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ABSTRACT 

PSI is the most efficient bioenergetic nanomachine in nature and one of the largest membrane 

protein complexes known. It is composed of 18 protein subunits that bind more than 200 co-factors 

and prosthetic groups. While the structure and function of PSI have been studied in great detail, very 

little is known about the PSI assembly process. In this work, we have characterized a PSI assembly 

intermediate in tobacco plants, which we named PSI*. We found PSI* to contain only a specific 

subset of the core subunits of PSI. PSI* is particularly abundant in young leaves where active 

thylakoid biogenesis takes place. Moreover, PSI* was found to over-accumulate in PsaF-deficient 

mutant plants and we show that re-initiation of PsaF synthesis promotes the maturation of PSI* into 

PSI. The attachment of antenna proteins to PSI also requires the transition from PSI* to mature PSI. 

Our data could provide a biochemical entry point into the challenging investigation of PSI biogenesis 

and allows us to improve the model for the assembly pathway of PSI in thylakoid membranes of 

vascular plants. 

 

INTRODUCTION 

The light reactions of photosynthesis are performed by large membrane-bound protein 

complexes, embedded in the thylakoid membranes within the chloroplasts of eukaryotic algae 

and green plants. Photosystem I (PSI) acts as a light-driven plastocyanin (PC)-ferredoxin 

oxidoreductase, using light energy to excite electrons and reduce ferredoxin, thus providing 
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the reducing power needed for carbon fixation and many other metabolic processes in the 

cell. PSI is one of the most complex protein assemblies in nature. In vascular plants, it is 

composed of 14 subunits (PsaA-L, PsaN and PsaO) and four antenna proteins (LhcA1-4; 

Jensen et al., 2007; Qin et al., 2015; Mazor et al., 2015). Five PSI subunits are encoded in the 

chloroplast genome (PsaA-C, PsaI and PsaJ), while all other subunits are encoded in the 

nuclear genome and must be post-translationally imported into chloroplasts Schöttler et al., 

2011). In addition to its protein subunits, PSI contains a plethora of co-factors and prosthetic 

groups that are required for its function. The latest crystal structures revealed that PSI of seed 

plants contains at least 155-156 chlorophylls, 32-35 lipids, 10-14 carotenoids, 3 iron-sulfur 

[Fe4S4] clusters and 2 phylloquinones (Qin et al., 2015; Mazor et al., 2015). 

 The enormous structural complexity of PSI suggests that its assembly should be 

tightly coordinated and highly regulated. The assembly process is thought to initiate with the 

co-translational insertion of its two reaction center subunits, PsaA and PsaB, into the 

thylakoid membrane (Göhre et al., 2006; Cai et al., 2010; Schöttler et al., 2011). This is 

followed by addition of the other PSI subunits to the reaction center and incorporation of the 

many co-factors, ultimately yielding mature PSI. However, the sequence of events leading 

from the reaction center dimer to the mature PSI complex remains largely unclear. Some 

speculations have been put forward based on subunit arrangement within the determined 

crystal structures, but experimental data that would resolve individual steps in the assembly 

pathway are largely lacking. One of the complications that have hampered the biochemical 

investigation of PSI biogenesis is that the assembly process appears to occur very fast. 

Moreover, a serious technical obstacle has been that the large reaction center heterodimer 

accounts for almost half of the molecular mass of PSI, and the remainder of the subunits to be 

added are rather small. Consequently, assembly intermediates cannot be easily resolved by 

molecular mass-based biochemical separation techniques (Schöttler et al., 2011). A PSI 
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subcomplex, suggested to be a late assembly intermediate, was identified in the unicellular 

alga Chlamydomonas reinhardtii (Ozawa et al., 2010). However, this subcomplex is nearly 

complete, lacks only the two small subunits PsaG and PsaK, and appears to be functional in 

that it participates in electron transfer (Ozawa et al., 2010).  

 Here, we report the characterization of PSI*, an assembly intermediate in the PSI 

biogenesis pathway of plants. This subcomplex was found to accumulate in very young leaf 

material of tobacco (Nicotiana tabacum) plants, where cell and organelle division and, 

concomitantly, thylakoid biogenesis is highly active. We find that PSI* contains only a subset 

of PSI subunits and lacks the LHCI antenna. Furthermore, we report that the addition of PsaF 

to the PSI* complex is needed for its transition into mature PSI, thus highlighting PsaF as a 

potential rate-limiting factor in PSI biogenesis. Our data provide a biochemical entry point 

into the investigation of PSI assembly and allow us to propose a revised model for the 

assembly pathway of PSI in thylakoid membranes of chloroplasts. 

 

RESULTS 

Identification of PSI*, a PSI subcomplex accumulating in developing tobacco leaves 

To explore possible entry points into the pathways of PSI assembly, we sought to compare the 

thylakoid membrane complexes of young and mature tobacco leaves (Figure 1A, B). The underlying 

assumption was that young, developing leaves should have high synthesis rates of photosynthetic 

protein complexes, due to the high demand for thylakoid biogenesis during cell and organelle 

division. Conversely, mature, fully expanded leaves should have much lower synthesis rates of the 

photosynthetic complexes, because cell division has ceased, the photosynthetic apparatus is fully 

established and the turnover of the protein complexes in the thylakoid membrane is thought to be 

very low (Krech et al., 2012; Hojka et al., 2014). It, therefore, seemed reasonable to assume that 
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putative PSI assembly intermediates are more abundant in young, expanding leaves than in mature 

leaves. The ontogenetically youngest part of a developing leaf is the sector of the blade that is 

closest to the leaf base, where cell division and differentiation occurs (Figure 1B). These sectors (4-6 

cm wide) where excised from the three youngest leaves of young tobacco plants (4-5 weeks old), 

pooled from a larger number of plants (typically 70-90 per isolation) and used for the extraction of 

thylakoid membranes. Similarly, 5-6 cm sectors from the tips of fully expanded leaves (taken from 7-

8 week old plants) were used as source material for thylakoid isolation from mature leaf tissue 

(Figure 1A). 

 

To compare the protein complex composition and assay for the presence of putative 

assembly intermediates, thylakoid membranes extracted from both types of material were 

solubilized with the mild non-ionic detergent n-dodecyl β-D-maltoside (DDM) and protein complexes 

were separated by blue-native polyacrylamide gel electrophoresis (BN-PAGE). At first glance, the 

overall pattern of protein complexes in mature and young leaf thylakoids was found to be similar 

(Figure 1C), and only minor differences could be observed. However, upon closer inspection, a faint 

Coomassie-stained band at a molecular weight of approximately 500 kDa was consistently observed 

to be enriched in the thylakoid preparations from young leaves (Figure 1C). 

 

To resolve the differences between thylakoids of young and mature leaves in more detail 

and, at the same time, determine the subunit composition of the complexes observed by one-

dimensional BN-PAGE (Figure 1C), an additional separation in the second dimension was performed 

by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). To specifically search for 

PSI assembly intermediates, the two-dimensional (2D) gels were blotted onto membranes and 

probed using antibodies against the PSI core subunits PsaA and PsaB. As the assembly of PSI starts 
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with the membrane insertion of A and B subunits (Schöttler et al., 2011; Yang et al., 2015), these two 

proteins must be present in any assembly intermediate. Interestingly, both PsaA and PsaB were 

identified in a complex of approximately 500 kDa (Figure 1D). We, therefore, tentatively named this 

complex PSI*. PSI subcomplexs of similar size have been observed in a few previous studies and 

were commonly referred to as a PSI complex lacking its antenna proteins (Heinemeyer et al., 2004; 

Granvogl et al., 2006; Roose et al., 2014; Soursa et al., 2015). Indeed, no LhcA could be identified in 

PSI* (Figure 1D). Interestingly, the smaller PSI complex appeared to be relatively abundant in the 

young leaf samples compared to mature leaves, consistent with what one would expect from a 

subcomplex representing an assembly intermediate (Figure 1D,E). This prompted us to hypothesize 

that PSI* might actually represent an intermediate complex in PSI assembly. We, therefore, set out 

to characterize PSI* in more detail. 

 

PSI* contains only a subset of PSI subunits 

To determine the molecular composition of the PSI* complex, the proteins present in the gel 

segment corresponding to PSI* were identified. To this end, the slice containing PSI* was cut from 

the 2D gel, subjected to tryptic protein digestion, and its protein composition was determined by 

MS/MS analysis (Table 1). For comparison, the gel slice containing the mature PSI (co-migrating in 

the first dimension with the dimeric form of photosystem II (PSII); Figure 1C) and a gel slice adjacent 

to PSI* were also analyzed (“PSI” and “Background”, respectively; Table 1). Several PSI subunits were 

identified in PSI*. These include the two large reaction center subunits, PsaA and PsaB, two of the 

stromal ridge subunits, PsaD and PsaE, and PsaL which has been implicated in forming the LHCII 

binding site during state transitions (Lunde et al., 2000; Table 1). Other subunits that were identified 

in mature PSI with high scores and peptide numbers were either missing from PSI* or identified only 

with very low scores, suggestion lower protein abundance. For example, PSI* appears to lack the PSI 

subunits PsaK and PsaG, and is largely devoid of PsaF. As expected, none of the LhcA proteins were 
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identified in PSI* (Table 1). 

In order to verify the MS/MS data and confirm the absence of antenna proteins and some 

core subunits of PSI from PSI*, we probed the 2D membranes with antibodies against additional PSI 

subunits (Figure 1D). These experiments confirmed the presence of PsaD and PsaL in PSI*. 

Moreover, PSI* was also found to contain PsaC and PsaH (albeit at somewhat reduced amounts; 

Figure 1D), proteins that, due to their small size, were not reliably detectable by mass spectrometry. 

Presence of the C, D and E subunits in PSI* indicates that the complex contains the complete stromal 

ridge. Presence of both PsaL and PsaH suggests that the LHCII-binding site also assembles at this 

stage. In accordance with the proteomic data, PSI* was found to lack PsaF, PsaK and LhcA3, a 

subunit of the PSI antenna. Taken together, our mass spectrometric and immunobiochemical 

analyses suggest that PSI* is a PSI subcomplex that lacks a specific subset of subunits as well as the 

LHCI antenna proteins. 

 

PSI* is particularly abundant in developing leaf tissue 

When assessing the distribution of the PSI core subunits PsaA and PsaB in 2D gels, PSI* was 

identified as a protein complex in which PsaA and PsaB appeared to be more abundant in thylakoid 

membranes extracted from young leaf tissue than those extracted from mature leaves (Figure 1 

D,E). We were able to show that the same is true when probing 2D gels with antibodies against two 

other PSI* components, PsaD and PsaL (Figure 1D,E). When calculating the ratio of the signal 

originating from PSI* to the total PSI signal, it turned out that, in mature leaf tissue, only a small 

fraction of the PSI subunits is present in PSI* (PsaA: 11.1% ±2.7%; PsaB: 19.4% ±2.8%; PsaD: 10.5% 

±4.8%; PsaL: 10.9% ±5.5%; n=3).  By contrast, in developing leaf tissue, a substantial proportion of 

the total PSI signal originates from PSI* (PsaA: 23.4% ±5.9%; PsaB: 30.0% ±0.9%; PsaD: 21.8% ±4.1%; 

PsaL: 21.3% ±4.7%; n=3), suggesting that the accumulation of PSI* might be related to the active de 
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novo synthesis of thylakoidal protein complexes. Therefore, the high abundance of PSI* in 

developing leaves led us to hypothesize that PSI* represents an intermediate in the assembly 

pathway of PSI. 

 

PSI* is an assembly intermediate of PSI  

The de novo biogenesis of the PSI core requires both protein subunits encoded in the plastid DNA 

and nucleus-encoded subunits that are synthesized in the cytosol and post-translationally imported 

into the chloroplast. Thus, upon inhibited translation in the chloroplast or the cytosol, some 

assembly intermediates can be completed to yield mature PSI, but no new subcomplexes can form. 

Consequently, if PSI* is indeed a PSI assembly intermediate, its amounts should decrease upon 

inhibition of protein biosynthesis. To test this assumption, a series of experiments with translational 

inhibitors was carried out. The translational machinery in the chloroplast is of the bacterial type 

(Tiller and Bock, 2014) and, therefore, sensitive to antibiotics that block translation on prokaryotic 

70S ribosomes, such as lincomycin. Similarly, translation on eukaryotic 80S ribosomes in the cytosol 

can be specifically inhibited with the antibiotic cycloheximide. We used lincomycin and 

cycloheximide to block protein biosynthesis in either the chloroplast or the cytosol (or in both 

compartments) and assessed the fate of PSI*. To this end, thylakoidal protein complexes isolated 

from antibiotic-treated tissue were electrophoretically separated in 2D gels and the relative 

abundances of PSI and PSI* were assayed by western blot analysis with anti-PsaA antibodies. While 

PSI* was highly abundant after the incubation of leaf disks excised from young leaves in solution 

without antibiotics, incubation in antibiotic solution led to a strongly increased ratio of mature PSI to 

PSI*, in line with the assumption that PSI* is an assembly intermediate, whose presence depends 

upon de novo synthesis of PSI subunits. The decline in PSI* was seen with both antibiotics alone and 

also upon combined application of lincomycin and cycloheximide, consistent with the dependence of 

PSI accumulation on protein biosynthesis in both the chloroplast and the cytosol (Figure 2A). 
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To ultimately confirm that PSI* is an assembly intermediate, we sought to obtain direct in 

vivo evidence for its conversion into mature PSI. We, therefore, performed pulse-chase experiments. 

Due to the technical difficulty of performing such experiments in tobacco, we chose to follow the 

fate of PSI* in Arabidopsis thaliana, in which PSI* could be readily identified (Figure 2B). De novo 

synthetized proteins of A. thaliana leaves were pulse-labeled with [35S]-methionine for two hours. 

Subsequently, the fate of labeled proteins was followed over a two hour chase phase in the 

presence of unlabeled methionine. Protein complexes were then extracted, separated by 2D gel 

electrophoresis, and their assembly state was monitored by autoradiography (Figure 2B). For PSI, the 

reaction center proteins PsaA/B could be identified and followed (filled arrowheads in Figure 2B). 

After the two hour pulse period, high amounts of the fully assembled PSI complex could be 

identified, indicating that the assembly of mature PSI occurs rather fast. Moreover, the amounts of 

radiolabel incorporated into PSI* (open arrowheads) was high, consistent with PSI* being an 

intermediate complex. We, therefore, assume that, while most of the labeled PsaA/B is found in 

mature PSI, the signal observed in PSI* represents a “snapshot” of the assembly process. When 

quantifying the signal originating from PsaA/B in PSI* in relation to that originating from PsaA/B in 

the fully assembled PSI, we found the PSI*/PSI ratio to be high (82% ± 9%; n=3; Figure 2C). During 

the chase period, the amount of radiolabeled PSI* decreased drastically. Comparison of the PsaA/B 

signal from PSI* to the signal from fully assembled PSI following the chase revealed a significant 

decrease compared with that observed after the pulse (PSI*/PSI ratio = 32% ± 1%; n=3; Figure 2C). 

These results indicate that PSI* is converted into mature PSI in vivo, and thus suggest very strongly 

that PSI* indeed represents a PSI assembly intermediate. Further, definitive proof of the maturation 

of PSI* into mature PSI is described in the following section (see below, Figure 3D). 
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PsaF integration facilitates the maturation of PSI* into PSI 

Of all PSI subunits absent from PSI*, the apparent deficit in PsaF (Table 1; Figure 1D), the PC-docking 

subunit of PSI, was the most intriguing. PsaF deficiency has been shown to reduce overall PSI levels 

and destabilize the stromal ridge, highlighting the importance of the F subunit in creating stable 

mature PSI units (Haldrup et al., 2000). To explore the possible function of PsaF in the transition 

from PSI* to PSI and to provide additional genetic evidence for the role of PSI* in PSI assembly, we 

sought to knock down the PSAF gene. To avoid pleiotropic effects, we used a transgenic tobacco 

mutant in which the (nucleus-encoded) PSAF gene was knocked down by inducible RNAi. These 

plants were grown for six weeks prior to induction, allowing them to accumulate sufficient 

functional source tissue to support plant growth during RNAi induction. Interestingly, when PsaF was 

silenced by inducing RNAi via treatment of plants with ethanol vapor (Hojka et al., 2014), the strong 

drop in PsaF accumulation was not accompanied by a similar reduction in PsaA levels. While the 

induced PSAF-RNAi tissue was found to contain almost no PsaF protein, PsaA accumulation was 

reduced only by about 50% (Figure 3A). This could be further verified by determining redox active 

PSI amounts via difference absorbance spectroscopy, quantifying the light-induced difference 

absorbance changes of P700 (Figure 3B). Taken together, these results indicate that all of the PsaA 

present in the induced PSAF-RNAi tissue is assembled into a complex capable of light-induced charge 

separation. Induced PSAF-RNAi plants were found to be slightly paler compared to wild-type plants, 

and this phenotype was more pronounced in young leaves than in mature leaves (Figure S1A-C). In 

agreement with previous data (Haldrup et al., 2000), the young tissue lacking PsaF showed a 

decreased FV/FM value, an indicator of maximum photochemical efficiency (Figure S1D). This is in line 

with the presence of significant amounts of free, uncoupled LHCI antenna proteins in their 

monomeric and dimeric form in the thylakoids, resulting in increased basal chlorophyll-a 

fluorescence emission in darkness (see below, Figure 3G, 4A). 

Remarkably, when analyzing PSI complex distribution in PsaF-deficient tissue using 2D gels, it 
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was found that large amounts of PSI* accumulated while only very little mature PSI assembled 

(Figure 3C). As the vast majority of PSI in these plants accumulates as PSI*, these results indicate 

that (i) PSI* is able to harvest light and perform charge separation, and (ii) the incorporation of the 

PsaF subunit into the assembling photosystem is an important step in the maturation of the PSI* 

complex into a complete PSI unit. Moreover, the overaccumulation of PSI* upon knock-down of PsaF 

suggests that the integration of PsaF into the complex may represent a rate-limiting step in PSI 

biogenesis. If this is indeed the case, then restricting the assembly process at an earlier stage should 

result in decreased PSI* abundance. This is because the reduced amounts of nascent PSI* would 

then be converted very quickly into mature PSI. Indeed, PSI* could not be detected in thylakoids of 

PsaA knock-down plants (Krech et al., 2012; Figure 3C), in which the limiting supply of PsaA 

determines the rate of PSI biogenesis. 

 

To verify that PsaF is the limiting factor in PSI* maturation into a fully assembled PSI, we 

followed the fate of PSI* in the PSI*-overaccumulating PSAF-RNAi plants. Following one week of 

RNAi induction by ethanol vapor (leading to accumulation of PSI mainly as PSI*), the ethanol vapor 

was removed, thus allowing for the recovery of PsaF synthesis. To unambiguously confirm that PsaF 

provision converts PSI* into mature PSI, ethanol removal was accompanied by the addition of 

lincomycin, thus stopping any de novo synthesis of PSI cores due to blocked synthesis of the 

chloroplast-encoded A, B and C subunits. Consequently, any increase in the abundance of fully 

assembled PSI observed under these conditions must have originated from conversion of the 

previously accumulated PSI* into PSI. Indeed, after six hours of incubation under these conditions 

(absence of ethanol and presence of the chloroplast translational inhibitor lincomycin), the majority 

of the PSI signal (detected by the anti-PsaA antibody) had shifted from PSI* to fully assembled PSI 

(Figure 3D). These results clearly show that PsaF supply represents a limiting step in PSI maturation 

that causes accumulation of PSI* as a relatively stable intermediate. Furthermore, as no new PsaA,B 
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and C can be synthesized during the incubation with lincomycin, any accumulation of mature PSI 

must originate from the core proteins already present in the thylakoids, that can now bind the 

nuclear encoded subunits downstream to PsaF in the assembly process (and whose expression is not 

affected by lincomycin). Thus, our results clearly demonstrate that PSI* is not a dead-end product in 

the PSI assembly pathway, but represents a bona fide assembly intermediate awaiting PsaF 

incorporation.  

 

PSI* contains a complete electron transport chain, but cannot efficiently receive electrons  

The generation of the PSI*-overaccumulating PSAF-RNAi plants enabled us to investigate whether or 

not PSI* is an active PSI in that it is capable of performing electron transport reactions. Upon 

illumination, PSAF-RNAi plants performed P700 oxidation into P700
+, as determined by a change in 

absorbance at near infrared. Despite the nearly complete absence of PsaF, the signal measured in 

thylakoids extracted from these plants was more than half of that measured for thylakoids extracted 

from wild-type plants (Figure 3B). This activity correlates with the PsaA contents in the PSAF-RNAi 

lines which were reduced to nearly half of those present in wild-type plants (Figure 3A). Since the 

vast majority of PsaA in PSAF-RNAi plants accumulates in PSI*, we can conclude that PSI* is capable 

of performing charge separation upon illumination. 

 

To determine whether PSI* contains a fully functional electron transport chain, we 

measured the time needed for P700
+ charge recombination in the absence of an electron acceptor. In 

fully assembled PSI containing the two terminal iron-sulfur clusters FA and FB, charge recombination 

typically occurs within tens of milliseconds. However, when PsaC is not correctly assembled and 

these co-factors are missing, charge recombination occurs much faster, within a few milliseconds 

(Vassiliev et al., 2001; Wittenberg et al., 2013). Charge recombination was found to occur within the 
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tens of milliseconds timescale in thylakoids extracted from both wild-type tissue (t = 68.9 ms ±9.2) 

and PSI*-accumulating PsaF-deficient tissue (t = 48.0 ms ±0.0, Figure 3E), indicating that PSI* 

contains a fully assembled stromal ridge with functional FA and FB clusters. 

 

PsaF has been implicated in binding PC (Fischer et al., 1999). We, therefore, wanted to 

determine whether PSI* contains a functional donor side. To this end, we determined the redox 

equilibration between P700 and PC in intact wild type and PSAF-RNAi plants. Plants were pre-

illuminated for several minutes, to activate the Calvin-Benson cycle and avoid acceptor-side 

limitation in PSI, and to ensure rapid diffusion of PC in the thylakoid lumen (Kirchhoff et al., 2011). 

Then, a short saturating light pulse was applied, to fully oxidize the high-potential chain and reduce 

the plastoquinone pool. At the end of the saturating pulse, the actinic light was switched off, and the 

reduction kinetics of P700
+ and PC were measured. The fully oxidized state of P700

+ and PC was 

normalized to one, and their fully reduced state in darkness was normalized to zero. To 

quantitatively describe the interaction between PC and P700, the normalized reduction kinetics were 

plotted against each other (Figure 3F). The apparent redox equilibration constant (Kapp) was found to 

be lower for the PSAF-RNAi plants (Kapp = 4.8 ±0.9) than that calculated for wild-type plants (Kapp = 

12.7 ±2.2), indicating that, consistent with the absence of the PsaF subunit and its proposed function 

in PC docking, the donor side of PSI* is slightly less efficient in oxidizing PC. 

PSI* was found not to contain the PSI associated antenna proteins (Table 1; Figure 1D). To 

assess the functional coupling of the PSI antenna to PSI*, we measured chlorophyll-a fluorescence 

emission spectra at 77K in the wild type and the PSAF-RNAi plants. The maximum fluorescence 

emission signal from PSI-LHCI (peaking at 733 nm in wild-type tobacco) was significantly shifted to 

shorter wavelengths in the PSAF-RNAi plants (Figure 3G), and the strongly increased emission in the 

range of 730 and 700 nm wavelength, where uncoupled LhcA proteins mainly emit their chlorophyll-

a fluorescence (Castelletti et al., 2003; Croce et al., 2004), indicates that the PSI antenna proteins are 
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not connected to PSI*. 

 

Incorporation of the antenna proteins, and the G and K subunits into assembling PSI 

PSI* identified in young leaf tissue was found to be deficient not only in PsaF, but also in the PSI 

subunits PsaG and PsaK and the PSI-associated antenna proteins (Table 1; Figure 1D; Figure 3G). 

Taking advantage of our PSAF-RNAi plants, we sought to determine if these proteins are able to 

assemble into PSI* in the absence of PsaF or if their incorporation into PSI is dependent on prior 

integration of PsaF into the growing complex. In the PSAF-RNAi plants, the LhcA antenna proteins of 

PSI were found to accumulate mainly as free monomers and dimers (Figure 4A). The small fraction of 

LhcA proteins that was attached to larger complexes was exclusively associated with the residual 

amounts of mature PSI (Figure 4A), suggesting that LHCI attachment requires the transition from 

PSI* to PSI. These results also suggest that the incorporation of PsaF into the assembling 

photosystem facilitates antenna binding, but might not be strictly required for it. Moreover, PsaF 

integration was required for the integration of PsaG into PSI, as evidenced by PsaG being 

undetectable in PSI* even in PSI*-overaccumulating tissue (Figure 4B). Interestingly, in these plants, 

PsaG was found to be associated with two smaller complexes, resembling in molecular weight the 

LHCI monomers and dimers. Previously, PsaG was shown to interact with LhcA1 in the fully 

assembled complex (Mazor et al., 2015; Qin et al., 2015). We, therefore, hypothesize that these two 

lower molecular weight complexes represent another PSI assembly intermediate in which PsaG 

associates with LHCI prior to incorporation into PSI. 
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By contrast, PsaK, which was found to be associated only with fully assembled PSI in wild-

type plants, could be identified in PSI* in the PsaF-deficient plants (Figure 4C). Assembly of PsaK into 

PSI* under the conditions of PSI* overaccumulation indicates that its assembly into the photosystem 

should be independent of that of PsaF and the antenna proteins.  

 

DISCUSSION 

In this work, we have characterized PSI* and show it to be an intermediate complex in the PSI 

assembly pathway. Its identification as an assembly intermediate was facilitated by the comparison 

of photosynthetic protein complexes between developing leaves and mature leaves using high-

resolution 2D electrophoresis techniques. When the photosynthetic apparatus is fully assembled, 

the protein complexes in the thylakoid membrane are highly stable and display very low turnover 

rates (Krech et al., 2012; Hojka et al., 2014). Therefore, assembly intermediates are unlikely to be 

present in readily detectable amounts in mature leaves. To search for PSI assembly intermediates, 

we chose to use young leaves of tobacco, a plant with a high growth rate that produces large leaves 

and substantial amounts of leafy biomass in a relatively short time. This facilitated the excision of 

the growing zone of developing leaves (where active thylakoid biogenesis takes place) and provided 

us with enough material for the large-scale isolation of thylakoid membranes. Together with the use 

of a high-resolution 2D electrophoresis method, this allowed us to identify the PSI assembly 

intermediate characterized here (Figure 1).  

Several lines of evidence strongly support the conclusion that PSI* is a genuine intermediate 

in the assembly pathway of PSI in the thylakoid membrane. First, PSI* is more abundant in 

developing leaf tissue than in fully differentiated tissue (Figure 1). Second, PSI* accumulation is 

dependent on de novo protein synthesis and its relative abundance to mature PSI decreases upon 

inhibition of translation (Figure 2A). Third, pulse-labeled PSI* is rapidly converted into mature PSI in 
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vivo (Figure 2B and C). Fourth, conversion of PSI* into mature PSI is largely blocked upon knock-

down of PsaF, a subunit absent from PSI* and required for the downstream assembly steps (Figure 

3C). Fifth, upon resupply of PsaF in the absence of de novo synthesis of PsaA, PsaB and PsaC, PSI* 

already present in the thylakoids matures into fully assembled PSI (Figure 3D). Finally, accumulation 

of PSI* can be effectively prevented when an upstream step in the PSI biogenesis pathway is made 

rate-limiting, as demonstrated with the PsaA knock-down mutant (Figure 2C). 

A putative late assembly intermediate of PSI was previously identified in exponentially 

growing cells of the unicellular alga Chlamydomonas reinhardtii (Ozawa et al., 2010). It lacked the 

two small PSI subunits PsaK and PsaG (Ozawa et al., 2010). Thus, the C. reinhardtii PSI subcomplex 

might be similar to the tobacco PSI*. The same (or a highly similar) PSI subcomplex in C. reinhardtii 

was suggested to interact with the PSI assembly factor Ycf4 (Ozawa et al., 2009), raising the 

possibility that the Ycf4 protein assists with the incorporation of the final subunits into nearly 

mature PSI complexes. However, the C. reinhardtii subcomplex was found to bind PsaF, even if 

loosely. The dependence of PSI* maturation into PSI on PsaF supply in tobacco suggests PSI* might 

represent an earlier assembly stage compared with the identified C. reinhardtii subcomplex. 

 Like in C. reinhardtii, PsaK also appears to be the last subunit to assemble into PSI 

complexes in cyanobacteria (Dühring et al., 2007). Based on the detection of a short-lived PSI 

complex additionally lacking PsaL, it was proposed that PsaL is the penultimate subunit to integrate 

into cyanobacterial PSI (Dühring et al., 2007). This is in contrast to the assembly pathway in seed 

plants, where PsaL is an abundant component of PSI* (Table 1; Figure 1D) and thus, integrates 

earlier into the plant PSI complex. Indeed, in the PSI complex of seed plants PsaL is not a peripheral 

subunit sensu stricto but, to a large part, covered from the outside by PsaI and PsaH (Qin et al., 2015; 

Mazor et al., 2015). 
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Our data presented here allow us to suggest an improved model for PSI assembly in plants 

(Figure 5). The assembly process begins with the co-translational insertion of the two large reaction 

center subunits PsaA and PsaB, mediated by the Alb3 protein insertase (Göhre et al., 2006; Cai et al., 

2010; Schöttler et al., 2011). The formation of the reaction center dimer (Figure 5) is then followed 

by the addition of the stromal ridge subunits PsaC, PsaD and PsaE. The presence of a fully assembled 

stromal ridge is also supported by the largely functional electron transport chain in PSI*, as 

determined by charge recombination kinetics (Figure 3E). It is not yet clear whether the assembly of 

the LHCII-docking domain (comprised of the subunits PsaL, PsaH and PsaI) occurs in parallel or as a 

subsequent step, but our data presented here suggest that the addition of PsaL and, to some extent, 

PsaH (unfortunately, no functional antibodies could be obtained for PsaI) generates PSI*, a relatively 

stable assembly intermediate that accumulates to substantial amounts in developing leaf tissue. The 

presence of PsaL in PSI* is in agreement with the PSI crystal structure that revealed interactions of 

PsaL with both reaction center subunits as well as with PsaD (Amunts et al., 2010). However, as 

Arabidopsis plants lacking PsaL are relatively unaffected in their growth and photosynthetic 

performance (Lunde et al., 2000), it seems possible that the L subunit plays only a limited role in 

stabilizing PSI complexes during their assembly. 

 

PSI* was found to be largely devoid of PsaF. Forming the PC-docking site, the F subunit was 

postulated to be required for PSI function. In constitutive Arabidopsis PsaF-antisense mutants 

suffering from a similar reduction in PsaF content as the young leaves of our inducible RNAi plants, 

PC oxidation was found to be slowed down. Moreover, overall PSI stability and, in particular, the 

stability of the stromal ridge subunits was impaired. Indeed, many constitutive PsaF knock down 

plants died under autotrophic growth conditions (Haldrup et al., 2000). In our PsaF knock-down 

mutants, the defects in PC oxidation and PSI accumulation were less severe. One major difference is 

that while the Arabidopsis mutants starved under autotrophic growth conditions, in our system the 
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source leaves, which were already fully developed prior to RNAi induction, maintained their 

photosynthetic activity and supported growth of the newly developing leaves. Therefore, possibly, 

our inducible RNAi mutants are less stressed compared with constitutive PsaF knock-down plants. 

However, our data show that under such conditions, loss of PsaF does, to some extent, impact PC 

oxidation (Figure 3F). 

In the absence of PsaF, LhcA proteins were found to accumulate mainly as monomers and 

dimers (Figure 4A). Together with the 77K emission spectra determined for these plants (Figure 3G), 

these data lead us to hypothesize that the association of PsaF with PSI* is needed to facilitate 

binding of LhcA subunits to the complex. PSI* also lacks the two small PSI subunits PsaK and PsaG. 

The binding of the antenna to PSI requires interactions with the subunits PsaG, PsaF, PsaJ and PsaA 

(Mazor et al., 2015). Our results suggest that PsaG might be bound to the antenna proteins prior to 

its integration into PSI, and that the incorporation of both the antenna and the G subunit into PSI is 

facilitated by the prior insertion of PsaF (Figure 4B). However, the presence of the antenna proteins 

was reported not to be required for PsaG and PsaK accumulation (Wientjes et al., 2009), and the 

presence of PsaG was found not to be required for the binding of the antenna to PSI (Jensen et al., 

2002). Taken together, these results imply that PsaG does not function in targeting the antenna to 

the assembling photosystem. Unlike PsaG, it appears that the K subunit readily assembles into PSI 

lacking PsaF. As in wild-type plants no PsaK can be detected in PSI*, it seems possible that the 

addition of PsaF facilitates PsaK incorporation, but to a limited extent (Figure 5). 

Our analysis of PsaF knock-down plants in tobacco revealed that the addition of PsaF to the 

nascent complex assists PSI* to mature into PSI (Figure 3D). Thus, the addition of PsaF to PSI* could 

be a rate-limiting step in PSI assembly, and hence, the cause of PSI* accumulation. In contrast to all 

other PSI subunits, PsaF requires the chloroplast Sec pathway for its integration into the thylakoid 

membrane (Voelker and Barkan, 1995). Other PSI subunits utilize either the signal recognition 

particle pathway (e.g., PsaA, PsaB and the LhcA proteins; Göhre et al., 2006), may insert 
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spontaneously (PsaG and PsaK; Mant et al., 2001; Zygadlo et al., 2006) or are directed to the lumen 

via the Tat pathway (PsaN; Nielsen et al., 1994). Considering that provision of PsaF to PSI* likely 

limits the transition to subsequent steps in PSI assembly, PSI* accumulation could be the result of 

overloading of the Sec pathway with client proteins under conditions of highly active thylakoid 

biogenesis. Besides PsaF, a number of other abundant thylakoid proteins are client proteins of the 

Sec pathway, including several PSII subunits and PC Voelker et al., 1997). It will be interesting to 

determine whether or not manipulation of the Sec pathway and/or of the levels of its other client 

proteins affect PSI* accumulation and the fate of the peripheral, non-essential PSI subunits.  

In sum, our work reported here describes PSI*, a PSI subcomplex, as an intermediate in the 

PSI assembly pathway of vascular plants. PSI* could serve as a fresh entry point into the study of PSI 

biogenesis, which heretofore was not amenable to biochemical investigation. Future work will be 

directed towards the detailed molecular analysis of PSI*, the determination of its content of co-

factors and prosthetic groups and the elucidation of its interaction with PSI assembly chaperones 

(e.g., Ycf3, Y3IP1, Ycf4, PYG7, PPD1, PSA2 and FTSH; Ruf et al., 1997; Boudreau et al., 1997; Stöckel et 

al., 2006; Albus et al., 2010; Krech et al., 2012; Liu et al., 2012; Fristedt et al., 2014) acting upstream 

or downstream of PSI* formation. The experimental approaches that led to the identification of PSI* 

will likely also be applicable to the analysis of the assembly pathways of other multiprotein 

complexes in the thylakoid membrane (e.g., the cytochrome b6f complex and the chloroplast ATP 

synthase) whose biogenesis is currently poorly understood.  
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EXPERIMENTAL PROCEDURES 

Plant material and growth conditions 

Tobacco (Nicotiana tabacum cv. Petit Havana) plants were grown in the greenhouse at an average 

growth light intensity of 300 µE m-2 s-1. PsaA-deficient mutant plants (KD-psaA) were generated by 

stable transformation of the tobacco chloroplast genome as reported previously (Krech et al., 2012). 

Transgenic PsaF-deficient mutant plants (PSAF-RNAi) were produced by nuclear transformation of 

tobacco plants with a standard hairpin-type RNAi construct (a full characterization of the mutant 

plants will be reported elsewhere). The RNAi construct was placed under the control of an ethanol-

inducible promoter, as described previously (Hojka et al., 2014). Arabidopsis thaliana ecotype Col-0 

plants were grown in growth chambers at a light intensity of 120 µE m-2 s-1 in a 8 h light/16 h dark 

regime at 23°C. 

 

Thylakoid extraction and isolation of thylakoid-rich membrane fractions 

Thylakoid membranes were isolated according to previously published procedures (Schöttler et al., 

2004). Following isolation, thylakoids were washed in 25BTH20G buffer (25 mM Bis-Tris pH 7.0, 20% 

glycerol v/v) supplemented with 1M NaCl, and then collected again by centrifugation at 20,000 g. For 

isolation of thylakoid-rich membrane fractions, leaf material was ground with a mortar and pestle in 

isolation buffer (50 mM MES pH 6.1, 5 mM MgCl2, 30 mM KCl, 350 mM D-Sorbitol). The homogenate 

was filtered through gauze and Miracloth (Millipore, www.merckmillipore.com) and the membranes 

were collected by centrifugation for 20 min at 20,000 g. All steps were carried out at 4°C. The 

isolated membranes were stored in 25BTH20G buffer at -80°C.  
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Gel electrophoresis and immunoblotting 

Sample preparation and gel electrophoretic separation of membrane protein complexes by blue-

native polyacrylamide gel electrophoresis (BN-PAGE) were performed according to published 

procedures (Järvi et al., 2011). Membranes were solubilized with 1% n-dodecyl β-D-maltoside (w/v). 

For a second dimension SDS-PAGE, BN-PAGE gels were incubated for 1 h in 100 mM Tris pH 6.8, 1% 

SDS (w/v) and 1% β-mercaptoethanol (v/v), followed by washes with 100 mM Tris pH 6.8. Denatured 

proteins were separated in 8% or 10% SDS-polyacrylamide (PAA) gels. For immunoblotting, proteins 

were transferred to Hybond-P polyvinylidene difluoride membranes (GE Healthcare, 

www.gelifesciences.com) using standard protocols. Immunochemical detection was performed with 

specific antibodies using the ECL Plus system (GE Healthcare, www.gelifesciences.com). Polyclonal 

antibodies against PsaA, PsaB, PsaC, PsaD, PsaF, PsaK, PsaL and LhcA1 (produced in rabbits) were 

purchased from Agrisera (www.agrisera.com). Goat anti-rabbit IgG (H+L)-horseradish peroxidase 

conjugate (Bio-Rad, www.bio-rad.com) was used as a secondary antibody. 

Chemiluminescence was imaged by a Syngene G:BOX (www.syngene.com). Measurements 

were stopped prior to signal saturation, thus ensuring that the signals collected were in the linear 

range. Quantification was carried out using the accompanying GeneTools software. 

 

Protein identification by mass spectrometry 

Gel slices excised from PAA gels were cut into 10 pieces each and subjected to tryptic protein 

digestion according to a standard protocol (Shevchenko et al., 2006). The resulting peptides were 

desalted using a C18 Ziptip (Millipore, www.merckmillipore.com) and resuspended in 5% (v/v) 

acetonitrile and 0.1% (v/v) trifluoroacetic acid. Peptides were then analyzed by liquid 

chromatography (Proxeon EASY nLC, Thermo Fisher Scientific, San Jose, CA) using a Chromolith 

CapRod RP-18e 150-0.2 (Merck, Darmstadt, Germany) column. To this end, the peptides were 
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separated by a 30 min linear acetonitrile gradient (0-32% v/v) followed by a final elution step with 

64% (v/v) acetonitrile for 5 min. The HPLC was coupled via a nano ESI ion source to a high-resolution 

Orbitrap hybrid mass spectrometer (LTQ-Orbitrap, Thermo Fisher Scientific). The spectral acquisition 

for the full scan MS spectra was performed at a full-width half-maximum resolution of 60,000 in the 

Orbitrap section of the MS, while the data-dependent MS/MS, with up to five spectra per preceding 

full scan, were obtained in the linear ion trap of the LTQ. Database searches were performed by 

Mascot 2.2 (Matrix Science Ltd., London, UK; www.matrixscience.com) against an in-house database 

of plants proteins with the following parameters: proteolytic enzyme: trypsin allowing up to one 

missed cleavage; maximal precursor and fragment ion errors: 10 ppm and 0.8 Da; peptide charge: +2 

or +3; variable modification: oxidation of methionine. Standard scoring was used. 

 

Inhibition of protein biosynthesis in the cytosol and in chloroplasts 

Leaf disks (1.4 cm diameter) were cut from 5-6 week old plants and incubated in tap water with or 

without inhibitors of protein biosynthesis. Chloroplast translation was inhibited with 2.5 mg/mL 

lincomycin (Sigma, www.sigmaaldrich.com), cytosolic translation was blocked with 20 µg/mL 

cycloheximide (Sigma). To inhibit protein biosynthesis in both compartments, the two antibiotics 

were combined. The leaf disks were incubated in the antibiotic solutions for 3 h in the dark, followed 

by 1h incubation at growth light intensity and extraction of thylakoid membranes.  

 

In vivo labeling of thylakoid proteins 

Radioactively labeled methionine was incorporated into detached Arabidopsis leaves (via their 

petioles) overnight by incubation in a solution containing 20 µCi mL-1 [35S]-methionine and 0.4% (v/v) 

Tween 20, followed by labeling of de novo synthesized proteins at 120 µE m-2 s-1 light intensity and 

23°C for 2 h. Subsequently, the leaves were washed with unlabeled methionine (10 mM methionine, 
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0.4% (v/v) Tween 20) followed by incorporation of unlabeled methionine into the leaves by 

incubation in the same solution for 1 h in the dark. The chase experiment was performed by 

subsequent incubation for 2 h in the light (120 µE m-2 s-1) at 23°C. Afterwards, samples were 

collected, thylakoidal protein complexes were separated on 2D gels, and the synthesis and 

degradation of the PSI reaction center proteins PsaA and PsaB was assessed by autoradiography 

using X-ray films. Quantification of differences in accumulation of labeled proteins was carried out 

by densitometric analysis of the films with a FluorChemTM 8000 image analyzer (Alpha Innotech 

Corp., San Leandro, CA). The standard error was calculated for the PSI*/PSI ratios.  

 

Induction and release of RNAi suppression of PSAF 

Leaf disks were cut from PSAF-RNAi plants after one week of RNAi induction with ethanol vapor. The 

leaf disks were washed twice in tap water to remove traces of ethanol, and then incubated in tap 

water containing 2.5 mg/mL lincomycin for 2 h in the dark, followed by a 6 h incubation at 25 µE m-2 

s-1. Thylakoid membranes were then extracted and analyzed. 

 

Biophysical analyses  

PSI was quantified from light-induced difference absorbance changes of the chlorophyll-a dimer 

special pair, P700. Thylakoids equivalent to 50 µg chlorophyll mL-1 were solubilized in the presence of 

0.2 % (w/v) β-dodecylmaltoside, 10 mM sodium ascorbate as electron donor and 100 µM 

methylviologen as electron acceptor. Photooxidation was achieved by the application of a light pulse 

of 250 ms length (2000 µE m-2 s-1). Measurements were performed with the PC-P700 version of the 

Dual-PAM instrument (Heinz Walz GmbH, www.walz.com; Schöttler et al., 2007). PSI charge 

recombination kinetics were measured as reported previously (Wittenberg et al., 2013). For intact 

leaf redox equilibration measurements, leaves were pre-illuminated with saturating light. This 
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ensures that the Calvin-Benson cycle is fully activated, thus avoiding an acceptor-side limitation of 

PSI. Then, a short saturating light pulse (5000 μE m-2 s-1, 250 ms length) was applied, to achieve full 

oxidation of both PC and P700. At the end of that light pulse, the actinic illumination was completely 

switched off, and the reduction kinetics of PC and P700 were measured with a PC-P700 version of the 

Dual-PAM instrument. 

77K chlorophyll-a fluorescence emission spectra of freshly isolated thylakoids equivalent to 

10 µg chlorophyll mL-1 were measured using an F-6500 fluorometer (Jasco GmbH, 

www.jascoinc.com). The sample was excited at 430 nm wavelengths with a 10 nm bandwidth, and 

the emission spectrum between 660 and 800 nm wavelengths was recorded with a bandwidth of 1 

nm. The spectra were corrected for the instrument’s response and normalized to the PSII-LHCII 

maximum emission at 686 nm wavelength. 
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Short Supporting Information Legend 

Supplemental Figure 1. Phenotype of PSAF-RNAi plants following one week of RNAi induction by 

ethanol vapor. 
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TABLES 

Table 1. Identification of PSI subunits in mature PSI (PSI), PSI* and in a control segment of the same 

gel (Background) by MS/MS analysis.  

  

Protein 

PSI PSI* Background 

MS P MS P MS P 

PsaA 553 31 223 16 176 9 

PsaB 491 52 138 6 108 3 

PsaD 177 3 104 3 n.d. n.d. 

PsaE 214 11 117 4 n.d. n.d. 

PsaF 300 19 38 3 n.d. n.d. 

PsaG 96 3 n.d. n.d. n.d. n.d. 

PsaK 45 7 n.d. n.d. n.d. n.d. 

PsaL 127 4 60 2 n.d. n.d. 

Lhca1 105 12 n.d. n.d. 43 2 
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Lhca3 180 9 n.d. n.d. 90 2 

Lhca4 206 11 n.d. n.d. n.d. n.d. 

Trypsin1 119 114 119 133 118 128 

   

1As unrelated control protein, trypsin (the protease used for in-gel protein digestion) is also 

included. Proteins were identified using Mascot 2.2. MS: Mascot score; P: number of peptides; n.d.: 

not detected.  

 

FIGURE LEGENDS 

 

Figure 1. Characterization of PSI*, a PSI sub-complex that contains only a subset of PSI subunits, and 

is enriched in young tissue in tobacco (Nicotiana tabacum) plants. 

(A,B) Plant material used to extract thylakoids from mature (A) and young (B) leaf tissue, 

respectively. White arrows indicate the parts of the leaves that were harvested. The tip is the 

ontogenetically oldest part of the leaf and, therefore, the distal parts were taken from mature leaves 

(A). By contrast, the leaf base is the ontogenetically youngest part and was excised from the young 

leaves (B). Scale bars: 5 cm. 

(C) BN-PAGE analysis of thylakoid membrane protein complexes solubilized with the non-ionic 

detergent DDM. PSI*, a faint band representing a protein complex at 500 kDa can be seen to be 

enriched in the young leaf tissue. The sizes of the marker bands of the molecular weight marker 

(MW) are given in kDa. Protein samples equivalent to 20 µg chlorophyll were loaded. SC: 

supercomplexes; I: PSI; II(2): PSII dimers; II(1): PSII monomers; Cyt b6f: cytochrome b6f complex;  

LII(3): LHCII trimers; LII(1): LHCII monomers. 
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(D) Determination of the protein subunit composition of PSI* by immunoblot analysis of thylakoid 

protein complexes isolated from young leaf material. Protein complexes were separated by 2D BN-

PAGE/SDS-PAGE analysis and PSI subunits were detected with specific antibodies. Note that PSI* 

does not contain detectable amounts of the PSI subunits PsaF, PsaK, and of the light-harvesting 

antenna protein LhcA3. 

(E) Decreased PSI* abundance in mature leaf tissue. The presence of PSI* in the thylakoids of mature 

leaves was determined by immunoblot analysis using antibodies against subunits identified as PSI* 

components. While PSI* is highly abundant in young leaves (cf. panel A), it is barely detectable in 

mature leaves. Samples containing 20 µg chlorophyll were analyzed. 

 

Figure 2. PSI* is a PSI assembly intermediate. 

(A) Dependence of PSI* accumulation on de novo protein biosynthesis. Immunoblot analysis using 

specific antibodies against the PsaA subunit reveals that PSI* amounts decrease in the presence of 

protein synthesis inhibitors that block translation in the chloroplast (lincomycin: lin) and/or the 

cytoplasm (cycloheximide: cyc). 

(B) Confirmation of PSI* as an assembly intermediate by in vivo pulse labeling in Arabidopsis leaves. 

Fresh leaves were pulse labeled for two hours with [35S]-methionine followed by a two-hour chase in 

the presence of unlabeled methionine. Autoradiography after separation of protein complexes by 2D 

BN-PAGE/SDS-PAGE analysis shows that PSI* is detected during the pulse, but largely disappears 

after the chase. Migration of the different complexes in the first dimension is indicated as in Figure 

1. The identity of the most prominently labeled proteins is indicated in the second dimension. Filled 

arrows denote the identifiable PSI subunits PsaA/B from mature PSI complexes. Open arrows show 

the location of these subunits in PSI*. A representative 2D gel from three independent biological 

replications is shown. 
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(C) Quantitation of the signals originating from PsaA/B in PSI* relative to PSI. The PsaA/B signal 

intensities from PSI* and fully assembled PSI were measured for both the pulse and the chase 

periods, and the PSI*/PSI ratio of the signals was calculated. Data are presented with SEM, and 

significant differences according to Student’s t-test are denoted by an asterisk (p < 0.05). N=3. 

 

Figure 3. The PsaF subunit is required for the transition from PSI* to PSI. 

(A) Immunoblot analysis of wild-type tobacco plants and transgenic PsaF-deficient mutant plants 

(PSAF-RNAi) following ethanol induction of PSAF gene expression. The blots were loaded based on 

chlorophyll (Chl) amounts, and probed with anti-PsaF and anti-PsaA antibodies. While PsaF is absent 

from the PSAF-RNAi plants, PsaA still accumulates to substantial amounts.  

(B) PSI contents of wild type and PSAF-RNAi plants as determined by differential absorbance 

spectroscopy. The measured contents represent photoactive PSI capable of charge separation. Data 

are presented with SEM, and significant differences according to Student’s t-test are denoted by two 

asterisks (p < 0.01). Nwild type=10, NPSAF-RNAi=5. 

(C) Immunoblot analysis of 2D BN-PAGE/SDS-PAGE-separated thylakoid samples from wild-type 

tobacco plants, transgenic PsaF-deficient mutant plants (PSAF-RNAi) and transplastomic PsaA-

deficient mutant plants (KD-psaA; Krech et al., 2012). The blots were probed with anti-PsaA and anti-

PsaD antibodies. Note that PSI* strongly overaccumulates in thylakoids of the PsaF-deficient mutant. 

By contrast, when PsaA supply limits PSI biogenesis, no PSI* is detected, indicating its rapid 

conversion into mature, fully assembled PSI. Samples containing 20 µg chlorophyll were analyzed. 

(D) PsaF is the limiting factor in the maturation of PSI* into PSI. Induction of RNAi suppression of 

PSAF expression was abrogated by removing the ethanol vapor in the presence of 2.5 mg/mL 

lincomycin. Immunoblot analysis of 2D BN-PAGE/SDS-PAGE-separated thylakoid samples probed 

with anti-PsaA antibodies revealed that, after 6 hours without ethanol, a large fraction of PsaA 
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previously found in PSI* had matured and is now found in fully assembled PSI.  

(E) Charge recombination kinetics of PSI from wild type and PSAF-RNAi plants following a light pulse 

reveals similar recombination times, within the tens of millisecond range, indicating that the PSI in 

both plants contains a the terminal iron sulfur clusters FA and FB, and thus a fully assembled electron 

transport chain.  

(F) Redox equilibration between PC and PSI. The reduced state of PC and P700 in darkness was 

normalized to zero, and their fully oxidized state during a saturating light pulse was normalized to 

one.  When the reduction kinetics of PC and P700
+ are plotted against each other, PSI from PSAF-RNAi 

plants, largely composed of PSI*, has a lower apparent redox equilibration constant (Kapp) than the 

wild type, indicating a slightly less efficient reduction of the PSI donor side by PC. 

(G) 77 K chlorophyll-a fluorescence emission spectra of wild type and PSAF-RNAi plants. PSAF-RNAi 

plants show a clear blue shift in their PSI emission peak indicating PSI antenna proteins that are 

disconnected from PSI*. 

 

Figure 4. Assembly of peripheral subunits into PSI*. 

(A) Immunoblot analysis of 2D BN-PAGE/SDS-PAGE-separated thylakoid protein complexes from the 

wild type and PSAF-RNAi plants with anti-LhcA1 antibodies. Absence of LhcA1 from PSI* and 

presence of large amounts of free PSI antenna proteins (accumulating mainly as monomers and 

dimers) when PsaF amounts are limiting demonstrate that antenna proteins attach only to mature 

PSI. LI(1): LhcA monomers; LI(2): LhcA dimers. Samples containing 20 µg chlorophyll were analyzed. 

(B) Immunoblot analysis of the same samples with anti-PsaG antibodies. PsaG does not associate 

with PSI*. However, in addition to its migration with mature PSI, PsaG is found to co-migrate with 

protein complexes of similar size as the LhcA1 monomers and dimers. 
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(C) Immunoblot analysis of the same samples with anti-PsaK antibodies. While in wild-type tissue, 

PsaK is identified only in mature PSI, the majority of PsaK is found in PSI* in PSAF-RNAi plants. 

 

Figure 5.  Updated model of PSI assembly. 

PSI assembly is thought to begin with the co-translational insertion of the two large core subunits 

PsaA and PsaB into the thylakoid membrane. Formation of the reaction center protein dimer is 

followed by the integration of the three “stromal ridge” subunits (PsaC, PsaD and PsaE) and the 

three subunits forming the LHCII-docking site (PsaH, PsaI and PsaL – note that, due to its small size, 

PsaI could not be detected in this study and currently is only assumed to co-assemble with PsaH and 

PsaL). The resulting complex, PSI*, is reasonably stable and can be detected as an assembly 

intermediate under conditions of high de novo synthesis of PSI and/or when a component required 

for the subsequent assembly steps is present in limiting amounts. At this point, PsaK can already 

attach to the growing PSI complex, although, in wild-type plants, the majority of it appears to be 

incorporated later. The next subunit to assemble into PSI* is PsaF, which is required for the 

transition from PSI* to PSI. Incorporation of PsaF is accompanied or followed by the addition of the 

remaining PSI subunits and attachment of the LHCI antenna proteins. The latter preassemble with 

the PsaG subunit into another intermediate subcomplex. Fully assembled, mature PSI is 

distinguished from PSI* by the presence of the G, F, J, K and N subunits and the four LhcA proteins 

forming the LHCI antenna. 
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