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Abstract 50 

Questions: How does the spatial arrangement of sampling units influence recorded plant 51 

species richness values at small spatial scales? What are the consequences of these findings 52 

for sampling methodology and rarefaction analyses? 53 

Location: Six semi-natural grasslands in Western Eurasia (France, Germany, Bulgaria, 54 

Hungary, Italy, Turkey). 55 

Methods: In each site we established six blocks of 40 cm × 280 cm, subdivided into 5 cm × 56 

5 cm micro-quadrats, on which we recorded vascular plant species presence with rooted (all 57 

sites) and shoot presence method (four sites). Data of these micro-quadrats were then 58 

combined to achieve larger sampling units of 0.01, 0.04 and 0.16 m² grain size with six 59 

different spatial arrangements (square, 4:1 rectangle, 16:1 rectangle, three variants of 60 

discontiguous randomly placed micro-quadrats). The effect of the spatial arrangements on 61 

species richness was then quantified as relative richness compared to the mean richness of the 62 

square of the same surface area. 63 

Results: Square sampling units had significantly lower species richness than other spatial 64 

arrangements in all countries. For 4:1 and 16:1 rectangles, the increase of rooted richness was 65 

on average about 2% and 8%, respectively. By contrast, the average richness increase for 66 

discontiguous arrangements was 7%, 17% and 40%. In general, increases were higher with 67 

shoot presence than with rooted presence. Overall, the patterns of richness increase were 68 

highly consistent across six countries, three grain sizes and two recording methods. 69 

Conclusions: Our findings suggest that the shape of sampling units has negligible effects on 70 

species richness values when the length-width ratio is up to 4:1 and the effects remain small 71 

even for more elongated contiguous arrangements. By contrast, results from discontiguous 72 

sampling units are not directly comparable with those of contiguous sampling units, and are 73 

strongly confounded by spatial extent. This finding is particularly problematic for rarefaction 74 

studies where spatial extent is often not controlled for. We suggest that the concept of 75 

effective area is a useful tool to report effects of spatial arrangement on richness values, and 76 

introduce species-extent relationships (SERs) to describe richness increases of different 77 

spatial arrangements of sampling units.  78 

 79 

Keywords: Biodiversity; Discontiguous; Effective area; Grassland; Sampling unit; Scale 80 

dependence; Spatial autocorrelation; Spatial extent; Spatial grain; Species-area relationship 81 

(SAR); Species-extent relationship (SER); Vegetation plot 82 
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Abbreviations 84 
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Introduction 86 

In ecology and conservation, species richness is probably the most frequently used metric 87 

of diversity because it is easily measurable in a multitude of different situations and 88 

comprehensible even for non-specialists. Accurate quantification of species richness requires 89 

appropriate sampling decisions regarding sample size, the selection and arrangement of 90 

sampling units (in vegetation science called quadrats, vegetation plots or just plots), as well as 91 

their size and shape (Kenkel et al. 1989; Bacaro et al. in press). Given that species richness on 92 

average increases with area (Arrhenius 1921; Connor & McCoy 1979; Dengler 2009), 93 

comparisons of species richness counts are usually only meaningful between sampling units 94 

of the same grain size. However, there are at least three other factors that can distort 95 

comparisons of species richness for a given area: (i) the shape of the sampling unit used to 96 

assess species richness (elongated vs. compact); (ii) the dispersion or contingency of subplots 97 

that constitute the overall area to be quantified (contiguous vs. discontiguous); and (iii) in the 98 

case of plants and other sessile organisms, the method by which an individual is considered 99 

present in the plot (shoot presence, rooted presence, grid-point presence) (Dengler 2008). 100 

Essentially all geographic phenomena are subject to the distance decay of similarity (“the 101 

first law of geography”: Tobler 1970; Nekola & Brown 2007), which is also true for 102 

ecological and biogeographical patterns, such as species composition (Harte et al. 1999; 103 

Nekola & White 1999). This means that two plant assemblages sampled geographically closer 104 

to each other, be it plant communities or be it regional floras, are on average more similar 105 

than those sampled at a larger distances. This is universally true for very local scales, such as 106 

a few meters (e.g. Dengler 2006), and for large distances such as several thousands of 107 

kilometres (e.g. Nekola & White 1999). The distance decay in plant species composition has 108 

two main drivers (Nekola & White 1999): First, the distance decay in climate, soil, 109 

topography, composition of species of other trophic levels as well as of human land-use 110 

patterns creates environmental filters that become, on average, more and more dissimilar with 111 

distance, thus selecting for increasingly different plant species composition. Second, 112 

biological processes of the plant species themselves are strongly distance-dependent, such as 113 

lateral spread, dispersal, gene flow and species-species interactions, including facilitation or 114 

parasitism. Such biological processes can even overrule – to some extent – environmental 115 

filtering, leading to the occurrence of species in ecologically suboptimal habitats which are 116 

spatially close to ecologically optimal source habitats. This phenomenon occurs both at local 117 

and at biogeographic distances and has been termed mass effect (Shmida & Wilson 1985) or 118 

vicinism (Zonneveld 1994). Generally, distance decay in compositional similarity of plant 119 
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assemblages should be relatively low when there are less pronounced environmental gradients 120 

and/or when species with good dispersal ability of diaspores and genes are considered, and 121 

vice versa. If we accept the universality of the distance decay, it is self-evident that sampling 122 

units, which cover a larger spatial distance (“extent” sensu Scheiner et al. 2000) yet have the 123 

same total area (“grain” sensu Scheiner et al. 2000), should on average comprise more 124 

species. This argument equally holds for elongated vs. compact shapes of releves and for 125 

discontiguous vs. contiguous arrangements. 126 

While theoretically it is clear that less compact plots should lead to higher recorded 127 

species number, this factis rarely considered in sampling recommendations in vegetation 128 

science. For example, the methodological textbook of Kent (2012) does not mention plot 129 

shape at all, while Knapp (1984) discuss the pros and cons of squares vs. circles vs. rectangles 130 

mainly based on practical considerations, such as efforts needed to delimit the plot in the field 131 

and risk of overlooking species. In large homogenous stands, compact forms such as squares 132 

or circles are generally used for phytosociological sampling, whereas in vegetation mosaics 133 

rectangular and irregular plots are recommended to minimize the within-plot heterogeneity 134 

(Dierschke 1994). In the context of biodiversity monitoring, elongated shapes are sometimes 135 

recommended because they allow to capture of more species on the same surface area, which 136 

is considered more “efficient” (e.g. Stohlgren 2007; Bacaro et al. in press). However, the few 137 

studies examining impacts of different sampling unit shapes have generated contrasting 138 

results, and it is hard to assess the magnitude of “plot shape” effects. At small grain sizes 139 

(0.25–1 m²), for example, one study found increases of 1.4–1.6% in richness (Bossuyt & 140 

Hermy 2004), while another reported 40% higher richness (Stohlgren 2007) compared to 141 

squares of the same size. At a grain size of 16 m², Kunin (1997) found 5.5% more species in 142 

16:1 rectangles than in either 4:1 rectangles or squares. By contrast, Keeley & Fotheringham 143 

(2005) found 4:1 rectangles of 1 m² and 100 m² to exhibit the same or even an insignificantly 144 

lower richness than squares of the same size. At intermediate grain sizes (habitat patches 145 

within 1-km² landscape segments), Heegaard et al. (2007) reported strong positive effects of 146 

the degree of elongation on species richness, with a more than doubled richness in the most 147 

elongated patches compared to circles on average. At much larger grain sizes of 32 km², 160 148 

km² and 800 km² (distribution atlas data), Kunin (1997) found consistent and significant 149 

increases of about 6% for 4:1 rectangles and 16% for 16:1 rectangles in relation to squares. 150 

While for primary sampling vegetation ecologists normally use contiguous sample units 151 

(but see Dierschke 1994, who considers combining dispersed subplots into one virtual 152 

sampling unit admissible in phytosociology), the species data of several discontiguous 153 



Güler et al.: Species richness vs. plot shape and dispersion. – MS for Journal of Vegetation Science p. 7 

primary plots are in subsequent analytical steps often combined to form “virtual plots”. This 154 

is particularly common for so-called species accumulation or rarefaction curves (hereafter 155 

referred to as rarefaction curves), which are a fashionable tool in biodiversity research 156 

(Gotelli & Colwell 2001, 2011), and are also widely used for comparison of different 157 

vegetation types (e.g. Stiles & Scheiner 2007) or floras (e.g. Koellner et al. 2004). However, 158 

the users of rarefaction curves often overlook the underlying assumptions of this technique. 159 

First, sampling units used for the construction of rarefaction curves need to be randomly 160 

distributed in the area of inference (Gotelli & Colwell 2011), and second, rarefaction curves 161 

of different types (vegetation, landuse,…) can only be statically compared when they are 162 

based on the same spatial extent (Chiarucci et al. 2009; Dengler & Oldeland 2010). The latter 163 

two studies showed with real and simulated data, respectively, that rarefaction curves of the 164 

same vegetation type have extremely different values depending on the spatial extent. This 165 

finding, an obvious consequence of the distance decay, questions results of many studies 166 

using rarefaction methods but not controlling for spatial extent. Due to the scarcity of 167 

methodological studies in this field, it is currently unclear how big the distorting effect of 168 

varying spatial extents is at the plot scale. However, in recent work with distribution data of 169 

different taxa (4–100 km²), Lazarina et al. (2014) nicely demonstrated that combining non-170 

contiguous plots into richness counts leads to dramatically higher richness values than in 171 

contiguous areas.  172 

Despite strong theoretical grounds for expecting significant impacts of sampling unit 173 

shape and contingency on species richness counts, the potential influence of differences in 174 

shape (degree of elongation) and contingency (degree of dispersion) are generally ignored in 175 

ecological studies. Here we aim to improve knowledge on effects of these two components of 176 

spatial arrangement on derived plant species richness values. In order to get results of high 177 

generality, we conducted a standardized study at six different grassland sites in six different 178 

Eurasian countries, examined three different spatial grain sizes and compared the two most 179 

frequently used recording principles in vegetation ecology (shoot vs. rooted). Specifically, we 180 

set out to (i) quantify the importance of sampling unit shape and dispersion for plant species 181 

richness counts and (ii) determine whether the effect sizes depend on grain size, recording 182 

principles and characteristics of the vegetation type being studied. 183 
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Methods 184 

Study sites and plots 185 

The sampling was conducted within the framework of the BiodivERsA project SIGNAL 186 

(http://www.bayceer.uni-bayreuth.de/signal/; see Jentsch et al. 2014). In each of six western 187 

Palaearctic countries along a steep climatic gradient (France, Germany, Bulgaria, Hungary, 188 

Italy, Turkey; see Appendix S1 for geo-locations and site characteristics) we established one 189 

experimental study site of approx. 30 m × 15 m in semi-natural grassland representative of 190 

their respective regions. The sites contained stand of vegetation managed agriculturally 191 

(mowing or extensive grazing) prior to the start of the SIGNAL project, selected to be as 192 

homogenous as possible. At each site we established six blocks of 280 cm × 40 cm (240 cm × 193 

40 cm in Bulgaria), separated from each other by a minimum of 3 m and a maximum of 33 m. 194 

Field sampling 195 

Early in the growing season of 2013, we carefully placed and fixed iron frames 196 

subdivided into 10 cm × 10 cm grid cells into the vegetation. Vegetation recordings were 197 

carried out at peak biomass in 2013 (May in Italy, June in Bulgaria, France, Germany and 198 

Hungary, December in Turkey), and the 100-cm² grid cells were temporarily subdivided by 199 

inserting a thin wooden stick in the centre of each. This resulted in 448 5 cm × 5 cm micro-200 

quadrats (“primary sampling unit”) per block and 2,688 micro-quadrats per site. We recorded 201 

all vascular plants (including seedlings, juveniles and recently-senesced individuals) that 202 

occurred in each of the micro-quadrats. Two recording techniques were applied in parallel 203 

(Williamson 2003; Dengler 2008): (i) plant individuals with rooted presence only (i.e. rooting 204 

in the micro-quadrat) and (ii) plant individuals with shoot-presence (i.e. the plants’ superficial 205 

parts fall inside the micro-quadrat when vertically projected; not recorded for Bulgaria and 206 

France). 207 

Scales, cell arrangement and statistical analyses 208 

Species composition and thus richness for secondary sampling units (short: sampling 209 

units) of 4, 16 and 64 cells size (0.01, 0.04 and 0.16 m²; “grain” sensu Scheiner et al. 2000) of 210 

different shape and spatial arrangements were derived by combining micro-quadrats in 211 

various ways. For the comparison of elongated vs. square plots, we first divided each block 212 

into 112 4-cell squares (arrangement A), 28 16-cell squares and seven 64-cell squares (96, 24 213 
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and 6 in Bulgaria) (Fig. 1). Next, we used full tessellation into 4:1 rectangles (arrangement B) 214 

with parallel orientation to the shape of the block. For 16:1 thin, elongated plots (arrangement 215 

C) no full tessellation was possible; instead the maximum possible number of non-216 

overlapping plots were used, spread as widely as possible across each block. 217 

For the comparison of contiguous vs. discontiguous sampling units, we used the micro-218 

quadrats described above and randomly drew the same number of these (without replacement) 219 

to derive combined richness values for discontiguous sampling units (Fig. 1). Three cases of 220 

dispersion and thus spatial extent were considered: random draw from within a subblock of 8 221 

× 8 cells (arrangement D; maximum distance: 0.50 m), from within a block (arrangement E; 222 

maximum distance: 2.80 m) and from within a site (arrangement F; maximum distance: 223 

33 m). For arrangements D and E, we applied a nested random draw where first a random 224 

subblock or block were determined, and then the required random micro-plots were drawn 225 

within this unit. 226 

Species richness analyses were carried out separately for rooted presence in each of the 227 

six countries, and for shoot presence in the four countries with available data (Germany, 228 

Hungary, Italy, Turkey). We tested effects of sampling unit shape separately for the three 229 

grain sizes (4, 16 and 64 cells), using linear mixed-effect models with block as random factor. 230 

To test the effect of the three discontiguous arrangements vs. squares of the same grain size, 231 

we calculated simple linear models. Mixed effect models were not possible in the latter case 232 

because arrangement F contains micro-quadrats of more than one block. To make absolute 233 

richness differences comparable across sites (countries), we calculated relative richness values 234 

as Sshape i / Ssquare, where Sshape is the mean species richness of a certain grain size and shape. 235 

Finally, we tested whether the values of relative richness obtained for each country differed 236 

between different sampling unit arrangements (i.e. different degrees of elongation or 237 

dispersion). These comparisons were carried out separately for each of the grain sizes using 238 

analyses-of-variance (ANOVAs). 239 

All analyses were carried out in the R statistical environment (v.2.15.2). Residuals of the 240 

derived models were visually inspected for normality and homoscedasticity and they did not 241 

show problematic deviations. 242 
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Results 243 

Effects of shape: elongated vs. square plots 244 

Mean richness sampled as rooted presences in square plots ranged from 4.9 to 8.0 species 245 

for 0.01 m² (4 cells) and from 10.6 to 26.5 for 0.16 m² (64 cells) (Table 1). France had the 246 

lowest species richness at all grain sizes, whereas Germany had the highest species richness at 247 

0.01 m² and Italy had the highest value of species richness at 0.04 and 0.16 m². 248 

Plots with more elongated shapes consistently contained more rooted species on average 249 

than more compact plots (16:1 > 4:1 > 1:1), irrespective of country and grain size (Table 1). 250 

Due to the high spatial variation in local richness, these differences were not always 251 

significant within a single country; in Bulgaria we even found in some cases slightly and 252 

insignificantly lower values. When subjecting the country-wise means of relative richness to 253 

ANOVAs, both 4:1 rectangles and 16:1 long thin plots were significantly richer than squares, 254 

except for 4:1 rectangles of 64 cells (Fig. 2). The relative increase was consistent among 255 

countries and largely scale-invariant between the three tested grain sizes, while the shape-256 

dependent absolute differences varied (Table 1). In general, mean richness “gain” ranged 257 

from 2.1 to 2.3% and from 6.9 to 8.3% for comparisons between 4:1 vs. 1:1 and between 16:1 258 

vs. 1:1 shapes respectively, with negligible and inconsistent effects of grain size. Site had 259 

some effect, with Turkey and Italy showing the strongest relative increase and for the two 260 

smaller grain sizes also France (Table 1). However, this did not change the overall consistent 261 

pattern, but just increased the variance towards more elongated shapes and larger grain sizes 262 

slightly (Fig. 2). 263 

For shoot presence (Appendices S1 and S3), the richness values of the squares were 264 

consistently higher compared to rooted presence at all grain sizes. At 0.01 m², for example, 265 

the mean increase ranged between 0.6 in Hungary and 4.2 species in Italy (Appendix S2 vs. 266 

Table 1). While the overall pattern was very similar to that described for rooted presence, also 267 

the relative richness gain with decreasing compactness of the plots was higher for shoot 268 

presence than for rooted presence. For example, 16:1 plots had 10.5–12.0% more species 269 

compared to squares of the same size for shoot presence, whereas the gain was only 6.9–8.3% 270 

for rooted presence. 271 
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Effects of dispersion: discontiguous vs. contiguous micro-quadrats 272 

The effect of discontiguous vs. contiguous arrangement of micro-quadrats to form a 273 

sampling unit was much stronger than that of different degrees of compactness in the case of 274 

contiguous plots. Differences between contiguous and discontiguous sampling approaches 275 

varied depending on the degree of dispersion (Table 2). Drawing from the whole site 276 

(arrangement F), yielded much higher species richness values than drawing from within a 277 

block (arrangement E) or a subblock (arrangement D) (Table 2, Fig. 2). These differences 278 

were highly significant both in the cross-country analysis (Fig. 2), and within countries (Table 279 

2). As for the analyses of elongated vs. squared plot, the results for different degrees of 280 

dispersion were widely consistent among countries and across spatial scales. In general, 281 

drawing from a subblock (40 cm × 40 cm) produced 6.8–7.7% higher richness values, while 282 

drawing from a block (40 cm × 280 cm) yielded an increase of 13.0–21.5% and drawing from 283 

the whole site an increase of 28.3–46.3% on average (Table 2). As with sampling unit shape, 284 

the relative effects of dispersion were bigger in Turkey, Italy and France than in the other 285 

three countries. 286 

Patterns of response for shoot presence data (Appendices S2 and S3) mirrored those 287 

presented for rooted presence, although the effect sizes were even higher than for rooted 288 

presence (Appendix S3 vs. Table 2). On average, a random draw from the site increased 289 

species richness values by 41.0–61.6% for shoot presence data compared to a 28.3–46.3% 290 

increase with root presence data. 291 

Discussion 292 

Effects of shape  293 

In line with predictions, we found that plot shape, i.e. the degree of elongation of the plot, 294 

had a positive effect on species richness. In the case of rooted presence, the magnitude of 295 

elongation effects were quite small in relation to effect sizes researchers typically find when 296 

studying ecological rather than methodological drivers of biodiversity (about 2% increase for 297 

4:1 and less than 10% for 16:1 rectangles compared to squares). For shoot presence the values 298 

were slightly higher (about 5% and 12%, respectively), but values for 4:1 shapes were still in 299 

a range that does not normally distort ecological inferences. Our findings are consistent with 300 

values reported in previous work with similar (Nosek 1976), slightly larger (Kunin 1997, 301 

Bossuyt & Hermy 2004) and much larger grain sizes (up to 800 km², Kunin 1997). By 302 
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contrast, Stohlgren (2007) found a much higher increase (40%) in 4:1 rectangles of 1 m² size, 303 

but this might be attributable to the heterogeneity of their site, which they emphasize.  304 

For practical sampling of plots in vegetation science, it is always preferable to compare 305 

species composition and diversity in sampling units with standardized shapes (preferably 306 

compact like circle or square). However, our study indicates that deviations from this 307 

recommendation, up to a length-width ratio of 4:1, are also acceptable. Including elongated 308 

plots with length-width ratios larger than 4:1 in the same study is also possible if the expected 309 

effect size of the factor of interest is clearly larger. Since vegetation ecologists rarely use 310 

more elongated shapes than 4:1 this issue normally can be ignored when taking data for 311 

example from large vegetation-plot databases (Dengler et al. 2011). There are, however, well-312 

established methods like the “Gentry plots”, frequently applied in tropical (and sometimes 313 

other) forests, that use such “extreme” shapes as 25:1 rectangles for primary sampling 314 

(Phillips et al. 2003), where much stronger differences compared to squares are to be 315 

expected. 316 

Effects of dispersion 317 

Increasing dispersion, i.e. bigger distances between the micro-quadrats led to an increase 318 

in recorded richness for a given grain size. While this is a direct and inevitable consequence 319 

of the distance decay in practically any ecological or biogeographic phenomenon (Harte et al. 320 

1999; Nekola & White 1999), it is rarely taken into account in studies operating with such 321 

discontiguous subplots (but see Chiarucci et al. 2009; Dengler & Oldeland 2010). 322 

Remarkably, the effect of dispersion was far more pronounced than that of elongated 323 

sampling units. Contiguous plots with a length-width ratio of 16:1 generally showed richness 324 

increases of around 10%. In contrast, discontiguous sampling generated up to 90% more 325 

species (Appendix S3), despite sampling in homogenous vegetation with a maximum distance 326 

between combined micro-quadrats of only 33 m. 327 

Effects of dispersion have rarely been quantified in the literature. Bacaro et al. (in press) 328 

studied this effect at the plot scale (a few square metres). While they also report higher 329 

richness for plots composed of dispersed subplots, their paper does not allow direct 330 

comparison because they only analysed the effect when combining contiguous or dispersed 331 

sampling units across a large region. Lazarina et al. (2014) conducted an extensive study on 332 

the effect of different degrees of dispersion on richness values for different taxa (plants, birds, 333 

butterflies) and cell sizes (mostly distribution atlas data with grid cells of 4–100 km², but also 334 

one dataset with plot-scale data and cells of 4 m²). Their figures for British plant atlas data 335 
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indicate an increase of about 10% in richness between contiguous square and a random 336 

sampling where about 10% of the cells within the extent were sampled. This corresponds to a 337 

degree of dispersion between our arrangements D (25% cell filling) and E (3.6%; Fig. 1), 338 

where we found increases for rooted presence of 6–8% and 13–22% respectively at the 339 

different scales (Table 2). Finally, Dengler & Oldeland’s (2010) simulation study 340 

demonstrated that the relative difference of recorded richness for contiguous plots (“true 341 

species-area relationships”) and discontiguous/dispersed plots (“species-sampling 342 

relationships”) is biggest for low to intermediate degrees of filling. For a filling of 16 cells out 343 

of 4096 (0.3%) their figure indicates a more than 2-fold increase. 344 

Taking together the comprehensive findings of Lazarina et al. (2014) for biogeographic 345 

grain sizes and ours for vegetation ecological grain sizes with the study of Dengler & 346 

Oldeland (2010) on a fictive scale, it is clear that richness counts for dispersed subplots are 347 

nearly always higher than for a contiguous sampling unit of the same surface area. The 348 

richness increases range from about 6% for very little dispersion (filling of the extent by 25%) 349 

to more than 100% in the so far studied examples. These values for richness increase in the 350 

case of dispersed subplots can be considered to represent the lower margin of what typically 351 

is to be expected in rarefaction analyses, where vegetation is not homogenous and where the 352 

dispersion is greater. Strong differences can also occur among different dispersed 353 

arrangements (see Table 2 and Appendix S3 as well as Fig. 2 of Dengler & Oldeland 2010: 354 

contrast between their SSR full and SSR centre). This indicates that comparison between 355 

different categories (vegetation types, treatments,…) in rarefaction analyses are only sensible 356 

when not only the sampled area but also the sampled extent and the spatial arrangement are 357 

kept identical. In many situations it is hard to keep extent and dispersion patterns constant, 358 

which questions the appropriateness of rarefaction methods in such cases. Chiarucci et al. 359 

(2009) and Bacaro et al. (2012) have proposed “spatially constrained rarefaction” as a method 360 

to overcome these limitations, which corrects for different spatial extent provided the 361 

coordinates of the individual sampling plots are known, but this method has yet to become 362 

commonplace in vegetation studies.  363 

Beyond rarefaction, our findings have also implications for reporting species richness. In 364 

the literature, authors often speak of species richness even when they refer to the richness 365 

derived from the combination of several discontiguous quadrats. Since we have demonstrated 366 

that “conventional” richness (for contiguous areas) is sometimes extremely different from 367 

such values, we recommend to use the term “cumulative species richness” for richness values 368 
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from discontiguous areas, with a clear indication not only of the cumulative surface area 369 

(grain) but also the spatial extent from which they have been drawn. 370 

What this means in practice shall be shortly discussed with a typical example from the 371 

literature: Öster et al. (2007) reported a “mean species density on 10 m²” of 57.1 vascular 372 

plants for Swedish grasslands, what seems to be close to the “world record grasslands” at the 373 

10 m²-grain size in Romania (Wilson et al. 2012), which have a mean richness of 70.2 374 

vascular plants (Dengler et al. 2012). At closer look, however, both values are incomparable 375 

because the areas of Öster et al. (2007) are composed of 10 subplots randomly drawn from 376 

areas of 0.2–18.9 ha (mean: 5.6 ha). This corresponds to a “cell filling” of on average less 377 

than 0.02%, which is far sparser than in the examples discussed before so that we can assume 378 

that reported value of 57.1 species is higher than the average richness in a contiguous 10-m² 379 

plot in their area. While the authors correctly reported these details of their methods in the 380 

text, the shortened terminology of the diversity variables in their table could prompt 381 

misunderstandings. A clear and explicit terminology would help to avoid this. Likewise, the 382 

term “vegetation plot” or short “plot” should be restricted to contiguous sampling units. 383 

Accordingly, the “Gentry plots”, one of the most widespread sampling approaches for tropical 384 

forests (Baraloto et al. 2013) should not be termed “plots” any longer (and be stored as single 385 

0.1-ha plots in vegetation databases) as it is widespread practice, but named as what they are: 386 

complex sampling schemes where 10 discontiguous 100-m² subplots are combined to form a 387 

secondary sampling unit (Phillips et al. 2003). Based on the points discussed here, such 0.1-ha 388 

Gentry “plots” are not comparable to conventional (contiguous) 0.1-ha plots as regards 389 

species composition and diversity metrics. 390 

Generalities and idiosyncrasies 391 

Overall, the observed increases in richness with decreasing compactness of the 392 

arrangements of micro-quadrats were highly consistent across sites, grain sizes and recording 393 

methods (rooted vs. shoot presence). The fact that we included grasslands from two 394 

zonobiomes (Nemoral and Mediterranean, as well as a transition Nemoral-Steppic) with quite 395 

different climates and land use history underlines the generality of the results. Since we 396 

selected areas within the grassland sites that were relatively homogenous in terms of 397 

topography and vegetation physiognomy, our values for richness increase can be considered 398 

to be at the lower margin of what can be found in randomly located plots. Higher gains should 399 

be expected in more heterogeneous vegetation (Bartha & Horváth 1987).  400 
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The slight differences between countries regarding the richness gain with decreasing 401 

compactness could thus be attributable to the different levels of homogeneity that could be 402 

achieved locally. Consistently high richness gains with decreasing compactness across all 13 403 

comparisons were found (in this sequence) for Turkey, France and Italy in the case of rooted 404 

presence (Tables 1 and 2) and for Italy and Turkey in the case of shoot presence (Appendices 405 

S2 and S3), while the sites in Germany, Bulgaria and Hungary usually showed the lowest 406 

increase. While we did not attempt to measure abiotic site heterogeneity, this ranking 407 

coincides with the particularly high visible site heterogeneity of the Turkish site (many stone 408 

of different size at or near the surface, variable microtopograhy) and the known small-scale 409 

heterogeneity in historic land use in the Italian site. Taking a simple β-diversity measure 410 

(cumulative richness of all blocks of a country / mean rooted richness of 10 cm × 10 cm; 411 

Appendix S1), Italy had also by far the most heterogeneous vegetation, but France and Italy 412 

were only in the middle range. On the other side, Germany with the on average lowest 413 

richness gains, was also the country with the lowest β-diversity value and a visually 414 

particularly homogenous stand. 415 

Regarding the recording methodology, the relative increase of richness (in %) for the 416 

same spatial arrangement was nearly always higher for shoot presence than for rooted 417 

presence, typically with a factor of approx. 1.5 (see Tables 1 and 2, Appendices S2, S3 and 418 

S5). This could be explained by the increasing length of the margin in less compact sampling 419 

units, which influences the richness in case of rooted presence directly (e.g. Dengler 2003), 420 

but only indirectly via vicinism (i.e. atypical species that occur inside the plot only due to 421 

high diaspore pressure from neighbouring communities) in the case of rooted presence. 422 

Grain size had limited effects on relative richness gains compared with site-specific 423 

factors or recording methodology. Indeed, mean richness gains for 4:1 vs. 1:1 plots were 424 

nearly indistinguishable between grain sizes of 0.01, 0.04 and 0.16 m² for rooted presence 425 

(see Table 1), and varied only moderately in response to dispersion (see Table 2). While for 426 

logistical reasons (work effort) we could study only very small grain sizes, this relative scale 427 

invariance indicates that the patterns will likely remain similar for grain sizes that are one to 428 

three orders of magnitude larger, thus in the normal range of vegetation plots in herbaceous 429 

vegetation (Chytrý & Otypková 2003). Other studies have demonstrated that the slope of the 430 

species-area relationship (which is closely related to the distance decay) often remains 431 

relatively constant over many orders of magnitude (Dengler & Boch 2008; Wilson et al. 432 

2012). 433 
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Consequences for future studies 434 

Clear guidelines on vegetation recording are critical for accurate assessments and 435 

monitoring of species richness and biodiversity responses to global change. Our key findings 436 

are that richness values of sampling units with very different compactness and dispersion are 437 

not directly comparable. The concept of “effective area” may however help overcome this 438 

problem and allow robust cross-site comparisons (Lazarina et al. 2014)). Effective area Ae is 439 

here defined as the equivalent square-shaped area that contains the same number of species as 440 

an elongated, dispersed or otherwise irregular sampling unit. While Lazarina et al. (2014) 441 

required Ae only to be contiguous, we more precisely specify it to be square-shaped to allow 442 

also comparison between contiguous sampling plots of different compactness. While circles 443 

are even more compact than squares, their richness values in reality differ only negligibly 444 

from those of squares (Stohlgren 2007 and see extrapolation below); moreover, circular 445 

sampling units are rare for vegetation data and inexistent for atlas data, so that using squares 446 

as baseline is sensible. 447 

Applying the concept of effective area to our results (Appendix S5) provides an easily 448 

understandable interpretation of the effects of different arrangements of sampling units. For 449 

rooted presence and 0.01 m², for example, a 4:1 rectangle was on average as rich as a square 450 

of the 1.06-fold area, while randomly dispersed micro-quadrats within the whole site 451 

correspond to a square of the 1.93-fold area. The largest relative Ae for means across countries 452 

of 4.51 was found for the latter arrangement in the case of 0.04 m² grain size and shoot 453 

presence (Appendix S5). The maximum value for an individual site was even 6.05 for this 454 

arrangement and 0.01 m² grain size in Turkey (not shown). Among others, Appendix S5 455 

demonstrates that 16:1 rectangles and a sampling unit consisting of 16 micro-quadrats 456 

randomly distributed within an 8 × 8 square had a similar effective area of 1.23 times that of a 457 

contiguous square (rooted presence; 1.45 times for shoot presence). 458 

Another way to compare different spatial arrangements of sampling plots is to quantify 459 

and test the effects of their spatial extents Aextent. One of the easiest ways of making Aextent of 460 

any spatial arrangement comparable is to use the size of the smallest circle that encompasses 461 

the complete sampling unit. When at the same time the grain size is kept constant, this allows 462 

to calculate species-extent relationships (SERs) similar to species-area relationships (SARs), 463 

which we introduce here as a new concept. Doing so for the mean values of rooted presence at 464 

0.01 m² grain size across all six countries, yields an unexpectedly tight relationship with R² = 465 

0.994 (Fig. 3), despite the very different spatial arrangements involved. With a z-value (slope 466 

in double-logarithmic space) of only 0.039 the species increase with increasing spatial extent 467 
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is much lower than with increasing grain size (there we had a z-value of 0.378), but still 468 

appreciable. Since this relationship is so tight, one can use it for predicting richness 469 

differences of any spatial arrangement of sampling units totalling 0.04 m² relative to a square 470 

of that size. Using the regression function, for example, a circle of 0.04 m² in our grasslands 471 

would only have 1.7% fewer species than a square – no wonder that Stohlgren (2007) with his 472 

relatively few replicates could not find any difference in such a comparison. Taking species-473 

area and species-extent relationships together and assuming power functions (as they were 474 

well supported here and in many other studies), one gets: 475 

 476 

log S = log c + z log A + zextent log Aextent, relative, 477 

 478 

with S = species richness, A = surface area of the sampling unit, Aextent, relative = area of the 479 

circle that comprises the whole sampling unit, standardised by the area of a circle that 480 

comprises a square of the same surface area, z = slope of the species-area relationship, zextent = 481 

slope of species-extent relationship. 482 

Finally, considering the typical richness gains of various spatial arrangements of sampling 483 

units, how should species richness data then be sampled best? Some researchers have 484 

suggested that a sampling approach is preferable over another if it finds more species on the 485 

same area A of the combined sampling units (e.g. Stohlgren 2007; Bacaro et al. in press). 486 

They argue that spatial arrangements with maximum ratio of Ae / A (i.e. with high length-487 

width ratio or high dispersion) would be preferable because one would find more species on 488 

the same area. This line of reasoning is however questionable for two reasons. Firstly the 489 

additional effort for delimitating more complicated sampling units with increased border 490 

length will often increase the overall time needed to record one species on average. Secondly, 491 

obtaining high richness values is generally less important than the ability to compare values 492 

with those from similar studies. We believe that a square sampling unit, despite having a very 493 

low effective area, is the most advantageous shape. This, together with the fact that the large 494 

majority of legacy data has been sampled on squared plots, makes compact squares in most 495 

cases the best choice for sampling units. 496 
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Table 1. Species richness (rooted presence) for square plots (1:1) of 4, 16 and 64 cells in size (0.01 628 

m², 0.04 m² and 0.16 m²) and the relative richness increase of rectangles (4:1 and 16:1) compared to 629 

squares of the same size. Values are means for the six study sites (FR: France; DE: Germany; BG: 630 

Bulgaria; HU: Hungary; IT: Italy; TR: Turkey) and an overall mean. Significance of differences is 631 

given according to a mixed linear model per site (n.s.: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 632 

0.001). 633 

Cells      Parameter FR DE BG HU IT TR Mean 

4 Richness (1:1) 4.9 8.0 5.3 5.3 6.5 7.0 6.2 

 4:1 vs. 1:1 2.9% *  2.6% *  -0.3% n.s. 1.8% n.s. 2.5% n.s. 4.1% **  2.3% 

16 Richness (1:1) 7.3 11.9 10.5 10.0 14.5 11.2 10.9 

 4:1 vs. 1:1 2.4% n.s. 2.3% n.s. 0.4% n.s. 1.2% n.s. 2.7% n.s. 3.8% n.s. 2.1% 

 16:1 vs. 1:1 9.6% ***  7.7% ***  5.0% n.s. 7.6% *  9.0% ***  11.1% ***  8.3% 

64 Richness (1:1) 10.6 16.0 19.4 16.5 26.5 17.1 17.7 

 4:1 vs. 1:1 3.3% n.s. 1.2% n.s. -1.4% n.s. 5.0% n.s. 2.1% n.s. 2.7% n.s. 2.1% 

 16:1 vs. 1:1 8.1% n.s. 5.6% n.s. -1.2% n.s. 7.6% *  10.1% ** 11.3% **  6.9% 

 634 
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Table 2. Species richness (rooted presence) for square (1:1) plots of 4, 16 and 64 cells size (0.01 m², 0.04 m² and 635 

0.16 m²) and relative richness increase for discontiguous sampling units of the same size drawn randomly from 636 

within subblocks of 8 × 8 cells (Sub), within blocks (Block) or within sites (All). Values are means for the six 637 

study sites (country acronyms according to Table 1) and an overall mean. Significance of differences is given 638 

according to a mixed linear model per site (n.s.: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001). 639 

Cells Parameter FR DE BG HU IT TR Mean 

4 Richness square 4.9 8.0 5.3 5.3 6.5 7.0 6.2 

 Sub vs. 1:1 8.8% *** 6.8% ***   -0.6% n.s. 5.5% ** 12.3% *** 7.7% *** 6.8% 

 Block vs. 1:1 18.6% ***  10.1%  *** 9.6% ***  9.7%  *** 15.3% *** 14.7% *** 13.0% 

 All vs. 1:1 33.2% ***  23.5% ***  18.3% ***  18.4% *** 31.1% *** 45.2% *** 28.3% 

16 Richness square 7.3 12.0 10.5 10.1 14.5 11.2 10.9 

 Sub vs. 1:1 11.9% ***  4.3%  * 6.6% *  7.3%  *** 9.7% ***  6.2% *  7.7% 

 Block vs. 1:1 29.2% ***  15.5% ***  16.4% ***  16.0% ***  26.6% *** 25.4% *** 21.5% 

 All vs. 1:1 51.0% ***  30.0% ***  36.7% ***  31.9% ***  54.9% ***  63.6% ***  44.7% 

64 Richness square 10.6 16.0 19.4 16.5 26.5 17.1 17.7 

 Block vs. 1:1 23.4% ***  14.5% *** 10.1% **  14.3% ***  19.7% ***  23.9% ***  17.6% 

 All vs. 1:1 47.2% ***  31.0% *** 39.7% ***  35.7% *** 57.2% *** 66.7% ***  46.3% 

 640 
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 643 

Fig. 1. Schematic visualisation of the arrangement of micro-quadrats that form a 16-cell sampling unit in the 644 

case of different shapes (A: 1:1; B: 4:1; C: 16:1) and dispersions (A: contiguous; D: discontiguous from 645 

subblock; E: discontiguous from block; not shown F: discontiguous from all six blocks of a site). The black 646 

arrow symbolises the transition from a compact shape to more and more elongated shapes and the grey arrow the 647 

transition from a contiguous arrangement to more and more discontiguous (dispersed) arrangements. 648 
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 649 

Fig. 2. Relative increase in species richness compared to square plots (1:1) of the same size (= 100%) (rooted 650 

presence) of various contiguous (B–C) and discontiguous (D–F) arrangements of micro-quadrats of total areas of 651 

4, 16 and 64 cells (0.01, 0.04 and 0.16 m²). The boxplots are based on the mean values of the six study sites; 652 

asterisks indicate the significance of differences compared to squares (100%), based on t-tests. The sampling 653 

designs are: B = rectangle with 4:1 ratio; C = thin elongated with 16:1 ratio; D = discontiguous with random 654 

draw from within a subblock of 8 × 8 cells; E = discontiguous with random draw from within a block; F = 655 

discontiguous with random draw across all blocks of a site.  656 
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 657 

 658 

Fig. 3. Example of a species-extent relationship for a comparison of our six different spatial arrangements 659 

(square, two types of rectangles, three types of dispersed plots) for 0.04 m², shoot presence and means across all 660 

six countries. Both axes are standardised by the values of a square, i.e. the square appears in the origin of the 661 

graph. Note that the relative extent for the least compact arrangement (micro-quadrats dispersed across all blocks 662 

of a site) varies somehow across countries and is here given as the maximum. If the exact block arrangement had 663 

been identical in all countries, the point would lie further to the left and thus the relationship would be even 664 

tighter.  665 
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Appendix S1. Characterisation of the study sites, arranged according to increasing mean annual temperature. Mean annual temperature and mean annual 666 

precipitation are based on Worldclim 5’ data (Hijmans et al. 2005). 667 

Site Latitude  

(°N) 

 

Longitude  

(°E) 

Elevation  

(m a.s.l.) 

Mean annual 

temperature 

(°C) 

Mean annual 

precipitation 

(mm) 

Dominant graminoids 

(frequency order) 

Total species richness 

(rooted) of a 100-cm² 

square (α) 

Total species richness of 

all six blocks 

(γ) 

β diversity (γ / α) 

France (FR): 

Laqueuille 

45.6 2.7 1040 7.0 1200 Poa pratensis agg., Poa 

trivialis, Lolium perenne 

4.9 28 5.7 

Germany (DE): 

Bayreuth 

49.9 11.6 365 8.2 724 Festuca rubra, Luzula 

campestris agg, 

Antoxanthum odoratum. 

8.0 33 4.1 

Bulgaria (BG): 

Sofia 

42.7 23.3 650 10.2 559 Poa pratensis agg., 

Cynodon dactylon, 

Dactylis glomerata, 

5.3 61 11.5 

Hungary (HU): 

Tiszaalpar 

46.8 20.0 100 10.5 550 Cynodon dactylon, 

Festuca pseudovina, Poa 

pratensis agg. 

5.3 41 7.7 

Italy (IT): 

Camerino 

 

43.2 13.1 546 12.1 

 

880 Dactylis glomerata, 

Lolium perenne, Elymus 

repens 

6.5 114 17.5 

Turkey (TR): 

Manisa 

38.7 27.3 70 17.0 695 Bromus chrysopogon, 

Taeniatherum caput-

medusae agg., Poa 

timoleontis 

7.0 45 6.4 

 668 
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Appendix S2. Species richness (shoot presence) for square (1:1) plots of 4, 16 and 64 cells size (0.01 m², 0.04 669 

m² and 0.16 m²) and the relative richness increase of rectangles (4:1 and 16:1) compared to squares of the same 670 

size. Values are means for the four study sites (country acronyms according to Table 1) and an overall mean. 671 

Significance of differences is given according to a mixed linear model per site (n.s.: p ≥ 0.05, *: p < 0.05, **: p < 672 

0.01, ***: p < 0.001). 673 

Cells      Size DE HU IT TR Mean 

4 Richness square 9.6 5.9 10.7 8.3 8.6 

 4:1 vs. 1:1 4.1% ***  2.0% n.s. 8.8% ***   5.5% ***   5.1% 

16 Richness square 13.0 10.7 18.6 12.9 13.8 

 4:1 vs. 1:1 2.7% n.s. 2.0% n.s. 5.9% * 4.7% * 3.8% 

 16:1 vs. 1:1 4.4% *** 10.3% *** 20.4% *** 14.3% *** 12.0% 

64 Richness square 16.6 17.0 30.4 19.1 20.8 

 4:1 vs. 1:1 3.4% n.s. 5.5% n.s. 2.2% n.s. 3.3% n.s. 3.6% 

 16:1 vs. 1:1 7.9% * 7.7% * 13.2% ***  13.0% *** 10.5% 

 674 
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Appendix S3. Species richness (shoot presence) for square (1:1) plots of 4, 16 and 64 cells size (0.01 m², 0.04 675 

m² and 0.16 m²) and the relative richness increase for discontiguous sampling units of the same size drawn 676 

randomly from within subblocks of 8 × 8 cells (Sub), within blocks (Block) or within sites (All). Values are 677 

means for the four study sites (country acronyms according to Table 1) and an overall mean. Significance of 678 

differences is given according to a mixed linear model per site (n.s.: p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 679 

0.001). 680 

Cells Parameter DE HU IT TR Mean 

4 Richness square 9.6 5.9 10.7 8.3 8.6 

 Sub vs. 1:1 12.3% ***  8.5% ***  22.5% *** 11.1% ***  13.6% 

 Block vs. 1:1 17.6% *** 11.4% ***  38.0% ***  21.5% ***  22.1% 

 All vs. 1:1 32.7% *** 23.3% *** 62.5% *** 45.5% *** 41.0% 

16 Richness square 13.0 10.7 18.6 12.9 13.8 

 Sub vs. 1:1 9.3% *** 8.1% *** 22.3% *** 13.3% ***  13.3% 

 Block vs. 1:1 21.8% *** 20.6% ***  47.3% *** 34.5% *** 31.1% 

 All vs. 1:1 41.6% *** 42.3% *** 90.9% *** 71.8% *** 61.6% 

64 Richness square 16.6 17.0 30.4 19.1 20.8 

 Block vs. 1:1 19.3% *** 21.4% ***  33.4% *** 28.8% ***  25.7% 

 All vs. 1:1 42.2% *** 41.2% *** 80.8% *** 71.2% *** 58.9% 

 681 



Güler et al.: Species richness vs. plot shape and dispersion. – MS for Journal of Vegetation Science p. 31 

 682 

Appendix S4. Relative increase in species richness (shoot presence) of various contiguous (B–C) and 683 

discontiguous (D–F) arrangements of micro-quadrats of total areas of 4, 16 and 64 cells (0.01, 0.04 and 0.16 m²) 684 

compared to squared plots (1:1) of the same size (A). The boxplots are based on the mean values of the four 685 

study sites; asterisks indicate the significance of differences compared to squares (100%), based on t-tests. The 686 

sampling designs are: B = rectangle with 4:1 ratio; C = thin elongated with 16:1 ratio; D = discontiguous with 687 

random draw from within a subblock of 8 × 8 cells; E = discontiguous with random draw from within a block; F 688 

= discontiguous with random draw across all blocks of a site. 689 
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Appendix S5. Effective areas that correspond to the five different spatial arrangements of sampling units used for richness counts as compared in this study. For each of the two 690 

recording schemes (rooted presence, shoot presence) and for each of the three grain sizes, this table reports the area of a square that would contain the same species richness on 691 

average. Both richness and effective area are given relative to the square as the most compact arrangement included in the study. The values are means of six countries (rooted 692 

presence) and four countries (shoot presence), respectively. The calculations are based on power-law regressions through the mean richness values of squares of 0.01, 0.04 and 693 

0.16 m² (in the double-log representation). The regression functions were (with logarithms to the base of 10; S = species richness; A = area in m²): log S = 1.5548 + 0.3847 log A; 694 

R² = 0.9981 (rooted presence) and log S = 1.5761 + 0.3185 log A; R² = 0.9983 (shoot presence). 695 

 Rooted presence Shoot presence 

 0.01 m² 0.04 m² 0.16 m² 0.01 m² 0.04 m² 0.16 m² 

Arrangement 
Relative 

richness 

Relative 

effective 

area 

Relative 

richness 

Relative 

effective 

area 

Relative 

richness 

Relative 

effective 

area 

Relative 

richness 

Relative 

effective 

area 

Relative 

richness 

Relative 

effective 

area 

Relative 

richness 

Relative 

effective 

area 

B: 4:1 Rectangle 1.023 1.06 1.021 1.06 1.021 1.06 1.051 1.17 1.038 1.12 1.036 1.12 

C: 16:1 Rectangle NA NA 1.083 1.23 1.069 1.19 NA NA 1.120 1.43 1.105 1.37 

D: Dispersed within subblock 1.068 1.19 1.077 1.22 NA NA 1.136 1.49 1.133 1.48 NA NA 

E: Dispersed within block 1.130 1.38 1.215 1.67 1.176 1.53 1.221 1.87 1.311 2.34 1.257 2.05 

F: Dispersed within site 1.283 1.93 1.447 2.66 1.463 2.73 1.410 2.94 1.616 4.51 1.589 4.28 

 696 

 697 


