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Abstract
Toxicity in amyloidogenic protein misfolding disorders is thought to involve intermediate states of

aggregation associated with the formation of amyloid fibrils. Despite their relevance, the hetero-

geneity and transience of these oligomers have placed great barriers in our understanding of their

structural properties. Among amyloid intermediates annular oligomers or annular protofibrils have

raised considerable interest because they offer a mechanism of cellular toxicity via membrane

permeation. Here we investigated, by using AFM force spectroscopy, the structural detail of amy-

loid annular oligomers from transthyretin (TTR), a protein involved in systemic and neurodegen-

erative amyloidogenic disorders. Manipulation was performed in situ, in the absence of

molecular handles and using persistence length‐fit values to select relevant curves. Force curves

reveal the presence of dimers in TTR annular oligomers that unfold via a series of structural inter-

mediates. This is in contrast with the manipulation of native TTR that was more often manipu-

lated over length scales compatible with a TTR monomer and without unfolding intermediates.

Imaging and force spectroscopy data suggest that dimers are formed by the assembly of mono-

mers in a head‐to‐head orientation with a nonnative interface along their β‐strands. Furthermore,

these dimers stack through nonnative contacts that may enhance the stability of the misfolded

structure.
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1 | INTRODUCTION

Amyloid aggregates are among some of the most deleterious and fre-

quent agents of protein folding diseases including disorders with neu-

rological,1 cardiac,2,3 or systemic manifestations.3 In the typical end

stage of amyloidogenesis micrometer‐long amyloid fibrils deposit and

accumulate in various tissues of the patients.3 This is the case with

transthyretin (TTR), a homotetrameric serum‐circulating protein

involved in the transport of thyroxin and the cotransport of retinol.4

The TTR monomers (FigureF1 1) contain a single α‐helix and 2 β‐sheets,

each composed of 4 β‐strands (DAGH and CBEF), and display a so

called “β‐sandwich” fold that resembles a “flattened β‐barrel” with its

2 β‐sheets packed together mostly through hydrophobic interactions

of its side chains.5 A TTR dimer is formed through hydrogen bonding

across H‐H’ and F‐F’ chains between 2 TTR monomers, and the final

tetrameric arrangement results from 2 dimers that face each other

through the DAGH β‐sheet in a 2‐fold symmetric fashion.5 The

dimer‐dimer interface in the equatorial plane of the tetramer delin-

eates the contours of a pair of cavities for thyroxin binding. The bind-

ing of thyroxin and other similar small ligand molecules further

stabilizes the tetrameric arrangement.6

To some extent the wild‐type form of TTR appears to be prone to

amyloid aggregation as evidenced by cases of senile systemic amyloid-

osis where WT TTR is found in amyloid deposits.7 However, certain

mutations in the TTR sequence can greatly enhance the process of

aggregation even though no particular amyloidogenic hotspot can be

assigned.1,8 In spite of this, in vitro aggregation of WT TTR and of most

of its amyloidogenic variants is often induced by mild acidification,9

which has been proposed to mimic the lysosomal environment associ-

ated with the conversion of proteins and peptides into their

amyloidogenic form.9–11 @@The resulting aggregates typically bind
Abbreviations: AFM, atomic force microscopy; TTR, transthyretin; nTTR, native

transthyretin; aoTTR, transthyretin amyloid annular oligomers; WT, wild type
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the amyloid markers Thioflavin‐T and Congo red,12,13 display a high

content of β‐sheets,14 but lack the morphology of fibrils extracted

from patient samples.12,15

While partial unfolding of the TTR monomer and disassembly of

the tetramer is a prerequisite for fibrillation,16,17 there is strong debate

over the details of the rest of the aggregation pathway. Some studies

suggest that in vitro fibrillation is driven through the addition of mono-

mers,12,16,18 while others have highlighted the role of oligomeric spe-

cies as active participants in the fibrillogenesis process.13,14,19,20

Amyloid oligomers from different proteins have been proposed to be

off‐pathway oligomeric assemblies13,21 that share certain structural

characteristics with amyloid fibrils, yet do not directly seed the

fibrils.21,22 Nonetheless, amyloid oligomers are viewed with extreme

interest because they are likely to be a main source of amyloid toxicity

in vivo.23,24

While the mechanisms of amyloid toxicity remain unclear for the

most part, interference with the cell membrane appears to be

required.10,25 Amyloid fibrils have been increasingly recognized as a

condensed state of misfolded proteins, which is less harmful than the

amyloid oligomers associated with them.24,25 Among the different

types of amyloid oligomers,25 those with annular morphology, termed

either as annular oligomers or annular protofibrils, have received

significant attention. They have been described across a variety of

amyloid systems, and because toxicity appears to develop through

poration of the cell membrane, annular oligomers have emerged as

possible candidates behind amyloid toxicity.26,27 However, their tran-

sient nature19 together with the polymorphism associated with amy-

loid protein aggregation has placed great barriers toward

understanding their molecular structure and properties.

Here we have used atomic force microscopy (AFM)‐based force

spectroscopy to obtain greater insight into the structure of TTR annu-

lar oligomers. We observed that they unfold via a series of intermedi-

ates, which we have characterized for forces associated with contour‐

length increments. Our data allow us to put forward a structural model

for the organization of the TTR monomer within the annular assembly.

2 | MATERIALS AND METHODS

2.1 | Sample preparation

Recombinant WT TTR expressed in BL21 E coli was isolated as

described previously28 and further purified to high purity by using anion

exchange (MonoQ column, GE Healthcare) and size exclusion

(Superdex S75 column, GE Healthcare) chromatography steps.13 Stock

solutions of WT TTR of 4 to 8 mg/mL were kept in 10 mM HEPES,

pH 7.0 at −20°C. Protein quantification was performed by spectropho-

tometry at 280 nm (ε = 77600M−1 cm−1). The TTR amyloid aggregation

was induced by diluting TTR to a final concentration of 1 mg/mL in

50 mM sodium acetate buffer at pH 3.6 and incubating at 37°C.13,19

Typically, within 24 h of incubation transient oligomeric assemblies

with annular shape were observed as reported previously.19

2.2 | Atomic force microscopy and force
spectroscopy

Data acquisition was performed in liquid and at room temperature with

an MFP‐3D Atomic Force Microscope (Asylum Research, Santa

Barbara, USA), using a cantilever (Biolever A, Olympus) with a reso-

nance frequency in liquid of ~9.2 kHz. Noncontact (AC) mode AFM

images were acquired using free and set‐point amplitudes of ~0.3

and ~0.2 V, respectively. Images of 1024 × 512 and 512 × 512 pixels

were obtained at a line‐scanning frequency of ~0.8 Hz. Typically,

3 hours prior to probing the sample by AFM, 1 × 1 cm2 of V‐1 grade

muscovite mica surfaces were modified with glutaraldehyde as

described earlier.29 Briefly, 300 μL of aminopropyltriethoxysilane

(Sigma), 100 μL N,N‐diisopropylethylamine (Sigma), and freshly

cleaved mica sheets were sequentially placed inside a sealed desiccator

with ~5 L volume, and its atmosphere was purged with argon gas. After

3 hours of vapor deposition, mica sheets were removed, and 200 μL of

1 mM glutaraldehyde (Sigma) was pipetted onto the modified surface,

incubated for 10 minutes at room temperature, washed extensively

with MilliQ water and finally with the sample buffer. Typically,

100 μL of sample was then added on the surface and subsequently

washed with sample buffer after 10 minutes. Immediately before

deposition, samples were prepared by diluting stock solutions of WT

TTR down to 0.5 μg/ mL in 10 mM HEPES buffer, pH 7, and

150 mM NaCl, while acidified amyloid samples were diluted to 1to

FIGURE 1 A 3D structure of transthyretin (TTR) monomer (PDB
entry: 2PAB) shows a beta‐sandwich conformation by assembly of
8 β‐strands (A‐F) into 2 β‐sheets: DAGH and CBEF
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3 μg/mL in 50 mM sodium acetate buffer at pH 3.6. The cantilever

deflection was calibrated against the surface of freshly cleaved mica,

and the spring constant of the cantilever (typically ~30 pN/nm) was

determined with the thermal method.30 After image acquisition, in situ

force spectroscopy to promote mechanical unfolding of single mole-

cules was performed by pressing the cantilever tip onto preselected

coordinates of the image and moving the cantilever away from the sur-

face with a constant, typical velocity of 500 nm/s.

2.3 | Data processing and analysis

All data were processed using Igor Pro 6 and built‐in procedures devel-

oped by the AFM manufacturer for analysis of data obtained with the

instrument. Force‐extension curves collected during cantilever retrac-

tion (pulling) contained several sawtooth‐type force transitions, the ris-

ing halves of which were fitted with the worm‐like chain (WLC) model

of entropic elasticity:

F ¼ kB⋅T
LP

1
4

1−
z
LC

� �−2

−
1
4
þ z
LC

" #

where F is force, z is extension, T is temperature, kB is the

Boltzmann constant, LC is the contour length, and LP is the persistence

length. The main criterion used to select force curves was the analysis

of the persistence length whereby curves containing most events with

LP < 300 pmwere discarded. Selected curves were again fitted with the

WLC model constrained to LP = 400 pm to determine the contour

length for each force transition. Statistical significance was determined

using the Wilcoxon signed‐rank test. Error values indicated in the text

are standard errors of the mean (s.e.m.). Relevant statistics are tabu-

lated in the Supplementary information section (Table S1).

3 | RESULTS

Transthyretin amyloid annular oligomers (aoTTR) were observed

within the first 24 hours after commencement of aggregation by acid-

ification as reported earlier.19 Evidence of their annular morphology

was apparent in the height‐, amplitude‐, and phase‐contrast AFM

images (Figure F22A). Height‐contrast images show topological proper-

ties similar to our previous report,19 notably a diameter of ~15 nm

(Figure 2B,C) and heights of 2.47 ± 0.09 nm (Figure 2C,E). These char-

acteristics are markedly different from those obtained on native TTR

(nTTR), which was imaged in phosphate buffer saline (Figure 2D) show-

ing the presence of globular particles with heights of 1.03 ± 0.05 nm

(Figure 2E).

Both nTTR and aoTTR were manipulated by force spectroscopy.

The obtained force curves showed marked differences in both the

extension of the manipulated chains and in the number of intermedi-

ates occurring during pulling (Figure F33A). While in the case of nTTR,

force curves typically exhibited a single mechanical event correspond-

ing to the detachment of the molecule from the tip, in case of aoTTR

we often observed curves containing up to 8 events (Figure 3B). The

curves were fitted with the WLC model to reveal the parameters of

the manipulated protein chain. The persistence length values were dis-

tributed around 0.4 nm: mean values were 0.491 ± 0.017 nm and

0.464 ± 0.019 nm for nTTR and aoTTR, respectively (Figure 3C). In

FIGURE 2Q3 Atomic force microscopy imaging in liquid. A, Annular oligomers detected by 3 different contrast modalities: height (left), amplitude
(center), and phase (right). B, Three selected oligomers evidence circular perimeter and a hollow core: scale bar is 15 nm and applies to all 3
panels. C, A 3D rendition of the topological map emphasizes annular configuration of oligomers. D, Images of native transthyretin (TTR) dispersed in
phosphate buffer saline buffer. E, Histogram of particle heights; nTTR and aoTTR refer to the native and annular oligomeric forms of TTR
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subsequent analyses we used 0.4 nm in theWLC fits to obtain the con-

tour lengths (LC) associated with the protein chains and the intermedi-

ate states of mechanical unfolding.

We began by analyzing the Lc of the last observed event, or the

maximal contour length (Lc‐Max) corresponding to the detachment

of the sample from the tip. While in the case of nTTR a limit of up to

FIGURE 3 Force spectroscopy data. A, Comparison of force curves obtained for the native and the amyloid annular oligomeric form of
transthyretin (TTR) highlights differences with respect to the frequency of force transitions and total length of the manipulated chains. Colored
lines are worm‐like chain fits with Lp = 0.4 nm, and the resulting Lc values are indicated on the right. B, nTTR typically unfolded in a single step, with
1 event detected per curve, whereas aoTTR curves displayed multiple force peaks. C, Distribution of persistence lengths using unconstrained
worm‐like chain fits places the typical Lp for both samples in the neighborhood of 0.4 nm. In the box plots, error bars represent 10‐90% range;
central line and dot correspond to median and mean, respectively
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~50 nm was typically attained, this was often approximately the dou-

ble in the case of aoTTR (FigureF4 4A). Considering that the TTR mono-

mer with its N‐terminal signal methionine has 128 residues and

therefore a contour length (Lc‐Monomer) of 51.2 nm, the results may

also be expressed as a fraction of the length of the TTR monomer. This

analysis shows (Figure 4A) that when manipulating nTTR, typically we

stretched, on average, a fractional size of 0.66 ± 0.02 of the TTR

monomer. By contrast, for aoTTR the fractional size was on average

1.41 ± 0.03 (P < .001). This is also apparent when examining the Lc

associated with the subsequent unfolding events as a function of their

rank within the sequence of the force spectrum (Figure 4B). The subse-

quent unfolding events typically occurred separated by approximately

10 nm, and up to ~48 nm for nTTR and up to ~88 nm for aoTTR. The

spacing between intermediate events (ΔLc) was analyzed more care-

fully for aoTTR (Figure 4C). Because the position of the last event is

randomly located because it is determined by the site of tip‐sample

interaction and the moment of detachment, the spacing between the

2 last events was excluded from the analysis. The histogram displays

a multimodal distribution where peaks appear at multiples of 4 nm

and up to 18 nm. Typically, transitions occurred separated by ~8 nm,

representing 50% of the analyzed ΔLc values. These intermediate tran-

sitions also occurred at increased force for aoTTR when compared

with nTTR (Figure 4D), or 95 ± 4 and 57 ± 10 pN, respectively

(P < .001).

4 | DISCUSSION

4.1 | AFM imaging of amyloid annular oligomers

Amyloid annular oligomers have been imaged by AFM during aggre-

gation of different proteins.19,31–33 Compared to other annular

assemblies such as ion channels,34 the AFM images of amyloid annu-

lar oligomers are often more fuzzy, possibly because of, on one hand,

annular oligomers are unstable complexes and, on the second,

because their orientation is likely more random than in the case of

membrane proteins. They nonetheless reveal an annular configuration

(Figure 2A) that is more striking in the phase‐contrast AFM images as

seen also earlier.19 Topographic mapping further indicates that these

oligomeric species have morphological properties similar to those pre-

viously identified in the TTR aggregation pathway,19 including diame-

ters in the range of 15 nm (Figure 2B,C) and heights of ~2.5 nm

(Figure 2E). By contrast, images of TTR in phosphate buffer saline dis-

play the presence of particles with an average height of ~1 nm. As

FIGURE 4 Analysis of contour length and force values. A, Evaluation of the maximal contour length (Lc‐Max) of the manipulated chains shown in
distance units (histogram, top axis) and as a fraction of the contour length of the transthyretin (TTR) monomer (histogram, bottom axis, and box‐
plot). B, Average contour length as a function of ranked order of unfolding events within a force spectrum shows that increments of ~10 nm are
common. Numbers above bars are the average Lc. The last values of both series are single measurements and therefore contain no error bars. Error
bars represent standard deviation. Sample size is 108 for nTTR and 283 aoTTR. C, Histogram of the spacing between consecutive transitions (ΔLc)
shows multiples of 4 up to 12 nm, and an additional peak at 18 nm. D, Histogram and box‐plot comparison of the force registered for unfolding
intermediates. The force of the last event (tip‐sample detachment) was discarded from this analysis. In the box plots, error bars represent 10‐90%
range; central line and dot correspond to median and mean, respectively. Statistical significance at P < .001 is denoted by ***
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reported earlier on the basis of volume calculations derived from AFM

data, these particles are likely to represent mostly TTR monomers.19

Although the functional TTR is a tetramer, on extreme dilutions such

as those required for AFM imaging, the TTR tetramer tends to dissoci-

ate into its constituting units even at physiological conditions of pH and

ionic strength.18 However, we can also notice some extent of heteroge-

neity in the particle population (Figure 2D), which may not be so clear

from the height measurements alone (Figure 2F) but becomes more

apparent when volume calculations are used.19 Thus, nTTR samples

appear to be composed mostly of TTR monomers and to a smaller

extent also of dimers and tetramers.

4.2 | Persistence length as a selection criterion of
force curves

Manipulation of nTTR and aoTTR resulted in sawtooth‐shaped force

transitions present at extensions up to ~100 nm (Figure 3). These

force curves revealed transitions that occurred several times in any

one pulling of aoTTR, while in the case of nTTR most often only a sin-

gle event resulting from sample‐tip detachment was observed

(Figure 2B). Protein unfolding experiments by single molecule force

spectroscopy typically involve either the usage of molecular handles

through which tension is applied to the system being probed35,36 or

rely on natural or recombinant systems consisting of a series of

concatenated polypeptide modules or polyproteins.36 These 2

approaches allow for a clearer isolation of the protein being unfolded,

thereby minimizing the interference from the tethering surfaces and

limiting the danger of simultaneous manipulation of multiple chains.

However, in the context of protein aggregation, the presence of such

handles or a system composed by multiple repeats is a poor option,

because it would introduce new types of intermolecular interactions

that may alter the aggregation process. There is therefore the danger

that manipulation of small proteins with their natural composition will

contain events that result from the pulling of several chains in parallel.

This is particularly true in aggregated species because of the high

proximity between different protein molecules.

It has been shown that the pulling of 2 polypeptide chains in par-

allel results in an apparent halving of Lp values with respect to the

0.4 nm expected for a single polypeptide chain.37 We therefore used

the criterion of accepting a curve for further analysis if under

unconstrained fitting of theWLC the fraction of eventswith Lp > 0.3 nm

would be greater than that of events with Lp < 0.3 nm. A 0.1 nm toler-

ance in Lp with respect to the expected 0.4 nm was introduced to

account for most unfolding events occurred over fairly small length

scales (~ 10 nm), and for the impact of pulling geometry over short dis-

tances. In both cases, the fitting accuracy can be compromised, and the

apparent Lp deviates from the expected value. Despite no upper limit

for Lp was imposed, the curves thus selected for analysis resulted in

average and median Lp values that are very close to 0.4 nm in both

nTTR and aoTTR (Figure 2C). In both cases a frequency distribution

with a main peak at 0.4 nm was observed (Figure 2C). For aoTTR the

occurrence of force transitions with Lp < 0.4 is more pronounced

and is likely because of the more condensed state of the sample.

Indeed, they appear to have a greater impact for events that occur

closer to the surface in the case of aoTTR, but are typically absent in

the case of nTTR (Figure S1). Altogether, the values of Lp obtained

from fits of the WLC model to the transitions observed fall within

those reported in the literature, which typically vary between

0.31 nm for a glycine homopolymer and 0.59 nm for stiffer polypep-

tides with high ψ dihedral angle potentials.38

4.3 | Contour length of manipulated chains

Analysis of the contour length of the final event reveals striking differ-

ences between the 2 samples analyzed. It indicates that the manipu-

lated chains in aoTTR are longer than those of nTTR (Figure 4A).

Because the TTR monomer is 128 residues long, or 51.2 nm (consider-

ing a 0.4 nm length for each residue), we can see that while in the case

of nTTR only a fraction of the TTR monomer was manipulated, for

aoTTR the manipulated chains are greater than that of a single mono-

mer and likely correspond to the distance of a TTR dimer (Figure 4).

The observation in aoTTR of chain lengths that are equivalent to that

of a dimer, but not more, is suggestive of a head‐to‐head and tail‐to‐

tail orientation of the monomers (Figure F55D). If monomers associated

in a head‐to‐tail arrangement, then the monomer‐monomer interface

would be replicated at every interface, resulting in a polymeric arrange-

ment and hence much longer chains and apparent contour lengths. In

fact, earlier studies suggest that head‐to‐head dimers may serve as

basic building blocks for the assembly of TTR amyloid aggregates that

may share the same subunit interface as the native dimer.20 In that

study the authors reported that TTR monomers containing cysteine

mutations in the F‐strand, resulting in crosslinked head‐to‐head

dimers, produced amyloid aggregates with very similar kinetic profile

as the wild‐type form of the protein. A follow‐up study from the same

group further suggested extensive rearrangement of the edge strands

C and D that exposed residues of strand B which would hence partake

a new amyloid TTR interface.39 More recently, the design of peptides

that specifically bind to strands F and H of TTR have been shown to

effectively work as amyloid inhibitors by capping those strands and

preventing head‐to‐head association of TTR monomers.17 The particu-

lar relevance of dimers over other similar low molecular weight aggre-

gates (eg, trimers, tetramers, and pentamers) is not exclusive to TTR

and has been reported in a variety of amyloidogenic systems such as

peptides Aβ40 and Sup35,41 as well as proteins, including α‐

synuclein42,43 and β2‐microglobulin.44 Thus, it is conceivable that the

arrangement of monomers along the aoTTR annuli might result in alter-

nating strongly and weekly interacting monomer‐monomer interfaces,

with the strong interfaces associated with dimer formation and weak

interfaces defining the dimer outer limits. Interestingly, recent X‐ray

crystallography data of annular oligomers formed by a derivative of

the amyloidogenic Aβ17‐36 peptide also pointed at the presence of

2 distinct types of interfaces.45 Here it is important to note the shape

of the frequency distribution of Lc‐Max for aoTTR that displays a sharp

decline prior to reaching the complete contour length of a dimer

(Figure 4A). This is indicative of a discontinuity with precise physical

boundaries. This boundary is less clear for nTTR as the full contour

length of the TTR monomer is approached (Figure 4A). X‐ray crystallo-

graphic structures show that for native TTR the monomer‐monomer

interface forming the native dimer is stabilized by hydrogen bonding

across the F‐strand (Figure 1). Our AFM images of nTTR (Figure 2D)
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suggest that a mixture of both monomers and dimers is likely to be

present. Therefore, while for nTTR the chain length of the TTR mono-

mer does not represent an insurmountable limit for Lc‐Max values, this

limit appears to be more defined at the level of the dimer for aoTTR. In

addition, the high frequency of pullings observed for chains that are up

to ~1.8× the length of the TTR monomer (Figure 4A) is also suggestive

that the interface might occur at the termini of the monomer

sequence. This corroborates findings in previous reports already

discussed here, where the monomer‐monomer interface of the

amyloidogenic dimer likely involves residues of the edge strands that

lie toward the C‐terminus of the sequence.17,20,39 In fact, for aoTTR

we observe pullings that on average are 1.41× the monomer contour

length (or ~72 nm), which is remarkably close to a structure of 2 sym-

metrically oriented TTR monomers overlapping at their F‐strands,

which would result in a structure 1.46× the size of a monomer (or

~75 nm long). We observe curves that can be even longer is indicative

that residues in the F‐strand are not the only ones participating in the

interface, and as proposed earlier,17 additional residues further down-

stream of the F‐strand are also involved in forming the internal dimer

interface (Figure 5C).

4.4 | Contour length of unfolding intermediates

Pulling on aoTTR revealed a series of unfolding intermediates

(Figure 3A). Typically, 2 intermediates were observed, corresponding

to 3 events per force‐extension curve (Figure 3B). In fact, we did not

observe any curves in aoTTR that passed our selection criterion and

that would contain no intermediates. This is in striking contrast with

the nTTR where ~70% of curves showed the unfolding of the manip-

ulated chain in a single step (Figure 3B). The immunoglobulin domain

I27 of the sarcomeric protein Titin, which has been extensively used

in force spectroscopy experiments,46 typically unfolds through over-

coming a single energy barrier.46,47 Like the TTR monomer, the I27

domain is a β‐sheet protein containing 8‐strands forming 2 beta‐

sheets that stack on in each other to form a β‐sandwich fold, and

revealing a so called “Greek key” topological motif. Interestingly,

molecular dynamic simulations reveal that the I27 dimer, rather than

the trimer or the tetramer, is the smallest unit that will spontaneously

misfold.48 Differences in the extent with which unfolding intermedi-

ates are observed in aoTTR in comparison to nTTR are suggestive of

considerable folding differences, and also of stabilization of unfolding

intermediates of the aoTTR dimer by its neighboring environment. To

illustrate this last point, we may take the example of 2 different classes

of α‐helical proteins: while membrane‐embedded G‐protein coupled

receptors tend to unfold via the stepwise unraveling of their individual

transmembrane α‐helices,49 soluble α‐helical bundles of spectrin

unfold in a single event.50 Likewise, mechanical unfolding of β‐barrel

membrane proteins such as OmpG reveals multiple unfolding interme-

diates while the water‐soluble β‐barrel GFP does not.51 Thus, the

molecular environment in which a protein is found during unfolding

has a strong impact in defining the roughness of a protein's folding

energy landscape. This is believed to result from as proteins unfold

in solution, water molecules begin to destabilize its hydrophobic core,

thereby smoothing (and also lowering) the energy profiles leading to

FIGURE 5 Mechanical unfolding and secondary structure of transthyretin (TTR). A, Overlay of different curves from the manipulation of aoTTR
(above) and nTTR (below). B, Secondary structure of TTR (PDB entry 2PAB) measured in nanometers (numbers) and where letters (A‐H) indicate
β‐strands and α represents the sole α‐helix; colors are as represented in Figure 1. C, Schematic representation of the pulling of a dimer from aoTTR
where dimerization is likely to occur through participation of residues toward the C’ terminus. The double‐stack arrangement of aoTTR likely
contributes to stabilize unfolding intermediates. D, Diagram of the assembly of annular oligomers with monomers oriented in a head‐to‐head and
tail‐to‐tail configuration forming strong and weakly interacting interfaces
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the unfolded state.51 In a membrane, however, the presence of lipid

molecules will shield hydrophobic regions from the solvent. As each

transmembrane region is loaded and stretched out, the hydrophobic

core and hydrophilic lipid headgroups will stabilize the remaining sec-

tions of the protein still inserted in the membrane bilayer, thus pro-

viding steep energy barriers to the unfolding of intermediates.51

Therefore, it is conceivable that the unfolding intermediates observed

during pulling of aoTTR derive from the stability provided by contacts

between dimers within the annular assembly. It has long been recog-

nized that in the general case of protein aggregation, and of amyloid

formation in particular, hydrophobic interactions play a key role in

protein condensation. In this regard, TTR aggregation is no differ-

ent.52 Furthermore, the importance of a yet unknown network of

hydrogen bonding that may be formed across dimers may also be rel-

evant. Previous detailed topographic characterization of aoTTRs indi-

cates that these oligomers assemble to form a stack of 2 annuli, as

suggested by a bimodal distribution of their heights with peaks

a ~ 1 nm for one annulus, and ~2 nm for 2 annuli.13 Here, given their

average height of 2.45 nm (Figure 2E), annular oligomers appear to

predominantly belong to the second population, formed of stacked

annuli. Thus, it is conceivable that it was in a context where dimers

establish contacts both along the axis of revolution of the annuli

and between its 2 layers, that the unfolding of aoTTR dimers took

place (Figure 5C).

Analysis of the average contour length as a function of the ranked

order of the unfolding events indicates that transitions appear to be

typically separated by ~10 nm with standard deviations in the same

range (Figure 4B). Using a curve containing the largest number of

events as a reference, and by offsetting several curves by ±10 nm with

respect to the reference curve, we were able to overlay several force

spectra that highlight a fairly regular unfolding pattern in aoTTR dimers

(Figure 5A). This pattern shows transitions that are separated by

~8 nm, consistent with the frequency distribution of ΔLc values where

a predominant peak at ~8 nm is observed (Figure 4C) and closely

matching the increment in contour length observed in Figure 4B. Such

unfolding pattern closely replicated in different pulling experiments

underscores the highly organized structure of the system being

probed. It suggests that the underlying organization and structure of

a given molecule can be observed in a recurrent fashion, in different

molecules. The ΔLc distribution also suggests the presence of a funda-

mental mode at ~4 nm, and additional modes at ~12 and ~18 nm.

Considering the contour length of the secondary structure elements

in TTR, these values are compatible with the sequential unfolding of

β‐strands (Figure 5B). Because the exact structure of TTR within amy-

loid aggregates is currently unknown, it is at this stage speculative to

infer whether these transitions represent the peeling of individual large

β‐strands or blocks of smaller β‐strands such as a hairpin of 2 consec-

utive β‐strands. However, several reports have highlighted that the

structure of TTR within these aggregates might share many similarities

with the native conformation of the TTR monomer. The native TTR

monomer comprises a series of 8 β‐strands and 1 α‐helix joined by

8 interconnecting segments and 2 terminal regions (Figure 5B). On

average, each of these regions has a length of 2.7 nm, which would

mean that an unfolding step with a length ~ 8 nm would correspond

to the extension of 3 of these sections (8.1 nm). It could, for example,

correspond to the stretching and unfolding of β‐hairpin structure.

Regardless, an extensive dimer‐dimer interface will have to exist along

the outer surface of at least one of the β‐sheets promoting the stabili-

zation of its β‐strands. This type of dimer‐dimer interface will likely be

very different from that found in the tetrameric arrangement of the 2

native TTR dimers, which relies on very weak interactions that need to

be stabilized to mitigate conversion of TTR into its amyloidogenic

form.

4.5 | Unfolding force of intermediates

Manipulation of aoTTR resulted in the emergence of intermediates

whose mechanical transitions occurred at higher force values than

those observed in nTTR (Figure 4D). This difference could be

interpreted because of amyloid oligomers typically attain a more sta-

ble state than the native protein from which they are derived.53–61

However, such interpretation should be viewed with some caution.

On one hand, we are comparing the unfolding forces of intermedi-

ates, which emerged more rarely in the case of nTTR. For nTTR, most

of the force values were discarded from the analysis as these corre-

spond to curves that contained no intermediates, and the force of

those transitions is ultimately because of the tip‐sample interaction.

On the other hand, mechanical strength of proteins may not neces-

sarily correlate with their thermodynamic stability.62 It is viewed that

prefibrillar precursors sample distinct conformations as they travel

along a rough energy landscape toward more stable conformations.63

However, along this process they may become kinetically trapped64

in conformations that result in what are called “off‐pathway” oligo-

mers,65–67 which may or may not be necessarily more stable than

the native conformation.68 Little is known about the stability of

annular oligomers and of the dimers found within them. Although

they may have crossed an energy barrier that may lead to a more sta-

ble arrangement, at this stage the aoTTR dimer may still not repre-

sent a more stable conformation when compared to nTTR. An

increase in force may be explained by a variety of reasons, which

with our approach may be difficult to scrutinize. For example, as

highlighted in the previous paragraphs, manipulation of aoTTR dimer

occurred in a context where intermolecular interactions between

neighboring dimers, and differences in buffer composition can play

an important role. Because AFM imaging suggests that nTTR was

mostly present in the monomeric form (Figure 2D,E), differences in

the molecular context of the manipulated chains limit our ability to

compare force values. As discussed earlier, the importance of molec-

ular context can be relevant in the definition of the roughness of the

energy landscape. In addition, the pulling geometry can affect force

as shown earlier for the unfolding of a β‐sheet protein.69 Given the

annular arrangement of oligomers, it is conceivable that they are

organized in a preferential orientation with respect to the pulling axis,

rather than randomly distributed, which we anticipate to be more

likely in the case of nTTR molecules. If so, a preferential orientation

with respect to the pulling direction may emphasize one particular

unfolding trajectory for which higher forces would be required, while

for the case of nTTR these trajectories would be more widely

sampled and thus averaged out.
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5 | CONCLUSION

We demonstrate using single‐molecule force spectroscopy that native

TTR and annular oligomers exhibit distinct unfolding patterns. While

nTTR tends to retain a monomeric structure and unfolds in 1 step,

aoTTR unfolds via a series of intermediate structures across a length

range equivalent to the contour length of a concatenated TTR dimer.

These intermediate structures display a contour‐length increment of

~8 nm, which corresponds to a section of protein chain likely stabi-

lized by intermolecular contacts established by aoTTR dimers within

the annular assembly. Monomers arranged in a head‐to‐head orienta-

tion may form an interface that shares some structural similarities

with the native dimer. However, when compared with the native tet-

rameric molecule, dimers in aoTTR are likely to interact with other

dimers in a very different way, notably through extensive contacts

along their β‐strands.

In general, we have shown that through careful selection of force

curves using persistence length as a criterion, we are able to select

data that can be interpreted and rationalized in agreement with data

available for the aggregation pathway of TTR. Because this approach

requires no handles, it may open the door to the analysis of other sys-

tems, which, like ours, may become distorted when analyzed in tandem

repeats, or in the presence of molecular handles. In addition, transient

structures that may be too dynamic or heterogeneous to be captured

by higher resolution methods may, in a similar way, be probed and

understood with greater structural detail.
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Force spectroscopy reveals the presence of structurally
modified dimers in transthyretin amyloid annular oligomers

Ricardo H. Pires | Maria J. Saraiva | Ana M. Damas | Miklós S.Z. Kellermayer

Transient oligomeric amyloid assemblies remain a challenge for molecular structural stud-

ies. Here we show by AFM force spectroscopy that misfolded dimers constitute a key

arrangement for the assembly of transthyretin amyloid annular oligomers.
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USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION  

 
Required software to e-Annotate PDFs: Adobe Acrobat Professional or Adobe Reader (version 7.0 or 
above). (Note that this document uses screenshots from Adobe Reader X) 
The latest version of Acrobat Reader can be downloaded for free at: http://get.adobe.com/uk/reader/ 
 

Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:  

 

 
 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Replace (Ins) Tool – for replacing text. 

 

Strikes a line through text and opens up a text 
box where replacement text can be entered. 

How to use it 

 Highlight a word or sentence. 

 Click on the Replace (Ins) icon in the Annotations 
section. 

 Type the replacement text into the blue box that 
appears. 

This will open up a panel down the right side of the document. The majority of 
tools you will use for annotating your proof will be in the Annotations section, 
pictured opposite. We’ve picked out some of these tools below: 

2. Strikethrough (Del) Tool – for deleting text. 

 

Strikes a red line through text that is to be 
deleted. 

How to use it 

 Highlight a word or sentence. 

 Click on the Strikethrough (Del) icon in the 
Annotations section. 

 

 

3. Add note to text Tool – for highlighting a section 
to be changed to bold or italic. 

 

Highlights text in yellow and opens up a text 
box where comments can be entered. 

How to use it 

 Highlight the relevant section of text. 

 Click on the Add note to text icon in the 
Annotations section. 

 Type instruction on what should be changed 
regarding the text into the yellow box that 
appears. 

4. Add sticky note Tool – for making notes at 
specific points in the text. 

 

Marks a point in the proof where a comment 
needs to be highlighted. 

How to use it 

 Click on the Add sticky note icon in the 
Annotations section. 

 Click at the point in the proof where the comment 
should be inserted. 

 Type the comment into the yellow box that 
appears. 
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For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: 

5. Attach File Tool – for inserting large amounts of 
text or replacement figures. 

 

Inserts an icon linking to the attached file in the 
appropriate pace in the text. 

How to use it 

 Click on the Attach File icon in the Annotations 
section. 

 Click on the proof to where you’d like the attached 
file to be linked. 

 Select the file to be attached from your computer 
or network. 

 Select the colour and type of icon that will appear 
in the proof. Click OK. 

6. Add stamp Tool – for approving a proof if no 
corrections are required. 

 

Inserts a selected stamp onto an appropriate 
place in the proof. 

How to use it 

 Click on the Add stamp icon in the Annotations 
section. 

 Select the stamp you want to use. (The Approved 
stamp is usually available directly in the menu that 
appears). 

 Click on the proof where you’d like the stamp to 
appear. (Where a proof is to be approved as it is, 
this would normally be on the first page). 

7. Drawing Markups Tools – for drawing shapes, lines and freeform 
annotations on proofs and commenting on these marks. 

Allows shapes, lines and freeform annotations to be drawn on proofs and for 
comment to be made on these marks.. 

How to use it 

 Click on one of the shapes in the Drawing 
Markups section. 

 Click on the proof at the relevant point and 
draw the selected shape with the cursor. 

 To add a comment to the drawn shape, 
move the cursor over the shape until an 
arrowhead appears. 

 Double click on the shape and type any 
text in the red box that appears. 




