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Geoffrey S Johnson, PhD
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ABSTRACT

The focus of this work is to investigate a form of Q-learning using estimating equations

for quality adjusted survival time, and to generalize these methods to quality adjust other

outcomes. We use the m-out-of-n bootstrap and threshold utility analysis to show how

the patient-specific optimal regime varies according to treatment characteristics (e.g. cost,

side effects). Methodologies investigated are demonstrated to construct optimal treatment

regimes for the treatment of children’s neuroblastoma. We also propose a new method for op-

timizing dynamic treatment regimes using conditional structural mean models. The inverse-

probability-of-treatment weighted (IPTW) or g-computation estimator is used at each stage

to estimate what we call the ‘preliminary’ optimal treatment regime, given patient infor-

mation up to the current stage and prior treatment assignment. Essentially this tailors the

optimal treatment assignment at the current stage, and provides an optimal strategy for

the remaining stages given the information currently available. We compare this method for

optimizing a dynamic treatment regime to Q-learning. Additionally, we propose a two step

prescriptive variable selection procedure that supports the tailored optimization of dynamic

treatment regimes using conditional structural mean models by eliminating from consider-

ation any suboptimal treatment regimes and sifting out the covariates that prescribe the

optimal treatment regimes. The methods described herein are meant to advance the field

of dynamic treatment regimes, a field that has a substantial impact on public health. The
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treatment policies that come from DTRs, whether determined for the population as a whole

or tailored for specific subgroups, can be used to guide and shape health policies that will

ultimately lead to greater public health and safety.
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1.0 INTRODUCTION

Dynamic treatment regimes (DTRs) provide the basis for statistical analysis in personalized

medicine. A DTR is a decision rule that guides the treatment choices over the course of

therapy. The sequence of treatments a patient receives depends on the patient’s health sta-

tus, response to prior treatments, and other patient characteristics [22, 28, 5]. The goal is to

find a DTR that optimizes the overall outcome, commonly taken as overall survival in cancer

studies [34, 33, 18]. Techniques for analyzing DTRs are important to properly account for

patient responses and sequence of treatments to correctly identify the optimal treatment

at each stage. Consider a game of chess. Each player’s turn corresponds to a stage of a

DTR, each player’s move corresponds to a treatment assignment, and achieving check mate

corresponds to optimizing the outcome. The player’s best move in each turn depends on his

previous and future moves. If the chess player optimizes each move individually, without

regard to past or future moves, he/she will likely not achieve check mate. If the treatments

at each stage of a DTR are analyzed without regard to past and future treatments, biased re-

sults may occur. Assuming larger outcomes are better, it is natural to search for the optimal

regime, the one with the largest expected outcome. To this end there are primarily two ap-

proaches: structural mean models (direct search) and nested mean models (inductive search).

Structural mean models use weighting techniques found in survey sampling to estimate

the mean outcome of a regime had everyone sampled followed that regime, allowing a di-

rect comparison of the outcome across DTRs. Inverse probability of treatment weighted

(IPTW) estimators, as their name suggests, average the outcome for all subjects following

a specific regime, while weighting each observation by the inverse of the probability of re-

ceiving the treatments prescribed by the regime, similar to the Horvitz-Thompson estimator
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[17]. Alternatively, g-computation estimators first find the mean outcome for each path

of a particular regime, and weight these means by the proportion who followed each path

to form the mean of the regime [25, 27]. Conversely, nested mean models use backwards

induction to find the optimal treatment at each stage. Murhpy (2003) [22], Robins (2004)

[26], and others pioneered the use of backwards induction in statistics via Q-learning and

g-estimation to identify such optimal regimes. These algorithms work backwards in time by

identifying at each stage which treatment has the largest expected outcome, and creating

pseudo data for each subject by replacing his/her observed outcomes with the estimated

optimal expected outcome at each stage, given prior observed outcomes and covariate in-

formation. The optimal regime is the one with the largest expected value of this pseudo data.

Generally, to build the models that identify the optimal treatment regime clinical tri-

als are designed, patients are recruited, and their information is gathered. These patients,

though treated, do not get to benefit from the knowledge they collectively bring. It is the

next patient in line, the prospective patient, that can use this information to make a more

informed treatment decision. From the clinician’s perspective all that is required is to collect

demographic, blood marker, and genetic information, and the optimal treatment regime can

be assigned for the prospective patient. The prospective patient, however, has an entirely dif-

ferent decision making process. He/she builds a nearly infinite dimensional model in his/her

subconscious when choosing between treatments. Is the treatment painful? What are the

side effects? How much does it cost? Does the treatment conflict with my ethical or religious

beliefs? What is the treatment schedule and can I adhere to it? And so on. For each prospec-

tive patient the questions and answers are different. From this prospective patient’s point of

view, he/she is not here to offer a few data points, he/she is here to decide which treatment

is best for him/her. To capture the decision making process of the prospective patient in the

survival analysis setting, we investigate quality adjusted lifetime as the outcome in dynamic

treatment regimes via Q-learning, and while this outcome is not specific to Q-learning, nor

to dynamic treatment regimes, it is especially pertinent. This approach offers a glimpse into

the mind of the prospective patient’s decision making process, and allows us to see just how

averse the patient must be to a particular treatment, or regime, before it is no longer optimal.
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Clinical trials for cancer often measure a primary outcome and several secondary out-

comes. The secondary outcomes may include, among others, measures of toxicity and adher-

ence. Taken separately, these measures may sometimes lead to different optimal treatments.

While one treatment may have the largest expected primary outcome, a second one may be

less toxic, and a third might have the best adherence. Gelber et al. (1989) [10], Glasziou

et al. (1989) [11], GoldHirsch et al. (1989) [12] and Korn (1993) [19] considered quality ad-

justed lifetime to adjust the length of life based on its quality. In its simplest form, quality

adjusted life assigns a utility weight, ranging from 0 (death) to 1(perfect health), to separate

states of health. If there are k health states, then Ui =
∑k

j=1 qjsji is the quality adjusted

lifetime (QAL) for the ith patient, where s1i, .., ski are the times spent in each state, and

q1, ..., qk are the utility coefficients assigned to each of the health states. Note that the qual-

ity adjusted lifetime Ui is simply a fraction of total lifetime for patient i. More recently, Zhao

and Tsiatis [38, 39, 40, 41] have provided consistent and efficient estimators, and provided

hypothesis tests for distributional features of quality adjusted lifetime in the presence of right

censoring. Wang & Zhao (2007) [35] extended this work to the regression setting, using in-

verse weighting techniques to form consistent estimating equations for regression parameters.

The first goal of this dissertation is to develop an optimal dynamic treatment regime to

maximize quality adjusted lifetime by using a Q-learning-type approach discussed in [18].

This method will be operationalized using the estimating equations of [35], and a threshold

utility analysis will be used to show how the subject-specific optimal DTR not only depends

on patient history and intermediate outcomes, but also on quality of life, monetary cost,

and other factors during each treatment. Though we optimize quality adjusted lifetime, we

provide suggestions on how the quality adjustment can be used for any continuous outcome

via Q-learning. The utility weights capture the secondary outcomes as well as the unmeasur-

able decision making process of the prospective patient and discount the expected utility of

treatments. We use a simulation study to evaluate these methods, and then apply them to

COG study A3891 concerning 379 children receiving treatment for high-risk neuroblastoma

[21].
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Dynamic treatment regimes are a function of patient data, and as ever larger studies

collect more patient data, it is natural to turn to variable selection methods when search-

ing for the optimal regime. Common approaches to variable selection include, but are not

limited to, the forward, fackward, and ftep-wise selection methods, which by their nature

are discrete processes, and the least absolute shrinkage and selection operator (LASSO) and

its derivatives, which are continuous processes. To operate, all of these methods rely on a

measure of model fit or prediction error, such as the sum of squared errors, the leave-one-out

cross-validation estimate of prediction error, or Akaike information criterion (AIC). These

variable selection methods are designed to sift through a large collection of variables and

identify those that most greatly reduce the variability and increase the accuracy of the esti-

mator, which Gunter et al. (2011) [13] define as predictive variables. However, in the realm

of dynamic treatment regimes, we are interested in variables that are not only predictive,

but also help prescribe the optimal treatment for a given patient. Such variables are called

prescriptive [15], and must qualitatively interact with treatment. For a nested mean model

approach, Gunter et al. (2011) [13] propose two different ranking methods to sort variables

according to how likely they will qualitatively interact with the outcome, and provide a four

step algorithm involving LASSO regression on nested subsets of covariates for selecting im-

portant predictive variables. Zhang (2014) [37] generalizes from the least squares regression

model and offers a simpler, more effective two step method involving Multivariate Adaptive

Regression Splines (MARS) models and logistic regression with LASSO.

Most authors employing structural mean models perform a marginal analysis, comparing

dynamic treatment regimes for the entire sample of patients [33]. Those that perform a sub-

group analysis using conditional models do so by conditioning on baseline information only

[14, 5]. While these conditional models shed some light on the regime effects across baseline

covariates, they lack the ability of Q-learning and other backwards induction techniques to

use past and current patient information to prescribe the optimal treatment at each stage.

The second goal of this dissertation is two fold: i) to propose a new method for optimiz-

ing dynamic treatment regimes using conditional structural mean models that incorporates

4



current patient information at every stage (decision point), ii) and to provide an effective

prescriptive variable selection method for these conditional structural mean models. The

method in Zhang (2014) [37] for nested mean models is reviewed, and extended to structural

mean models. We use a simulation study to evaluate these methods, and apply them to

a phase II study concerning 215 patients with acute myeloid leukemia (AML) or high-risk

myelodysplastic syndrome (MDS) [8].
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2.0 QUALITY ADJUSTED Q-LEARNING AND THRESHOLD UTILITY

ANALYSIS FOR OPTIMIZING DYNAMIC TREATMENT REGIMES

2.1 SETUP

2.1.1 Quality-adjusted lifetime

Describe the health history for the ith patient with a continuous time stochastic process

{Vi(t), t ≥ 0}. Vi(t) maps to the space of health states S = {0, 1, 2, ...,m}, where the

state ‘0’ corresponds to the absorbing state of death. Denote the health history up to

time t by V H
i (t) = {Vi(s) : s ≤ t}. Let Vi(s) = 0 imply that Vi(t) = 0 for t ≥ s. Let

Ti denote the survival time for patient i. Naturally, Vi(t) = 0 for t ≥ Ti. Then we see

that Ti =inf{t : Vi(t) = 0}. Let q() be a quality of life function mapping Vi(t) to [0, 1], with

q(0) ≡ 0. The quality adjusted lifetime for the ith patient is defined asQ(Ti) =
∫ Ti

0
q{Vi(t)}dt.

In the presence of non-informative right censoring, one might consider the restricted

survival time where total follow-up time is limited to L, where L is some value less than

the maximum survival time for all patients. Therefore, the survival time for all patients

will be truncated at L, TL =min(T, L). For ease of notation, we will drop the superscript

and simply use T . We will denote the ith patient’s censoring time by Ci, and the survival

distribution of C by K(t) = P (C > t). Define Ui =min(Ti, Ci) and ∆i = I(Ti ≤ Ci), respec-

tively, to be the observed time to event (death or censoring), and the death indicator. Then

Q(Ui) =
∫ Ui

0
q{Vi(t)}dt represents the quality adjusted time to event for the ith patient.
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In this construction the quality function q is not patient specific (does not have a sub-

script i), and was assumed known. One view is that q exists at the population level. This

means that every patient in the analysis, and all of the patients they represent, experience

the same quality of life when in a particular health state. This allows for a threshold utility

analysis, described in detail in Section 2.2.2, where quality adjusted lifetime (or a function

of it) is considered over the entire range of possible values of q, to examine how the value of

q affects the estimation of quality adjusted lifetime. As a convention we will take Q(s, t) to

refer to
∫ t
s
q{V (u)}du and Q(t) to refer to

∫ t
0
q{V (u)}du.

For example, consider a discrete-state health history process Vi(t) with three states:

treatment, response (well-being), and death. Suppose each of these states are mapped to

[0,1] as q{Vi(t)} = qaI{t ≤ TRi } + 1I{TRi < t < Ti} + 0I{t > Ti}. Such a mapping may

be reasonable as the quality is the least (zero) after death, one when healthy, and a con-

stant, qa, between zero and one when being treated due to toxicity related complications

and/or monetary cost from receiving treatment A = a. Here, time from beginning of treat-

ment to response is denoted by TRi . Under this scenario, Q(Ti) =
∫ TRi
0 qadt +

∫ Ti
TRi

1dt =

Ti − (1 − qa)T
R
i . If the patient undergoes a maintenance treatment immediately after re-

sponding, and remains on maintenance treatment B = b until death, Q(Ti) could be written

as Q(Ti) =
∫ TRi
0 qadt +

∫ Ti
TRi

qbdt = qbTi − (qb − qa)T
R
i , where the constant qb reflects the

utility weight of treatment B = b for toxicity, monetary cost, and other factors.

Since quality adjusted lifetime is the area under q{Vi(t)} over the health states from 0

to T , for any function q{Vi(t)} there exists a constant function in each health state that

results in the same area, and produces the same quality adjusted lifetime. Not coinciden-

tally, the example above has the health states of each patient correspond to the sequence of

treatments received. When estimating mean quality adjusted lifetime in such settings, the

utility weights qa and qb factor out, producing E[Q(Ti)] = qaE[TRi ] + qbE[Ti − TRi ]. When

viewed in this way, not only can the utility weights be seen as population constants, they

can alternatively be seen as adjustments to the expected utility of each treatment for the

prospective patient, depending on his or her aversion to each treatment, with each prospec-

7



tive patient potentially having different values of the utility weights. Such an interpretation

of the utility weights offers even more motivation for a threshold utility analysis.

For drawing inference on quality adjusted lifetime, the survival function of quality ad-

justed lifetime may be used the same way as as the survival function of overall survival. In the

presence of non-informative censoring one might naturally turn to the Kaplan-Meier estima-

tor, to estimate S(t) = P
(
Q(Ti) > t

)
, but Gelber et al. (1989) [10] and Pradhan & Dewanji

(2009) [24] showed that this can result in biased estimation because the quality adjustment

induces a dependence between the survival times and censoring times. Zhao & Tsiatis (1997)

[38] offer an inverse-probability weighted estimator, similar to that proposed by Robins &

Rotnitzky (1992) [29] and Robins et al. (1994) [30], Ŝ(t)cen = 1
n

∑n
i=1

∆i

K̂(Ui)
I[Q(Ui) > t],

where K̂(Ui) is the Kaplan-Meier estimator for the censoring random variable evaluated at

Ui, and ∆i and K̂(Ui) can depend on t to improve efficiency. Zhao & Tsiatis (1999) [39]

improve the efficiency of their estimator by incorporating each patient’s health history. In

Zhao & Tsiatis (2000) [40] they used the same principles to estimate the mean quality ad-

justed lifetime.

Wang & Zhao (2007) [35] extended this work to the regression setting by constructing

consistent estimating equations for mean quality adjusted lifetime in the presence of censor-

ing, yielding Un(β) =
∑n

i=1
∆i

K̂(Ui)
h(Xi){Q(Ui)−g(β,Xi)} = 0, where Xi denotes a (p+1)×1

vector of covariates associated with patient i, with the first covariate being the constant 1,

h(Xi) is a (p+ 1)× 1 vector of functions of Xi, β is a (p+ 1)× 1 vector of parameters, and

g(β,Xi) = E[Q(Ti)|Xi]. The estimator for β solving Un(β) will be used to operationalize

our search for the optimal dynamic treatment regime, described in Section 2.2.

2.1.2 Dynamic treatment regimes and corresponding terminology

Consider a two-stage sequential multiple assignment randomized trial (SMART) design where

patients are randomized to one of two induction therapies, A = {a1, a2}. Patients may be

resistant to their initial treatment, or they may respond. For each of the induction therapies,

8



if treatment response is observed, patients are further randomized to one of two maintenance

treatments, B = {b1, b2}. This design allows for inference on four DTRs that might be car-

ried out in clinical practice, namely, d(Ai = aj;Bi = bk), j, k = 1, 2, where d(Ai;Bi) stands

for “Treat with Ai, if the patient responds, treat with Bi.” Our goal is to find the optimal

treatment regime among these that maximizes expected quality adjusted lifetime.

Let GH
i (t) denote all information collected on patient i prior to time t. Some or all of

the information in GH
i (t), for example serum biomarker levels, responses to questionnaires,

or tumor size, is used to define V H
i (t), which then defines Ri and TRi , the observed response

indicator and the observed time to response given Ri = 1, respectively. GH
i (t) may include

additional patient information not used to define V H
i (t). Then, introducing further indicators

for first and second stage treatment, the observed data for the ith patient in the presence of

censoring is written as

Dδ
i =

(
Z

(A)
1i , Z

(A)
2i , Ri, RiT

R
i , RiZ

(B)
1i , RiZ

(B)
2i , Ui, ∆i, V

H
i (Ui), G

H
i (Ui)

)
,

where Z
(A)
ji =1 if patient i received the jth induction therapy, Z

(A)
ji =0 otherwise, and Z

(B)
ki

denotes the bk treatment assignment indicator I{B = bk}, defined only if Ri=1. Note that

Z
(A)
2i = 1 − Z(A)

1i and Z
(B)
2i = 1 − Z(B)

1i , but we explicitly define them to facilitate the use of

summation.

By design, treatments are assigned independently of prognosis or any observed data

measured prior to the second stage. This condition is often referred to as no unmeasured

confounders or sequential randomization assumption. This ‘no unmeasured confounders’

condition holds even if the second-stage randomization probabilities depend on the first-

stage treatment assignments.
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2.2 OPTIMIZATION OF DYNAMIC TREATMENT REGIMES ON

QUALITY ADJUSTED SURVIVAL

2.2.1 Optimization

Following the work of Murphy (2003) [22], Robins (2004) [26], and Huang et al. (2014)

[18], we describe a backward induction method to identify the optimal dynamic treatment

regime, using mean quality adjusted survival time as the criterion of optimality. From the

reinforcement learning literature in the field of DTRs, the typical Q-functions for two stages

of our SMART design, assuming no unmeasured confounders, would be

QB
(
Ai = aj, G

H
i (TRi ), Bi = bk

)
= E

[
Q(TRi , Ti)

∣∣∣Ai = aj, Ri = 1, GH
i (TRi ), Bi = bk

]
QA
(
GH
i (0), Ai = aj

)
= E

[
H

(A)
i

∣∣∣GH
i (0), Ai = aj

]
,

where

H
(A)
i =

 Q(TRi ) + max
bk
QB
(
Ai, G

H
i (TRi ), Bi = bk

)
, if Ri = 1

Q(Ti), if Ri = 0.

Then, the optimal stage 1 treatment given baseline information is

Aopti = argmax
ak

E
[
H

(A)
i

∣∣∣GH
i (0), Ai = aj

]
,

and the optimal stage 2 treatment given stage 1 treatment assignment and information up

to stage 2 is

Bopt
i = argmax

bk

E
[
Q(TRi , Ti)

∣∣∣Ai = aj, Ri = 1, GH
i (TRi ), Bi = bk

]
.

Below we walk through the backwards induction used to estimate the optimal treatment at

each stage, with a different H
(A)
i shown in Huang et al. (2014) that we use in our simulation

and application.

We start with the second stage (include only those patients who responded Ri = 1).

Under assumptions described in Section 2.1.2, the quality adjusted time from maintenance

10



therapy to death for those patients who responded is Q(TRi , Ti) =
∫ Ti
TR
i
q{Vi(t)}dt, so that

γB ≡ E

[
Q(TRi , Ti)

∣∣∣∣Ai = aj, Bi = b1, Ri = 1, GH
i (TRi )

]
−E
[
Q(TRi , Ti)

∣∣∣∣Ai = aj, Bi = b2, Ri = 1, GH
i (TRi )

]
is the difference in expected stage 2 outcomes, given prior information. We assume the

following linear model for QB
(
Ai, Bi, Ri = 1, X̄Bi,βB,αB

)
E

[
Q(TRi , Ti)

∣∣∣∣Ai, Bi, Ri = 1, X̄Bi,βB,αB

]
= X̄

′

BiβB + Z
(B)
1i X̄

′

BiαB, (2.1)

where X̄Bi are the first stage treatment assignment indicators and covariates from GH
i (TRi ),

and includes an element equal to 1 corresponding to an intercept term, which implies that

γB = X̄
′
BiαB, and the estimated optimal stage two treatment given stage 1 treatment as-

signment and patient information up to stage 2 is

B̂opt(X̄Bi) = argmax
bk

Ê

[
Q(TRi , Ti)

∣∣∣∣Ai = aj, Ri = 1, Bi = bk, X̄Bi,βB,αB

]
.

If γB is positive then b1 is the optimal stage 2 treatment, otherwise, b2 is optimal. Using

fitted models corresponding to equation (2.1) we can estimate the optimal quality adjusted

time from maintenance therapy to death as

H
(B)
i (α̂B) ≡

 Q(TRi , Ti) +
∣∣∣X̄ ′Biα̂B∣∣∣, if Bi = bk, B̂

opt
i 6= bk

Q(TRi , Ti), if Bi = bk, B̂
opt
i = bk.

Moving to the first stage, under assumptions described in Section 2.1.2 the quality ad-

justed survival time with observed stage one treatment and the estimated optimal stage two

treatment can be written as

H
(A)
i (α̂B) =

 Q(TRi ) +H
(B)
i (α̂B), if Ri = 1

Q(Ti), if Ri = 0.

Let XAi denote important covariates in GH
i (0) predictive of residual survival. We assume

11



the following linear model for QA
(
Ai, XAi,βA,αA

)
E
[
H

(A)
i (α̂B)

∣∣∣Ai, XAi,βA,αA

]
= X

′

AiβA + Z
(A)
1i X

′

AiαA,

where XAi includes an element equal to 1 corresponding to an intercept term, which implies

that

γA ≡ E
[
H

(A)
i (α̂B)

∣∣∣Ai = a1, G
H
i (0)

]
− E

[
H

(A)
i (α̂B)

∣∣∣Ai = a2, G
H
i (0)

]
= X

′

AiαA

is the difference in expected outcomes at stage 1, given that each patient received his esti-

mated optimal stage 2 treatment. The estimated optimal stage one treatment is

Âopt(XAi) = argmax
aj

Ê

[
H

(A)
i (α̂B)

∣∣∣∣Ai = aj, XAi,βA,αA

]
.

If γA is positive then a1 is the optimal stage 1 treatment, otherwise, a2 is optimal. Thus if

one could estimate the quantities γA or γB, or equivalently, the parameters αB and αA, the

optimal treatment regime could be constructed given the q function for each specific stage.

To estimate these parameters, the simple weighted regression models described in Section

2.1.1 by Wang & Zhao (2007) [35] can be used. Explicitly, for stage 2 we solve the estimating

equation

U (B)
n (βB,αB) =

n∑
i=1

∆i

K̂(Ui)
Ri

 X̄Bi

Z
(B)
1i X̄Bi

{Q(TRi , Ui)− X̄
′

BiβB − Z
(B)
1i X̄

′

BiαB

}
= 0,

for βB and αB. Similarly, for stage 1 we solve

U (A)
n (βA,αA) =

n∑
i=1

∆i

K̂(Ui)

 XAi

Z
(A)
1i XAi

{H(A)
i (α̂B)−X ′AiβA − Z

(A)
1i X

′

AiαA

}
= 0

to obtain estimates of βA and αA.

2.2.2 Threshold Utility Analysis

Glasziou et al. (1990) [11] perform a threshold utility analysis when studying the effects

of adjuvant chemotherapy on quality adjusted lifetime in patients with early breast cancer.
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Each patient’s survival time is quality adjusted based on periods of toxicity of treatment

and relapse of disease. These quality weights, ranging from 0 to 1, are plotted against each

other and the regions where each treatment is favored are identified via lines (planes) of

indifference. This results in a type of sensitivity analysis, allowing one to see all possible

treatment decisions drawn depending on the quality weights. In our DTR setting, a patient’s

course of treatment often depends on his/her state of health, be it response to treatment or

relapse of the disease, so that his/her health states correspond to the stages of the DTR. In

our approach, each patient’s survival time will be weighted according to treatment received,

allowing a threshold utility analysis among treatments, and ultimately among regimes.

Optimal decision rules for first and second stage treatments developed in Section 2.2 are

not only a function of the observed data (patient level information), but also of the quality of

life function q. In our development in the previous section, we assumed that this q function

was known, and we offered two interpretations of its meaning. Rather than performing a

single analysis with one q function, a sensitivity analysis can be performed using a variety

of reasonable q functions to determine for which functions of q, if any, the choice of optimal

regime changes. In the special case of constant q functions, q can be varied from 0 to 1,

and a threshold utility plane can be plotted. This is of importance, since depending on the

values of the q function, there may be different optimal treatment regimes.

To be explicit, consider quality adjusting each patient’s survival time as

Q(Ti) =

 Tiqaj , if Ai = aj, Ri = 0,

TRi qaj + (Ti − TRi )qbk , if Ai = aj, Ri = 1, Bi = bk,

for j = 1, 2, k = 1, 2 where qaj , qbk ∈ [0, 1]. For those who responded (Ri = 1) and received

maintenance treatment, the quality weights qb1 , qb2 ∈ [0, 1] can be plotted against each other

13



on the x and y axes, with

γ̂B = Ê

[
(Ti − TRi )qb1

∣∣∣∣Ai = aj, Bi = b1, Ri = 1, X̄Bi,βB,αB

]
−Ê
[

(Ti − TRi )qb2

∣∣∣∣Ai = aj, Bi = b2, Ri = 1, X̄Bi,βB,αB

]
= X̄

′

Biα̂B

from Section 2.2 plotted on the z axis. This forms a two-dimensional plane in a three-

dimensional space. When quality adjusting in this way, the utility weights qb1 and qb2 factor

out of the expectations and can be viewed as adjustments to the expected utility of each

stage two treatment for the prospective patient, depending on his or her aversion to each

treatment. The line where γ̂B = 0 is the estimated threshold at which the expected utility

of b1 and b2 are equal, where the prospective patient is indifferent when choosing between

stage two treatments.

Similarly, for those who received an induction treatment, the quality weights qa1 , qa2 ∈

[0, 1] can be plotted against each other on the x and y axes, with

γ̂A = Ê
[
H

(A)
i (α̂B)

∣∣∣Ai = a1, XAi
,βA,αA

]
− Ê

[
H

(A)
i (α̂B)

∣∣∣Ai = a2, XAi
,βA,αA

]
= X

′

Aiα̂A

from Section 2.2 plotted on the z axis, where

H
(A)
i (α̂B) =

 TRi qaj +H
(B)
i (α̂B), if Ai = aj, Ri = 1

Tiqaj , if Ai = aj, Ri = 0

H
(B)
i (α̂B) =

 (Ti − TRi )qbk +
∣∣∣X̄ ′Biα̂B∣∣∣, if Bi = bk, B̂

opt
i 6= bk

(Ti − TRi )qbk , if Bi = bk, B̂
opt
i = bk.

The line where γ̂A = 0 is the estimated threshold at which the prospective patient is indif-

ferent when choosing between a1 and a2.
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2.2.3 Inference

Robins (2004) [26], Chakraborty et al. (2009) [6], and Laber et al. (2014) [20] are quick

to point out that the estimators derived from Q-learning have non-regular limiting distribu-

tions, because the estimated stage 1 pseudo data (and hence the estimated stage 1 model

parameters) are a non-smooth (non-differentiable at X̄
′
Biα̂B=0) function of α̂B. This mo-

tivated Chakraborty et al. (2013) [4] to discuss the m-out-of-n bootstrap in the context

of DTRs, in place of standard large-sample inference methods. The m-out-of-n bootstrap

technique essentially smooths the empirical distribution function, with more smoothing cor-

responding to smaller values of m, the resample size, by allowing the empirical distribution

function to tend to its limiting distribution at a faster rate than the bootstrap empirical

distribution tends to the empirical distribution. We use this technique to create confidence

regions in the threshold utility analysis, identifying regions of indifference and strong ac-

ceptance when choosing between stage 1 and stage 2 treatments. While Chakraborty et al.

(2013) [4] provide several data driven methods for determining the smaller resample size m,

we find a suitable m through simulation and apply this same m in the analysis of real data.

2.3 SIMULATION STUDY

In this section we conduct a simulation experiment to evaluate the optimization of dynamic

treatment regimes for quality adjusted lifetime described in Section 2.2. Similar to the COG

study A3891 that will be presented later in Section 2.4, we consider a 2-stage SMART design.

We generated 5,000 simulations with sample size n=1000. Patients are randomized to

one of two induction therapies with probability one-half, and the probability of non-response

for each induction therapy is the same, 0.55. Those who respond to induction therapy are

further re-randomized with probability one-half to one of two maintenance therapies. So-

journ times to response and/or death were generated from various exponential distributions.
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Table 2.1 shows the coverage probabilities over the 5,000 simulations for 90% point-wise

bootstrap confidence intervals for the estimated difference in mean quality adjusted lifetime

between Stage 1 and Stage 2 treatments (γA and γB, respectively) when searching for the

optimal treatment regime using the simple weighted estimating equations from Section 2.1.1.

The 5th and 95th percentiles of the bootstrapped sampling distributions are used to create the

confidence intervals. Stage 1 coverage probabilities are estimated at qb1 = 0.8 and qb2 = 0.6.

A variety of re-sample sizes were considered for the stage 1 m-out-of-n bootstrap, and m=850

produced confidence intervals maintaining the nominal coverage probability. The coverage

probabilities for the 90% confidence intervals are close to the nominal level for utility weights

that are away from zero. This makes sense, as a value of q close to zero greatly reduces the

variability in the data, making it difficult to estimate the respective quantities. For some

combinations of qb1 and qb2 the estimated stage 2 coverage probabilities are below the nom-

inal level. Although no irregularity issues exist for the stage 2 estimates, the m-out-of-n

bootstrap was still employed to improve the coverage probabilities, with m=800. Using the

m-out-of-n bootstrap, the stage 1 coverage probabilities for the difference in mean quality

adjusted lifetime are well maintained. Similar simulations were performed with a sample size

of n=300 and survival times close to that of the COG study A3891. This gives us an idea of

an appropriate choice of m. We found that m=240 and m=255 worked well for maintaining

the nominal coverage probabilities for stage 2 and stage 1, respectively.
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Table 2.1: Coverage probabilities of 90% point-wise bootstrap confidence intervals (500

bootstrap samples), from simulated data with 5000 replicates of n=1000, stage 2 m=800,

stage 1 m=850.

A = a1 : B = b1 vs B = b2

qb1\qb2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.822 0.822 0.822 0.822 0.822
0.20 0.904 0.916 0.831 0.817 0.812 0.813
0.40 0.904 0.927 0.916 0.872 0.831 0.819
0.60 0.904 0.919 0.930 0.916 0.886 0.855
0.80 0.904 0.915 0.927 0.928 0.916 0.894
1.00 0.904 0.913 0.920 0.928 0.927 0.916

A = a2 : B = b1 vs B = b2

qb1\qb2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.929 0.929 0.929 0.929 0.929
0.20 0.919 0.901 0.919 0.928 0.929 0.930
0.40 0.919 0.909 0.901 0.912 0.919 0.923
0.60 0.919 0.913 0.903 0.901 0.904 0.916
0.80 0.919 0.914 0.909 0.902 0.901 0.903
1.00 0.919 0.916 0.910 0.907 0.901 0.901

A = a1 vs A = a2

qa1\qa2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.913 0.913 0.915 915 0.916 0.911
0.20 0.912 0.912 0.913 0.913 0.916 0.916
0.40 0.910 0.911 0.912 0.914 0.913 0.917
0.60 0.907 0.909 0.912 0.914 0.917 0.917
0.80 0.909 0.909 0.912 0.914 0.915 0.918
1.00 0.907 0.907 0.911 0.913 0.916 0.918
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Table 2.2: Coverage probabilities of 90% point-wise bootstrap confidence intervals (500

bootstrap samples), from simulated data with 5000 replicates of n=2000, stage 2 m=1600,

stage 1 m=1700.

A = a1 : B = b1 vs B = b2

qb1\qb2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.702 0.702 0.702 0.702 0.702
0.20 0.859 0.924 0.734 0.690 0.687 0.687
0.40 0.859 0.914 0.924 0.813 0.734 0.702
0.60 0.859 0.897 0.927 0.924 0.857 0.780
0.80 0.859 0.884 0.914 0.932 0.924 0.878
1.00 0.859 0.878 0.904 0.923 0.934 0.924

A = a2 : B = b1 vs B = b2

qb1\qb2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.933 0.933 0.933 0.933 0.933
0.20 0.914 0.877 0.915 0.927 0.930 0.933
0.40 0.914 0.896 0.877 0.901 0.915 0.923
0.60 0.914 0.901 0.890 0.877 0.891 0.910
0.80 0.914 0.907 0.896 0.885 0.877 0.886
1.00 0.914 0.907 0.889 0.892 0.884 0.877

A = a1 vs A = a2

qa1\qa2 0.0 0.2 0.4 0.6 0.8 1.0

0.00 0.915 0.918 0.918 0.915 0.912 0.908
0.20 0.910 0.913 0.916 0.917 0.915 0.911
0.40 0.905 0.910 0.911 0.914 0.914 0.915
0.60 0.905 0.908 0.911 0.911 0.916 0.914
0.80 0.903 0.904 0.908 0.912 0.913 0.915
1.00 0.900 0.901 0.905 0.910 0.912 0.914
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Figure 2.1 shows the true (left column) and estimated (right column) threshold utility

planes for the simulated scenario with n=300. The estimated threshold utility planes are

for a single simulated data set. For each combination of qb1 and qb2 , or qa1 and qa2 , the

estimated difference in mean quality adjusted lifetime is plotted. The yellow and green

represent the region of strong acceptance for choosing between b1 and b2, or a1 and a2,

respectively. The purple and red near the center of the plane have 90% point-wise bootstrap

confidence intervals that cover zero and represent the region of indifference when choosing

between b1 and b2, or a1 and a2. We see that for the estimated threshold utility planes, the

estimated line of indifference does not correspond exactly with the true line of indifference,

yet the 90% confidence region does contain the true line. These threshold utility planes allow

us to visualize how the optimal regime changes depending on the values of qb1 , qb2 , qa1 , and

qa2 . For example, assume that the threshold utility planes presented on the right panel of

Figure 2.1 are the planes computed from the observed data. If for these treatments qa1=0.8,

qa2=0.5, qb1=0.7, and qb2=0.5, then the estimated optimal regime is d(A = a1;B = b1).

However, if qa1=0.3, qa2=0.8, qb1=0.4, and qb2=0.6, the estimated optimal regime would be

d(A = a2;B = b2).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: True (left column) and estimated (right column) threshold utility planes for the

simulated scenario.
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2.4 APPLICATION WITH THRESHOLD UTILITY ANALYSIS

In this section we apply the optimization methods discussed previously to the COG study

A3891 concerning 379 children ages 6-months to 17 years old receiving treatment for high-risk

neuroblastoma. All 379 patients were to receive five cycles of chemotherapy before begin-

ning their induction treatment. Of these, 189 patients were randomized to receive continued

chemotherapy (three additional cycles), A = a1, and the remaining 190 were randomized

to receive bone marrow transplantation, A = a2. After completing the induction therapy,

203 patients were deemed responders (those for whom the disease did not progress) and

consented to further randomization to receive six cycles of 13-cis-retinoic acid (160 mg per

square meter per day for 14 consecutive days), B = b1, or no further therapy, B = b2. Sur-

vival time was truncated to 2452 days, since this was the largest observed death time in the

study.

In what follows we assume the role of the prospective patient, considering only quality

of life as affected by toxicity of treatment when choosing between treatments. Each of the

therapies in this study comes with its own side effects. Following a cohort of lung cancer pa-

tients undergoing chemotherapy, Winter et al. (2013) [36] measured quality of life using the

EORTC QLQ-C30 questionaire [1] as the patients completed multiple courses of chemother-

apy. In the analysis by Winter et al. (2013) [36], the highest average global quality of life

measure (ranging 0 to 100) over multiple courses of chemotherapy was 57. We rescaled these

scores between 0 and 1 to have the quality of life weight of those undergoing chemother-

apy vary between 0.5 to 0.6. In the case of bone marrow transplant, Felder et al. (2006) [9]

analyze the health related quality of life of 68 pediatric patients aged 4 to 18 years old receiv-

ing allogeneic bone marrow or stem cell transplantation in a 5-year prospective study using

The Pediatric Quality of Life Inventory(PedsQL) and The Health Utilities Index Mark2 +

3(HUI2/3). It is reasonable to interpret these scores as quality weights, indicating that those

undergoing bone marrow transplantation have a quality of life near 0.7. Hong et al. (1986)

[16] studied the use of 13-cis-retinoic acid in 44 patients with oral leukoplakia, and found
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that cheilitis, erythema, and dry skin were most common. Based on the symptoms, mean

survival time for patients on 13-cis-retinoic acid could reasonably be quality adjusted by 0.9.

Figure 2.2 (top row) shows the estimated stage 2 threshold utility planes - the estimated

mean survival time for those on 13-cis-retinoic acid minus the estimated mean survival time

for those on no further treatment. The yellow and green represent the region of strong ac-

ceptance for 13-cis-retinoic acid and no further therapy, respectively. The purple and red

near the center of the plane give point estimates that favor 13-cis-retinoic acid and no fur-

ther therapy, respectively, but the 90% point-wise bootstrap confidence intervals cover zero

and represent the region of indifference when choosing between 13-cis-retinoic acid and no

further therapy.

When the survival times for stage 2 treatments are both given a weight of 1 (no quality

adjustment), those who received no further therapy had larger survival times than those

who received 13-cis-retinoic acid, following continued chemotherapy; following bone marrow

transplant, those who received 13-cis-retinoic acid had, on average, larger survival times

than those who received no further therapy. It should be noted, though, that both of these

point estimates fall within the m-out-of-n bootstrap indifference regions (the red and purple

shaded areas), suggesting there is no statistically significant difference between the stage 2

treatments following either stage 1 treatment.

As one would begin to lower either qb1 or qb2 towards 0, while holding the other fixed, we

see that the estimated difference in mean quality adjusted survival time falls in the region

of statistical significance, where one stage 2 treatment truly out performs the other, given

the stage 1 treatment. For qb1=0.9 and qb2=1, the stage 2 quality of life weights considered

earlier for this study, the point estimate for the optimal stage 2 treatment falls in the same

region as that for qb1=1 and qb2=1 described above and yields 13-cis-retinoic acid for those

following bone marrow transplantation, and no further therapy for those following continued

chemotherapy. If qb1 is lower than 0.9, the optimal stage 2 treatment would be no further

therapy for both induction therapies.
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Figure 2.2: Estimated stage 2 (top row) and stage 1 (bottom row) threshold utility planes

for COG study A3891.

Figure 2.2 (bottom row) also shows the estimated stage 1 threshold utility plane - the

estimated mean survival time for those on continuation chemotherapy minus the estimated

mean survival time for those who received a bone marrow transplant. This figure is generated

using pseudo data where responders at stage 1 are assumed to take their optimal stage 2

treatment, and their remaining survival time is estimated using the methods from Section
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2.2, with qb1=0.9 for 13-cis-retinoic acid and qb2=1 for no further treatment. At qa1=0.5 and

qa2=0.7 the optimal stage 1 treatment is bone marrow transplant, and the point estimate

falls within the strong acceptance region, meaning the 90% point-wise bootstrap confidence

interval for the difference in mean survival time between continued chemotherapy and bone

marrow transplant does not contain zero. Therefore, with qa1=0.5, qa2=0.7, qb1=0.9, and

qb2=1, the optimal regime is to first treat with bone marrow transplantation and, if a response

is observed, treat with 13-cis-retinoic acid.

2.5 GENERALIZATION TO OTHER OUTCOMES

Our exploration of Q-learning to optimize a dynamic treatment regime on quality adjusted

lifetime leads one to consider Q-functions that weight the expected utility at each stage

for any continuous outcome, not just survival time. For a 2-stage SMART design depicted

earlier with a primary outcome Y at the end of the second stage, one can use the Q-functions

QB
(
Ai = aj, X̄Bi, Bi = bk

)
= qbkE

[
Y

(B)
i

∣∣∣Ai = aj, X̄Bi, Bi = bk

]
, (2.2)

QA
(
XAi, Ai = aj

)
= E

[
H

(A)
i

∣∣∣XAi, Ai = aj

]
, (2.3)

where

H
(A)
i =

 Y
(A)
i qaj + max

bk
QB
(
Ai = aj, X̄Bi, Bi = bk,

)
, if Ai = aj, Ri = 1

Y
(A)
i qaj , if Ai = aj, Ri = 0,

(2.4)

and where Y
(A)
i and Y

(B)
i are the outcomes at the first and second stages, respectively, with

Y
(A)
i + Y

(B)
i = Yi. The law of total expectation can be used to improve computational

efficiency when performing a threshold utility analysis. Most authors fit a single regression

model for E
[
H

(A)
i

∣∣∣XAi, Ai = aj

]
; however, a Q-learning model for stage 1 could be built
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using

E
[
H

(A)
i

∣∣∣XAi, Ai = aj

]
= P (Ri = 1|XAi

, Ai = aj)

×
{
qajE

[
Y

(A)
i

∣∣∣XAi, Ai = aj

]
+ E

[
max
bk
QB
(
Ai = aj, X̄Bi, Bi = bk

)∣∣∣XAi, Ai = aj

]}
+P (Ri = 0|XAi

, Ai = aj)
{
qajE

[
Y

(A)
i

∣∣∣XAi, Ai = aj,
]}
. (2.5)

Written this way, it is clear how the utility weights factor out of the expectations and create

what we call quality adjusted Q-learning, for any continuous outcome. This could easily be

generalized to SMARTs with an arbitrary number of stages. Modeling E
[
H

(A)
i

∣∣∣XAi, Ai = aj

]
in this way improves computational efficiency since each of the component models only needs

to be fit once before varying the utility weights and producing a threshold utility analysis.

Other authors, including Song et al. (2011) [31], consider Q-functions that have a single

utility weight q, regardless of stage or treatment, that is multiplied to every nested expec-

tation (except the first), creating an effect similar to the autoregressive working correlation

structure from generalized linear models. Most authors interpret this single q as a utility

weight that, when compounded over the nested expectations, diminishes the expected utility

of each subsequent stage. The idea being that the prospective patient might not complete

every stage of the DTR, and the optimal regime should give more importance to earlier treat-

ments. However, even with this approach, most authors ignore the utility weight by setting

it equal to 1. As we showed above, we propose assigning a separate utility weight to each

treatment of each stage, representing the prospective patient’s aversion to each treatment

based on discomfort, side effects, monetary cost, ethical and/or religious beliefs, ability to

complete the treatment schedule, and a host of other unmeasurable factors that might vary

from one prospective patient to another. This allows a threshold utility analysis as described

in Section 2.2.2 for any continuous outcome Y , and shows us the decision making process of

the prospective patient.
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2.6 CONCLUDING REMARKS

Quality adjusted lifetime is a natural endpoint for deciding among treatments that prolong

survival time, permitting the prospective patient to factor toxicity and financial burden of

treatment, among other factors, into the decision. This is particularly useful in the realm of

DTRs, allowing the optimal regime to depend not only on patient level characteristics, but

also on treatment characteristics. We have demonstrated how threshold utility analysis can

be combined with the standard optimization algorithm to produce optimal regimes account-

ing for patient and treatment level information. For simplicity, our methods did not include

any covariate information other than response status, but additional patient characteristics

such as age, race, or sex could be included in the optimization algorithm, producing a sep-

arate set of utility planes for, say, males and females, or young children and older children.

Patient information could also be used to improve efficiency by using the semiparametric

estimating equations in Wang & Zhao (2007) [35].

26



3.0 CONDITIONAL STRUCTURAL MEAN MODELS AND VARIABLE

SELECTION FOR OPTIMIZING DYNAMIC TREATMENT REGIMES

3.1 LINEAR REGRESSION AND VARIABLE SELECTION

3.1.1 Background

For observations Y = [Y1, Y2, ..., Yn]T , a least squares linear regression model takes the form

Y = Xβ + ε, (3.1)

where ε is a n-dimensional mean zero random vector of errors, β is a (p + 1)-dimensional

vector of parameters, and X is an n× (p + 1) design matrix of covariates, with a vector of

1’s corresponding to an intercept. The parameter estimates are obtained by minimizing the

sum of squared errors

SSE =
n∑
i=1

(Yi − Ŷi)2, (3.2)

where Ŷi = xTi β̂. If the total number of covariates is large, one would naturally want to

select the best subset of variables that explain the mean outcome. Not only is SSE used to

find the line of best fit for a given model, it is also useful for goodness-of-fit when examining

competing models and possible interaction effects. The model with smaller sum of squared

errors fits the data best.

Other goodness-of-fit information criteria, such as AIC, BIC, and Mallow’s Cp statistic,

use SSE for model comparison while incorporating a penalty for increasing the number of

model parameters. Allen (1974) [2] introduced the leave-one-out cross-validation estimate
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of prediction error, CV , in the context of linear regression. Many other cross-validation cri-

teria have been proposed since. The model with the smallest value of such a criteria should

provide a good fit for another independent sample of data, that is, the model will have good

out-of-sample prediction. It should also be noted that the p-values resulting from F or χ2

tests of model parameters may also be used when choosing between competing models.

When using any of the above criteria for model selection, it may be infeasible to sys-

tematically search for the best subset of variables and interactions, simply because of the

sheer number of variables available. In these cases there are several traditional and penalized

variable selection methods that are computationally more efficient, though not guaranteed

to produce the best subset. Such discrete methods include forward, backward, and stepwise

variable selection. Other continuous variable selection methods include the least absolute

shrinkage and selection operator (LASSO) and its derivatives. The model comparison cri-

teria and variable selection methods above are not limited to least squares linear models.

They work equally well for other regression models such as generalized linear models and

regression splines.

3.1.2 Quantitative vs Qualitative Interactions and Variable Selection

These variable selection methods help to find the covariates and their interactions that are

predictive when estimating the expected value of Yi, but do not clearly identify for which

values of the covariates the choice of optimal treatment changes, where we take the optimal

treatment to be the one with the largest expected outcome. Gunter et al. (2011) [13]

define predictive variables as those used to reduce the variability and increase the accuracy

of the estimator, whereas variables that help prescribe the optimal treatment for a given

patient are called prescriptive [15]. When estimating the mean outcome, it is best to collect

as many predictive variables as possible; however, only those predictive variables that are

also prescriptive are needed when deciding between treatments (Figure 3.1). In order for

a variable to be prescriptive, it must qualitatively interact with treatment. A variable X

is said to qualitatively interact with the treatment Z if there exists at least two distinct
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non-empty sets within the space of X for which the optimal treatment is different. That is,

there exists disjoint, non-empty sets S1, S2 ⊂ space(X) for which

argmax
Z

E[Y |X = x1, Z = z] 6= argmax
Z

E[Y |X = x2, Z = z],

for all x1 ∈ S1 and x2 ∈ S2.

Figure 3.1: Predictive vs Prescriptive Interactions

Working in the single-stage setting using backwards induction, Gunter et al. (2011) [13]

propose two different ranking methods to sort variables according to how likely they will

qualitatively interact with treatment, and provide a four step algorithm involving LASSO

regression on nested subsets of covariates for selecting important predictive variables. Fol-

lowing their work, Zhang (2014) [37] generalizes from the least squares regression model and

considers models of the form

E[Yi|Xi, Zi] = h(Xi,β) + Zi × u(Xi,α), (3.3)

where Zi ∈ {1,−1} is a treatment assignment indicator, and u(Xi,α) are interaction effects

with parameters α. They offer a simpler, more effective two step method: (i) Multivariate
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adaptive regression spline (MARS) models are used to fit a nonparametric model on the

outcome of interest and simultaneously select predictive (and prescriptive) variables from a

larger subset of variables, and (ii) the sign of the interaction contrasts is used to create a bi-

nary variable indicating the optimal regime for each subject, and penalized logistic regression

with LASSO (L1-logistic regression) is used to identify which of the significant interactions

are not only predictive, but also prescriptive. The use of a MARS model in the first step is

warranted if we do not care about interpretability of model parameters, but are primarily

interested in the predicted outcome given the covariates.

As will be seen in Section 3.4 in the context of survival analysis in a two stage sequential

multiple assignment randomized trial (SMART) design, a similar two step method can be

used to identify important qualitative interactions for structural mean models. We consider a

specific two stage setting, similar to that used in our application, but the methods described

easily extend to other DTR setups.

3.2 DYNAMIC TREATMENT REGIMES AND CORRESPONDING

TERMINOLOGY

Consider a two-stage sequential multiple assignment randomized trial (SMART) design where

patients are randomized to one of four induction therapies, A = {a1, a2, a3, a4}. A patient

could die, the disease could become resistant to the initial treatment, the patient could re-

spond (complete remission), or he/she could experience disease progression after complete

remission. For each of the induction therapies, if treatment resistance or progression following

complete remission is observed, patients are further randomized to one of two salvage treat-

ments, B = {b1, b2}. This design allows for inference on sixteen DTRs that might be carried

out in clinical practice, namely, d(Ai = aj;B1i = bk, B2i = bl), j = 1, ..., 4, k = 1, 2, l = 1, 2

where d(Ai;B1i, B2i) stands for “Treat with Ai; if the patient is resistant to Ai, treat with

B1i, if the patient responds to Ai (complete remission) but later experiences disease progres-
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sion, treat with B2i.” Our goal is to find the optimal treatment regime among these that

maximizes expected survival time.

Figure 3.2: Possible pathways, transition times, and salvage therapy following induction

treatment.

Let TDi , TRi , TRDi , TCi , TCPi , and T PDi , TCDi , respectively denote the observed time to

death if neither remission nor resistance was observed, the observed time to resistance and

the observed time from resistance to death if resistance is observed, the observed time to

complete remission, the observed time from complete remission to disease progression, the

observed time from progression to death, and the observed time from complete remission

to death if complete remission is observed. Using the above sojourn times, each patient’s

survival time can be expressed as

Ti =



TDi , R1i = 0

TRi + TRDi , R1i = 1

TCi + TCPi + T PDi , R1i = 2, R2i = 1

TCi + TCDi R1i = 2, R2i = 0,

where R1i indicates whether a patient fails, is resistant, or experiences complete remission,

and R2i indicates whether or not those that experienced complete remission later experience

disease progression. R1i and R2i index the paths of each treatment regime.
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In the presence of non-informative right censoring, one might consider the restricted

survival time where total follow-up time is limited to L, where L is some value less than the

maximum survival time for all patients. Therefore, the survival time for all patients will be

truncated at L, TL =min(T, L). For ease of notation, we will drop the superscript and simply

use T . We will denote the ith patient’s censoring time by Ci, and the survival distribution

of Ci by K(t) = P (Ci > t). Define Ui =min(Ti, Ci) and ∆i = I(Ti ≤ Ci), respectively, to be

the observed time to event (death or censoring), and the death indicator. It is possible that

Ci < Ti, so that for a single patient some of the sojourn times are censored while others are

observed. Therefore, Ui can be expressed as

Ui =



UD
i , R1i = 0

TRi + URD
i , R1i = 1

TCi + TCPi + UPD
i , R1i = 2, R2i = 1

TCi + UCD
i R1i = 2, R2i = 0,

where R1i=0 if a patient fails or is censored prior to observing R1i; R2i=0 if a patient dies

after complete remission or is censored after complete remission prior to observing R2i; U
D
i

= min(TDi , Ci) and ∆D
i = I(TDi ≤ Ci); U

RD
i = min(TRDi , Ci − TRi ) and ∆RD

i = I(TRDi ≤

Ci − TRi ); UPD
i = min(T PDi , Ci − TCPi − TCi ) and ∆PD

i = I(T PDi ≤ Ci − TCPi − TCi ); UCD
i

= min(TCDi , Ci − TCi ) and ∆CD
i = I(TCDi ≤ Ci − TCi ). Then, introducing further indicators

for first and second stage treatment, the observed data for the ith patient in the presence of

censoring is written as

Dδ
i =

(
Z

(A)
ji , R1i, I{R1i = 2}R2i, I{R1i = 0}UD

i , I{R1i = 1}TRi ,

I{R1i = 1}Z(B1)
ki , I{R1i = 1}URD

i , I{R1i = 2}TCi ,

I{R1i = 2}I{R2i = 1}TCPi , I{R1i = 2}I{R2i = 1}Z(B2)
li ,

I{R1i = 2}I{R2i = 1}UPD
i , I{R1i = 2}I{R2i = 0}UCD

i ,

Ui, ∆i, ∆D
i , ∆RD

i , ∆PD
i , ∆CD

i , GH
i (Ui)

)
,

j = 1, 2, 3, 4, k, l = 1, 2,

where Z
(A)
ji =I{Ai = aj} equals 1 if patient i received the jth induction therapy, Z

(A)
ji equals
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0 otherwise, Z
(B1)
ki =I{B1i = bk} and Z

(B2)
li =I{B2i = bl} denote the salvage treatment as-

signment indicators, defined only if R1i=1 or 2, respectively, and GH
i (t) denotes information

collected on patient i prior to time t. Using the observed data, one can create treatment

regime indicators as di(aj; bk, bl) = Z
(A)
ji

(
I{R1i = 0}+I{R1i = 1}Z(B1)

ki +I{R1i = 2}I{R2i =

1}Z(B2)
li + I{R1i = 2}I{R2i = 0}

)
.

By design, treatments are assigned independently of prognosis or any observed data

measured prior to the second stage. Therefore,

P
(
Z

(A)
ji = 1

)
= π

(A)
j , (3.4)

P
(
Z

(B1)
ki = 1

)
= π

(B1)
k , (3.5)

P
(
Z

(B2)
li = 1

)
= π

(B2)
l , (3.6)

where π
(A)
j , π

(B1)
k , and π

(B2)
l are known randomization probabilities. These three conditions

are often referred to as no unmeasured confounders or sequential randomization assumption.

This ‘no unmeasured confounders’ condition holds even if the second-stage randomization

probabilities depend on the first-stage treatment assignments.

3.3 STRUCTURAL MEAN MODELS FOR DYNAMIC TREATMENT

REGIMES

3.3.1 Structural Mean Models Conditional on Baseline Information

To estimate the mean of each dynamic treatment regime, one can use structural mean mod-

els and then compare the means to determine the optimal regime. Inverse-probability-of-

treatment weighting (IPTW) and g-computation are two methods. Wahed and Tsiatis (2004)

[34] provide a nice discussion of the first method in the context of survival analysis with no

adjustment for covariates.
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The focus will be to estimate µjkl = E[Ti|di(aj; bk, bl) = 1], j = 1, 2, 3, 4, k, l = 1, 2,

the mean survival time for those following a given regime. Since our SMART design allows

us to confidently assume no unmeasured confounders, each regime mean is representative

of the expected outcome had the entire sample of patients followed that regime. Recall

that patients following d(aj; bk, bl) are a mixture of four groups. We can use data from

these patients to infer about µjkl, accounting for the two stages of randomization. If there

was no randomization, and if everyone in the sample was treated using the same DTR, we

would have used the sample average 1
n

∑n
i=1 Ti to estimate µ. If there was only one stage of

randomization, we would have considered using
∑n

i=1 Z
(A)
ji Ti∑n

i=1 Z
(A)
ji

= 1
n

∑n
i=1

Z
(A)
ji

π̂
(A)
j

Ti ≈ 1
n

∑n
i=1

Z
(A)
ji

π
(A)
j

Ti.

To account for the two stages of randomization we consider the quantity Wjkli=
Z

(A)
ji

π
(A)
j

(
I{R1i =

0} + I{R1i = 1}Z
(B1)
ki

π
(B1)
k

+ I{R1i = 2}I{R2i = 1}Z
(B2)
li

π
(B2)
l

+ I{R1i = 2}I{R2i = 0}
)

. Note that

WjkliTi is non-zero only for patients who are treated according to d(aj; bk, bl), and based on

the assumptions in Section 3.2 WjkliTi has expectation equal to µjkl, which implies that to

find an unbiased estimator of µjkl one need only turn to the empirical average, 1
n

∑n
i=1WjkliTi.

When censoring is present, the above result should be modified slightly. Using the observed

data in (3.4), the estimator for µjkl becomes

µ̂IPTWcen
jkl =

1

n

n∑
i=1

∆i

K̂(Ui)
WjkliUi, (3.7)

where K̂(t) is the Kaplan-Meier estimator or any other consistent estimator of the censoring

survival distribution.

In a basic randomized clinical trial, the mean outcome for each treatment group is es-

timated and compared to see which treatment has the largest expected outcome, assuming

larger outcomes are better. Similarly, the marginal estimators above are useful for compar-

ing the mean outcomes across treatment regimes to identify which treatment regime has the

largest expected outcome. As in a basic randomized clinical trial, a subgroup analysis can

be performed to see if the marginal results hold throughout, or if the optimal treatment

regime depends on patient characteristics. Following Robins et al. (2008) [28], Orellana &

Rotnitzky (2010) [23], and Wang & Zhao (2007) [35], the estimator for mean survival time
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in the presence of censoring can be extended to the regression setting to adjust for baseline

covariates using an accelerated failure time (AFT) model via the estimating equation

Un(θ) =
n∑
i=1

4∑
j=1

2∑
k=1

2∑
l=1

∆i

K̂(Ui)
Wjkli

{
∂m

∂θ

}T[
logUi −m

(
Xi,di,θ

)]
= 0, (3.8)

where {}T is the transpose operator, Xi is a vector of baseline covariates from GH
i (0),

di=
[
di(a1; b1, b1), ...,di(a4; b2, b2)

]T
, m
(
Xi,di,θ

)
= E

[
logTi|Xi,di

]
the mean function, and

µ
(
Xi,di,θ

)
≡ exp

{
m
(
Xi,di,θ

)}
≈ E

[
Ti|Xi,di

]
. For example m

(
Xi,di,θ

)
could be

modeled as

m
(
Xi,di,θ

)
= XT

i β + di(a1; b1, b1)XT
i α111

+ di(a1; b1, b2)XT
i α112

+ di(a1; b2, b1)XT
i α121

...

+ di(a4; b2, b2)XT
i α422, (3.9)

where θ = {βT ,αT111,α
T
112, · · · ,αT422}T , and Xi contains an element equal to 1 corresponding

to an intercept term. The preliminary optimal treatment regime, the one with the largest

expected outcome, is given by

dopt(Xi) = {d(aj∗ ; bk∗ , bl∗), aj∗ , bk∗ , bl∗ = argmax
aj ,bk,bl

µ(Xi,di,θ)}. (3.10)

We use the term ‘preliminary’ when referring to an optimal regime that is conditional on

baseline information, but marginalized over stage 2 information. The optimal frontline treat-

ment is given by Aopt(Xi)=argmax
aj

{max
bk,bl

µ(Xi,di,θ)}.

To implement this estimating equation, one would create sixteen copies of the analysis

data set, each with a distinct value of ∆i

K̂(Ui)
Wjkli. The indicators di(aj′ ; bk′ , bl′ ), where j

′ 6= j

or k
′ 6= k or l

′ 6= l, would be artificially set to zero so that the observations with non-zero

weights in a given copy of the data set belong to only one regime. This effectively replicates

the observations that are consistent with more than one regime (Chakraborty and Murphy,
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2014) [5]. These sixteen data sets would then be stacked one on top another and submitted

to a software package for a weighted regression. Treating K̂(Ui) as known, the empirical

sandwich estimator of the covariance matrix for the parameter estimates can be used to

draw inference when comparing regime means. When treatment assignment is not random,

as will be the case in the Sections 3.5 and 3.6, the treatment assignment probabilities can be

modeled using logistic regression. This is important in order to maintain the no unmeasured

confounders assumption.

It should be noted that the above regression model only incorporated baseline infor-

mation, yet patient information is available throughout the trial. Using the law of total

expectation, the mean survival time under a regime of interest that is conditional on all

possible patient information is given by

E[Ti|Xi, X̄
R
i , X̄

C
i , X̄

P
i , di(A;B1, B2) = 1] =

P (R1i = 0|Ai, Xi)E[TDi |Ai, Xi, R1i = 0]

+P (R1i = 1|Ai, Xi)

{
E[TRi |Ai, Xi, R1i = 1] + E[TRDi |Ai, B1i, X̄

R
i , R1i = 1]

}
+P (R1i = 2|Ai, Xi)P (R2i = 1|R1i = 2, Ai, X̄

C
i )

{
E[TCi |Ai, Xi, R1i = 2]

+E[TCPi |Ai, X̄C
i , R1i = 2, R2i = 1] + E[T PDi |Ai, B2i, X̄

P
i , R1i = 2, R2i = 1]

}
+P (R1i = 2|Ai, Xi)P (R2i = 0|Ai, X̄C

i )

{
E[TCi |Ai, Xi, R1i = 2]

+E[TCDi |Ai, X̄C
i , R1i = 2, R2i = 0]

}
, (3.11)

where X̄R
i , X̄C

i , and X̄P
i are vectors of covariates from GH

i (TRi ), GH
i (TCi ), and GH

i (TCi +TCPi ),

respectively. Because we have no unmeasured confounders, it is as though we can peek into

alternate universes and see all of the potential outcomes a prospective patient would have

for each of the different response groups, given his/her information at each stage. We gather

all of that patient information together at once and combine it into a composite score in

Equation (3.11). In practice Equation (3.11) is not very useful unless we are willing to

consider specific patient information for every intermediate outcome. Nevertheless, one can
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set estimating equations, for example

n∑
i=1

∆i

K̂(Ui)
I{R1i = 1}

{
∂mRD

∂θRD

}T{
logURD

i −mRD
(
X̄R
i , Ai, B1i,θ

RD
)}

= 0 (3.12)

with mean model mRD
(
X̄R
i , Ai, B1i,θ

RD
)

and µRD
(
X̄R
i , Ai, B1i,θ

RD
)

≡ exp
{
mRD

(
X̄R
i , Ai, B1i,θ

RD
)}
≈ E[TRDi |X̄R

i , Ai, B1i,θ
RD] for those with R1i = 1, to model

the sojourn times of each path. Then a g-computation estimator for

E[Ti|Xi, X̄
R
i , X̄

C
i , X̄

P
i , di(A;B1, B2) = 1] that is conditional on baseline and follow up infor-

mation can be created using

µ
(
Xi, X̄

R
i , X̄

C
i , X̄

P
i , di(A;B1, B2) = 1,θ,ψ

)
=

P (R1i = 0|Ai, Xi,ψ1)

{
µD(Ai, Xi,θ

D)

}
+P (R1i = 1|Ai, Xi,ψ1)

{
µR(Ai, Xi,θ

R) + µRD(Ai, B1i, X̄
R
i ,θ

RD)

}
+P (R1i = 2|Ai, Xi,ψ1)P (R2i = 1|Ai, X̄C

i ,ψ2)

{
µC(Ai, Xi,θ

C)

+µCP (Ai, X̄
C
i ,θ

CP ) + µPD(Ai, B2i, X̄
P
i ,θ

PD)

}
+P (R1i = 2|Ai, Xi,ψ1)P (R2i = 0|Ai, X̄C

i ,ψ2)

{
µC(Ai, Xi,θ

C)

+µCD(Ai, X̄
C
i ,θ

CD)

}
, (3.13)

where θ = [θD,θR,θRD,θC ,θCP ,θPD,θCD] and ψ = [ψ1,ψ2]. P (R1i = r|Ai, Xi,ψ1) and

P (R2i = s|Ai, Xi, X
C
i ,ψ2) can be modeled through logistic regression. The optimal regime,

the one with the largest expected outcome, is given by

dopt(Xi, X̄
R
i , X̄

C
i , X̄

P
i ) =

{
d(aj∗ ; bk∗ , bl∗), aj∗ , bk∗ , bl∗ =

argmax
aj ,bk,bl

µ
(
Xi, X̄

R
i , X̄

C
i , X̄

P
i , di(aj; bk, bl) = 1,θ,ψ

)}
, (3.14)

and the optimal frontline treatment is given by

Aopt(Xi, X̄
R
i , X̄

C
i , X̄

P
i )=argmax

aj

{
max
bk,bl

µ
(
Xi, X̄

R
i , X̄

C
i , X̄

P
i , di(aj; bk, bl) = 1,θ,ψ

)}
.
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Equation (3.13) represents a weighted average of patient outcomes between different

response groups. The prospective patient has not yet experienced his/her sample path,

and in a sense has missing data for all stages after baseline. To estimate the mean out-

come for the prospective patient under a regime of interest requires us to integrate (3.13)

over the probability measure of the covariates that are missing for this patient, the co-

variates collected after baseline. This leaves us with an estimated mean under the regime

of interest, given the baseline information we have on the prospective patient. Most au-

thors comparing dynamic treatment regimes using structural models, such as IPTW and

g-computation estimators, routinely integrate over all patient information, except treatment

assignment, performing a marginal comparison of regimes. In our approach we integrate

(3.13) over all stage 2 information, except for stage 2 treatment assignment, facilitating a

comparison of treatment regimes conditional on baseline information, similar to (3.8) and

(3.9). Integrating (3.13) produces a preliminary optimal regime dopt(Xi) in (3.14), and

Aopt(Xi)=argmax
aj

{
max
bk,bl

µ
(
Xi, di(aj; bk, bl) = 1,θ,ψ

)}
.

If one is willing to assume that, conditional on patient information, the response pro-

portions are independent of the corresponding mean sojourn times (with respect to the

covariates), then the integration can be performed piece-wise for each component. To oper-

ationalize this, one would first fit the component model for response or sojourn time with all

of the significant terms through stage 2. The predicted values of this model would then be

regressed on the same covariates as before, except for any stage 2 covariates. This effectively

averages the model over the stage two covariates, leaving a model that is conditional on

baseline information only. These integrated component models can then be combined to

form (3.13). When treatment assignment is not random, as will be the case in the Sections

3.5 and 3.6, all variables that are confounded with treatment assignment should be included

in the sojourn time models. This is important in order to maintain the no unmeasured

confounders assumption.
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3.3.2 Tailoring the Salvage Therapy

Regardless of whether g-computation (3.13) or IPTW (3.8) and (3.9) is used, to tailor

the stage 2 treatment prescribed by the preliminary optimal regime, the mean models for

the stage 2 sojourn times, i.e. E[TRDi |Ai, B1i, X̄
R
i , R1i = 1] and E[T PDi |Ai, B2i, X̄

P
i , R1i =

2, R2i = 1], can be examined using the estimating equations

n∑
i=1

∆i

K̂(Ui)
I{R1i = 1}

{∂mRD

∂θRD

}T{
logURD

i −mRD
(
X̄R
i , Ai, B1i,θ

RD
)}

= 0 (3.15)

and

n∑
i=1

∆i

K̂(Ui)
I{R1i = 2}I{R2i = 1}

{∂mPD

∂θPD

}T{
logUPD

i −mPD
(
X̄P
i , Ai, B2i,θ

PD
)}

= 0.

(3.16)

By evaluating µRD
(
X̄R
i , Ai, B1i,θ

RD
)

and µPD
(
X̄P
i , Ai, B2i,θ

PD
)

at Ai = Aopt(Xi), the op-

timal stage 2 treatment given optimal stage 1 treatment can be identified using

Bopt
1 (X̄R

i ) = argmax
bk

µRD
(
X̄R
i , Ai = Aopt(Xi), B1i = bk,θ

RD
)

(3.17)

and

Bopt
2 (X̄P

i ) = argmax
bl

µPD
(
X̄P
i , Ai = Aopt(Xi), B2i = bl,θ

PD
)

(3.18)

for R1i = 1, and R1i = 2 and R2i = 1, respectively. The optimal treatment regime us-

ing conditional structural mean models can then be constructed as “Treat with Aopt(Xi); if

resistance is observed, treat with Bopt
1 (X̄R

i ); if disease progression after complete remission

is observed, treat with Bopt
2 (X̄P

i ).” The beauty of constructing optimal dynamic treatment

regimes in this way is that if additional stage 2 patient information is not available, a salvage

treatment based on baseline information can still be prescribed using dopt(Xi). Although we

have demonstrated this technique for optimizing a dynamic treatment regime on a specific

two stage SMART design, the methods are easily generalized to other SMART designs with

an arbitrary number of stages. The IPTW or g-computation estimator is used at each stage

to estimate the preliminary optimal treatment regime given patient information up to the

current stage and prior treatment assignment. Essentially this tailors the optimal treatment

assignment at the current stage, and provides an optimal strategy for the remaining stages
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given the information currently available. The IPTW and g-computation estimators reduce

to a simple regression model for the final stage. All authors we have encountered who use

conditional structural models (IPTW) do so using only baseline information, prescribing the

optimal treatment regime using dopt(Xi), but naturally it is best to re-evaluate the strategy

as more information becomes available. This is what we propose.

3.3.3 Comparison with Q-learning

From the reinforcement learning literature in the field of DTRs, the Bellman equations [3]

identify the optimal treatment at each stage and lead to the Q-functions that comprise Q-

learning. For our two stage SMART design, assuming no unmeasured confounders, these

would be

QB1

(
Ai, X̄

R
i , B1i = bk

)
= E[TRDi |Ai, B1i = bk, X̄

R
i , R1i = 1],

QB2

(
Ai, X̄

P
i , B2i = bl

)
= E[T PDi |Ai, B2i = bl, X̄

P
i , R1i = 2, R2i = 1],

QA
(
Xi, Ai = aj

)
= E

[
H

(A)
i |Xi, Ai = aj

]
,

where

H
(A)
i =



TDi , if R1i = 0

TRi + max
bk
QB1

(
Ai, X̄

R
i , B1i = bk

)
, if R1i = 1

TCi + TCPi + max
bl
QB2

(
Ai, X̄

P
i , B2i = bl

)
, if R1i = 2, R2i = 1

TCi + TCDi , if R1i = 2, R2i = 0,

withAopt(Xi)≡ argmax
aj

QA
(
Xi, Ai = aj

)
, Bopt

1 (X̄R
i )≡ argmax

bk

QB1

(
Ai = Aopt(Xi), X̄

R
i , B1i =

bk

)
, and Bopt

2 (X̄P
i ) ≡ argmax

bl

QB2

(
Ai = Aopt(Xi), X̄

P
i , B2i = bl

)
. The similarity between

Q-learning and g-computation is striking, except that Q-learning averages over stage 2 in-

formation and stage 2 treatment assignment, whereas g-computation averages over stage 2

information while holding stage 2 treatment assignment fixed when searching for Aopt(Xi).

To see this, compare the expected value of H
(A)
i using the law of total expectation with

Equation (3.11). Regardless of what estimation method is used (structural or nested mod-
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els), the optimal choice of frontline treatment depends on what salvage treatment is taken.

To identify Aopt(Xi), Q-learning (through the use of pseudo data H
(A)
i ) assumes that those

who move to stage 2 take their optimal salvage therapy. The optimization of Ai is marginal-

ized over all Bopt
1 (X̄R

i ) and Bopt
2 (X̄P

i ). Q-learning estimates all of the best strategies over

later stages, combines them into an average best strategy, and assigns the optimal frontline

treatment based on this average best strategy given baseline information. Conditional struc-

tural mean models consider an average patient over later stages, they identify the single best

strategy for the average patient, and assign the optimal frontline treatment based on this

best strategy given baseline information. Interestingly, all of the same steps are applied in

Q-learning and g-computation, the only difference being their order. G-computation first

finds the sojourn means conditional on response status, combines them using the law of

total expectation, integrates over stage 2 information, and then applies the max and argmax

operators to identify Aopt(Xi). On the other hand, Q-learning first finds the sojourn means

conditional on response status, applies the max operators to the stage 2 sojourn means,

integrates over stage 2 information, combines them using the law of total expectation, and

then applies the argmax operator to identify Aopt(Xi).

Colloquially, both methods are said to estimate the optimal dynamic treatment regime.

The question then becomes, “Under what conditions, if any, are the two methods equivalent,

and is one method preferable over the other?” Notwithstanding the differences just described,

Q-learning and g-computation are also different estimators because g-computation, as con-

structed in Equation (3.11), includes additional patient information, X̄C , between complete

remission and disease progression for the outcome models and response proportions. To

make a fair comparison, we momentarily consider the g-computation model where the R2i

response proportion models and intermediate outcome models for TCPi and TCDi depend only

on baseline information. Since Q-learning and g-computation (as we propose) use the same

method for identifying the optimal salvage treatment given the estimated optimal frontline

treatment, it remains to be shown whether both methods choose the same frontline treatment

in all samples or at least under certain conditions. Modeling, as before, the intermediate

outcomes with least squares models and the response proprtions with logistic regression
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models, the integrated g-computation estimator that is conditional on baseline information

only, maximized over stage 2, can be written as

max
bk,bl

µ
(
Xi = x, di(aj; bk, bl) = 1,θ,ψ

)
=

P (R1i = 0|Ai = aj, Xi = x,ψ1)

{
µD(Ai = aj, Xi = x,θD)

}
+P (R1i = 1|Ai = aj, Xi = x,ψ1)

{
µR(Ai = aj, Xi = x,θR)

+max
bk

E
[
µRD(Ai, B1i, X̄

R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj, B1i = bk

]}
+P (R1i = 2|Ai = aj, Xi = x,ψ1)P (R2i = 1|Ai = aj, Xi = x,ψ2)

{
µC(Ai = aj, Xi = x,θC)

+µCP (Ai = aj, Xi = x,θCP ) + max
bl

E
[
µPD(Ai, B2i, X̄

P
i ,θ

PD)
∣∣∣Xi = x,Ai = aj, B2i = bl

]}
+P (R1i = 2|Ai = aj, Xi = x,ψ1)P (R2i = 0|Ai = aj, Xi = x,ψ2)

{
µC(Ai = aj, Xi = x,θC)

+µCD(Ai = aj, Xi = x,θCD)

}
, (3.19)

where E
[
µRD(Ai, B1i, X̄

R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj, B1i = bk

]
denotes the integration of

µRD(Ai, B1i, X̄
R
i ,θ

RD) over the distribution of covariates from stage 2 in X̄R
i that are not

available at baseline in Xi = x, which we will denote as XR
i ={s ∈ X̄R

i |s /∈ Xi}. Simi-

larly for E
[
µPD(Ai, B2i, X̄

P
i ,θ

PD)
∣∣∣Xi = x,Ai = aj, B2i = bl

]
, with XP

i ={r ∈ X̄P
i |r /∈ Xi}.

Most authors who implement Q-learning use a single regression model on H
(A)
i for estimat-

ing the mean outcome across stage 1 treatments; however, if the same component mod-

els from g-computation are used to construct an estimator for QA
(
Xi = x,Ai = aj

)
=

E
[
H

(A)
i |Xi = x,Ai = aj

]
using the law of total expectation, a Q-learning model for stage 1
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could be written as

E
[
H

(A)
i |Xi = x,Ai = aj

]
=

P (R1i = 0|Ai = aj, Xi = x,ψ1)

{
µD(Ai = aj, Xi = x,θD)

}
+P (R1i = 1|Ai = aj, Xi = x,ψ1)

{
µR(Ai = aj, Xi = x,θR)

+E
[
max
bk

µRD(Ai, B1i = bk, X̄
R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj

]}
+P (R1i = 2|Ai = aj, Xi = x,ψ1)P (R2i = 1|Ai = aj, Xi = x,ψ2)

{
µC(Ai = aj, Xi = x,θC)

+µCP (Ai = aj, Xi = x,θCP ) + E
[
max
bl

µPD(Ai, B2i = bl, X̄
P
i ,θ

PD)
∣∣∣Xi = x,Ai = aj

]}
+P (R1i = 2|Ai = aj, Xi = x,ψ1)P (R2i = 0|Ai = aj, Xi = x,ψ2)

{
µC(Ai = aj, Xi = x,θC)

+µCD(Ai = aj, Xi = x,θCD)

}
. (3.20)

Written this way, the similarity between Q-learning and g-computation is even more striking.

Even if they are not equivalent under all circumstances, when viewed this way a strong case

is made to tailor the salvage therapy when using conditional structural mean models since

they are tailored in Q-learning and the g-computation model for frontline treatment closely

resembles the Q-learning model. To compare Aopt(Xi = x) = argmax
aj

E
[
H

(A)
i |Xi = x,Ai =

aj

]
using (3.20) vs Aopt(Xi = x) = argmax

aj

{
max
bk,bl

µ
(
Xi = x, di(aj; bk, bl) = 1,θ,ψ

)}
using

(3.19), all that remains is to examine whether

E
[
max
bk

µRD(Ai, B1i = bk, X̄
R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj

]
(3.21)

is equal to

max
bk

E
[
µRD(Ai, B1i, X̄

R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj, B1i = bk

]
(3.22)

and

E
[
max
bl

µPD(Ai, B2i = bl, X̄
P
i ,θ

PD)
∣∣∣Xi = x,Ai = aj

]
(3.23)

is equal to

max
bl

E
[
µPD(Ai, B2i, X̄

P
i ,θ

PD)
∣∣∣Xi = x,Ai = aj, B2i = bl

]
. (3.24)
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The answers depend on the distributions of µRD(Ai = aj, B1i = bk, X̄
R
i ,θ

RD) and

µPD(Ai = aj, B2i = bl, X̄
P
i ,θ

PD) over XR
i and XP

i , respectively. When the stochastic in-

equality of µRD(Ai = aj, B1i, X̄
R
i ,θ

RD) for B1i = b1 and B1i = b2 over XR
i for a given Ai = aj

is large,

E
[
max
bk

µRD(Ai, B1i = bk, X̄
R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj

]

≈ max
bk

E
[
µRD(Ai, B1i, X̄

R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj, B1i = bk

]
,

with the approximation approaching equality as the stochastic inequality grows. This corre-

sponds to a scenario where one stage 2 treatment significantly out performs the other over all

of XR
i . When the stochastic inequality is small and the variances are equal, the same approx-

imation holds when the correlation is large, with the approximation approaching equality

as the correlation reaches 1. This corresponds to a scenario where one stage 2 treatment

is incrementally better than the other, and the treatment effect is the same over all of XR
i .

In both cases, g-computation yields the same or nearly the same result for Aopt(Xi = x)

as Q-learning. When the stochastic inequality is small and either i) the correlation departs

from 1, ii) the variances are unequal, or iii) both i and ii, then

E
[
max
bk

µRD(Ai, B1i = bk, X̄
R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj

]
in Equation (3.20) grows larger, putting more emphasis on identifying Ai = aj as optimal,

while

max
bk

E
[
µRD(Ai, B1i, X̄

R
i ,θ

RD)
∣∣∣Xi = x,Ai = aj, B1i = bk

]
in Equation (3.19) does not. This corresponds to a scenario where one treatment is incre-

mentally better than the other, on average, and the treatment effect varies over XR
i . The

same arguments hold for (3.23) and (3.24). Therefore, g-computation and Q-learning, even

when constructed using the same component models, are not guaranteed to yield the same

optimal treatment at each stage. For Q-learning, the use of additional distributional fea-
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tures of stage 2 intermediate outcomes can be seen as both a blessing and a curse. While

the typical patient may not see much difference in expected utility between the salvage

treatments, small segments of the population might and Q-learning raises the importance

of the corresponding frontline treatment based on these small segments. Rather than dis-

carding conditional structural mean models as suboptimal, we prefer to view them as robust

to extreme stage 2 observations. Additionally, structural mean models do not suffer from

nonregulariy issues associated with nested mean models (since the maximum operator is

outside of the expectation), facilitating standard large sample theory and the bootstrap for

constructing confidence intervals and performing hypothesis tests [6].

The IPTW and g-computation estimators above allow us to identify the optimal treat-

ment regime given patient information. What may not be immediately clear from these

estimators is the functional dependence they outline between the patient information and

the optimal treatment regime. This is especially true for the g-computation estimator. The

variable selection method presented next allows us to identify which of the covariates in these

structural mean models are prescriptive, and to describe the functional dependence between

these prescriptive variables and the optimal treatment regime.

3.4 PRESCRIPTIVE VARIABLE SELECTION FOR CONDITIONAL

STRUCTURAL MEAN MODELS

Expanding on the ideas in Zhang (2014) [37], we propose a two-step approach for prescriptive

variable selection in structural mean models. For models of the form in equations (3.8) and

(3.9), the first step implements a variable selection method from Section 3.1.1 to identify

significant interaction effects between baseline covariate information and treatment regimes

when estimating mean survival time. Equation (3.10) is used to create a categorical vari-

able indicating the estimated preliminary optimal treatment regime for each subject, given

his/her baseline covariate information. In the second step we use the estimated preliminary

optimal treatment regime as the outcome in a classification method such as multinomial lo-
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gistic regression, using significant baseline covariates from (3.9) in step 1 as predictors. Any

baseline effects deemed significant in the second step are prescriptive variables that quali-

tatively interact with treatment regime when estimating mean survival time and prescribe

the preliminary optimal treatment regime. An analogous two step method can be used for

models of the form in equations (3.12) and (3.13).

At this point the reader might be left wondering what the purpose is of the classification

method in the second step. After all, we do have everything we need from the first step to

assign the preliminary optimal treatment regime conditional on baseline information. If we

were estimating marginal means for each treatment regime, we would directly compare the

16 means and identify the largest one with, say, a forest plot. By conditioning on baseline

information, there may be more than one optimal regime. We could create a separate forest

plot for each combination of baseline covariates, but as the number of baseline covariates

increases this becomes tedious, and this may not suggest a clear functional relationship be-

tween the baseline covariates and the optimal regime. The importance of the second step is

two fold: i) if the variable selection process from the first step included many baseline covari-

ates, the second step narrows our focus to those baseline covariates that are prescriptive ii)

once we have narrowed our focus, the second step allows us to see the functional dependence

between the preliminary optimal treatment regime and these prescriptive covariates. Both

of these points are especially important when using the g-computation estimator.

In a sense we are modeling our model, using a classification method to model the argmax

of the g-computation or IPTW estimator. We admit that this extra layer of modeling may in-

troduce additional misclassification than using the g-computation or IPTW estimator alone,

but it allows us to clearly and succinctly describe the prescription of our g-computation or

IPTW model. It should also be noted that only the prescriptive variables need be collected

to prescribe according to the classification model, saving hospital and patient resources. If

additional accuracy is desired, the g-computation or IPTW estimator can be used to pre-

scribe the optimal treatment regimes, and the classifier in step two can be used to describe

the prescription mechanism.
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Regardless of whether g-computation (3.13) or IPTW (3.8) and (3.9) is used, the same

two step method can be used when tailoring the stage 2 treatment prescribed by the esti-

mated preliminary optimal regime. The first step implements a quantitative variable selec-

tion method from Section 3.1.1 to identify significant interaction effects when estimating the

mean sojourn time from stage 2 to death. Equations (3.17) and (3.18) are used to create a

categorical variable indicating the estimated optimal stage 2 treatment given the estimated

optimal stage 1 treatment and patient information. In the second step we use the estimated

optimal stage 2 treatment as the outcome in a classification method such as logistic regres-

sion, using information up to stage 2 as predictors. Any effects deemed significant in the

second step are prescriptive variables that qualitatively interact with stage 2 treatment when

estimating the mean sojourn time from stage 2 to death. Scatter and box plots overlaid with

the estimated treatment means, that are grouped and paneled by the prescriptive variables,

are used to confirm and report the results.

3.5 SIMULATION

We conducted a simulation experiment to evaluate the optimization of frontline treatment,

salvage treatment, and treatment regime given patient information using the methods de-

scribed in Sections 3.3 and 3.4. Identical to the acute myelogenous leukemia or myelo-

dysplastic syndrome (AML-MDS) trial design presented in Section 3.2, and later in Section

3.6, we consider a 2-stage SMART design.

The scenario was generated to closely mimic the AML-MDS data described in Sec-

tion 3.6. Subjects were randomly assigned to one of four induction therapies, A={(1)FAI,

(2)FAI+ATRA, (3)FAI+G, or (4)FAI+G+ATRA}. The simulated population experienced

one of three possible cytogenetic abnormalties with equal probability, and age was dis-

tributed using a Weibull distribution, truncated between 20 and 90 years. Response sta-
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tus R1i depended on frontline treatment, age, and cytogenentic abnormality, while re-

sponse status R2i depended on frontline treatment only. If R1i = 1, assignment to follow-

up therapy B={(0)Other treatment, (1)HDAC} depended on age, while if R2i = 1, as-

signment to follow-up therapy depended on logTCPi . Sojourn times I{R1i = 0}logTDi ,

I{R1i = 1}logTRi , I{R1i = 1}logTRDi , I{R1i = 2}logTCi , I{R1i = 2}I{R2i = 1}logTCPi ,

I{R1i = 2}I{R2i = 1}logT PDi , I{R1i = 2}I{R2i = 0}logTCDi followed various Weibull dis-

tributions, with means depending on frontline treatment, age, cytogenic abnormality, and

where appropriate, earlier sojourn times and follow-up therapy.

In this scenario n=1000, n=2000, and n=4000 observations (training data) were simu-

lated, and the g-computation and IPTW regression estimators were fit. For each subject,

the estimated preliminary optimal regime conditional on baseline information was identified,

and logistic regression (written as logisticgcomp and logisticIPTW ) was used to identify the

functional dependence between the preliminary optimal regime and baseline covariates. For

those subjects whom R1i = 1 or R2i = 1, the sojourn models for logTRDi and logT PDi , re-

spectively, were evaluated at Âopti (Xi), and B̂opt
1i (X̄R

i ) and B̂opt
2i (X̄P

i ) were estimated. Logistic

regression (also written logisticgcomp and logisticIPTW ) was used to identify the functional

dependence between the estimated optimal salvage treatment and patient information up to

stage 2. The g-computation, IPTW, and classification models were then applied to a new

set of n=100,000 observations (test data) to determine how well the models correctly classify

subjects to their optimal frontline treatment, salvage treatment, and treatment regime, and

to determine how well the models agree with one another. The classification rate is calcu-

lated on the n=100,000 subjects. This process is replicated 5,000 times, and the average

classification rates are reported in Tables 3.1 through 3.6.

In row 1 of each table, g-computation vs logisticgcomp compares the proportion of times

the argmax of the g-computation estimator produces the same result as the classification

model of the argmax of the g-computation estimator for (a) frontline treatment and (b)

salvage treatment. The remaining rows are interpreted similarly. The results in Tables 3.1

through 3.3 are under correct model specification for the g-computation model, and nearly-
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correct model specification for the IPTW model. We say ‘nearly’ since the data generative

process followed the g-computation estimator, hence the IPTW model will not be exactly

correct. Correct model specification is to say there was no model selection in either step of

the two step method. The correct models were known and fit. This is to give us an idea of

how the g-computation, IPTW, logisticgcomp, and logisticIPTW models work under the most

ideal circumstances in the given scenario. As expected, the IPTW model and its associated

logisticIPTW model were in perfect agreement with one another over 99% of the time when

identifying the optimal frontline treatment. This is not surprising since the IPTW estimating

equations replicate the observations belonging to multiple regimes, and the mean model fits a

separate slope/intercept for every regime. Any covariates that interact with treatment regime

can be perfectly captured in the logisticIPTW model. On the other hand, the g-computation

model fits separate parameters for the covariates across the mean sojourn times, and the

associated logisticgcomp model can not perfectly capture these relationships. Nevertheless,

the logisticgcomp model did agree with the g-computation model over 99% of the time as well,

on average. The results in Tables 3.4 through 3.6 incorporate backward variable selection

using AIC in step one and backward variable selection using significance level in step two of

the proposed variable selection method for each of the 5,000 replications. This is to give us

a sense of how the g-computation, IPTW, logisticgcomp, and logisticIPTW models work under

usual model building circumstances in the given scenario. Backward selection was chosen

because there were relatively few covariates at each stage to choose from. Methods such as

LASSO work particularly well when there are many candidate variables.
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Table 3.1: Agreement rates (se) under correct model specification. 5,000 simulations of

n=1,000.

(b) Tailored

(a) Frontline Salvage

treatment treatment

g-comp vs logisticgcomp 99.9% (0.01%) 94.2% (0.11%)

g-comp vs Truth 81.2% (0.19%) 74.3% (0.18%)

logisticgcomp vs Truth 81.2% (0.19%) 74.7% (0.20%)

IPTW vs logisticIPTW 99.8% (0.03%) 90.5% (0.14%)

IPTW vs Truth 73.7% (0.19%) 71.7% (0.17%)

logisticIPTW vs Truth 73.6% (0.19%) 72.8% (0.22%)

g-comp vs IPTW 76.9% (0.18%) 89.1% (0.12%)

IPTW vs logisticgcomp 76.9% (0.18%) 84.3% (0.15%)

g-comp vs logistic IPTW 76.8% (0.18%) 81.2% (0.18%)

logisticgcomp vs logisticIPTW 76.8% (0.18%) 83.0% (0.18%)

In row 1, g-computation vs logisticgcomp compares the proportion of times the argmax of the

g-computation estimator produces the same result as the classification model of the argmax

of the g-computation estimator for (a) frontline treatment, (b) tailored salvage treatment,

and (c) tailored treatment regime. The remaining rows are interpreted similarly.
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Table 3.2: Agreement rates (se) under correct model specification. 5,000 simulations of

n=2,000.

(b) Tailored

(a) Frontline Salvage

treatment treatment

g-comp vs logisticgcomp 99.9% (0.01%) 95.4% (0.09%)

g-comp vs Truth 86.5% (0.10%) 78.7% (0.15%)

logisticgcomp vs Truth 86.5% (0.10%) 79.3% (0.17%)

IPTW vs logisticIPTW 99.9% (0.02%) 91.9% (0.13%)

IPTW vs Truth 78.4% (0.17%) 75.5% (0.15%)

logisticIPTW vs Truth 78.4% (0.17%) 76.5% (0.19%)

g-comp vs IPTW 80.4% (0.15%) 90.8% (0.10%)

IPTW vs logisticgcomp 80.4% (0.16%) 86.8% (0.12%)

g-comp vs logistic IPTW 80.4% (0.16%) 84.0% (0.16%)

logisticgcomp vs logisticIPTW 80.4% (0.16%) 85.8% (0.16%)

In row 1, g-computation vs logisticgcomp compares the proportion of times the argmax of the

g-computation estimator produces the same result as the classification model of the argmax

of the g-computation estimator for (a) frontline treatment, (b) tailored salvage treatment,

and (c) tailored treatment regime. The remaining rows are interpreted similarly.
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Table 3.3: Agreement rates (se) under correct model specification. 5,000 simulations of

n=4,000.

(b) Tailored

(a) Frontline Salvage

treatment treatment

g-comp vs logisticgcomp 99.9% (0.01%) 96.3% (0.07%)

g-comp vs Truth 89.0% (0.07%) 81.9% (0.12%)

logisticgcomp vs Truth 89.0% (0.07%) 82.4% (0.13%)

IPTW vs logisticIPTW 99.9% (0.02%) 93.4% (0.10%)

IPTW vs Truth 82.8% (0.14%) 79.4% (0.12%)

logisticIPTW vs Truth 82.7% (0.14%) 80.2% (0.15%)

g-comp vs IPTW 83.9% (0.13%) 92.4% (0.08%)

IPTW vs logisticgcomp 83.9% (0.13%) 89.1% (0.10%)

g-comp vs logistic IPTW 83.9% (0.13%) 86.9% (0.12%)

logisticgcomp vs logisticIPTW 83.9% (0.13%) 88.6% (0.12%)

In row 1, g-computation vs logisticgcomp compares the proportion of times the argmax of the

g-computation estimator produces the same result as the classification model of the argmax

of the g-computation estimator for (a) frontline treatment and (b) tailored salvage treatment.

The remaining rows are interpreted similarly.
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Table 3.4: Agreement rates (se) using backward selection for model building. 5,000 simula-

tions of n=1,000.

(b) Tailored

(a) Frontline Salvage

treatment treatment

g-comp vs logisticgcomp 86.4% (0.16%) 94.4% (0.12%)

g-comp vs Truth 80.9% (0.19%) 73.9% (0.20%)

logisticgcomp vs Truth 74.6% (0.17%) 74.5% (0.22%)

IPTW vs logisticIPTW 95.1% (0.17%) 94.7% (0.12%)

IPTW vs Truth 72.7% (0.18%) 70.9% (0.19%)

logisticIPTW vs Truth 72.5% (0.19%) 71.5% (0.21%)

g-comp vs IPTW 75.8% (0.17%) 88.4% (0.13%)

IPTW vs logisticgcomp 71.3% (0.20%) 83.7% (0.16%)

gcomp vs logisticIPTW 75.2% (0.19%) 83.9% (0.16%)

logisticgcomp vs logisticIPTW 72.6% (0.21%) 86.1% (0.17%)

In row 1, g-computation vs logisticgcomp compares the proportion of times the argmax of the

g-computation estimator produces the same result as the classification model of the argmax

of the g-computation estimator for (a) frontline treatment and (b) tailored salvage treatment.

The remaining rows are interpreted similarly.
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Table 3.5: Agreement rates (se) using backward selection for model building. 5,000 simula-

tions of n=2,000.

(b) Tailored

(a) Frontline Salvage

treatment treatment

g-comp vs logisticgcomp 89.7% (0.17%) 97.1% (0.07%)

g-comp vs Truth 83.3% (0.11%) 76.9% (0.17%)

logisticgcomp vs Truth 78.5% (0.12%) 77.4% (0.17%)

IPTW vs logisticIPTW 98.2% (0.10%) 97.0% (0.09%)

IPTW vs Truth 78.5% (0.16%) 74.7% (0.17%)

logisticIPTW vs Truth 78.4% (0.16%) 75.1% (0.18%)

g-comp vs IPTW 82.8% (0.14%) 92.0% (0.09%)

IPTW vs logisticgcomp 77.5% (0.17%) 89.5% (0.11%)

gcomp vs logisticIPTW 82.3% (0.14%) 89.5% (0.12%)

logisticgcomp vs logisticIPTW 77.6% (0.17%) 89.9% (0.12%)

In row 1, g-computation vs logisticgcomp compares the proportion of times the argmax of the

g-computation estimator produces the same result as the classification model of the argmax

of the g-computation estimator for (a) frontline treatment and (b) tailored salvage treatment.

The remaining rows are interpreted similarly.
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Table 3.6: Agreement rates (se) using backward selection for model building. 5,000 simula-

tions of n=4,000.

(b) Tailored

(a) Frontline Salvage

treatment treatment

g-comp vs logisticgcomp 91.5% (0.15%) 99.1% (0.04%)

g-comp vs Truth 86.3% (0.09%) 80.4% (0.14%)

logisticgcomp vs Truth 80.7% (0.11%) 80.5% (0.14%)

IPTW vs logisticIPTW 99.5% (0.05%) 99.1% (0.05%)

IPTW vs Truth 83.6% (0.14%) 78.7% (0.15%)

logisticIPTW vs Truth 83.5% (0.14%) 78.7% (0.15%)

g-comp vs IPTW 85.5% (0.11%) 93.4% (0.07%)

IPTW vs logisticgcomp 80.6% (0.14%) 92.7% (0.08%)

g-comp vs logistic IPTW 85.4% (0.11%) 92.6% (0.08%)

logisticgcomp vs logisticIPTW 80.6% (0.14%) 92.7% (0.09%)

In row 1, g-computation vs logisticgcomp compares the proportion of times the argmax of the

g-computation estimator produces the same result as the classification model of the argmax

of the g-computation estimator for (a) frontline treatment and (b) tailored salvage treatment.

The remaining rows are interpreted similarly.

3.6 APPLICATION

In this section we apply the methods discussed previously to the AML-MDS trial concern-

ing 210 patients with leukemia [33]. The data set arose from a randomized trial of four

combination chemotherapies given as frontline treatments to patients with poor prognosis
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acute myelogenous leukemia (AML) or myelo-dysplastic syndrome (MDS). Chemotherapy

of AML or MDS proceeds in stages. A remission induction chemotherapy combination is

given first, with the aim of achieving a complete remission (CR), which is defined as the

patient having less than 5% blast cells, a platelet count greater than 105 mm3 and white

blood cell count greater than 103 mm3, based on a bone marrow biopsy. If the induction

chemotherapy does not achieve a CR, or a CR is achieved but the patient suffers a relapse,

then salvage chemotherapy usually is given in a second attempt to achieve a CR. The AML-

MDS trial used a 2×2 factorial design with chemotherapy combinations fludarabine plus

cytosine arabinoside plus idarubicin (FAI), FAI plus all-trans-retinoic acid (FAI+ATRA),

FAI plus granulocyte colony stimulating factor (FAI+G) and FAI plus all-trans-retinoic acid

plus granulocyte colony stimulating factor (FAI+G+ATRA). The primary aim was to assess

the effects of adding ATRA, G or both to FAI on the probability of success, which was

defined as the patient being alive and in CR at 6 months.

Table 3.7: Initial outcomes following frontline treatment

Group Total, N

All patients
FAI
FAI+ATRA
FAI+G
FAI+G+ATRA

Death Resistant Disease Complete Remission

N(%)

69(33)
17(31)
15(28)
20(38)
17(34)

N(%)

39(19)
17(31)
13(24)
4(8)
5(10)

N(%)

102(48)
20(37)
26(48)
28(54)
28(56)

210
54
54
52
50

Because there were many different salvage treatments, we classified salvage as either con-

taining high dose arabinoside cytosine (HDAC) or not (Other treatment). In the AML-MDS

trial, patients were randomized between the four induction combinations, whereas the sal-

vage treatments B1 and B2 were chosen subjectively by the attending physicians, patient by

patient. Consequently, considering the multicourse structure of the patients actual therapy,
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the data are observational because salvage treatments were not chosen by randomization. By

modeling the stage 2 treatment assignment probabilities, incorporating all covariates that

explain treatment assignment, the IPTW regression estimator remains consistent. Similarly,

by incorporating all confounders of stage 2 treatment assignment into the stage 2 inter-

mediate outcome component models in Equation (3.13), the g-computation estimator also

remains consistent. This no unmeasured confounders assumption is important for our causal

inference interpretation of counterfactual/potential outcomes, allowing us to consistently es-

timate the mean outcome under a regime of interest for the entire sample of patients. We

found that assignment to B1 treatments was associated with age, while assignment to B2

treatments was associated with logTCP . Tables 3.7 and 3.8 summarize the counts for the

seven possible events illustrated in Figure 3.2 for the leukemia data. These include the three

induction therapy outcomes (indexed by R1i) for each treatment arm and the four possible

subsequent outcomes.

Table 3.8: Outcomes following CR or Resistant Disease

Group

All patients
HDAC
Other treatment

Resistant Disease Complete Remission

Death

N(%)

37(95)
25(93)
12(100)

Death

N(%)

9(9)
-
-

Progression

N(%)

93(91)
-
-

Death after
Progression

N(%)

83(93)
47(89)
36(90)

It is well known that age and type of cytogenetic abnormality are highly reliable predic-

tors of the probability of CR and survival time in AML or MDS. In particular, cytogenetic

abnormality, characterized by missing portions of the fifth and seventh chromosomes (de-

noted by (-5,-7)), and older age are strongly associated with a lower probability of CR and

shorter survival time. Because this trial’s entry criteria required patients to have at least one

unfavorable prognostic characteristic, the distributions of age and cytogenetic abnormality
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were different from those seen in the population of newly diagnosed AMLMDS patients. For

example, only four patients had the comparatively favorable cytogenetic abnormality with

an inversion of the 16th chromosome, or T(8,21), a translocation between chromosomes 8

and 21. Consequently, to take advantage of cytogenetic abnormality as a prognostic variable

in our regression analyses, we grouped it into three categories: poor {(5,7)}; intermediate

{diploid, Y, or insufficient metaphases to classify}; good {+8, 11Q, INV16, T(8,21), MISC}.

To ensure stability of the model fits, six of the seven component models were fitted by

restricting the time to the particular event to a fixed upper limit, with the limits set by

first examining the observed distribution of each event time. Specifically, the variables UD,

TC , URD, UCD, TCP , and UPD were restricted to 100, 110, 1408, 692, 1326 and 2274 days

respectively. The parameter estimates and standard errors for the mean sojourn time models

are presented in Tables 3.9 and 3.10. Backward variable selection, using AIC as the criterion

for optimality, was used to determine the significant covariates and their possible two-way

interactions in each model. Frontline and salvage treatment were forced into each model.

Unfortunately, many AML patients undergoing chemotherapy to induce CR die during

this process, before either CR is achieved or it can be determined that the patients dis-

ease is resistant to the induction chemotherapy. Although such deaths may be attributed

to either the leukemia or the chemotherapy, so-called ‘regimen-related death’, because both

the disease and the treatment cause low white blood cell counts and other adverse events

it often is very difficult to identify a sole cause of death. The patients in this study were

especially susceptible to induction death due to their poor prognosis at entry to the trial,

with overall rate of death during induction chemotherapy 33% (69/210), varying from 28%

to 38% across the four induction regimens (p-value, 0.70; generalized Fisher exact test). In

the fitted model for the three induction event times (Table 3.9), no baseline covariate was

significantly associated with logTD. There did not appear to be any significant difference

between the induction treatment effects on logTD, although ATRA may have had a slightly

deleterious effect in that, among the 69 patients who died during induction, the patients in

the two ATRA arms died a few days sooner, on average.
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Table 3.9: Models for sojourn time to death, time to resistance, and time to complete

remission.

logTD logTR logTC

Frontline Treatment 3 3 3

Age 3

Age × Frontline treatment 3

Resistance to induction treatment occurred in 39 (18.6%) patients, relatively more fre-

quently among patients receiving FAI and FAI+ATRA (31% and 24% respectively) compared

with those who received FAI+G or FAI+G+ATRA (7.8% and 10% respectively). The times

to treatment resistance were similar across the four induction treatments, but with greater

variability in the FAI+G arm (Table 3.9). Among the 39 patients who were resistant to

front-line treatment, 27 were given HDAC as salvage treatment. Two patients in this co-

hort were censored before observing death. Using backward variable selection with AIC as

the criteria of optimality, factors that were associated with time from induction treatment

resistance to death are presented in Table 3.10. About half (48.6%) of the 210 patients

achieved CR, with CR rates of 37%, 48%, 53% and 56% in the FAI, FAI+ATRA, FAI+G,

and FAI+G+ATRA arms respectively. Of the 102 patients who achieved CR, 93 (91%) had

disease progression before death or being lost to follow-up. Among these, 53 (57%) received

HDAC as salvage treatment. Since only nine patients died in CR, an intercept-only model

was used for modeling TCD.
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Table 3.10: Models for sojourn time from resistance to death, complete remission to disease

progression, and from progression to death.

logTRD logTCP logTPD

Frontline treatment×Age 3

Frontline×Salvage 3 3

Age 3 3 3

Cytogenetic group 3 3 3

logTR×age 3

Frontline×Cytogenetic 3

Age× Cytogenetic group 3 3

logTC×Frontline 3

logTC×Cytogenetic group 3

logTC×Salvage 3

logTCP×Frontline 3

logTCP×Salvage 3

Interaction effects imply lower order terms, i.e. there were no nested effects.

3.6.1 Strategy effects

Figure 3.3 shows the results of the classification model for the argmax of the g-computation

model using the proposed two step prescriptive variable selection method. Figure 3.3 de-

picts the proportion of patients, or estimated probability of, having a particular preliminary

optimal treatment regime, given baseline information. Using the integrated form of (3.13),

Equation (3.14) was the outcome in a logistic regression. The significant baseline covariates

from the g-computation model were the candidate variables in another variable selection

process in the classification model to determine which covariates are prescriptive. Both

cytogenetic abnormality and age are prescriptive when determining a patient’s preliminary

optimal treatment regime using baseline information. For all of those with poor and interme-

diate cytogenetic abnormalities, and mostly all of those with good cytogenetic abnormalities,

the preliminary regime d
(
(2)FAI+ATRA; (0)Other treatment, (1)HDAC

)
was optimal. For
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those with good cytogenetic abnormality and who are over 70 years of age, the preliminary

optimal treatment regime is d
(
(3)FAI+G; (1)HDAC, (0)Other treatment

)
. This is consistent

with the marginal results found in Wahed and Thall (2013), who determined that the optimal

dynamic treatment regime, marginalized over baseline information, was d
(
(2)FAI+ATRA;

(0)Other treatment, (1)HDAC
)
. Our IPTW regression model found that d

(
(2)FAI+ATRA;

(0)Other treatment, (1)HDAC
)

was the preliminary optimal treatment regime for all, re-

gardless of baseline information. This is not surprising since the IPTW and g-computation

estimators are very different from one another. For each of the preliminary optimal treat-

ment regimes prescribed using the two-step variable selection method, Figure 3.4 plots the

estimated mean survival time from the g-computation model with 90% point-wise bootstrap

confidence intervals using the 5th and 95th percentiles of the bootstrapped sampling distri-

bution of the mean (500 bootstrap re-samples). Though the confidence interval is wide,

20 year old patients with intermediate cytogenetic abnormalities are estimated to live over

8 years on average from commencement of regime d((2)FAI+ATRA; (0)Other, (1)HDAC),

compared to 3 years or less for other ages and cytogenetic groups.

61



Figure 3.3: Classification model for argmax of g-computation model using the proposed two

step prescriptive variable selection method.

Regimes d(A;B1, B2), where A=(1)FAI, (2)FAI+ATRA, (3)FAI+G, or (4)FAI+G+ATRA;

B1,B2=(0)Other treatment, (1)HDAC.
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Figure 3.4: Forest plot of g-computation model with 90% point-wise bootstrap confidence 

intervals.

Regimes d(A; B1, B2), where A=(1)FAI, (2)FAI+ATRA, (3)FAI+G, or (4)FAI+G+ATRA; 

B1,B2=(0)Other treatment, (1)HDAC.

For those who experienced disease progression after complete remission, the optimal sal-

vage therapy can be tailored according to Figure 3.5, which shows the results of the classifi-

cation model for the argmax of the logT PD model using the proposed two step prescriptive 

variable selection method. As indicated in Table 3.10, the model for logT PD depends on age, 

cytogenetic group, logT C , logT CP , and several interaction effects, but Figure 3.5 shows that 

only logT CP is needed to prescribe the optimal salvage therapy. Figure 3.5 depicts the
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proportion of patients, or estimated probability of, having a particular optimal salvage treat-

ment, given patient information up to stage 2. For those who took (2)FAI+ATRA as their

frontline treatment and experienced disease progression after complete remission, (1)HDAC

remained their optimal salvage therapy so long as their TCP was greater than 6 logs. How-

ever, for patients with logTCP less than 6 following treatment with (2)FAI+ATRA, most had

(0)Other treatment as their optimal salvage therapy. A similar result holds for those treated

with frontline therapy (3)FAI+G, except that the decision point to alter the salvage treat-

ment occurs near logTCP=5. Since the IPTW regression model identified d
(
(2)FAI+ATRA;

(0)Other treatment, (1)HDAC
)

as the preliminary optimal treatment regime, regardless

of baseline information, its corresponding graph for tailoring the salvage treatment when

R2i = 1 is the top panel of Figure 3.5. For those who experienced resistant disease, no

further tailoring of the optimal salvage treatment was possible, since the optimal salvage

therapy was Other treatment for everyone experiencing resistant disease. It should be noted

that the logistic curves in Figure 3.5 are more smooth than the near-discontinuous curves in

Figure 3.3. This indicates that there are other covariates that aide in the prescription of the

optimal salvage therapy, but were not deemed significant by the backward variable selection

process of the classification model. When age is included in the classification model for the

argmax of the logT PD model, the logistic curves in Figure 3.5 become sharper when paneled

by age, though the same functional dependence and overall prescription remain the same.

For each of the optimal salvage therapies, Figure 3.6 plots the estimated mean survival time

from disease progression for the g-computation model with 90% point-wise bootstrap confi-

dence intervals using the 5th and 95th percentiles of the bootstrapped sampling distribution

of the mean (500 bootstrap re-samples).
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Figure 3.5: Classification model for argmax of logT PD model using the proposed two step

prescriptive variable selection method.

B2=(0)Other treatment, (1)HDAC.

65



Figure 3.6: Forest plot for logT PD model with 90% point-wise bootstrap confidence intervals.

B2=(0)Other treatment, (1)HDAC.

To further showcase the proposed methods for optimizing a dynamic treatment regime, 

we next analyze a single simulated data set of n=1,000 patients. Figure 3.7 shows the results 

of the classification model for the argmax of the g-computation model using the proposed 

two step prescriptive variable selection method on the n=1,000 simulated patients. Figure 

3.7 depicts the proportion of patients, or estimated probability of, having a particular prelim-

inary optimal treatment regime, given baseline information. Both cytogenetic abnormality 

and age are prescriptive when determining a patient’s preliminary optimal treatment regime 

using baseline information. With five different optimal treatment regimes, each depending
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differently on baseline information, the proposed two step variable selection method is in-

dispensable when identifying the functional dependence. Figure 3.9 shows the results of the

classification model for the argmax of the IPTW model using the proposed two step pre-

scriptive variable selection method on the n=1,000 simulated patients. Figure 3.9 depicts the

proportion of patients, or estimated probability of, having a particular preliminary optimal

treatment regime, given baseline information. At first glance it may seem that the prescrip-

tion offered by IPTW is noticeably different from that offered by g-computation. This is

not surprising since each model offers a different functional dependence between covariate

information and mean survival time. However, both methods prescribe nearly the same

optimal frontline treatment given baseline information. Regardless of whether IPTW or g-

computaion is used, when many of the preliminary optimal regimes share the same frontline

treatment, one can sum the estimated proportions from the classification method in step 2

according to frontline treatment and report the optimal frontline treatment; however, it is

important to classify on the preliminary optimal treatment regime, not the optimal frontline

treatment, in order to capture the functional dependence with the covariates (Figures 3.8 and

3.10). For example, if two preliminary optimal treatment regimes shared the same frontline

treatment, one for young patients and the other for old patients, while a third preliminary

treatment regime (with a different frontline treatment) was optimal for middle aged patients,

classifying on optimal frontline treatment using a linear term for age would report an average

proportion across age. This of course could be remedied by considering higher ordered terms

for age, but when the number of covariates increases this becomes cumbersome.
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Figure 3.7: Classification model for argmax of g-computation model using the proposed two

step prescriptive variable selection method on n=1,000 simulated patients.

Regimes d(A;B1, B2), where A=(1)FAI, (2)FAI+ATRA, (3)FAI+G, or (4)FAI+G+ATRA;

B1,B2=(0)Other treatment, (1)HDAC.
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Figure 3.8: Classification model for argmax of g-computation model using the proposed two

step prescriptive variable selection method on n=1,000 simulated patients.

Aopt(Xi)=(1)FAI, (2)FAI+ATRA, (3)FAI+G, or (4)FAI+G+ATRA.
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Figure 3.9: Classification model for argmax of IPTW model using the proposed two step

prescriptive variable selection method on n=1,000 simulated patients.

Regimes d(A;B1, B2), where A=(1)FAI, (2)FAI+ATRA, (3)FAI+G, or (4)FAI+G+ATRA;

B1,B2=(0)Other treatment, (1)HDAC.
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Figure 3.10: Classification model for argmax of IPTW model using the proposed two step

prescriptive variable selection method on n=1,000 simulated patients.

Aopt(Xi)=(1)FAI, (2)FAI+ATRA, (3)FAI+G, or (4)FAI+G+ATRA.

For those simulated patients who experienced disease progression after complete remis-

sion, the optimal salvage therapy can be tailored according to Figure 3.11, which shows the

results of the classification model for the argmax of the logT PD model using the proposed two 

step prescriptive variable selection method, with Aopt(Xi) estimated using g-computation. 

Figure 3.11 depicts the proportion of patients, or estimated probability of, having a particular

optimal salvage treatment, given patient information up to stage 2. It is quite similar to what

was found in the AML-MDS data, except that here (1)HDAC is preferred at smaller logT CP .
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Figure 3.12 shows the results of the classification model for the argmax of the logT PD model

using the proposed two step prescriptive variable selection method, with Aopt(Xi) estimated

using IPTW. Figure 3.12 depicts the proportion of patients, or estimated probability of,

having a particular optimal salvage treatment, given patient information up to stage 2. In

this case, the backward variable selection process of the classification model included age,

which further tailors the prescription of optimal salvage treatment by adjusting the decision

point along logTCP .

Figure 3.11: Classification model for argmax of logT PD model using the proposed two step

prescriptive variable selection method on n=1,000 simulated patients.

Aopt(Xi) estimated using g-computation. B2=(0)Other treatment, (1)HDAC.
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Figure 3.12: Classification model for argmax of logT PD model using the proposed two step 

prescriptive variable selection method on n=1,000 simulated patients.

Aopt(Xi) estimated using IPTW. B2=(0)Other treatment, (1)HDA

3.7 CLOSING REMARKS

The methods for optimizing a DTR described herein, though for a specific two stage SMART 

design, can be easily generalized to other SMART designs. For SMARTs with an arbitrary 

number of stages the same framework holds. Conditional on baseline covariates, a prelimi-
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nary optimal regime is estimated using the g-computation or IPTW estimator. Conditional

on information up to stage two (including frontline treatment assignment and response sta-

tus prior to stage 2), the g-computation or IPTW estimator is used again to estimate the

mean outcome for each treatment regime over the remaining stages (stage 2 and onwards).

This process continues until the last stage, where the g-computation or IPTW estimator re-

duces to a simple regression comparing the last stage treatment assignment. Each successive

g-computation or IPTW estimator tailors the optimal treatment assignment at the current

stage and provides a strategy for the remaining stages, given past treatment assignment and

patient data. One might be inclined to compare structural mean models to the Bellman

equations and declare them suboptimal. We prefer to view them as an alternative method

that is robust to extreme observations at later stages when choosing the optimal treatment

at the current stage. They are particularly useful in the event that no future patient infor-

mation becomes available. The proposed variable selection method is easily applied at every

stage of the SMART design.

With structural mean models like g-computation or IPTW estimators, each treatment

regime must be directly compared to determine the optimal one. When this comparison

is also conditional on patient information, this technique for optimizing dynamic treatment

regimes becomes overwhelming. The proposed two step prescriptive variable selection pro-

cedure supports the tailored optimization of dynamic treatment regimes using conditional

structural mean models by eliminating from consideration any suboptimal treatment regimes

and sifting out the covariates that prescribe the optimal treatment regimes. The weighting

techniques of the g-computation and IPTW estimators allow an appropriate comparison of

the treatment regimes, while avoiding the non-regularity issues of pseudo data associated

with backwards induction techniques. This facilitates standard large sample theory and the

bootstrap for constructing confidence intervals and performing hypothesis tests.
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4.0 FUTURE WORK: CONDITIONAL STRUCTURAL COX MODELS

FOR OPTIMIZING DTRS

4.1 COX PROPORTIONAL HAZARDS MODEL AND VARIABLE

SELECTION

For observations {(Ui,∆i, Xi), i = 1, 2, ..., n}, Ui=min(Ti, Ci) is the observed event time

where Ti is the time to death, Ci is the time to censoring, and ∆i = I{Ti < Ci} is the death

indicator. Define Ni(u)=I(Ui ≤ u,∆i = 1), N(u)=
∑n

i=1Ni(u) is the number of deaths up to

time u, Yi(u)=I(Ui ≥ u), and Y (u) =
∑n

i=1 Yi(u) is the number at risk at time u. Then, the

Nelson-Aalen estimator for the cumulative hazard of death, Λ(t) =
∫ t

0
λ(t), can be written

as

Λ̂(t) =
n∑
i=1

∫ t

0

dNi(u)∑n
i=1 Yi(u)

,

where

λ(t) = lim
h→0+

P [t ≤ Ti < t+ h|Ti ≥ t]

h
.

Ti and Ci are assumed to be conditionally independent, so that the cause-specific hazard is

equal to the hazard for Ti. Adjusting for covariates under the proportional hazards assump-

tion, the Cox model [7] takes the form

λ(t|Xi,β) = λ0(t)exp(XT
i β),

where Xi is a p-dimensional vector of covariates, β is a p-dimensional vector of parameters.

To construct the likelihood for β under the Cox model while treating time as continuous,

we divide the time axis from [0, t] into m intervals so that t0=0, t1=t/m, t2=2t/m,...,tm=t,
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and also let ∆Ni(tj)=I(Ui ∈ [tj, tj+1),∆i = 1) and ∆(tj)=tj+1 − tj. We consider inter-

vals that are arbitrarily small so that ∆N(tj)=
∑n

i=1 ∆Ni(tj) is at most 1. Further define

F(tj)=σ{I{Ui ≤ u,∆i = 1}, I{Ui ≤ u,∆i = 0}, Xi; u ≤ tj, i = 1, 2, ..., n} as the filtration

containing all of the survival and censoring information up to time tj, as well as patient

information Xi. Conditional on F(tj) we know who died or was censored prior to tj and

their event times, and we know the individuals at risk right after tj, which we denote as

Y (t+j ). What we do not know is ∆Ni(tj)=I(Ui ∈ [tj, tj+1),∆i = 1), whether or not the

ithsubject will die in [tj, tj+1), which is distributed as Bernoulli
(
Yi(t

+
j )λ(tj|Xi,β)∆(tj)

)
. By

further conditioning on ∆N(tj) (to help us eliminate the nuisance baseline hazard from the

resulting likelihood), the distribution of ∆Ni(tj)|∆N(tj) = k,F(tj) = f(tj) can be written

as

P
[
∆Ni(tj) = r

∣∣∆N(tj) = k,F(tj) = f(tj)
]

=



[
λ(tj|Xi,β)∆(tj)∑n

i=1 Yi(t
+
j )λ(tj|Xi,β)∆(tj)

]r
×

[
1− λ(tj|Xi,β)∆(tj)∑n

i=1 Yi(t
+
j )λ(tj|Xi,β)∆(tj)

]1−r

, for r = 0, 1; if ∆N(tj) = 1

0r11−r, for r = 0, 1; if ∆N(tj) = 0,

and the joint distribution, P
[
∆Ni(tj) = r,∆N(tj) = k,F(tj) = f(tj)

]
, is equal to

= P
[
∆N(tj) = k,F(tj) = f(tj)

]
× P

[
∆Ni(tj) = r

∣∣∆N(tj) = k,F(tj) = f(tj)
]
.

Therefore, viewing the collection
{(

∆Ni(tj)|∆N(tj) = k,F(tj) = f(tj)
)
; i = 1, 2, ..., n

}
as a

generalized Bernoulli random variable, the likelihood for β over all m time intervals is equal

to L(β)

=
m−1∏
j=1

P
[
F(tj) = f(tj),∆N(tj) = k

] n∏
i=1

P
[
∆Ni(tj) = 1

∣∣∆N(tj) = k,F(tj) = f(tj)
]∆Ni(tj)

,
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and the partial likelihood is

PL(β) =
n∏
i=1

m−1∏
j=1

P
[
∆Ni(tj) = 1

∣∣∆N(tj) = k,F(tj) = f(tj)
]∆Ni(tj)

=
n∏
i=1

m−1∏
j=1

[
λ(tj|Xi,β)∆(tj)∑n

i=1 Yi(t
+
j )λ(tj|Xi,β)∆(tj)

]∆Ni(tj)∆N(tj)

×

[
0

]∆Ni(tj){1−∆N(tj)}

=
n∏
i=1

m−1∏
j=1

[
λ(tj|Xi,β)∆(tj)∑n

i=1 Yi(t
+
j )λ(tj|Xi,β)∆(tj)

]∆Ni(tj)

=
n∏
i=1

m−1∏
j=1

[
λ0(tj)exp(XT

i β)∆(tj)∑n
i=1 Yi(t

+
j )λ0(tj)exp(XT

i β)∆(tj)

]∆Ni(tj)

=
n∏
i=1

m−1∏
j=1

[
exp(XT

i β)∑n
i=1 Yi(t

+
j )exp(XT

i β)

]∆Ni(tj)

.

Taking the log of PL(β) and differentiating with respect to β yields the score function

Un(β) =
n∑
i=1

m∑
j=1

[
Xi −

∑n
i=1XiYi(t

+
j )exp(XT

i β)∑n
i=1 Yi(t

+
j )exp(XT

i β)

]
∆Ni(tj)

=
n∑
i=1

∫ L

0

[
Xi −

∑n
i=1XiYi(t)exp(XT

i β)∑n
i=1 Yi(t)exp(XT

i β)

]
dNi(t)

= 0.

Lastly, the Breslow estimator of the baseline cumulative hazard can be written as

Λ̂0(t) =
n∑
i=1

∫ t

0

dNi(u)∑n
i=1 Yi(u)exp(XT

i β̂)
,

where β̂ maximizes PL(β), and Λ̂(t|Xi,β) = Λ̂0(t)exp(XT
i β̂).

Much of the discussion in Section 3.1.1 regarding variable selection applies to the Cox

model as well. The same goodness-of-fit information criteria, such as AIC and BIC can be

used for model comparison, though each of these would rely on the likelihood instead of the

SSE. Just as before, the p-values resulting from χ2 tests of model parameters may also be

used when choosing between competing models. When using any of the above criteria for

model selection, it may be infeasible to systematically search for the best subset of variables
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and interactions, simply because of the sheer number of variables available. As mentioned

previously, discrete methods for variable selection include forward, backward, and stepwise

methods. Other continuous variable selection methods include the least absolute shrinkage

and selection operator (LASSO) and its derivatives. In the case of the Cox model, the LASSO

based methods rely on a penalized likelihood instead of a penalized SSE. In the remainder

of this final chapter we provide the framework for extending the conditional structural mean

models in Chapter 3 to the Cox proportional hazards model. The same two step method for

prescriptive variable selection as developed in Section 3.4 can also be applied. We consider

a specific two stage setting, but the methods described easily extend to other DTR setups.

4.2 STRUCTURAL COX MODELS FOR DYNAMIC TREATMENT

REGIMES

4.2.1 Structural Cox Models Conditional on Baseline Information

Considering the same 2-stage SMART design in Section 3.2, the focus will be to estimate

Λjkl(t) =
∫ t

0
λjkl(u)du =

∫ t
0
λ(u|di(aj; bk, bl = 1))du , j = 1, 2, 3, 4, k = 1, 2, the cumu-

lative hazard of death under a regime of interest. Since our SMART design allows us to

confidently assume no unmeasured confounders, each regime cumulative hazard is repre-

sentative of the cumulative hazard had the entire sample of patients followed that regime.

Recall that patients following d(aj; bk, bl) are a mixture of four groups. We can use the

data from these patients to infer about Λjkl(t), accounting for the two stages of random-

ization. If there was no randomization, and if everyone in the sample was treated using

the same DTR, we would have used the Nelson-Aalen estimator
∑n

i=1

∫ t
0
dNi(u)
Y (u)

to esti-

mate Λ(t). If there was only one stage of randomization, we would have considered us-

ing
∑n

i=1

∫ t
0

Z
(A)
ji dNi(u)∑n

i=1 Z
(A)
ji Yi(u)

=
∑n

i=1

∫ t
0

Z
(A)
ji dNi(u)/π

(A)
j∑n

i=1 Z
(A)
ji Yi(u)/π

(A)
j

. To account for the two stages of ran-

domization we consider, just as before, the quantity Wjkli=
Z

(A)
ji

π
(A)
j

(
I{R1i = 0} + I{R1i =

1}Z
(B1)
ki

π
(B1)
k

+ I{R1i = 2}I{R2i = 1}Z
(B2)
li

π
(B2)
l

+ I{R1i = 2}I{R2i = 0}
)

. Note that WjklidNi(u)
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can be non-zero only for patients who are treated according to d(aj; bk, bl), and conditional

on Fjkl(u), E
[∑n

i=1 WjklidNi(u)
]

= λjkl(u)du
∑n

i=1 Yjkli(u) = λjkl(u)duE
[∑n

i=1WjkliYi(u)
]
,

where
∑n

i=1 Yjkli(u) is the number at risk and Fjkl(u) is the filtration at time u for those

following regime d(aj; bk, bl). This implies that to find a consistent estimator of Λjkl(t) one

need only turn to the weighted Nelson-Aalen estimator

Λ̂jkl(t) =
n∑
i=1

∫ t

0

WjklidNi(u)∑n
i=1 WjkliYi(u)

.

In a basic randomized clinical trial, the cumulative hazard for each treatment group is

estimated and compared to see which treatment has the smallest hazard of death. Similarly,

the marginal estimator above is useful for comparing the cumulative hazards across treat-

ment regimes to identify which treatment regime has the smallest hazard of death. As in a

basic randomized clinical trial, a subgroup analysis can be performed to see if the marginal

results hold throughout, or if the optimal treatment regime depends on patient character-

istics. Following Tang & Wahed (2013) [32], the estimator for the cumulative hazard can

be extended to the regression setting under a stratified proportional hazards assumption to

adjust for baseline covariates using a Cox model via the estimating equation

Un(θ) =
n∑
i=1

4∑
j=1

2∑
k=1

2∑
l=1

∫ L

0

[
Xi −

∑n
i=1XiWjkliYi(t)exp(XT

i βjkl)∑n
i=1WjkliYi(t)exp(XT

i βjkl)

]
WjklidNi(t)

= 0, (4.1)

where Xi is a vector of baseline covariates from GH
i (0) and some or all of the coefficients in

θ = [βT111,β
T
112, ...,β

T
422]T are allowed to differ by treatment regime. This corresponds to the

model

λ
(
t|Xi,θ, di(aj; bk, bl) = 1

)
= λjkl0(t)exp(XT

i βjkl),

where the hazard is proportional within each regime, and the effect of the baseline covariates

on the hazard within a regime can be quantified by the log hazard ratio parameter βjkl.

Under this model the Breslow estimator of the baseline cumulative hazard within a regime
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is

Λ̂jkl0(t) =
n∑
i=1

∫ t

0

WjklidNi(u)∑n
i=1 WjkliYi(u)exp(XT

i
ˆβjkl)

, (4.2)

where β̂jkl solves 4.1, and Λ̂
(
t|Xi,θ, di(aj; bk, bl) = 1

)
= Λ̂jkl0(t)exp(XT

i β̂jkl). Then a com-

parison of treatment regimes can be carried out using the hazard ratio

γjklj′k′ l′ (t|Xi,θ) =
Λ
(
t|Xi,θ, di(aj; bk, bl) = 1

)
Λ
(
t|Xi,θ, di(aj′ ; bk′ , bl′ ) = 1

)
=

Λjkl0(t)exp(XT
i βjkl)

Λj′k′ l′0(t)exp(XT
i βj′k′ l′ )

,

which is a function of t and baseline patient information Xi. The preliminary optimal

treatment regime, the one with the smallest cumulative hazard at time t, is given by

dopt(t,Xi) = {d(aj∗ ; bk∗ , bl∗), aj∗ , bk∗ , bl∗ = argmin
aj ,bk,bl

Λ
(
t|Xi,θ, di(aj; bk, bl) = 1

)
}. (4.3)

We use the term ‘preliminary’ when referring to an optimal regime that is conditional on

baseline information, but marginalized over stage 2 information. The optimal frontline treat-

ment is given by Aopt(t,Xi)=argmin
aj

{min
bk,bl

Λ
(
t|Xi,θ, di(aj; bk, bl) = 1

)
}.

To implement this estimating equation when all of the parameters in βjkl differ across

each of treatment regimes, one would create sixteen copies of the analysis data set, each wtih

a distinct value of Wjkli. The indicators di(aj′ ; bk′ , bl′ ), where j
′ 6= j or k

′ 6= k or l
′ 6= l, would

be artificially set to zero so that the observations with non-zero weights in a given copy of

the data set belong to only one regime. This effectively replicates the observations that are

consistent with more than one regime [5]. These sixteen data sets would then be stacked one

on top another and submitted to a software package for sixteen different weighted regressions

stratified by treatment regime using di(aj; bk, bl), j = 1, 2, 3, 4, k, l = 1, 2. When treatment

assignment is not random, as was the case in Sections 3.5 and 3.6, the treatment assignment

probabilities can be modeled using logistic regression. This is important in order to maintain

the no unmeasured confounders assumption.
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Alternatively, using the law of total probability the hazard of death for a regime of

interest that is conditional on baseline information is given by

Λ
(
t|Xi, d(A;B1, B2) = 1

)
=

P (R1i = 0|Ai, Xi)

{
Λ(t|Ai, Xi, R1i = 0)

}
+P (R1i = 1|Ai, Xi)

{
Λ(t|Ai, B1i, Xi, R1i = 1)

}
+P (R1i = 2|Ai, Xi)P (R2i = 1|R1i = 2, Ai, Xi)

{
Λ(t|Ai, B2i, Xi, R1i = 2, R2i = 1)

}
+P (R1i = 2|Ai, Xi)P (R2i = 0|Ai, Xi)

{
Λ(t|Ai, Xi, R1i = 2, R2i = 0)

}
. (4.4)

Following the framework in Section 3.3 we aim to construct a model of the cumulative hazard

of death for a regime of interest given all patient information. Such a model might resemble

Λ
(
t|Xi, X̄

R
i , X̄

C
i , X̄

P
i , d(A;B1, B2) = 1

)
=

P (R1i = 0|Ai, Xi)

{
Λ(t|Ai, Xi, R1i = 0)

}
+P (R1i = 1|Ai, Xi)

∫∫
s+u=t

{
ΛR(s|Ai, Xi, R1i = 1)× ΛRD(u|Ai, B1i, X̄

R
i , R1i = 1)

}
du ds

+P (R1i = 2|Ai, Xi)P (R2i = 1|R1i = 2, Ai, X̄
C
i )

∫∫∫
s+u+v=t

{
ΛC(s|Ai, Xi, R1i = 2)

×ΛCP (u|Ai, X̄C
i , R1i = 2, R2i = 1)× ΛPD(v|Ai, B2i, X̄

P
i , R1i = 2, R2i = 1)

}
dv du ds

+P (R1i = 2|Ai, Xi)P (R2i = 0|Ai, X̄C
i )

∫∫
s+u=t

{
ΛC(s|Ai, Xi, R1i = 2)

×ΛCD(u|Ai, X̄C
i , R1i = 2, R2i = 0)

}
du ds, (4.5)

where for example

ΛRD(u|Ai, B1i, X̄
R
i , R1i = 1) =

∫ u

0

lim
h→0+

P [w ≤ TRDi < w + h|TRDi ≥ w,Ai, B1i, X̄
R
i , R1i = 1]

h
dw.

More formally, in 4.5 the integral
∫∫

s+u=t

du ds stands for
∫ t
o

∫ 0

t−s du ds, and
∫∫∫

s+u+v=t

dv du ds

stands for
∫ t
o

∫ t−s
0

∫ 0

t−u−s dv du ds. If X̄R
i contains information on TRi , then the joint cu-

mulative hazard for TRi and TRDi factors into the product of a marginal and a conditional
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cumulative hazard. If X̄R
i does not contain information on TRi , then the cumulative hazards

for TRi and TRDi are assumed to be independent. Similarly for R2i = 0, 1. When treatment

assignment is not random, as was be the case in Sections 3.5 and 3.6, all variables that are

confounded with treatment assignment should be included in the sojourn cumulative hazard

models. This is important in order to maintain the no unmeasured confounders assumption.

One can set proportional hazards estimating equations for each of the component models in

4.4 or 4.5. After integrating over probability measure of the stage 2 covariates, the prelim-

inary optimal treatment regime, the one with the smallest cumulative hazard at time t, is

given by

dopt(t,Xi) = {d(aj∗ ; bk∗ , bl∗), aj∗ , bk∗ , bl∗ = argmin
aj ,bk,bl

Λ
(
t|Xi,θ, di(aj; bk, bl) = 1

)
}, (4.6)

and the optimal frontline treatment is given byAopt(t,Xi)=argmin
aj

{min
bk,bl

Λ
(
t|Xi,θ, di(aj; bk, bl) =

1
)
}.

4.2.2 Tailoring the Salvage Therapy

Regardless of whether g-computation or IPTW is used, to tailor the stage 2 treatment

prescribed by the preliminary optimal regime, the cumulative hazard models for the stage

2 sojourn times, i.e. ΛRD(t|Ai, B1i, X̄
R
i = 1,θRD) and ΛPD(t|Ai, B2i, X̄

P
i , R1i = 2, R2i =

1,θPD), can be examined using the estimating equations

n∑
i=1

∫ L

0

[
Xi −

∑n
i=1 XiY

RD
i (t)exp(XT

i θ
RD)∑n

i=1 Y
RD
i (t)exp(XT

i θ
RD)

]
dNRD

i (t) = 0 (4.7)

and

n∑
i=1

∫ L

0

[
Xi −

∑n
i=1XiY

PD
i (t)exp(XT

i θ
PD)∑n

i=1 Y
PD
i (t)exp(XT

i θ
PD)

]
dNPD

i (t) = 0, (4.8)

where NRD
i (u) =I(URD

i ≤ u,R1i = 1,∆i = 1), Y RD
i (u) = I(URD

i ≥ u,R1i = 1), NPD
i (u)

=I(UPD
i ≤ u,R1i = 2, R2i = 1,∆i = 1), Y PD

i (u) = I(UPD
i ≥ u,R1i = 2, R2i = 1). By

evaluating ΛRD(t|Ai, B1i, X̄
R
i = 1,θRD) and ΛPD(t|Ai, B2i, X̄

P
i , R1i = 2, R2i = 1,θPD) at
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Ai = Aopt(Xi), the optimal stage 2 treatment given optimal stage 1 treatment can be iden-

tified using

Bopt
1 (t, X̄R

i ) = argmin
bk

ΛRD
(
t|X̄R

i , Ai = Aopt(Xi), B1i = bk,θ
RD
)

(4.9)

and

Bopt
2 (t, X̄P

i ) = argmin
bl

ΛPD
(
t|X̄P

i , Ai = Aopt(Xi), B2i = bl,θ
PD
)

(4.10)

for R1i = 1, and R1i = 2 and R2i = 1, respectively. The optimal treatment regime using

conditional structural Cox models can then be constructed as “Treat with Aopt(t,Xi); if re-

sistance is observed, treat with Bopt
1 (t, X̄R

i ); if disease progression after complete remission is

observed, treat with Bopt
2 (t, X̄P

i ).” The beauty of constructing optimal dynamic treatment

regimes in this way is that if additional stage 2 patient information is not available, a salvage

treatment based on baseline information can still be prescribed using dopt(t,Xi). Although

we have demonstrated this technique for optimizing a dynamic treatment regime on a specific

two stage SMART design, the methods are easily generalized to other SMART designs with

an arbitrary number of stages. The IPTW or g-computation estimator is used at each stage

to estimate the preliminary optimal treatment regime given patient information up to the

current stage and prior treatment assignment. Essentially this tailors the optimal treatment

assignment at the current stage, and provides an optimal strategy for the remaining stages

given the information currently available. The IPTW and g-computation estimators reduce

to a simple regression model for the final stage. All authors we have encountered who use

conditional structural Cox models (IPTW) do so using only baseline information, prescrib-

ing the optimal treatment regime using dopt(t,Xi), but naturally it is best to re-evaluate the

strategy as more information becomes available. This is what we propose.

If it is indeed possible to create a g-computation estimator using 4.5, or some similar

construction to incorporate all patient information, then we also intend to develop a Q-

learning model to identify the optimal treatment at each stage using the cumulative hazard

of the stage 1 and stage 2 sojourn times as the criteria of optimality. We will then finish this
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work by comparing the g-computation and Q-learning models, before demonstrating these

methods along with prescriptive variable selection in a simulation and application.
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