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Parvoviruses have small genomes and, consequently, are highly dependent

on their host for various functions in their reproduction. Since these viruses gener-

ally use ubiquitous receptors, restrictions are usually intracellularly regulated. A

lack of mitosis, and hence absence of enzymes required for DNA replication, is a

powerful block of virus infection. Allotropic determinants have been identified for

several parvoviruses: porcine parvovirus, canine parvovirus (CPV), feline parvo-

virus (feline panleukopenia virus), minute virus of mice, Aleutian disease virus,

and GmDNV (an insect parvovirus). Invariably, these identifications involved the

use of infectious clones of these viruses and the exchange of restriction fragments

to create chimeric viruses, of which the resulting phenotype was then established

by transfection in appropriate cell lines. The tropism of these viruses was found to

be governed by minimal changes in the sequence of the capsid proteins and, often,

only 2 or 3 critical amino acids are responsible for a given tropism. These amino

acids are usually located on the outside of the capsid near or on the spike of the

threefold axis for the vertebrate parvoviruses and on loops 2 or 3 for the insect

parvoviruses. This tropism is not mediated via specific cellular receptors but by

interactions with intracellular factors. The nature of these factors is unknown but

most data point to a stage beyond the conversion of the single-stranded DNA

genome by host cell DNA polymerase into monomeric duplex intermediates of the

replicative form. The sudden and devastating emergence of mink enteritis virus

(MEV) and CPV in the last 50 years, and the possibility of more future outbreaks,

demonstrates the importance of understanding parvovirus tropism.
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Parvoviruses, among the smallest viruses known, have a relatively simple,

isometric capsid with a diameter of about 25 nm and contain a linear, single-

stranded DNA genome of about 4�6 kb (Siegl, 1976; Tijssen, 1990; Berns, 1996;

Tijssen et al., 1999). Some parvoviruses are autonomous, whereas others require
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a helper virus (usually an adenovirus or a herpesvirus) for their replication. The

limited coding capacity of the parvovirus genome implies a heavy dependence

on cellular functions, especially those required for DNA replication and supplied

by cells during the S-phase. As a result, autonomous parvoviruses infect dividing

cells [e.g., in mitosis-active tissues, fetuses or tumour cells (�oncolytic�)]. Patho-

genesis is highly tissue specific, at least for the vertebrate parvoviruses, and pro-

ductive parvoviral infections lead to cell lysis. Targeting of dividing cells, either

�mitotropism� or �oncotropism�, is therefore a sine qua non as the first level of

tropism of parvoviruses.

The tropism of parvoviruses that require a helper virus, the adeno-

associated viruses or AAVs, seems to be determined primarily by the tropism of

their helper viruses. This �virotropism� is usually much wider than tropism of

autonomous parvoviruses. When AAV viruses enter a cell and are uncoated in

the absence of a helper virus, their genomes can be integrated in a specific

chromosome site to establish a latent infection (Kotin et al., 1992). These latent

genomes can be activated by a subsequent helper virus infection. As a conse-

quence, AAVs prevent superinfecting adenoviruses from transforming cells

(Berns, 1996). Epidemiological studies have shown that, while 90% of the gen-

eral population is seropositive for AAVs, patients suffering from cervical carci-

noma are much less AAV-seropositive (Mayor et al., 1976). AAVs, in contrast

to autonomous parvoviruses, have as yet to be associated with any pathogenicity

and have received a considerable interest for potential use as vectors in gene

therapy. Since goose and muscovy duck parvoviruses are closely related to these

viruses (Zádori et al., 1995), it will be interesting to establish whether they are

integration-competent and whether goose and duck adenoviruses could rescue

these parvoviruses from non-susceptible cells.

Not all replicating cells are sensitive to autonomous parvoviruses and

there are relatively few cell cultures that support parvoviruses. Cellular restric-

tions may act at different levels: (i) receptors; (ii) intracellular transport and de-

capsidation; (iii) virus-replication; and (iv) encapsidation and cell lysis. Allo-

tropic determinants have been identified in the capsids of several animal and in-

sect parvoviruses and often consist of just a few amino acids, but their cellular

partners, that would interact with them, are hitherto elusive. In principle, these

allotropic determinants could act at any of the four stages mentioned above but,

as will be discussed in this review, most data point to the second and third stage.

Here, the biology and molecular biology of parvoviruses will be briefly re-

viewed, followed by a discussion of their three-dimensional structure and struc-

ture-function relationships, and finally the nature and evolution of viral tropism.
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General properties and classification of parvoviruses

Parvoviruses have been isolated from tissues from both vertebrates and

invertebrates. Although other DNA virus families exist with members that infect

either vertebrates or invertebrates (i.e., pox and iridoviruses), these replicate in

the cytoplasm and contain considerable genetic information to code for proteins

required for viral replication and, consequently, depend considerably less on

host functions than parvoviruses. The observations that parvoviruses replicate in

the nucleus, closely in tune with the physiology of the host cell, and are able to

do so with both vertebrate and invertebrate cells, suggest that vertebrate and in-

vertebrate parvoviruses may be more different than usually accepted. Indeed,

when recently the first 3D structure of an invertebrate parvovirus was solved by

X-ray crystallography (Simpson et al., 1998), major differences were observed

between the two virus groups. Despite many differences in the molecular biol-

ogy of these virus groups, it is surprising how many aspects of their genome or-

ganization and molecular biology are shared, justifying their classification as

one family. For example, we discovered recently (Zádori et al., unpublished re-

sults) that the capsids of both vertebrate and invertebrate parvoviruses carry an

enzymatic site with multiple activities (phospholipase A2 involved in infection

process and signal transduction pathway). Similar activities have not yet been

shown in other DNA viruses. The parvovirus family (Parvoviridae) is thus di-

vided into two subfamilies, the Parvovirinae (vertebrates, i.e. human and other

mammals) and the Densovirinae (invertebrates, i.e. insects, shrimps, crab, etc.).

The most recent classification of parvoviruses (Berns et al., 1995) needs

to be revised. Classifications tend to evolve with the shift of research emphasis;

for example, in early days, viruses were classified according to the symptoms of

the diseases they caused (respiratory, hepatitis, etc.). Later, in the heyday of the

biochemical and physicochemical characterization of viruses in the mid-sixties,

Lwoff (1967) and Gibbs and Harrison (1968) each suggested a classification

system based on these physicochemical properties. Currently, the classification

hierarchy is governed by sequence homologies and molecular-biology functions

and strategies. Conveniently, this did not change the general outline of the univer-

sal taxonomic system that evolved in the 1970s but merely fine-tuned it, particu-

larly for the DNA viruses.

Although unofficial, the classification presented in Table 1 reflects, to our

knowledge, best the hierarchy according to clades of similar sequences among par-

voviruses. Compared to the official (ICTV) classification, many parvoviruses have

been moved to other genera, some have been assigned a separate genus and, where

necessary, names have been corrected. A comprehensive review of this classifica-

tion is in progress (Zádori et al., unpublished results). Due to its unofficial nature,

no attempt has been made at establishing a nomenclature for the genera.
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Table 1

Classification of parvoviruses according to sequence similarities (clades)

Subfamily Clade (Genus) Viruses and distinguishing features

Parvovirinae 1 (Parvovirus) Porcine parvovirus (PPV), canine parvovirus, feline

parvovirus (= feline panleukopenia virus; FPV), mink

enteritis virus, raccoon parvovirus, minute virus of

mice, murine parvovirus, LuIII, Kilham rat virus, H-1.

Genome 5 kb, unique terminal hairpins, similar splicing

mechanisms; similar patterns of VPs

2 Aleutian Disease virus. Different genome organization

and VP pattern

3 Bovine parvovirus. Genome 5.5 kb

4 (Erythrovirus) B19, simian parvovirus, chipmunk parvovirus.

Genome 5.6 kb, ITRs, One promoter

5 (Dependovirus) AAV (many serotypes), goose parvovirus, muscovy duck

parvovirus. Genome 4.7 kb. The genome termini of the

goose and duck parvoviruses resemble those of B19

Densovirinae 1-a (Densovirus) Densoviruses from Galleria mellonella (GmDNV),

Pseudoplusia includens (PiDNV), Diatraea saccharalis

(DsDNV), Junonia coenia (JcDNV), Mythimna loreyi

(MlDNV). Ambisense genome of 6 kb (one strand

codes for NS proteins, one strand codes for VP pro-

teins), no splicing; large ITRs

1-b (Densovirus) Densovirus from Culex pipiens (CpDNV); 5.5 kb

genome, ambisense; splicing in NS proteins

1-c (Densovirus) Densovirus from Acheta domesticus (AdDNV); 5.5 kb

genome, ambisense; splicing in VP; small ITRs

1-d (Densovirus) Densovirus from Periplaneta fuliginosa (PfDNV); 5.5 kb

genome, ambisense; splicing in VP

2 (Brevidensovirus) Genus was earlier named Contravirus by the ICTV, but

these viruses do not have an ambisense organization,

therefore the genus was renamed Brevidensovirus

(Tijssen and Bergoin, 1995). Almost all densoviruses

tentatively classified in this genus by ICTV belong to

other genera. Large number of densoviruses from mos-

quitoes [e.g., from Aedes aegypti (AaeDNV) and from

Aedes albopictus (AalDNV)]. Monosense genome or-

ganization. Genome 4 kb with unique terminal hairpins

3 (Iteravirus) Densonucleosis viruses from Bombyx mori (BmDNV-1)

and Casphalia extranea (CeDNV). Genome 5 kb; ITRs

of about 225 nucleotides; genome organization

monosense but we observed that the published organi-

zation is incorrect (Zádori et al., unpublished results)

There are a large number of unclassified viruses (e.g., those from crab and shrimps) that cannot be

classified due to a lack of information about their genome.
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There are only a limited number of striking physicochemical differences

among the parvoviruses. All parvoviruses have a genome of 4�6 kb with large

palindromic sequences (hairpins) at both ends. The complete virion has a buoy-

ant density of about 1.40 g/ml and all have 60 protein subunits. These subunits

each consist of one protein from a nested set (co-C-terminal, but different N-

termini) of a few (up to 4) proteins with molecular masses between 40 and

90 kDa. The virion is also resistant to various enzymes (proteases, nucleases)

and adverse environmental conditions (stable in a wide pH range, high thermo-

stability). Some parvoviruses encapsidate only the ��� strand (complementary to

the mRNA) whereas others encapsidate, into separate virions, also the �+� strand

(up to 50%, depending on virus and cell). Some viruses, for which both strands

are coding, encapsidate both strands equally into separate particles.

Parvovirus infection and replication

It has been shown for several parvoviruses that nonproductive infections

are often due to intracellular factors. These viruses enter both permissive and

non-permissive cells, apparently because they often use ubiquitous receptors, but

continue only in the permissive cells with a productive infection. This resembles

infection by AAVs in the absence of adenovirus. Although integration for

autonomous parvoviruses in the absence of replication has not received much

attention, densoviruses have been shown to be able to do so (e.g., when an es-

sential gene is knocked out; Bossin, 1998). Minute virus of mice (MVM) di-

rected integration into episomes has also been observed in an experimental sys-

tem (Corsini et al., 1997). Intracellular factors may thus be important for tropism

and interact with the allotropic determinant on the capsid.

The parvoviral genome contains two sets of genes, the nonstructural (NS)

or Rep genes and the viral protein (VP) or Cap genes. The NS proteins are cen-

tral in the replication and expression of the viral genome, while the VP proteins

form the capsid to protect the viral genome and play roles in assembly, viral

maturation and infection. These VPs are, therefore, far from static proteins and

our recent finding of an enzyme activity in the capsid attests to that fact.

Parvoviruses have only a few (2�3) NS proteins to mobilize cellular func-

tions for replication and expression of the viral genome and to execute functions

not available in the cell. Sometimes several variants of the NS proteins are gen-

erated by minute variations. The largest NS protein, NS-1, has multiple activi-

ties, such as ATPase/helicase, nuclear targeting, homo- and hetero-dimerization,

transcription-activation domains, DNA-binding and site-specific nickase, and is

involved in transcription and replication regulation (reviewed by Vanacker and

Rommelaere, 1995). NS-2-negative mutants of MVM grow poorly in mice due
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to inefficient translation of viral mRNAs (Brownstein et al., 1992; Naeger et al.,

1993). NS-2 has also been reported to be required for the formation of capsids

(Cotmore et al., 1997). However, NS-2-knock-out mutants of canine parvovirus

(CPV) replicate in dogs and appeared to assemble their capsids in the same way

as wild-type virus (Wang et al., 1998). Brockhaus et al. (1996) observed that

NS-2 associates with 14-3-3 protein family members that are involved in signal

transduction and/or cell cycle regulation pathways.

The role of NS-1 in oncolysis is quite interesting. Cells, even if they pro-

liferate actively, become more sensitive to parvovirus infection upon oncogenic

transformation (Rommelaere and Cornelis, 1991). The function inactivation of

the tumour suppressor gene product p53 was found to be paralleled with a sensi-

tization of rat cells with H-1 parvovirus (Telerman et al., 1993). AAV Rep prod-

ucts can also suppress transformation without killing the cells (Schlehofer, 1994).

The linear parvovirus genome has palindromic terminal sequences that

can fold into hairpin duplexes (often Y- or T-shaped structure) that serve as

primers for replication by host cell DNA polymerase d (Cossons et al., 1996)

and contain most of the cis-acting elements, both for replication and transcrip-

tion (Cotmore and Tattersall, 1995). These telomers can vary in size from about

100 to over 500 nucleotides for the different parvoviruses. Some of the parvovi-

ruses (Parvovirus and Brevidensovirus genera) have unique sequences at each

end whereas others have inverted terminal repeats (ITRs). The viral DNA is rep-

licated through double-stranded concatemeric intermediates by a unidirectional,

quasi-circular rolling-hairpin mechanism (Tattersall and Ward, 1976). The hairpin

transfer in the cross-linked ends of the duplex molecules results in a flip/flop se-

quence inversion (flip is the reverse complementary sequence of flop) and the

creation of new replication origins by a terminal resolution reaction (Snyder et al.,

1990). For parvoviruses with unique ends, there is a bias toward right-end initia-

tion (Willwand et al., 1998). In addition to nuclear components, NS-1, a plei-

otropic viral phosphoprotein of about 80 kDa, is critical in this event, by virtue of

its site-specific nickase activity (Nuesch et al., 1995), but also for the generation of

dimer duplex intermediates. The replicative functions of NS-1 are regulated in turn

by phosphorylation through protein kinase C (Nuesch et al., 1998). The left-end

origin of some parvoviruses (MVM, PPV) occurs only in the flip orientation and a

junction resolution model has been proposed (Liu et al., 1994; Cotmore and Tat-

tersall, 1995). However, many of its elements remain speculative.

The strategies of expression may differ significantly among the various gen-

era. For instance, they may differ with respect to the number of promoters in the

genome (1�3), transactivation of promoters, absence or presence of (alternative)

splicing, and the use of translational frameshifts. The compact genomes of parvo-

viruses, except for the largest densoviruses, increase their coding capacity from

overlapping reading frames by using alternative splicing. Both elements in introns
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and exons govern these processes in a cis-acting fashion (Pintel et al., 1995).

Regulated splicing is also one of the critical factors that control the steady-state

levels of the alternative transcripts. In particular, a bipartite enhancer consisting of

CA- and purine-rich elements in the NS-2 specific exon mediate proper levels of

this exon into the mRNA (Gersappe and Pintel, 1999). Although parvovirus alter-

native splicing does not seem to be regulated in a temporal fashion during infec-

tion, it may be regulated in a cell-type specific way and so have an impact on the

tropism of parvoviruses. Liu et al. (1992) observed a block in full-length transcript

maturation in cells non-permissive for B19. Also, COS cells, which do not fully

support B19, demonstrated a variability in splice boundaries of exon 2 of the

500/600 nucleotide class of RNA when compared to B19-infected human leukemic

cells (St Amand et al., 1991).

The necessity for additional chaperone proteins in the formation of empty

capsids is not clear and any role of the allotropic determinant at this level re-

mains to be established. Encapsidation of single-stranded DNA requires ongoing

DNA synthesis. Defective genomes always contain sequences from the 5�-end of

the ��� strand which could, therefore, contain the cis-acting packaging signal

(Faust and Ward, 1979). Since NS-1 proteins are attached to the 5�-ends of all

newly synthesized single-stranded DNA (and remain so during packaging; Cot-

more and Tattersall, 1989), they may have a role in this process.

Three-dimensional structure of parvoviruses

The 3D structures of several vertebrate parvoviruses (CPV, FPV, MVM)

and, recently, of an invertebrate parvovirus (GmDNV) have been solved to near-

atomic resolution using X-ray crystallography (Simpson et al., 1998). All have a

common structure arranged with T = 1 icosahedral symmetry with each subunit

having the same eight-stranded anti-parallel b-barrel motif (Fig. 1). This motif

contains less than 1/3 of the protein mass of each subunit, is mostly below the cap-

sid surface and consists of two b-sheets (b-strands BIDG and CHEF, respectively).

Loops (large insertions between these b-strands) form much of the capsid surface

and interactions with neighbouring subunits. There are three major insertions: be-

tween b-strands B and C (loop 1), between b-strands E and F (loop 2) and between

b-strands H and G (loop 3 for invertebrate parvovirus and loops 3 and 4 for verte-

brate parvoviruses). Loops 1 and 2 are centrally located in the asymmetric unit and

loops 3 or 3+4 are found around the 3-fold axis. In the case of CPV, FPV and

MVM, loops 3 and 4 form a 22 Å-long spike, whereas for GmDNV, where loop 4

is absent, no spike but a b-annulus is found at the 3-fold axis. Although the struc-

ture of the human parvovirus, B19, has not been solved to near-atomic resolution,

it is clear (Agbandje et al., 1994) that it also lacks the 3-fold spike.



386 TIJSSEN

Acta Veterinaria Hungarica 47, 1999

Fig. 1. Diagram of secondary structures of vertebrate and invertebrate parvoviruses. The b-strands

are represented by arrows and the a-helices by cylinders. These drawings are not to scale. The

loops that interconnect the b-strands are much longer than the a- and b-structures and form most

of the surface and monomer connecting proteins. The backbone of the capsid structure is the pro-

tein sequence in VP2 (for CPV, MVM, PPV) or VP4 (for GmDNV). Secondary structures are rep-

resented in diagrams I (canine parvovirus with numbering of VP2 amino acids) and II (GmDNV

with numbering of VP4 amino acids). The most striking differences are (i) the length of the loops;

(ii) the presence or absence of loop 4; and, (iii), the orientation of b-strand A. The b-barrels (III,

IV) are also highly schematic and show how the BIDG and CHEF b-sheets interact and are quite

similar for the vertebrate (III) and invertebrate parvovirus (IV). These triangular subunits corre-

spond to the isometric units represented in Fig. 2. The b-barrel in GmDNV must be rotated by 7.5°

in order to superimpose the corresponding one in CPV
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Other differences between the vertebrate and invertebrate parvoviruses in-

clude the orientation of the b-strand A which folds back to its own fivefold axis

in the case of vertebrate parvoviruses, but interacts with the neighbouring

subunit (via the twofold axis) in the case of GmDNV, an invertebrate parvovirus.

Also the loops of GmDNV capsid protein are much shorter, as the mass of the

structural proteins of this and related viruses is about 35% less than that of the

vertebrate parvoviruses, and the surface of the capsid is generally much

smoother (Fig. 2). It is not clear whether this is a result of the differences in the

immune systems in vertebrates and invertebrates (who do not produce immuno-

globulins). According to the canyon hypothesis, postulated by Rossmann (1989),

vertebrate viruses would have evolved structures to protect crucial sites from

antibody recognition (i.e., critical sites would be at the bottom of canyons and

inaccessible to antibodies).

Fig. 2. Computer-generated reconstructions of invertebrate (GmDNV) and vertebrate (CPV) parvovi-

ruses viewed along the twofold axis. Two isometric units (triangles defined by 3-fold and 5-fold axis

of symmetry; 60 per particle) are represented on each particle with the positions of the allotropic de-

terminants. The circles in GmDNV correspond to loop 2 sequences, whereas the circles in the verte-

brate parvovirus indicate amino acid differences in the allotropic determinant of PPV

Sequence comparisons demonstrate that b-strand sequences are more con-

served than those of the loops and, as a consequence, the greatest variation oc-

curs at the capsid surface. Closely related viruses (CPV vs. FPV or among bio-

logically different strains of PPV) with very few amino acid differences show

that these are located in the loops and often at the surface of the capsid. For

GmDNV, most differences are located at the surface and almost exclusively in

two domains (not necessarily from the same loop). Since biological differences

among these viruses must be accounted for by genetic differences, it was postu-

lated that these few structural differences in the capsid are responsible.
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Allotropic determinants of parvoviruses and their function

Allotropic determinants have been determined for a few parvoviruses and

were found in the capsid (Gardiner and Tattersall, 1988; Chang et al., 1992;

Bergeron et al., 1996). Generally, infectious clones (plasmids containing the

complete viral genome) were generated that, upon transfection of cells, would

excise the viral genome through replication and thus generate virus. This allows

the convenient construction of chimeric viruses or mutants and their production

in bacteria in order to establish, subsequently, the phenotype of the resultant vi-

rus after transfection into host cells. A second prerequisite is the availability of a

practical system that allows the recognition of the different phenotypes. For ex-

ample, in the case of PPV it is known that Kresse and NADL-2 strains have a

different phenotype in pigs. NADL-2 virus is hardly pathogenic (low viraemia)

whereas the Kresse strain of PPV is highly pathogenic, even to immunocompe-

tent fetuses. It is difficult and costly to find enough PPV-free pigs to study the

biological differences between these two virus strains and in vitro systems are

needed. However, at this level these virus strains usually do not show recogniz-

able differences and it required a significant effort to find cells that would dis-

tinguish these PPV strains. The primary cells (bovine testis) that were able to do

so (Bergeron et al., 1996) were then immortalized with SV40 T-antigen and the

clones obtained (Laakel et al., unpublished results) demonstrated different phe-

notypes to these PPV strains (susceptibility vs. non-susceptibility, absence or

presence of cytopathic effect in infected cells).

An alternative approach to elucidate parvovirus host range determinants is

to pseudotype a genome of a given parvovirus with capsids of closely-related vi-

ruses and to study the resultant tropism (Spitzer et al., 1996). It was shown with

these transducing particles that the LuIII genome in MVM or H-1 capsids has

the tropism of the capsids, not that of the genome.

Only very few genomic differences exist among the strains of PPV

(Tijssen et al., 1995; Bergeron et al., 1996) that can be segregated into four,

phenotypically distinct, groups. Chimeric constructs generated by exchanging

restriction fragments among the infectious clones of these strains pinpointed

three amino acid changes in the external loop (3/4) of the capsid protein. In par-

ticular one of these (S436P) is prominent as it is located on the top of the three-

fold spike (Fig. 2). The VP2 differences in yet another strain (P2; Vasudevach-

arya and Compans, 1992) map structurally closely to the differences we ob-

served between the non-pathogenic NADL-2 and Kresse strains (Bergeron et al.,

1996). Oraveerakul et al. (1992) demonstrated that PPV strains may enter non-

permissive cells but that they are restricted at some unknown level.

The sudden emergence of CPV in the late �seventies and its close rela-

tionship to FPV suggested that CPV may have arisen as an FPV variant. Se-
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quence analysis of early CPV strains do not support this hypothesis (Truyen et

al., 1998). The initial CPV-2 strains had a strict canine tropism, whereas the

strains that replaced these strains in nature in the early �eighties, i.e. CPV-2a and

2b, had acquired the ability to infect cats as well (10% of parvovirus isolates

from feline diagnostic samples is in fact CPV) (Truyen et al., 1996). CPV VP2

residue changes K93N, A103V, and D323N determined that replication could

occur in both dogs and canine cells (Chang et al., 1992; Horiuchi et al., 1994).

Chimera between FPV and CPV demonstrated that two regions of the genome

are important (VP2 residues K80R, N564S, or A568G). These residues are close

together in the 3D-structure of the capsid on the top edge of the twofold dimple-

like depression in a region where loops 1, 3, and 4 of three different monomers

interact. Additional changes in this area may revert the CPV strain to a feline

host range (Truyen and Parrish, 1995). A single mutation in VP2, A300D,

causes a loss in canine host range (Llamas-Saiz et al., 1996). This D300 forms a

salt bridge with R81 inducing also local changes within the antigenic site. In ad-

dition, the loop between residues 359 and 374 (in loop 4) adopts a structure

similar to that of FPV. Horiuchi et al. (1992) observed that the stage in FPV vi-

rus replication cycle at which the host specificity of this subgroup is regulated in

canine cells is found after cell entry of the virus.

It was observed for MVM that the MVMp strain infects fibroblast cells

(A9) and the MVMi strain infects lymphoid cells (EL4 T-lymphocytes). The fi-

brotropic determinant in MVMp was mapped to residues 317 and 321 and

MVMi could become fibrotropic by mutations at these positions (Ball-Goodrich

et al., 1991). In contrast, two segments of MVMi (one in the NS and one in the

VP region) were required to confer its phenotype to MVMp (Colomar et al.,

1998). The NS segment influences apparently the virus-strain-specific differ-

ences in the regulation of splicing, whereas the VP segment impacts on the

virion structure. Mutations in NS genes that affected the expression of the repli-

cative form of the viral DNA restricted the viral reproduction more in murine

cells than in other cells (Naeger et al., 1993). Spalholz and Tattersall (1983) also

demonstrated that the strain-specific target cell specificity is mediated by intra-

cellular factors.

MVM and PPV resemble each other in several aspects: (i) the nonpatho-

genic PPV-NADL-2 and MVMp strains are much less viraemic in vivo than the

pathogenic strains; (ii) the fetal infection by PPV finds its equivalent in the gen-

eralized infection for MVM of hematopoietic cells and the capillary endothe-

lium; and (iii) the position and function of the allotropic determinants. Unfortu-

nately, we do not have yet the sequence of the NADL-8 strain (only pathogenic

to non-immunocompetent fetuses), which has been shown to have a very differ-

ent tropism towards the various organs when compared to the pathogenic Kresse

strain (Oraveerakul et al., 1993).



390 TIJSSEN

Acta Veterinaria Hungarica 47, 1999

There is a considerable variability among the different strains of ADV,

particularly in a hypervariable region of about 25 nucleotides in the capsid gene.

Some ADV strains grow only in the animal (e.g. ADV-Utah) whereas others

grow in tissue culture (e.g. the nonpathogenic ADV-G). Chimeric constructs of

an infectious clone of ADV-G with wild-type sequences indicated that se-

quences within 55�65 m.u. of ADV-Utah inhibited replication in vitro (Bloom et

al., 1993). Construction of pathogenic molecular clones of ADV that replicate

both in vivo and in vitro revealed two supplementary regions, at 65�69 and 73�

88 m.u., that, in tandem, can abolish growth in vitro (Bloom et al., 1998). A

novel ADV strain (ADV-TR) that is closely related to ADV-G, but is pathogenic

for Aleutian mink, was found to be able to infect raccoons and could be respon-

sible for transmission of ADV infections (Oie et al., 1996). Twelve amino acids

in the VP region were identified that could be at the basis of this phenotype.

The identification of the allotropic determinant of GmDNV is also under-

way. This virus group offers the advantage that the host animals can be manipu-

lated easily. Infectious clones have been generated and exchange of restriction

fragments have been shown that two regions on the capsid are implicated (Fig. 2),

one is around loop 2 in the middle of the isometric subunit and one straddles loop

3 and is continuous in two subunits along the 3-fold to 3-fold axis. Further investi-

gations should allow us to reduce the number of amino acids that are essential for

the species-specific tropism.

Conclusion

The various parvoviruses for which tropism has been studied all show that

minimal changes in the sequence of the structural protein can determine cell tro-

pism or host range. The location of these critical amino acids, usually in loops 3

and 4 and at the C-terminus of the capsid protein, are at or near the capsid sur-

face, suggesting strongly that they interact with a cellular molecule. Ample evi-

dence indicates that this cellular counterpart is not the receptor. Two possibili-

ties exist: the cellular factor enables the virus infection in permissive cells or in-

hibits virus infections in non-permissive cells. Although the decapsidation stage

seems to be a logical candidate, the limited replication and expression may indi-

cate that later steps in the viral cycle are critical.

The sudden and devastating emergence of MEV and CPV in the last 50

years demonstrates the importance of parvovirus tropism. Whether they arose by

a few mutations from FPV or have another origin is academic. Despite its im-

portance and considerable efforts, we know still precious little about the mecha-

nisms of tropism changes of this virus group.
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