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Abstract  20 

Hydromorphological and chemical properties of water bodies have pronounced influence on the occurrence and 21 

distribution of biological elements in the aquatic ecosystems.  Based on a series of abiotic characteristics, 22 

seventeen lake types were established in Hungary for management purposes. Benthic diatom assemblages were 23 

studied in shallow standing water bodies in Hungary in order to provide a biological validation of these types. 24 

Species composition and abundance of the occurring taxa were analysed. By their diatom taxonomic 25 

composition five basic lake types could be distinguished; two calcareous lake types, which differ in size and in 26 

their trophic characteristics and three types within the group of high salinity lakes. In this latter group the astatic 27 

and perennial lakes showed considerable differences. These results have great practical importance, because 28 

biological validation of the hydromorphological lake typology is the first step for reliable assessment of the 29 

ecological status of water bodies. 30 

 31 

Introduction 32 

Aquatic ecosystems are the most threatened ecosystems world-wide (Revenga et al. 2000). 33 

For managing the preservation and restoration of aquatic ecosystems across Europe the 34 

European Commission implemented the Water Framework Directive (WFD, 2000/60/EC). 35 

The directive is considered to be the most ambitious and comprehensive document of 36 

European environmental legislation (Moss et al. 2003). WFD requires member states to 37 

http://www.ingentaconnect.com/content/schweiz/fal/2017/00000189/00000002/art00003


monitor and assess the quality of surface waters in order to identify and reverse negative 38 

trends in the ecological state of water bodies. The WFD and the various supportive documents 39 

(Anonymous 2003) provide guidance to ensure its implementation in a consistent way across 40 

Europe; however, it is still a major challenge for the member states.  Ecological state 41 

assessment of water bodies has to be based on the evaluation of the actual status in 42 

comparison to the type specific reference conditions (WFD, 2000/60/EC). Therefore, 43 

establishment of river and lake typologies is the first step in the assessment process. It has 44 

been known from the early decades of the last century that hydromorphological characteristics 45 

of lakes basically determine the composition of lake biota (Murray et al. 1910). Ecoregions, 46 

size, depth, altitude, hydrological regime and geology are considered as the most important 47 

variables influencing distribution and abundance of biological elements. By combining these 48 

variables, hundreds of lake types can be defined but forty-eight were proposed as “core types” 49 

(Moss et al. 2003). Besides these variables other biologically important type descriptor 50 

variables can also be applied in order to reach greater and clearer separation of the types. 51 

Type of the stratification, lake residence time, acid neutralizing capacity, water level 52 

fluctuation and several other properties were applied in the national typologies across Europe 53 

(Borics et al. 2014). The resulted types, so-called top–down types, have been created 54 

accordingly; while ecological similarities or dissimilarities of the types have not been 55 

considered. However, biological elements used in ecological state assessment are not sensitive 56 

to all the type descriptor variables and this makes possible the merging of the types, and thus, 57 

the simplification of the typologies (Zenker and Baier 2009).  Phytobenthos is one of the 58 

biological elements that required by the WFD and included in ecological status assessments. 59 

Benthic diatoms, being a species-rich and ecologically diverse group of algae, are used 60 

increasingly in ecological monitoring as proxies for phytobenthos. Several diatom-based 61 

metrics have been developed (Coste in Cemagref 1982, Rott et al. 1997, 1999) and used for 62 

river quality assessment in European countries (Birk et al. 2012, Rimet et al. 2005, Van Dam 63 

et al. 2007, Várbíró et al. 2012) and usefulness of these metrics in lake quality assessment has 64 

been demonstrated (Ács et al. 2005, Bolla et al. 2010, Blanco 2004). A European scale 65 

comparison of the diatom-based national assessment methods has been done for three 66 

common European lake types (low, moderate and high alkalinity lakes) by Kelly et al. (2014). 67 

However the number of hydromorphological lake types within countries is much higher 68 

(Kolada et al. 2005, Borics et al. 2014), and only a few of them can be assigned to the 69 

common intercalibration types.  70 



Based on hydromorphological characteristics seventeen lake types were established in 71 

Hungary (Szilágyi et al. 2008). As a result of the phytoplankton-based validation of these 72 

types the numbers have been reduced to four (Borics et al. 2014). However in that study the 73 

authors noted that there was no clear overlap between the biomass-based types and the types 74 

based on phytoplankton composition. The four types were distinguished by their trophic 75 

characteristics but in several types eutrophication may not be the key pressure (Hering et al. 76 

2010). Large steppe lakes (Borics et al. 2014) and shallow, turbid soda lakes are characteristic 77 

elements of the landscape in the Carpathian Basin (Felföldi et al. 2009). The common feature 78 

of these lakes is that they are naturally eutrophic, or hypertrophic (Boros et al. 2006, Stenger-79 

Kovács et al. 2014), but other characteristics such as pH, conductivity, and macrophyte 80 

composition show significant differences. However, it is still a question whether these 81 

differences appear in the composition of the benthic microflora. Diatom based methods are 82 

promising tools in lake quality assessment, but simplification of the top–down typologies and 83 

establishment of diatom-based lake types are required. Therefore, the aim of the study is to 84 

present a diatom-based bottom–up typology and simplification of the hydromorphology based 85 

top–down typology for the lakes in the Carpathian basin.  86 

 87 

 88 

Materials end Methods 89 

Database 90 

Benthic diatom data derived from the Hungarian National Water quality monitoring survey 91 

and from the database of the Danube Research Institute. To avoid mis-grouping, only data for 92 

the least disturbed sites were considered during the analyses. 93 

For selecting the least disturbed sites we applied type-dependent screening criteria. In case of 94 

those lakes where there is only one lake within one lake type  (Lake Balaton, Lake Velencei 95 

and Fertő) we used data from last decade, because great improvement in lake quality could be 96 

observed in this period (Istvánovics and Somlyódy 2001; Ács et al. 2005). 97 

The following criteria were applied to the other lake groups: no point source pollution, no 98 

intensive stocking of fish, no artificial modification of the shoreline, complete zonation of 99 

macrophytes. Since very shallow high alkalinity soda lakes are considered naturally 100 

hypertrophic (Boros et al. 2014) exclusion criteria for nutrients have not been applied in this 101 

lake group. Although high alkalinity calcareous lakes can also be considered naturally 102 

eutrophic (Borics et al. 2014), extreme values of nutrients unanimously refer to anthropogenic 103 



load. Therefore, for the lakes in this lake group the following screening criteria were applied: 104 

P < 250 µg l
-1  

  and  N < 2000 µg l
-1

 (lake mean values). 105 

Land use is considered important screening criterion across Europe (Pardo et al. 2012; Kelly 106 

et al. 2014), but this criterion has not been applied in this study, because previously it was 107 

demonstrated that differences in land use appear not to be relevant for lake quality at this 108 

region, because the importance of land use is exceeded by that of lake use, i.e., intensity of 109 

fishing and fish stocking (Borics et al. 2013).  110 

 111 

Sampling 112 

Altogether six hundred thirty-nine samples were collected from one hundred forty-four 113 

sampling sites belonging to seventy-five water bodies in the middle of the vegetation period 114 

(from May to September) between 2010 and 2016. Benthic diatom samples were collected 115 

from five reed stalks per sampling site from the well illuminated littoral zones of lakes. 116 

Diatom samples were preserved with Lugol’s solution and were stored in plastic containers 117 

until processing. 118 

Sample processing 119 

The frustules were cleaned with hydrochloric acid and hydrogen peroxide, subsequently 120 

washed in distilled water and mounted with Naphrax® mounting medium (MSZ EN 121 

13946:2014). Identification was performed according to Krammer & Lange-Bertalot (1986–122 

1991), Krammer (2003) and Hofmann et al. (2011). 123 

 124 

Approaches of biological validation of the hydromorphological lake types 125 

There are two options for establishing lake types in which both hydromorphological and 126 

biological characteristics of waters are considered (Fig. 1). 127 

Option 1: during the implementation of the WFD one of the first steps is the establishment of 128 

a water body typology. The typology proposed by the WFD has to be based on the broad scale 129 

ecoregions, hydromorphological, physical and chemical characteristics of water bodies, and 130 

thus, it can be considered as a top–down typology (Zenker and Baier 2009). This typology can 131 

be simplified if biological characteristics of the hydromorphological types are compared 132 

directly and types with no significant differences are merged. The disadvantage of this 133 

approach is that biological homogeneity of the hydromorphological types is supposed a priori 134 

(Mykrä et al. 2009), thus splitting off the hydromorphological types is not possible. 135 



Option 2: when this option is applied the top–down typology is ignored because comparison 136 

of the biological characteristics of lakes is done at lake (or site) level. During this process, the 137 

whole lake population is separated into smaller groups in which lakes sharing similar 138 

biological characteristics are pooled. This can be accomplished with a step by step process 139 

(clustering), or with ordination techniques. This approach results in a so-called bottom–up 140 

typology. These biological types have to be accommodated to the hydromorphological types. 141 

Splitting of the hydromorphological types is feasible as long as it is corroborated by 142 

biological evidences. During this study both options were combined.  143 

 144 

Statistical analyses  145 

Statistical analysis was based on species abundance data. Non-metric multidimensional 146 

scaling (NMDS), using Bray-Curtis similarities, was applied for grouping of the 147 

hydromorphological lake types (Option 1). In the second step this technique was applied to 148 

data from entire lakes (Option 2). Statistical differences between the groups obtained by the 149 

NMDS were tested by PERMANOVA (Anderson et al. 2008).  Analysis was performed on 150 

site level. The proposed biologically validated lake types were characterised by the diatom 151 

species using Similarity percentage analysis (SIMPER; Clark 1993). SIMPER is a 152 

multivariate, exploratory method that assesses the contribution of each taxon to the Bray-153 

Curtis dissimilarities between contrasted groups. Statistical analysis was performed using 154 

PAST package (Hammer et al. 2001). 155 

Species diversity was calculated by the Shannon formula (1948). The trophic state of the 156 

proposed types was characterised by the trophic metric of the OMNIDIA software (Lecointe 157 

et al. 1993) using the range zero to twenty. The highest values indicate lower trophic 158 

conditions. The significance of the differences in diversity and TID values were tested by the 159 

Kruskal-Wallis test. Analysis was done on a sample level.  160 

 161 

 162 

Results 163 

Establishment of the biologically validated lake types 164 

Ordination of the hydromorphological lake types resulted in two distinct groups (Fig. 2). The 165 

group of high salinity lakes (with Na
+
 and Mg

2+
 dominance) and the moderate salinity (Ca

2+
 166 

dominated) lakes clearly separated from each other according to diatom composition 167 

(Permanova of Bray-Curtis similarity p < 0.05). Further separation of the two subgroups was 168 

based on site level data (Option 2). The NMDS ordination of the site level data displays two 169 



groups in the moderate (Fig. 3) (p < 0.05), and three groups in the high salinity lakes (Fig. 4). 170 

Diatom assemblages of Lake Balaton differed significantly from that of the other Ca
2+

 171 

dominated lakes (Fig. 3). Within the groups of high salinity lakes the following three groups 172 

could be distinguished: 1. large steppe lakes (Lake Velencei and Lake Fertő), 2. Na
+
 173 

dominated perennial saline lakes, and 3. Na
+
 dominated astatic saline lakes (PERMANOVA p 174 

< 0.05) (Fig. 4).  The proposed five bottom–up types could be accommodated to the 175 

hydromorphological lake types (Table 1 and 2). Species characteristics for the given lake 176 

types (identified by SIMPER analysis) are shown in Tables 3, 4 and 5. (Physical and chemical 177 

characteristics of the proposed lake types are shown in Table 6.) 178 

 179 

Characterisation of the lake types 180 

Significant differences were found in the Shannon diversity values between the astatic [4] and 181 

perennial [5] high salinity lakes (Fig. 5). The highest values were observed in the case of the 182 

perennial lakes, while the lowest ones in the group of astatic lakes. Diversity of the large 183 

steppe lakes Fertő and Lake Velencei (3
rd

 biological type) did not show differences from the 184 

others, and the values fell in the middle range of diversity (Fig. 5). In the two groups of 185 

calcareous lakes (Balaton [1] and others [2]) differences in diversity could also be 186 

demonstrated (p < 0.05) (data not shown). 187 

The low values of the trophic metrics indicate that lakes in the Carpathian basin are eutrophic 188 

or hypertrophic. Differences in the distribution of the trophic metric scores have also been 189 

shown both for the moderate and high salinity lakes (Fig. 6). In the group of moderate salinity 190 

calcareous lakes, metric scores calculated for Lake Balaton [1] samples were significantly 191 

higher than those characterised in the other [2] calcareous lakes.  192 

Significant differences were also found in the trophic metric scores among the three proposed 193 

groups of high salinity lakes (Fig. 6). The lowest values were characteristic for the astatic 194 

saline lakes [4], while the highest scores were obtained for the large steppe lakes (Fertő and 195 

Lake Velencei [3]). Trophic scores of the perennial high salinity lakes [5] appeared to be 196 

between the values of the two above mentioned types. 197 

 198 

Discussion 199 

Establishment of the biologically validated lake types 200 

NMDS ordination of the species abundance data resulted in a clear and consistent distinction 201 

between the highly saline sodium and magnesium dominated lakes and moderate salinity 202 

calcareous ones. This result is consistent with that obtained in a recent study which was based 203 



on the analysis of phytoplankton (Borics et al. 2014).  Diatom flora of high salinity lakes 204 

consists of species with wide ecological valence that enables their survival in extreme 205 

environmental conditions (Hecky & Kilham 1973). In the highly saline lakes of the 206 

Carpathian Basin species are subject to various types of extremities, such as high salt content 207 

and high organic and inorganic load (Stenger-Kovács et al. 2014, Boros et al. 2006). 208 

However, we note that from the present analysis separation of these extremities cannot be 209 

made.  210 

Separation of the two types of the moderate salinity calcareous lakes (Balaton and others) can 211 

be explained partly by the trophic differences and partly by the unique microflora of the 212 

Balaton (Bolla et al. 2010).  213 

In the literature on saline lakes several halophilic species are mentioned such as Nitzschia 214 

frustulum, Rophalodia brebissonii, Halamphora veneta  (Hecky & Kilham 1973, Silva et al. 215 

2010, Stenger-Kovács et al. 2014) and these taxa were also characteristic in the studied high 216 

salinity lakes. However microflora of the lakes belonging to the highly saline lake group 217 

appeared to be similar but the abundance of these taxa was remarkably different in the three 218 

lake types (Table 5). These differences in abundance values are responsible for the separation 219 

of the lake groups rather than unique species that might occasionally occur in one of the lake 220 

groups.  221 

 222 

Characterisation of the lake types 223 

Although earlier it was believed that diversity of algae in eutrophic lakes is usually lower than 224 

that of oligotrophic ones (Moss 1973), experimental studies proved that diversity is influenced 225 

by the fluctuation of resources rather than the quantity of them (Sommer 1984). Both 226 

experimental (Carrick et al. 1988) and field studies (Leira et al. 2009) demonstrated that 227 

nutrient enrichment narrows the niche of some sensitive benthic diatom taxa, but 228 

simultaneously creates favourable conditions for many specialised species. However, low 229 

diversity values might be related to natural processes such as grazing or other disturbances 230 

(DeNicola and Kelly, 2014). This means that higher nutrient concentration does not 231 

necessarily coincide with decreasing species diversity. Therefore, the higher diversity 232 

observed in the case of Lake Balaton, as compared to other calcareous lakes, cannot be 233 

explained by its lower nutrient content. Results on the species/area relationship for algae 234 

revealed the importance of lake size as a control of diversity (Bolgovics et al. 2016, Borics et 235 

al. 2016), therefore the size differences between Lake Balaton and the other considerably 236 

smaller lakes may be responsible for the observed differences of diversity.  237 



The astatic/perennial distinction which was observed for Shannon diversity within the group 238 

of saline lakes has also been demonstrated for the phytoplankton (Borics et al. 2014), which 239 

indicates that desiccation puts a stress on both planktonic and benthic algae and thus coincides 240 

with a decrease in diversity (Borics et al. 2013). In the group of high salinity lakes significant 241 

differences in diversity were attributable to the very low values found in the astatic lake 242 

group. In this group the biota is exposed to double stress i.e., desiccation of the lake basin, 243 

and the extremely large salt content. Both phenomena exert strong selective pressure on the 244 

species pool of the lakes, and results in very low Shannon diversity and species richness 245 

values in pristine soda pans (Stenger-Kovács et al. 2016). 246 

Desiccation means that for a considerable period of time the lake bed becomes a terrestrial 247 

habitat where algae are subjected to heat and osmotic stress (Souffreau et al. 2010), and only 248 

those taxa can survive which have special adaptations (i.e., migration, production of 249 

extracellular polysaccharids) (McKew et al. 2011). Even in those periods when water is 250 

present in the lake basin diatoms are under strong selection to adapt to pressures that the high 251 

salinity and the dominance of sodium exert on them (Hecky & Kilham 1973).  252 

The results of the characterisation of the nutrient status of lakes by trophic scores is in 253 

accordance with that of a previous study (Borics et al. 2014) which suggest, that lakes in the 254 

Carpathian Basin are in the mesotrophic – hypertrophic range. An elevated trophic state is 255 

especially common in this group of saline lakes, because these lakes are endorheic (without 256 

outlet). Their water cannot leave the lake basin and are continuously enriched with nutrients 257 

mostly because of the birds which use the lakes for feeding and roosting (Boros et al. 2006).  258 

 259 

 260 

Conclusions 261 

The remarkable floristic and compositional differences in the benthic diatom flora of the 262 

studied shallow lakes in Hungary enabled the separation of five bottom–up lake types. These 263 

types could be clearly assigned to hydromorphological types, and this resulted in a rational 264 

simplification of the hydromorphological typology. These results are in accordance with those 265 

of previous studies which were based on the analysis of phytoplankton (Borics et al. 2014) 266 

and of aquatic macrophytes (Lukács et al. 2015). 267 

 268 

 269 
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 429 

Fig. 1 Scheme of the applied biological validation options. The upper arrow indicates how the 430 

17 hydromorphological lake types were established using a top–down approach. 431 

Fig. 2 Nonmetric multidimensional scaling (NMDS) ordination of the hydromorphological 432 

lake types (Ordination is based in the Bray-Curtis distances among the types).  433 

Fig. 3 Nonmetric multidimensional scaling (NMDS) ordination of the sites belonging to the 434 

groups of moderate salinity calcareous lakes.  435 

Fig. 4 Nonmetric multidimensional scaling (NMDS) ordination of the sites belonging to the 436 

groups of high salinity sodium and magnesium dominated lakes. 437 

Fig. 5 Distribution of the Shannon diversity values in the five proposed biologically validated 438 

types.  439 

Fig. 6 Distribution of the trophic metric scores in the five proposed biologically validated 440 

types.  441 

 442 

Table 1 Hydromorphological lake types proposed for Hungary and the applied type descriptor 443 

variables. 444 

Table 2 Assignment of biological lake types to hydromorphological types. 445 

Table 3 SIMPER analysis results showing taxa contributing to 25% of the total similarity 446 

within the groups of moderate and high salinity lakes.  447 

Table 4 SIMPER analysis results showing taxa contributing to 25% of the total similarity 448 

within the groups of Balaton and other calcareous lakes. 449 

Table 5 SIMPER analysis results showing taxa contributing to 25% of the total similarity 450 

within the three groups of high salinity lakes.  451 

Table 6 Physical and chemical characteristics of proposed lake types. 452 
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 473 

Table 2 474 

Type Altitude (m)
Hydrochemical 

character
Size (km

2
)

Average 

depth (m)

Water 

regime

Biological 

types

1 < 200 m (lowland) moderate salinity > 10 (km
2
) > 3-6 m perennial 1

2 < 200 m (lowland) high salinity > 10 (km
2
) < 3m perennial 3

3 < 200 m (lowland) high salinity 1- 10 (km
2
) < 1m astatic 5

4 < 200 m (lowland) high salinity 1- 10 (km
2
) < 3m perennial 4

5 < 200 m (lowland) high salinity < 1 (km
2
) < 3m perennial 4

6 < 200 m (lowland) high salinity < 1 (km
2
) < 1m astatic 5

7 < 200 m (lowland) moderate salinity 1- 10 (km
2
) < 3m perennial 2

8 < 200 m (lowland) moderate salinity < 1 (km
2
) < 3m perennial 2

9 < 200 m (lowland) moderate salinity 1- 10 (km
2
) < 3m perennial 2

10 < 200 m (lowland) moderate salinity 1- 10 (km
2
) 3-6 m perennial 2

11 < 200 m (lowland) moderate salinity < 1 (km
2
) < 3m perennial 2

12 < 200 m (lowland) moderate salinity < 1 (km
2
) < 3m perennial 2

13 < 200 m (lowland) moderate salinity > 10 (km
2
) < 3m perennial 2

14 < 200 m (lowland) moderate salinity > 10 (km
2
) < 3m perennial 2

15 > 200 m (hill country) moderate salinity > 10 (km
2
) < 3m perennial 2

16 > 200 m (hill country) moderate salinity > 10 (km
2
) < 1m astatic 2

17 < 200 m (lowland) moderate salinity <1; 1-10 (km
2
) < 3m astatic 2
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 476 

Table 3 477 

 478 

 479 

Table 4 480 

Codes of the 

proposed biological 

lake types 

Names of the proposed 

biological lake types

Codes of the 

hydromorphological lake 

types

1 Balaton 1

2 Others 7,8,9,10,11,12,13,14,15,16,17

3 Lake Velencei and Fertő 2

4 Perennial 3,6

5 Astatic 4,5

Taxon DENOM Av. dissim
Contribution 

(%)

Cumulative 

(%)

Moderate 

salinity

High 

salinity

ADMI Achnanthidium minutissimum  (Kützing) Czarnecki 1994 1.786 2.532 2.532 12.1 9.87

NIS1 Nitzschia sp. Hassall 1845 1.726 2.446 4.978 6.32 7.93

EADN Epithemia adnata  (Kützing) Brébisson 1838 1.435 2.033 7.011 6.11 6.86

HVEN Halamphora veneta (Kützing) Levkov 2009 1.381 1.958 8.969 2.24 10.8

RHOS Rhopalodia species Müller 1895 1.24 1.757 10.73 0.561 7.87

NCLA Nitzschia clausii Hantzsch 1860 1.182 1.675 12.4 0.284 8.19

NACI Nitzschia acicularis (Kützing) W.Smith 1853 1.128 1.598 14 2.16 6.66

RBRE Rhopalodia brebissonii   Krammer in Lange-Bertalot & Krammer 1987 1.084 1.537 15.54 0.0606 7.89

NHAN Nitzschia hantzschiana  Rabenhorst 1860 0.8474 1.201 16.74 1.93 4.96

NLBT Nitzschia liebetruthii var.liebetruthii Rabenhorst 1864 0.8303 1.177 17.91 1.45 6.98

CPLI Cocconeis placentula  Ehrenberg 1838 0.7983 1.131 19.05 3.48 5.33

ETUR Epithemia turgida  (Ehrenberg) Kützing 1844 0.7315 1.037 20.08 1.22 4.76

RGIB Rhopalodia gibba var. gibba  (Ehrenberg) Otto Müller 1895 0.7259 1.029 21.11 1.65 5.77

COCE Cyclotella ocellata  Pantocsek 1901 0.6806 0.9646 22.08 5.07 0.0436

SCON Staurosira construens  Ehrenberg 1843 0.6416 0.9094 22.99 3.36 3.73

AMIN Achnanthes minutissima  Kützing 1833 0.6384 0.9048 23.89 4.72 0

CPLA Cocconeis placentula var. placentula Ehrenberg 1838 0.6314 0.8949 24.79 5.2 2.38

NIPU Nitzschia pusilla  Grunow 1862 0.6239 0.8842 25.67 0.467 4.48

APED Amphora pediculus (Kützing) Grunow ex A.Schmidt 1875 0.6048 0.8572 26.53 5.94 2.4

GAFF Gomphonema affine  Kützing 1844 0.6013 0.8523 27.38 2.6 3.66

NDIS Nitzschia dissipata var.dissipata  (Hantzsch) Grunow in Van Heurck 1881 0.5676 0.8045 28.18 4.07 0.647

CYDE Cyclotella delicatula   Hustedt 1952 0.5664 0.8027 28.99 3.97 0

NPAL Nitzschia palea (Kützing) W.Smith 1856 0.5085 0.7207 29.71 3.27 5.02

EBLU Eunotia bilunaris   (Ehrenberg) Schaarschmidt in Kanitz 1880 0.4995 0.708 30.41 2.28 3.17

LGOE Luticola goeppertiana  (Bleisch ex Rabenhorst) D.G.Mann in Round, 0.4962 0.7033 31.12 3.73 0.161

SHAN Stephanodiscus hantzschii Grunow in Cleve & Grunow 1880 0.4768 0.6757 31.79 3.3 0.363

ESOR Epithemia sorex  Kützing 1844 0.4741 0.672 32.47 4.01 2.78

NISO Nitzschia solita Hustedt 1953 0.4674 0.6625 33.13 0.234 3.4

AINA Amphora inariensis Krammer 1980 0.4579 0.649 33.78 3.44 0.735

NRCS Navicula recens  (Lange-Bertalot) Lange-Bertalot in Krammer & Lange-Bertalot 0.4503 0.6382 34.42 0.593 3.21

NIPM Nitzschia perminuta (Grunow) M.Peragallo 1903 0.4379 0.6207 35.04 1.19 3.85

GINS Gomphonema insigne  W.Gregory 1856 0.4373 0.6197 35.66 3.31 0.82

ADEU Achnanthidium eutrophilum  (Lange-Bertalot) Lange-Bertalot 1999 0.4327 0.6133 36.27 1.35 2.67

NVEN Navicula veneta  Kützing 1844 0.4302 0.6097 36.88 1.16 3.87

MAAT Mayamaea atomus  (Kützing) Lange-Bertalot 1997 0.4149 0.5881 37.47 1.4 2.49

NAMP Nitzschia amphibia f.amphibia   Grunow 1862 0.4104 0.5816 38.05 2.47 4.7
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Table 5 482 

 483 

 484 

Table 6 485 

 486 

Taxon DENOM Av. dissim
Contribution 

(%)

Cumulative 

(%)
Balaton Others

1 ADMI Achnanthidium minutissimum   (Kützing) Czarnecki 1994 8.694 10.68 10.68 33.4 13.8

2 CEXI Cymbella exigua  Krammer 2002 2.367 2.907 13.58 7.1 0

3 APED Amphora pediculus   (Kützing) Grunow ex A.Schmidt 1875 2.068 2.54 16.12 2.13 7.12

4 NDIS Nitzschia dissipata  (Kützing) Rabenhorst 1860 1.585 1.946 18.07 5.07 1.71

5 GPUM Gomphonema pumilum   (Grunow) E.Reichardt & Lange-Bertalot 1991 1.364 1.675 19.74 4.22 0.481

6 COCE Cyclotella ocellata  Pantocsek 1901 1.326 1.628 21.37 1.41 3.22

7 ESOR Epithemia sorex  Kützing 1844 1.238 1.52 22.89 1.36 3.17

8 FHUN Fragilaria hungarica  Pantocsek 1901 1.223 1.502 24.39 4.05 0

9 CPLI Cocconeis placentula  Ehrenberg 1838 1.399 25.79 1.63 3.77

10 ECPM Encyonopsis minuta  Krammer & E.Reichardt in Krammer 1997 1.106 1.359 27.15 2.09 2.1

11 NCTE Navicula cryptotenella  Lange-Bertalot in Krammer & Lange-Bertalot 1985 1.046 1.285 28.44 3.11 3.75

12 ENCM Encyonopsis microcephala  (Grunow) Krammer 1997 0.9935 1.22 29.66 2.98 0

13 EADN Epithemia adnata  (Kützing) Brébisson 1838 0.9336 1.146 30.8 0.208 3.07

14 SGRI Staurosira grigorszkyi  Ács, Morales & Ector in Ács et al. 2009 0.8726 1.072 31.87 2.87 0

15 HVEN Halamphora veneta  (Kützing) Levkov 2009 0.8714 1.07 32.94 0.0442 2.61

16 DMON Diatoma moniliformis (Kützing) D.M.Williams 2012 0.8519 1.046 33.99 2.71 0.305

17 SBRV Staurosira brevistriata (Grunow) Grunow 1884 0.8301 1.019 35.01 1.48 1.35

18 GOMS Gomphonema species Ehrenberg 1832 0.8287 1.018 36.03 2.69 0.332

19 GOST Gomphonema olivaceum var.staurophorum  Pantocsek 1889 0.7915 0.9719 37 2.42 0

20 UUAC Ulnaria ulna  (Nitzsch) Compère in Jahn et al. 2001 0.7913 0.9717 37.97 0.978 1.95

Taxon DENOM Av. dissim
Contribution 

(%)

Cumulative 

(%)

Velencei 

–Fertő 

Small 

astatic 

Small high 

salinity 

perennial

1 ADMI Achnanthidium minutissimum (Kützing) Czarnecki 1994 7.935 8.91 8.91 176 6.46 15.3

2 HVEN Halamphora veneta  (Kützing) Levkov 2009 5.095 5.72 14.63 0.945 130 50.5

3 NCLA Nitzschia clausii  Hantzsch 1860 4.308 4.837 19.47 0 139 0.182

4 GPAR Gomphonema parvulum  (Kützing) Kützing 1849 3.573 4.011 23.48 1.46 89.4 35.3

5 CPLI Cocconeis placentula  Ehrenberg 1838 3.107 3.488 26.97 53.8 27 4.68

6 NPAL Nitzschia palea  (Kützing) W.Smith 1856 2.412 2.709 29.68 3.5 43.5 53.3

7 NLBT Nitzschia liebetruthii var.liebetruthii Rabenhorst 1864 2.402 2.697 32.37 3.58 58.5 24.8

8 NIPU Nitzschia pusilla  Grunow 1862 2.142 2.405 34.78 0.2 72.8 2.05

9 RGIB Rhopalodia gibba  (Ehrenberg) Otto Müller 1895 2.081 2.337 37.11 12.4 2.85 56.4

10 EADN Epithemia adnata  (Kützing) Brébisson 1838 1.693 1.901 39.01 3.24 2.24 47.3

11 CMEN Cyclotella meneghiniana Kützing 1844 1.625 1.824 40.84 1.17 20.5 36

12 ACHD Achnanthidium  F.T. Kützing 1.549 1.739 42.58 42.3 0 0

13 NIGR Nitzschia gracilis Hantzsch 1860 1.545 1.735 44.31 1.88 1.33 52.1

14 NINC Nitzschia inconspicua  Grunow 1862 1.453 1.631 45.94 1.49 22.3 32.5

15 NAMP Nitzschia amphibia  f.amphibia  Grunow 1862 1.367 1.535 47.48 6.71 14.7 31.7

16 NIFR Nitzschia frustulum var.frustulum  (Kützing) Grunow in Cleve & Grunow 1880 1.329 1.492 48.97 7.81 15.2 30.8

17 ESBM Eolimna subminuscula  (Manguin) Gerd Moser, Lange-Bertalot & Metzeltin 1998 1.325 1.487 50.46 0.275 5.94 33.3

18 ESOR Epithemia sorex Kützing 1844 1.118 1.255 51.71 10.8 1.23 28.5

19 ADEU Achnanthidium eutrophilum (Lange-Bertalot) Lange-Bertalot 1999 1.087 1.22 52.93 2.05 46.4 0.727

20 NCRY Navicula cryptocephala  Kützing 1844 1.087 1.22 54.15 1.32 24.7 7.67

Type

n mean SE n mean SE n mean SE n mean SE n mean SE

Conductivity (µS*cm
-1

) 21 718 6 157 647 25 27 2547 100 19 1930 142 38 5199 480

pH 24 8.5 0 139 8.02 0 6 8.56 0 19 8.63 0 37 9.13 0

Total phosphorus (µg*l
-1

) 24 48 3 152 175 18 30 71 4 19 695 243 38 4680 623

Total nitrogen (µg*l
-1

) 24 906 18 151 1583 96 30 2091 112 18 4719 992 38 10652 2058

Magnesium (mg*l
-1

) 24 61 1 35 37 4 30 214 11 18 64 7 30 23 4

Natrium (mg*l
-1

) 24 41 1 47 49 6 30 335 16 18 369 43 31 1222 127

Calcium (mg*l
-1

) 24 40 1 47 52 2 30 30 2 18 32 3 30 22 2

Potassium (mg*l
-1

) 24 8 1 47 7 1 30 48 2 18 20 3 31 17 3

1 2 3 4 5


