, following [50, 51].

Time-dependent growth of a rigid PHE cylinder with solid vs. solid/fluid
mass source
We first simulate time-dependent growth of a rigid, pressurized artery to compare against a
time-dependent analytical solution. For the case of an internally pressurized, rigid porohypere-
lastic cylinder, we can calculate the analytical solution for the stresses and pore fluid pressure
due to time-driven growth. Here, rigidity indicates that spatial displacements in the radial and
axial directions are held fixed at every point; the pore fluid pressure is not fixed and is subject
only to the boundary conditions at the edges of the material. The derivation of the analytical
solution is presented in S5 Appendix.

For the finite element solution, a cylinder representing an artery is meshed as a strip of 120
elements. First, the cylinder consolidates to steady-state (which represents in-vivo status) and
then a time-dependent growth law is applied (given by Eq (73) with α = 0.0008). For this test
case we will consider two cases of growth: a solid-only mass source and a solid/fluid mass
source that preserves the initial porosity during growth.

Table 1. Material parameters used in test problems.

C10 [Pa] D1 [Pa−1] kff [m4/(N � s)] bcf [unitless] dcc [m2/s] gcmat ϕc [unitless] n0 [unitless]

1e6 5.5e-9 2e-14 6e-4 4.55e-14 0.5 0 0.5

Material parameters C10, D1, k
ff, bcf, dcc are adapted from [43, 49].

doi:10.1371/journal.pone.0152806.t001
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Recall that �rs is the constant, normalized solid growth density, defined as �rs ¼ rs�
0 =r

s
T . For

the solid-only material source, the true density of the solid is preserved during growth. Then
rs�
0 ¼ rs

T and hence �r
s ¼ 1. For the combined solid/fluid mass source, growth preserves the ini-

tial apparent densities of the solid and the fluid (given by ½ð1� n0Þrs
T � and ½n0r

f
T �, respectively)

which then preserve the initial porosity in the intermediate configuration during growth. The
porosity in the deformed configuration will in general not be preserved due to fluid flux from
elastic deformation. In this test problem, the final porosity will not match the initial porosity
because the constraint of rigidity causes fluid flux. Using the solid growth density, for solid/
fluid growth, the normalized solid growth density is given by �rs ¼ ð1� n0Þ. For an initial
porosity of 0.5, this simplifies to �rs ¼ 0:5. The growth parameters are listed in Table 2.

For either growth source, this simple time-dependent growth model is unbounded; as men-
tioned above, the amount of growth time is then restricted by the porosity. The most limiting
case is for solid-only growth; for a combination solid/fluid material source, the amount of
growth in a rigid solid could continue for a longer time period before becoming inadmissible.
Using the limiting case and applying the simple time update of ϑ = αt + 1 to the growth restric-
tion from Eq (53), one may calculate that the limiting time occurs at approximately 181 sec-
onds of growth. Note that this limit is independent of time step size and depends only on total
growth time and the value of α. Thus, after consolidation, we apply the growth law for 150 sec-
onds (300 steps at dt = 0.5s) to not exceed the maximum amount of allowable growth.

For both cases of solid-only and solid/fluid source terms, many of the results remain the
same (including displacement, pore fluid pressure, and stress). With the exception of the
porosity, all figures will be plotted for the solid-only source case; figures from the solid/fluid
case are identical.

The pore fluid pressure reaches the consolidated state immediately due to the restriction of
a rigid material. The consolidated state matches the analytical steady solution for fluid pressure
in a rigid cylinder without growth, shown in Fig 4A; the consolidated state (in green) lies
directly on top of the analytical value (plotted in black). Rapid growth causes a shift rightwards
in the fluid pressure (shown in blue); the fluid pressure after growth is higher than the consoli-
dated steady-state without growth. Fig 4B shows the evolution of pore fluid pressure during
growth.

Because growth occurs on a rigid cylinder, the radial and axial displacements are zero for all
time and also the strain from total deformation is always zero (not pictured). There is a non-
zero growth strain from the elastic deformation (not pictured) that causes a buildup of stress.
The effective stress is zero during consolidation, because during consolidation both the total
and elastic deformations are zero. During material growth, on the other hand, a nonzero elastic
deformation forces the material to respect the boundary conditions (here, rigidity). This elastic
deformation causes effective stresses to build up in the material.

Final stresses are pictured in Fig 5A. The effective stress caused by growth dwarfs the pore
fluid pressure, so both the total and effective stress appear very similar (total stress not shown).

Table 2. Growth parameters for time-dependent growth in a rigid cylinder.

α �rs

0.0008 0.5; 1

All growth parameters are unitless.

doi:10.1371/journal.pone.0152806.t002
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Fig 4. Pore fluid pressure for time-driven growth of an internally pressurized, rigid cylinder. (A)
Consolidated and final pore fluid pressure compared with the analytical consolidated steady state for no
growth, plotted at nodes. Recall that without osmosis, fluid potential is equal to pore fluid pressure. (B)
Evolution of pore fluid pressure during growth, plotted at Gauss points.

doi:10.1371/journal.pone.0152806.g004

Fig 5. Stress and pore fluid pressure for time-driven solid-only growth of an internally pressurized,
rigid cylinder. (A) Effective Second Piola-Kirchhoff stress in a pressurized, rigid cylinder after growth. (B)
The effective radial stress from the code matches the analytical solution during growth. All elements have
identical stress; radial stress is plotted for an element located at R = 1.121mm. Effective axial and hoop
stresses appear identical (not shown). (C) Pore fluid pressure matches the analytical solution after growth.
Pore fluid pressure (plotted in kPa) is non-zero, but four orders of magnitude lower than the material stresses
(plotted inMPa). (D) Pore fluid pressure matches the analytical solution during growth, and is plotted for an
element located at R = 1.121mm. The jump when growth begins occurs because α = 0 without growth, and
when growth begins, the growth rate instantly changes to α > 0.

doi:10.1371/journal.pone.0152806.g005
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Because of isotropic growth, the effective stress is the same in all of the primary directions
while the shear stress is zero. The development of stress during growth is plotted for radial
stress in Fig 5B against the analytical value. Because the stress builds up homogeneously within
the material, only a single element is plotted. The negative value of the stress indicates that the
material is under compression, as expected from constrained growth.

Fig 5C plots the final pore fluid pressure after growth, which matches well with the analyti-
cal solution. The pore fluid pressure during growth is plotted for a single element in Fig 5D
and lines up well with the exact analytical solution for pore fluid pressure during growth. The
jump at the beginning of Fig 5D occurs because when growth begins, the growth rate instantly
changes from α = 0 to α> 0.

The only value that differs between the solid-only and solid/fluid growth is the porosity,
plotted during growth time for both cases in Fig 6. Before growth, the porosity remains con-
stant at 0.5, because there is no deformation. For both cases, the porosity change during growth
is nonlinear. Because solid-only growth adds purely solid material, the porosity drops faster
than the case with a combination solid/fluid source.

Stress-dependent growth in pressurized HE vs. MPHETS cylinder
We next simulate stress-dependent growth in a pressurized artery to compare the traditional
HE model with our new growing MPHETS model. We apply a nonlinear stress-dependent
growth law governed by Eqs (76) and (78). The model adds solid-only material, so �rs ¼ 1;
growth parameters are listed in Table 3. The artery is modeled as a strip of 320 elements, with a
time step of 50 s. The cylinder is pressurized with 5 loading steps, consolidated for a single step,
and then 1000 growth steps are applied. In this example, growth takes place simultaneously
with fluid and species transport over a period of approximately 14 hours.

Fig 7A shows the Mandel stress plotted for all elements in the model as a function of time.
Note that because of the density of the mesh, this appears to be a solid area. Due to the intersti-
tial fluid, the trace of the effective Mandel stress is nonuniform in the MPHETS model. Thus,
the MPHETS model stress displays a larger area than the HE model. As growth occurs, the
trace of the effective Mandel stress in the MPHETS model becomes more uniform; note that

Fig 6. Comparison of porosity for solid-only and solid/fluid mass sources with time-driven growth in
an internally pressurized, rigid cylinder. The porosity is plotted during growth time for (A) solid-only growth
(�rs ¼ 1) and (B) solid/fluid growth (�rs ¼ 0:5). In each model, all elements have identical porosity; plotted for
an element located at R = 1.121mm.

doi:10.1371/journal.pone.0152806.g006
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the blue area in Fig 7A decreases with time. Before growth, the trace of the effective Mandel
stress in the MPHETS model varies between 72 kPa and 112 kPa; after 1000 growth steps, it
varies between 7.3 kPa and 7.5 kPa. During growth, the trace of the Mandel stress decreases in
both models (shown in Fig 7A) as growth allows the material to adjust in response to residual
stresses. Throughout growth, the trace of the Mandel stress is higher in the MPHETS model
than in the HE model (shown in Fig 7A), which causes a nonuniform, higher degree of growth
in the MPHETS model (plotted in Fig 7B).

The MPHETS and HE models grow differently. The displacement for each mesh and evolu-
tion of thickness in time are shown in Fig 8. After loading and consolidation are complete, the
displacements are very similar, and the model thickness is likewise very similar. Note that the
total thickness has decreased from the original state because loading causes the material to
compress. The MPHETS model grows more than the HE model, and hence, becomes a thicker
cylinder. In addition, the hoop stresses for each model are different, as seen in Fig 9. For the
HE model, the loaded and final states have a similar gradient in hoop stress. In contrast, the
MPHETS model has a much steeper gradient in effective hoop stress after loading than the HE
model, but after growth occurs, the effective hoop stress becomes more uniform than the hoop
stress in the HE model. The buildup of residual stresses due to growth is expected to provide a
more uniform stress gradient to resident smooth muscle cells in the media of arterial tissue
[52–59].

Fig 7. Comparison of stress and growth stretch for HE and MPHETSmodels of stress-driven growth
in an internally pressurized cylinder. (A) Trace of the effective, elastic Mandel stress during growth and (B)
final growth stretch in HE and MPHETSmodels after 1000 growth steps. For both figures, stress is plotted for
Gauss points averaged to the center node of adjacent triangles.

doi:10.1371/journal.pone.0152806.g007

Table 3. Growth law parameters for stress-dependent growth/resorption of an internally pressurized
cylinder.

τ± Wmax Wmin γ+ γ− �rs [unitless]

1e11 1.2 0.8 2 3 1

All parameters are unitless.

doi:10.1371/journal.pone.0152806.t003

A Finite Element Model for MPHETS with Growth

PLOS ONE | DOI:10.1371/journal.pone.0152806 April 14, 2016 24 / 35



Concentration-dependent growth and resorption in an pressurized
MPHETS cylinder with a changing ratio of convective to diffusive forces
Lastly, we model concentration-dependent growth in a pressurized artery. To consider the
effect of the balance of convective and diffusive forces, we change the diffusivity of the chemical
species, which represents a change in drug. The same growth problem is modeled with the
experimental value from [43] where dcc = 4.55e − 14m4/(N � s) (larger Péclet-like number,

Fig 8. Displacement and thickness for HE and MPHETSmodels of stress-driven growth in an
internally pressurized cylinder. (A) Original, loaded, and final displacements after growth for HE (top) and
MPHETS (bottom) models; (B) evolution of thickness in time during 1000 growth steps. For comparison, the
initial thickness of the model before loading is also plotted (shown in red).

doi:10.1371/journal.pone.0152806.g008

Fig 9. Cauchy hoop stress for loaded and grown states of HE and MPHETSmodels of stress-driven
growth in an internally pressurized cylinder. The plot shows Cauchy stress for the HEmodel, and
effective Cauchy stress for the MPHETSmodel. Stress is plotted for Gauss points averaged to the center
node of adjacent triangles.

doi:10.1371/journal.pone.0152806.g009
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henceforth called large P) and also with dcc = 4.55e − 12m4/(N � s) (smaller Péclet-like number,
henceforth called small P).

The balance of the ratio of convective forces to diffusive forces creates a Péclet-like number
[43, 60] β that governs the transient path as well as steady-state distribution of a chemical spe-
cies, where β = (kff bcf)/dcc. In this simulation, growth depends explicitly on the chemical con-
centration. As time progresses, the fluid potential gradient causes fluid flux, which then
convects the chemical species across the material. This changing chemical concentration is
governed by the Péclet-like number, which thus strongly affects the amount of growth. In addi-
tion, as the material grows, additional volume in an element results in a lower chemical con-
centration which in turn reduces the amount of growth caused by a chemically-driven growth
model.

The growth law is given by Eq (75) where cthresh is chosen such that it lies in between the
minimal and maximal concentrations experienced by the material. For both of these cases,
solid-only growth is assumed, so the normalized solid growth density �rs ¼ 1. The parameters
ϑmax and ϑmin bound the growth stretch ϑ. In particular, ϑmin ensures the porosity is always
admissible. Growth parameters are located in Table 4.

For each case, a 160-element mesh is run for five loading steps followed by 2000 growth
steps, with time step of dt = 50 s. Growth takes place simultaneously with fluid and species
transport as the model simulates a period of approximately 28 hours.

Results for the large P case are plotted in Fig 10. Recall that this case mimics the experimen-
tal data for diffusivity from [43]. As depicted in Fig 10A, the displacement at first decreases for
all elements, then increases. The pore fluid pressure changes smoothly in time (Fig 10B),
decreasing on each individual element due to the changing mesh. Concentration also changes
smoothly, as seen in Fig 10C. For both the pore fluid pressure and concentration, plotting on
the deformed mesh results in behavior similar to the consolidated state without growth (not
pictured). The concentration threshold (plotted as a transparent red surface in Fig 10C) causes
a complex growth response, as seen in Fig 10D. As the elements gain or lose material, the con-
centration across each element changes. Elements near the internal edge of the cylinder always
experience growth, while elements at the external edge always experience resorption. However,
as the entire material grows and resorbs, the concentration in the center elements changes
from lower than cthresh (causing resorption) to the higher than cthresh (causing growth). Thus,
elements near the center of the cylinder will experience material resorption during the first few
time steps, followed by growth. This explains the time-dependent radial displacement in Fig
10A; the displacement is the most negative near the beginning of the simulation, while most of
the elements are still experiencing resorption.

Changing the diffusivity dcc for the small P case alters the distribution and time course of
the concentration gradient, which fundamentally changes the distribution of displacement,
pore fluid pressure, growth stretch, porosity, strain, and stresses. A comparison of the final out-
puts is located in Fig 11.

Table 4. Growth law parameters for concentration-dependent growth/resorption.

τ± cthresh [mol/m3] Wmax Wmin γ+ γ− �rs

200 0.009185 1.2 0.8 2 3 1

All parameters are unitless with the exception of the concentration threshold.

doi:10.1371/journal.pone.0152806.t004
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Fig 11A shows the displacements for both cases. The sharp bend in the displacements (and
indeed, the discontinuous behavior displayed in many of the panels in Fig 11) is due to the
dichotomy of growth and resorption forced by the concentration threshold value. While the
displacement after 2000 growth steps is negative for both cases, the displacement for the small
P case is more negative than for the large P case. During growth, the small P case experiences
continuously decreasing displacement for all elements, unlike the large P case which experi-
ences decreasing followed by increasing displacement. This difference in displacement is
caused by the differing concentration distributions shown in Fig 11C. The concentration distri-
bution for the large P case causes more elements to be above the threshold value (shown in
red), so more elements experience growth.

The axial and hoop stresses (Fig 11H and 11I) are negative along the inside of the cylinder
where the material experiences compression (due to material growth), while the outside of the
material experiences tension (due to material resorption). Recall that element movement is
constrained in the axial direction. Thus, isotropic growth builds up negative axial stress (com-
pression) while isotropic resorption has the opposite effect.

Fig 10. Displacement, pore fluid pressure, concentration, and growth stretch for nonlinear
concentration-driven growth in an internally pressurized cylinder. Values plotted for the case of larger
Péclet-like number. (A) Displacement in time. Note that displacement initially increases a very small amount
due to the pressurization of the vessel, then decreases for all elements due to resorption, followed by an
increase due to growth. (B) Pore fluid pressure during growth. (C) Concentration during growth. For
comparison, (C) has a transparent red plane that shows the level of cthresh for all time. (D) Growth of three
specific elements located near the middle of the material are tracked in time. All three elements experience a
small amount of resorption at the beginning of growth time, because the concentration is initially below the
threshold value. Note that after this initial dip, the innermost element (blue) experiences growth, the
outermost element (red) experiences resorption for the entire time, and the middle element (green)
experiences resorption followed by growth, ultimately experiencing net growth.

doi:10.1371/journal.pone.0152806.g010
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Fig 11. Final displacements, growth stretch, porosity, and stresses for nonlinear concentration-driven growth in an internally pressurized
cylinder. Comparison of same growth law for same amount of time, with two different diffusivities. Small P indicates dcc = 4.55e − 12m2/s while Large P
indicates dcc = 4.55e − 14m2/s. Unless otherwise noted, the final values are shown. (A) Displacement, (B) pore fluid pressure, (C) chemical concentration,
(D) original, consolidated, and final displacements after growth for both models, (E) growth stretch, (F) porosity, (G) evolution of thickness in time during 2000
growth steps, (H) effective second Piola-Kirchhoff axial stress, and (I) effective second Piola-Kirchhoff hoop stress. In panel (A), the displacements are
plotted at every node. In panels (B) and (C), values are plotted at every Gauss point. For comparison purposes, panel (B) also plots the consolidated pore
fluid pressure for the exact solution of a rigid cylinder; this value is the same for both diffusivities. Also for comparison, panel (C) shows the consolidated
chemical concentrations for both larger and smaller Péclet-like numbers. Note that a smaller diffusivity corresponds to a higher Péclet-like number and
hence, a higher final concentration profile. The red line on panel (C) is the concentration threshold cthresh. The red line on panel (G) plots the initial thickness
of the cylinder prior to loading. Panels (E,F,H,I) are averaged to the center node of adjacent triangles.

doi:10.1371/journal.pone.0152806.g011
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The growth stretch values and porosity are plotted in Fig 11E and 11F. Fig 11F shows that
after 2000 growth steps, the porosity is very different on the left and right sides of the material.
The original porosity was 0.5, indicating half fluid and half solid. At the end of the time period,
elements on the inside of the cylinder have a porosity lower than the original value (and are
mostly solid) while elements on the outside of the cylinder have a porosity higher than the orig-
inal value (and are mostly fluid). The porosity values correspond strongly with the final values
of ϑ, in Fig 11E. Parts of the material that experienced a net amount of growth (ϑ> 1) have a
higher solid content, because growth added solid material. Parts of the material that experi-
enced a net amount of material resorption (ϑ< 1) similarly have a lower solid content due to
solid resorption. Note that the small P case has more elements nearing the minimal stretch
than the large P case (see Fig 11E). This is because the concentration gradient in the small P
case causes more elements to be below the threshold than the large P case, and thus more ele-
ments experience resorption. This also causes the small P case to have more elements with high
porosity (high fluid content).

Thus, changing the ratio of convective to diffusive forces has a large impact on nearly all the
results of the growth problem. While both cases result in a thinner cylinder with a smaller
external radius compared to the original ungrown cylinder, the large P case results in a thicker
cylinder with a larger external radius than the small P case (Fig 11D and 11G). Furthermore, at
the end of 2000 growth steps the large P case is trending to a thicker, wider cylinder, while the
small P case continues to decrease in both thickness and external radius.

Discussion

Summary of approach
A significant contribution of this work is combining the theories of MPHETS and volumetric
growth. In this manuscript we built upon the preliminary work of Harper [39, 40] to present a
more complete method of modeling soft tissue growth by combining the theories of mixed por-
ohyperelasticity [1, 3, 14] with volumetric growth [6, 16–18]. The MPHETS conservation equa-
tions were extended to include the effect of a mass source term. Both solid-only and solid/fluid
source terms were considered. In addition to growth modifying the effective stress of the mate-
rial, this manuscript included the effect of growth on porosity and the fluid and species conser-
vation equations. Multiple growth laws were introduced, including time-, stress-, and
concentration-dependent growth. To demonstrate the potential of GMPHETS theory, a finite
element framework was introduced and several example problems were discussed using on
experimental data for material geometry and parameters [43, 49]. These test problems included
comparison with an analytical solution for time-dependent growth in a rigid cylinder. Other
more complicated growth problems included stress-dependent growth and concentration-
dependent growth.

Summary of key numerical results
For time-dependent growth of a porohyperelastic rigid cylinder, the added volumetric term
shifts the fluid potential to the right. For a rigid problem, adding volume does not cause total
deformation; it can only displace the fluid in the material. Because the porosity is the ratio of
fluid to total volume, adding solid-only material results in a lower porosity than a combined
solid/fluid source term. For a rigid PHE problem with constant permeability, the single differ-
ence between adding solid-only material and a combination of solid/fluid material is the
change in porosity of the material. Future work should consider permeability that changes
based on the porosity, which would provide an additional difference in pore fluid pressure due
to growth.
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For stress-dependent growth, we have demonstrated that the growth outcome is strongly
affected by model type. In a porohyperelastic model, the pore fluid pressure bears mechanical
loading, which changes the effective stress experienced by the cells, and thus changes the
growth response of the tissue. For growth of a cylinder representing an artery, the MPHETS
model experiences a higher amount of growth than the HE model. For both the HE and
MPHETS models, growth results in a thicker cylinder which reduces stress gradients. However,
the effective hoop stress distribution after growth in an MPHETS model is noticeably more
uniform than the hoop stress after growth in an HE model. Thus, the MPHETS model predicts
a smaller gradient in hoop stress distribution across the thickness of the model. Other works
have shown that grown arteries have a flattened hoop stress distribution [52–59].

For concentration-dependent growth, where chemical concentration may represent a drug
or some naturally occurring signaling factor, changing the material parameters has a large
effect on growth. For example, it is known that drug distribution is a function of the ratio of
convective to diffusive forces [60]. This ratio shifts the evolution and steady-state distribution
of a chemical concentration, and thus greatly affects the behavior of chemically-dependent
growth. For the problems considered, the combined effects of growth and resorption dynami-
cally change the radius of the cylinder. The change in element size actively shifts the mesh and
changes the chemical concentration, which feeds back into the growth loop. Thus, some ele-
ments in the model experience a regime of resorption followed by growth. Because of the maxi-
mal and minimal stretch values enforced for the model, the cylinder experiences a finite
amount of growth. After some large number of time steps, the cylinder experiences two effects:
the inside of the cylinder, which experienced growth, is under compression while the outside of
the cylinder, which experienced material resorption, is under tension. For a smaller value of
diffusivity, the delineation between the ‘inside’ and ‘outside’ shifts to the right, following the
concentration distribution. After growth, the cylinder with a higher Péclet-like number
(smaller diffusivity) results in a thicker cylinder with a larger external radius than the cylinder
with a lower Péclet-like number.

Limitations and future work
The stress- and concentration-dependent growth laws presented in this work cause either
growth or resorption depending on whether the material concentration was above or below a
single value. Future work should include changing the growth law to have a larger non-growth
tolerance. For example, perhaps material resorption only occurs for concentrations below
cthreshLow; no growth occurs for cthreshLow < c< cthreshHigh; and growth occurs for concentra-
tions above cthreshHigh. Another example would be to study the case of growth only, or resorp-
tion only; this would model monotonic effects of some drug or chemical signaling factor.

Another limitation of the model introduced in this paper is that all of the constitutive mod-
els and growth laws considered are assumed to be isotropic. A more complex model could also
include anisotropy and deformation dependent parameters. For example, for illustration pur-
poses we have assumed that the MPHETS parameters (permeability, convection coupling coef-
ficient, and diffusivity) are both constant and isotropic in the Eulerian coordinate system.
However, this may not be the case for large strain problems, because the porosity of a material
depends on deformation and growth (n = f(J, no, ϑ)) and smaller pores could decrease the per-
meability and diffusivity of the material. Moreover, an anisotropic model would be capable of
handling more complex constitutive behavior. Other works have previously considered direc-
tional growth in a solid material, such as Göktepe et al. [6] and Buganza Tepole et al. [9]. These
directionally-anisotropic growth models necessitate a more complicated growth pull-back but
still have an explicit inverse which simplifies numerical computation [6, 9]. Later work may
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address the case of strain-dependent porosity, permeability, and diffusivity or consider aniso-
tropic material parameters and/or anisotropic growth. Eventually, a three-dimensional code
could possibly be integrated with imaging to produce a patient-specific growth model. In addi-
tion, future work should also simultaneously model the combination of stress- and concentra-
tion-dependent growth, which are both likely involved in soft tissue growth and remodeling.

While the use of the mechano-chemical potentials as primary variables allows for fluid pres-
sure and concentration jumps at material interfaces, this choice requires the definition of arbi-
trary baseline values and restricts the values of concentration to be nonzero. Some authors
choose to use alternate primary variables that do not carry these restrictions, such as the expo-
nential chemical potential defined in Sun et al. [4]. We feel that an arbitrary choice of the base-
line value is not a problem, because the values of the primary variables are merely shifted
upwards or downwards with the choice of the baseline concentration. However, if one wishes
to simulate arbitrarily small concentrations, one may prefer alternate potentials such as those
used in [4].

An additional limitation of this work is that only the response of growth has been consid-
ered; future work should also incorporate remodeling, which involves changing constitutive
properties. For example, growth could change the density or stiffness of the material; or change
the orientation of collagen fibers (which would change the directionality of the stress response);
or increase the fiber density. To change the assumption of density preservation during growth
would require careful consideration of the effect on conservation of mass. Himpel et al. [17]
considered remodeling for a solid-only material via a change in density; this would be a good
starting point for adding remodeling to the theory. Changing the material properties or orien-
tation of collagen fibers would likely require a more complicated mechanism for tracking con-
stituents including mass turnover and survival fractions as in constrained mixture theory [61–
64]. The addition of evolving reference configurations [61] or a microstructurally-based growth
law [65] would also incorporate the effect of stretch on each constituent. These laws could
model even more complicated growth and remodeling in a porohyperelastic biological system
with chemical transport.

In summary, the GMPHETS theory developed in this manuscript is a good starting point
for more complex growth models. Rather than modeling soft tissue as a solid material, it is
important to consider the effect of an interstitial fluid. Because an interstitial fluid bears stress,
the distinction between hyperelastic and porohyperelastic models becomes especially impor-
tant for stress-dependent growth. Future applications can provide more realistic and complex
simulation of how soft tissues grow in response to a complex combination of time, stress, and
chemical concentration. This work will hopefully provide a point of departure for scientists to
better understand the evolution of soft tissue diseases.
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