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Optimization of periodic single-photon sources based on combined multiplexing
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We consider periodic single-photon sources with combined multiplexing in which the outputs of several
time-multiplexed sources are spatially multiplexed. We give a full statistical description of such systems in order
to optimize them with respect to maximal single-photon probability. We carry out the optimization for a particular
scenario which can be realized in bulk optics and its expected performance is extremely good at the present state of
the art. We find that combined multiplexing outperforms purely spatially or time-multiplexed sources for certain
parameters only, and we characterize these cases. Combined multiplexing can have the advantages of possibly
using less nonlinear sources, achieving higher repetition rates, and the potential applicability for continuous
pumping. We estimate an achievable single-photon probability between 85% and 89%.
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I. INTRODUCTION

Applications in quantum information science [1–13] and
quantum optics [14–18] generate an intensive research interest
aiming at the construction of periodic single-photon sources
(PSPS). Beside the deterministic single-photon sources
based on various single quantum emitters such as single
atoms [19,20], ions [21,22], molecules [23,24], diamond color
centers [25–27], and quantum dots [28–30], probabilistic
single-photon sources offer an alternative way to address this
problem. This approach is based on the generation of correlated
photon pairs. The detection of one of the members of the pair,
usually termed as the idler, heralds the presence of the other
one, referred to as the signal. In the literature there are two
typical ways of realizing a heralded single-photon source
(HSPS) based on correlated photon pair generation. The two
physical phenomena applied for pair generation are sponta-
neous four-wave mixing (SFWM) in optical fibers [31–34]
and spontaneous parametric down-conversion (SPDC) in bulk
crystals [35–39] or waveguides [40–42]. These processes can
yield highly indistinguishable single photons in an almost ideal
single mode with known polarization [33,35,36,41,43].

The major issue of these sources is the probabilistic
nature of pair generation. Though the periodicity can be
ensured by periodic pumping, the number of the generated
photon pairs still remains uncertain. In the case of pulsed
SPDC-based HSPS there is a theoretical limit of single-photon
probability P1 � 37% (assuming Poissonian statistics for the
generation of photon pairs), which is insufficient for most of
the applications [44,45].

One way to overcome this problem and increase the
single-photon probability is spatial multiplexing in which
several HSPSs are used in parallel [44,45]. The decrease of the
intensity of each source improves the single-photon probability
compared to that of multiphoton presence. On the other hand
the absence of photons becomes more likely, too. Multiplexing
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compensates for this latter by making use of one of the photons
generated in either of the sources. In principle, the increase in
the number of the sources and the decrease of their intensity
improves the single-photon probability. In an ideal lossless
system this probability tends to one asymptotically. Losses,
however, impose a limitation on this approach. In addition,
the growing number of required HSPSs appears as a drawback
in an experimental implementation. Spatial multiplexing has
been realized in experiments indeed, yet with only up to four
heralded single-photon sources [46–49].

Another possible way of enhancing single-photon probabil-
ity is time multiplexing. Compared to spatial multiplexing, the
role of the multiplexed unit is overtaken by time windows
in this case; otherwise the basic idea is the same. The
heralded pulse should leave the time-multiplexed source
precisely at the end of the time period, thus a proper delay
should be introduced. The controlled delay system can be
realized with a storage cavity or loop [50–54] or with binary
division strategy [55–57]. Time-multiplexed arrangements can
be pumped either with pulses or continuously. The latter
may have benefits for obtaining a real single-mode source of
indistinguishable photons. The increase of the time windows,
which is necessary in this system in order to improve the
single-photon probability, however, introduces a fundamental
limitation in the achievable repetition rate.

In actual experimental realizations, the applied optical
elements are not ideal; losses have to be taken into ac-
count [56–58]. In Ref. [57] we have introduced a theoretical
framework describing all the spatial and time-multiplexed
single-photon sources realized or proposed thus far. Our sta-
tistical description takes into account all the possible relevant
loss mechanisms. We have shown there that multiplexed
sources can be optimized to reach maximal single-photon
probability. This can be achieved by the appropriate choice
of the number of multiplexed units of spatial multiplexers or
multiplexed time intervals, and the input mean photon number.
Furthermore, a novel time-multiplexed scheme based on an
SPDC source was proposed by us, which can be realized
in bulk optics. This system could provide a single-photon
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probability of 85% with a choice of experimentally feasible
loss parameters.

The ultimate goal of this line of research is to improve
the single-photon probability in realistic systems. Hence, as
a logical continuation of the outlined antecedents, in this
paper we consider combined multiplexing: the simultaneous
application of both approaches in the same arrangement.
Though the idea of combining spatial and time multiplexing
has already been introduced in the literature [59–61], a
full statistical analysis of these systems has not yet been
performed. In Ref. [59] the authors have carried out a Monte
Carlo simulation and optimization of a combined multiplexing
arrangement, in which the outputs of several storage cavity
time multiplexers are spatially multiplexed. In their model,
however, losses of the spatial multiplexers were ignored.
Reference [60], presenting actual experiments, includes an
analysis of rather special arrangements, including only a single
SPDC source, but pumped from two sides, which is equivalent
to the application of two independent nonlinear sources.
Reference [61] focuses on the study of a time multiplexer
using variable optical delay lines (instead of binary division
networks). The arrangements studied in the latter two papers
also contain a special kind of combined multiplexing in which
the output of spatial multiplexers is multiplexed in time. The
possible drawback of such hybrid systems is that they can be
pumped with pulses only.

In the present paper we analyze the most general scheme
of combined multiplexing. We assume that the outputs of
several time-multiplexed sources are spatially multiplexed.
These kind of combined multiplexers reserve the advantage of
the time multiplexers that they can be pumped continuously.
We give a detailed statistical description of combined mul-
tiplexing taking into account the possible loss mechanisms.
The derived expressions are applicable for combined systems
containing any kind of time and spatial multiplexers. Our
statistical description can be used for optimizing the setup
with respect to single-photon probability. We analyze in detail
a particular arrangement which can be realized in bulk optics
and performs potentially the best at the present state of the
art. We show how combined multiplexing can overcome
the issues of the number of required nonlinear photon pair
sources in spatial multiplexing, and repetition rate in time
multiplexing. We characterize the cases for which combined
multiplexers outperform purely spatially or time-multiplexed
sources concerning single-photon probability.

The paper is organized as follows. In Sec. II we describe
general combined multiplexing systems, and we also introduce
the particular one which we shall study in more detail.
Section III is devoted to the statistical description of combined
multiplexers, while in Sec. IV our results regarding their
optimization are described in detail. Finally, in Sec. V our
results are summarized and conclusions are drawn.

II. COMBINED MULTIPLEXING

The idea of combined multiplexing is to use the output of
several time-multiplexing arrangements as inputs of a spatial
multiplexer in order to realize a periodic single-photon source.
The general scheme is depicted in Fig. 1. In the figure TMk

denotes the kth time multiplexer while the spatial multiplexer
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FIG. 1. Scheme of the combined multiplexer. TMk is the kth time
multiplexer, Dk’s are detectors, PRk’s are photon routers. ik and sk

denote the idler and signal arm of the kth nonlinear photon pair source.
Dashed lines represent electronic control lines.

is realized by the photon routers PRi . The scheme of the
time multiplexer is not specified in this configuration, any
of the known types can be used. The details of different time
multiplexers are described in Refs. [50–57].

The operation of the arrangement can be summarized as
follows. The combined system is fed by M continuous or
pulsed nonlinear, e.g., SPDC sources, any of them producing
completely correlated photon pairs in two modes. The idler
mode ik is detected by a detector Dk within measurement time
intervals (time windows) of length �t . The observation time
covered by N time windows is less than or equal to the desired
period T of the PSPS (N�t � T ). When the detector fires, the
presence of a number of photons is ensured in the given time
window in the signal mode sk . These heralded photons enter
the time multiplexer that delays them appropriately to arrive at
its output at the end of the time period T . Hence, the output of
a single unit TMk consists of a periodic train of photons with
a period of T . We assume without loss of generality that the
time multiplexers in the combined multiplexer are identical
and their time period is synchronized.

The outputs of the time multiplexers are directed to the
inputs of the spatial multiplexer realized by a sequence of
routers. A photon router PRi has two input ports and a single
output. Combining multiple routers, a spatial multiplexer with
a number of input ports being powers of 2 and a single output
port can be realized, as it is presented in Fig. 1. The operation
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FIG. 2. Scheme of the bulk optical photon router. PCs denote
Pockels cells and PBS is a polarizing beam splitter. Vr denotes the
reflection efficiency and Vt the transmission efficiency of the PBS.

of the spatial multiplexer is governed by a priority logic which
forwards just a single input mode to the output.

From the point of view of our previous results [57] stating
that a time multiplexer built with bulk optical elements
can have the highest single-photon probability, it seems to
be interesting to analyze spatial multiplexing realized with
bulk optics as well. Accordingly, we will consider a photon
router realized in the way depicted in Fig. 2 for the detailed
analysis of a particular setup presented in Sec. IV. This router
contains Pockels-cell PC and a polarizing beam splitter PBS.
The chosen mode is selected by the PBS according to the
polarization set by a control logic via the PCs. As the reflection
efficiency Vr and transmission efficiency Vt of a PBS are
generally different, each arm of the whole spatial multiplexer
built from these blocks will have a given, possibly different
transmission probability.

At the end of the time period T it is likely that there are
more than one time multiplexers from which heralded signal
photons are expected to arrive at the corresponding input of
the spatial multiplexer. The detectors provide information on
the input arm and the time window in which the heralding
event occurred. The priority logic of the spatial multiplexer is
responsible for forwarding only one of the input modes where
the presence of signal photons is predicted by the detector to
the output. Taking into account the special characteristics of
the spatial multiplexer described above, this control logic has
two options for determining the priority. It can simply choose
the mode in which a detection event first occurred ignoring the
fact that the arms of the spatial multiplexer can have different
losses. It seems obvious, however, that the logic should rather
choose the arm of the spatial multiplexer with the highest
net transmission probability (i.e., lowest loss). Our theoretical
description presented in the next section shall cover both of
these options.

III. STATISTICAL DESCRIPTION
OF COMBINED MULTIPLEXERS

In what follows we set up the theoretical framework to
calculate the performance of the combined systems in argu-
ment. First we describe our improved combined multiplexing

system, in which the spatial multiplexer arm with the lowest
loss is chosen. For a practical realization we may label the time
multiplexers in an order of increasing loss parameters of the
corresponding arms of the spatial multiplexer. Thus at the end
of a time period the output of the time multiplexer having
lowest labeling number and producing heralded photons
expectedly, is directed to the output. Now, there are two
possibilities. If these labeling numbers correspond to different
losses, then the logic will automatically choose the lowest
loss. If the labeling numbers correspond to the same loss, then
the logic simply chooses any of the multiplexers where the
heralding event occurred, say, e.g. the one with the lowest
label.

Assume that M (power of 2) time multiplexers are spatially
multiplexed, and each of them has N time windows. For a given
time window, let us denote by P0 the probability of the event
that no photon is detected, and let Pj be the probability of the
event that j signal photons enter the system from the signal
mode of the nonlinear photon pair source upon a detection
event in the idler. We calculate the probability P (i) that exactly
i photons emanate from the output of the whole arrangement
in a single period. We have, from elementary considerations,

P (i) = P MN
0 δi,0

+
∞∑

j=1

M∑
k=1

N∑
n=1

(
j

i

)
P

N(k−1)
0 P n−1

0 PjV
i
nk(1 − Vnk)j−i .

(1)

The first term contributes only to the probability P (0) corre-
sponding to the case where no photons are detected during the
whole period. The second term stands for the case when, even
though there are j photons emerging from the nonlinear source
of the kth time multiplexing unit in the nth time window, only i

of them reaches the output due to the losses of the multiplexing
system. The powers of P0 correspond to the choice of the
priority logic under consideration, that is, accepting the signal
photon emerging from the time multiplexer with the lowest
labeling number k. The N (k − 1)st power of P0 describes the
case when no photon pairs were produced in k − 1 sources
in the whole time period while the (n − 1)st power means
that the heralded photons appeared in the nth time window
of the kth source. The summations go over all the possible
values of the number of incoming heralded photons j , spatially
multiplexed time multiplexers k and time windows n. Losses
are described by the parameters Vnk: the net transmission (i.e.,
total probability of transmission) for the nth time window and
the kth spatial multiplexer arm. This quantity can be obtained
in a product form,

Vnk = VnVk, (2)

where Vn denotes the transmission probability corresponding
to the nth time window, and Vk is the transmission probability
of the kth spatial arm.

Now we describe, in comparison, the other case in which
the logic of the spatial multiplexer waits until any heralding
photons are detected somewhere in the system. Then it
automatically routes the first arriving heralded photons to the
output. In the case when multiple detectors click in the same
time window, the time multiplexer with the lowest labeling

033853-3



BODOG, ADAM, MECHLER, SANTA, AND KONIORCZYK PHYSICAL REVIEW A 94, 033853 (2016)

number will be directed to the output. The main difference
between this approach and the previous one is that the logic
does not wait until the end of the time period; at the very first
detection of heralding photons the whole system shuts. The
output probabilities to be compared with those in Eq. (1),

P (i) = P MN
0 δi,0

+
∞∑

j=1

M∑
k=1

N∑
n=1

(
j

i

)
P

M(n−1)
0 P

(k−1)
0 PjV

i
nk(1 − Vnk)j−i .

(3)

Note the difference in the powers of P0 compared to the
previously described priority logic. In this case, the M(n − 1)st
power means that no heralding events occurred in the first
n − 1 time windows in any of the sources. The (k − 1)st power
says that the kth source provided a photon pair in the nth time
window.

Equations (1) and (3) are capable of describing any kind
of combined multiplexer operating with the corresponding
priority logic and they can be used for optimizing such systems
in order to produce maximal single-photon probability. These
expressions are valid even for arrangements containing spatial
multiplexers having configurations differing from the one
presented in Fig. 1, e.g., for the chained scheme presented
in Refs. [58,62]. In that scheme of spatial multiplexer the
number of inputs M is arbitrary. For M = 1 or N = 1 these
equations are able to describe the standalone time and spatial
multiplexers, respectively. In these limits Eqs. (1) and (3)
reduce to Eq. (1) of Ref. [57] describing the standalone
multiplexers. The explicit form of the probabilities Pj in
these expressions are determined by the properties of the
detector and the nonlinear source while the parameters Vnk

depend on the practical implementation of the spatial and
time multiplexers, that is, on the parameters of the used
optical elements and the geometry of the system. So the
presented framework can describe various realizations of
combined multiplexing such as bulk optical, waveguide-based,
and integrated configurations.

To proceed, let us unfold these parameters for a particular
arrangement that we will analyze in detail in the next
section. In order to achieve the highest performance, as inputs
of the spatial multiplexer we consider those kind of bulk
time multiplexers based on binary division which have been
analyzed in Ref. [57]. Accordingly, we assume SPDC sources
producing photon pairs with Poissonian distribution and the
use of standard threshold detectors and detection efficiency
VD . We will use the expressions presented in Eqs. (3) and (4)
of Ref. [57] for the probability Pj that j photons enter the
arrangement upon an idler detection event.

Let us turn our attention to the calculation of the total trans-
mission probability, that is, the net transmission probability
Vnk for the nth time window and kth spatial multiplexer arm.
The transmission probability corresponding to the nth time
window for the considered bulk setup (see Figs. 3 and 4 in
Ref. [57]) reads

Vn = V h
r V

(l−h)
t V (N−n)/N

p Vb, (4)

where h is the Hamming weight of N − n (the number of ones
in its binary representation), and l = log2 N . The coefficient
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FIG. 3. The achievable maximal single-photon probability P (1) at
the optimal choice of the input mean photon number λopt as a function
of the number of multiplexed time windows N on semilogarithmic
scale for various numbers of spatially multiplexed time multiplexers
M . Loss parameters are the following: Vr = 0.996, Vt = 0.97,
Vp = 0.95, Vp0,S = 0.996, VD = 0.9, Vb = 1. Points connected
with continuous lines correspond to single-photon probabilities of
combined multiplexers operating with the priority logic choosing the
photon in the arm of the spatial multiplexer with the lowest loss
and points with dotted lines to the one which simply routes the first
arriving photon to the output.

Vb is a basic generic transmission, independent of the nth time
window, which may be due to, e.g., the loss of the optical
switches controlling the path of the signal photon, etc. The
reflection and transmission efficiencies of the polarization
beam splitters are denoted by Vr and Vt , respectively. We
remark that in our analysis in general we reasonably suppose
that the polarizing beam splitters used in the spatial and time
multiplexers are identical. Therefore we use the same notation
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FIG. 4. The achievable maximal single-photon probability P (1) at
the optimal choice of the input mean photon number λopt as a function
of the number of multiplexed time windows N on semilogarithmic
scale for various numbers of spatially multiplexed time multiplexers
M . Loss parameters are the following: Vr = 0.996, Vt = 0.97, Vp =
0.95, Vp0,S = 0.985, VD = 0.9, Vb = 1.
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for the transmission and reflection efficiencies Vt and Vr for
both multiplexers. In certain cases, however, when we assume
in our analysis that these parameters differ for the spatial
multiplexer we use the notation Vt,S and Vr,S in our calculations
for the parameters of the PBSs used in the spatial multiplexer.
The signal photons may be absorbed or scattered out during
the propagation in the medium. This loss is taken into account
with the propagational transmission efficiency Vp. The value
of Vp corresponds to the longest delay which can be introduced
by the bulk time multiplexer.

We assume that the spatial multiplexer is built up from
photon routers depicted in Fig. 2. We consider each router
to be identical. When building up the multiplexer from the
routers according to the scheme in Fig. 1, the role assignment
of the inputs of each router (that is, which one is considered
as input 1 and which one as input 2) may depend on
the actual experimental scenario. Therefore the transmission
characteristics of a given arm shall depend on the particular
setup, but the transmission probability V ′

k originated from the
reflection and transmission connected to the PBS will always
be described by a product of the form V

q
r V s

t , where q is the
total number of reflections, and s is that of the transmissions
in the given arm. Moreover, as in the case of M spatial
arms we always have m = log2 M “levels” of the system, and
q + s = m, the final set of possible transmissions is the same,
but it arises in an order depending on the above mentioned
particular choice. In order to configure priority logics we
evaluate all these data and put them into a descending order.
Then we relabel the arms according to this new ordering.
Assuming that Vt < Vr , the transmission probability V ′

k for
the kth arm (according to the new ordering) in the spatial
multiplexer is given by

V ′
k = V m

r , if k = 1

V ′
k = V m−1

r Vt , if

(
m

0

)
< k �

(
m

0

)
+

(
m

1

)

...
...

...

V ′
k = V m

t , if
m−1∑
i=0

(
m

i

)
< k �

m∑
i=0

(
m

i

)
. (5)

Note that for several values of k the transmission probability
V ′

k can be the same. Basically the binomial coefficients of
(Vr + Vt )m gives us how many times a specific combination
of loss of the form V

q
r V s

t appears for a given m.
Another loss to be taken into account is due to the

propagation through the medium of the spatial multiplexer.
We describe it with a propagational transmission efficiency
Vp,S . It depends on the size of the combined system. Let Vp0,S

stand for the default transmission efficiency corresponding to
one level in the spatial multiplexer. Thus the propagational
transmission efficiency can be written as

Vp,S = V
log2(M)
p0,S . (6)

The transmission probability corresponding to the kth arm of
the spatial multiplexer is

Vk = Vp,SV
′
k, (7)

that is, the product of the two discussed quantities.

Using Eqs. (4)–(7) one can explicitly obtain the value of
the net transmission probabilities Vnk defined by Eq. (2) for
the considered bulk optical setup.

We remark here that the mathematical structure of the
formulas describing the losses for some waveguide-based
systems is similar to those introduced here. For example,
the parameter Vb in Eq. (4) can describe losses due to
coupling to a single-mode fiber [56] while expressions similar
to Eqs. (5)–(7) with the choice Vr = Vt can describe the
losses of fiber coupled optical switches [46–48]. However,
in such waveguide-based systems the different transmission
probabilities are smaller than the corresponding parameters of
the bulk optical setups.

IV. OPTIMAL COMBINED MULTIPLEXERS

Here we present our results regarding the optimization of
the bulk optical combined multiplexer described in the previ-
ous section. Within the described framework, the optimization
of a combined multiplexer consists in the following. We fix a
set of loss parameters that describes the system. There are three
parameters remaining which can be considered as variables of
the optimization procedure: the input mean photon number
λ, the number of time multiplexers M , and the number of
multiplexed time windows N . The next step is to find λopt for
each combination of M and N , for which the single-photon
probability is the highest. The absolute maximum of these
probabilities can be found by choosing M and N that maximize
it. The reason behind the existence of this optimum is that
while the increasing system size improves the efficiency of
multiplexing in principle, but the role of the losses increases
simultaneously, deteriorating this improvement.

In order to determine the maximal single-photon probability
that can be realized by the considered combined multiplexers,
first we consider the values of the loss parameters available
in state-of-the-art experiments using bulk optical elements.
For polarization beam splitters Vr = 0.996 reflection and
Vt = 0.97 transmission efficiencies are generally feasible [63].
In Ref. [64] an ultracompact high-efficiency polarization beam
splitter was proposed with Vt = 0.99. It is likely that this
device with such a high transmission efficiency will be realized
soon. The transmission efficiency describing the loss due to
the propagation in the whole medium of the time multiplexer
can be taken to be Vp = 0.95 according to Ref. [57], but a
bit higher values seem to be realizable as well. The loss due
to propagation in the spatial multiplexer depends strongly on
actual experimental realization of the given multiplexer, thus
it is not possible to give a generally accurate estimate. We
consider the value of the corresponding transmission efficiency
assigned to one router unit to be 0.985 � Vp0,S � 0.995. In the
following calculations we suppose without loss of generality
the value of the basic transmission efficiency Vb = 1, and we
consider threshold detectors with an efficiency of VD = 0.9.

In Table I we have listed the maximal single-photon proba-
bilities of bulk optical time and spatial multiplexers optimized
separately using the described range of loss parameters that
can be considered as experimentally feasible. It appears
that a single-photon probability as high as 80%–90% can
be achieved. The table also shows that for higher maximal
single-photon probabilities of standalone time and spatial
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TABLE I. Maximal single-photon probabilities P
(1)
T , max and P

(1)
S, max

of standalone time and spatial multiplexers, and the number of
multiplexed time windows NT,opt and spatially multiplexed SPDC
sources MS,opt at which they can be achieved.

No. Vr Vt Vp Vp0,S P
(1)
T , max NT,opt P

(1)
S, max MS,opt

1. 0.990 0.97 0.95 0.985 0.832 128 0.800 64
2. 0.990 0.97 0.97 0.990 0.846 128 0.822 64
3. 0.993 0.97 0.96 0.985 0.850 128 0.809 64
4. 0.996 0.97 0.95 0.990 0.854 128 0.842 128
5. 0.996 0.98 0.95 0.990 0.874 128 0.857 128
6. 0.996 0.99 0.95 0.990 0.899 256 0.873 128
7. 0.996 0.99 0.96 0.995 0.907 256 0.904 256

multiplexers P
(1)
T , max and P

(1)
S, max the number of multiplexed

time windows Nopt and spatially multiplexed SPDC sources
Mopt at which these maximums can be achieved are also higher.
As we already mentioned in the introduction, the growing
number of required SPDC sources for the optimal performance
appears as a drawback in an experimental implementation,
while the increase of the time windows introduces a limitation
in the achievable repetition rate. The latter statement is
clear as the length of the time window �t evidently has
a minimal value determined by the characteristics of the
system.

Now we turn our attention to combined multiplexing. In
order to reveal the general characteristics of the system, it is
worth distinguishing three cases determined by the relation
between the maximal single-photon probability of the spatial
multiplexer P

(1)
S, max and that of the time multiplexer P

(1)
T , max.

Either of them may outperform the other, or the single-photon
probabilities can be roughly equal.

Let us first analyze the case when the maximal single-
photon probability of the spatial multiplexer is higher than that
of the time multiplexer, that is, P

(1)
S, max > P

(1)
T , max. In Fig. 3 we

show the achievable maximal single-photon probability P (1)

at the optimal choice of the input mean photon number λopt

as a function of the number of multiplexed time windows N

for various numbers of spatially multiplexed time multiplexers
M for an experimentally feasible set of loss parameters. The
high performance P

(1)
S, max = 0.8763 of the spatial multiplexer

is ensured by choosing a transmission efficiency as high as
Vp0,S = 0.996. In this figure the curve M = 1 corresponds to
standalone time multiplexers while the points at N = 20 = 1
are calculated for standalone spatial multiplexers. The figure
shows results for both of the considered priority logics
treated in Sec. III. The points connected with dotted lines
correspond to the logic which routes the signal photons from
the first detected heralding event to the output. The points
connected with continuous lines correspond to the improved
logic choosing the spatial arm of the lowest loss. For M = 1
(no spatial multiplexing) or N = 1 (no time multiplexing)
obviously the two logics produce the same performance.
For the other choices of N and M , combined multiplexers
operating with the priority logic choosing the photon in the arm
of the spatial multiplexer with the lowest loss produce always
higher single-photon probabilities. Let us note here that we
have made this comparison for all the following calculations,

and we have found that the improved logic always outperforms
the simpler one. Therefore, while we emphasize this fact here,
we omit the details of this comparison in what follows.

The absolute maximal single-photon probability in Fig. 3
is at M = 128 and N = 1. This suggests that the best choice
would be not to apply time multiplexing at all. However, the
corresponding spatial multiplexer would involve 128 SPDC
sources in the considered bulk optics setup, which is clearly
unreasonable in practice. Combined multiplexing, on the
other hand, can solve the issue of system size: Single-photon
probabilities over 86% can be achieved, for instance, with just
four SPDC sources. Thus in this case, combined multiplexing
enhances the achievable maximal single-photon probability
P (1) = 85.4% of a single bulk time multiplexer. Notice that
single-photon probabilities over 86% can be achieved with less
than N = 128 multiplexed time windows. As a consequence
of this decrease of the number of time windows, higher
repetition rates can be achieved with combined multiplexers,
as compared to optimized single time multiplexers.

Moreover, the described advantage of the combined mul-
tiplexing is valid for several configurations with different
numbers of spatially multiplexed sources M and multiplexed
time windows N . For such points the single-photon probability
of the combined system is between the maximal probabilities
of the standalone spatial and time multiplexers but the values
of M and N in the combined system are smaller than the
values MS,opt and NT,opt in the optimized standalone systems.
In addition, the single-photon probabilities are significantly
higher than the ones that can be achieved with the suboptimal
use of the standalone spatial multiplexer when the number of
multiplexed units M is far below the optimized value MS,opt,
that is, M � MS,opt/4.

Now let us consider the complementary case when the
maximal single-photon probability of the spatial multiplexer
is lower than that of the time multiplexer, that is, P

(1)
S, max <

P
(1)
T , max. In Fig. 4 the achievable maximal single-photon prob-

ability P (1) is plotted at the optimal choice of the input mean
photon number λopt as a function of the number of multiplexed
time windows N , for various numbers of spatially multiplexed
time multiplexers M , for an experimentally feasible set of loss
parameters. In this case the propagational transmission effi-
ciency of the spatial multiplexer is chosen to be Vp0,S = 0.985,
and it has maximal single-photon probability P

(1)
S, max = 82%

at M = 64. It appears that combined multiplexing does not
enhance the absolute maximum of single-photon probability
(P (1)

T , max = 85.4% at M = 1, N = 128) at all in this case. On
the other hand, when the number of time windows N is
far below the optimized value NT,opt, that is, N � NT,opt/4,
there are lots of combinations of M and N for which the
single-photon probability is higher than one can achieve by
this suboptimal use of a standalone time multiplexer. Therefore
the benefit of the application of the spatial multiplexer is
the possible enhancement of the repetition rate as described
before, without the relevant decrease of the single-photon
probabilities.

We have analyzed the two cases described above for a
variety of different sets of loss efficiencies. Without going into
details we remark here that we found the described behavior
for all of the choices.
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TABLE II. Maximal single-photon probabilities P
(1)
C, max of the combined multiplexers and the number of multiplexed time windows NC,opt

and spatially multiplexed SPDC sources MC,opt at which they can be achieved for various loss parameter combinations. The maximal single
photon probabilities P

(1)
T , max = P

(1)
S, max = P

(1)
T ,S, max of the spatial and time multiplexers if optimized themselves are also presented. The first three

rows show cases where combined multiplexing does not enhance the maximal single-photon probabilities of spatial and time multiplexers.
The second and the last three rows present cases where combined multiplexing leads to a slightly higher and a definitely higher maximal
single-photon probability, respectively.

No. Vt Vr Vp Vt,S Vr,S Vp0,S P
(1)
T ,S, max MS,opt NT,opt P

(1)
C, max MC,opt NC,opt

1. 0.970 0.996 0.9500 0.970 0.996 0.9922 0.8545 128 128 0.8531 2 64
2. 0.988 0.991 0.9589 0.988 0.991 0.9950 0.8784 128 256 0.8784 2 128
3. 0.988 0.992 0.9568 0.990 0.991 0.9949 0.8812 128 256 0.8806 2 128

4. 0.988 0.990 0.9507 0.988 0.990 0.9940 0.8683 128 128 0.8684 2 64
5. 0.990 0.996 0.9297 0.986 0.993 0.9950 0.8834 128 256 0.8840 2 128
6. 0.990 0.996 0.9508 0.990 0.996 0.9943 0.8996 256 256 0.8999 2 128

7. 0.970 0.993 0.9606 0.980 0.993 0.9910 0.8506 128 128 0.8475 2 64
8. 0.980 0.993 0.9656 0.990 0.996 0.9901 0.8740 128 128 0.8720 2 64
9. 0.980 0.996 0.9655 0.990 0.992 0.9950 0.8860 128 256 0.8822 2 128

10. 0.980 0.990 0.9501 0.970 0.996 0.9917 0.8516 128 128 0.8541 2 64
11. 0.990 0.991 0.9493 0.980 0.995 0.9940 0.8762 128 256 0.8799 4 64
12. 0.990 0.993 0.9518 0.980 0.996 0.9951 0.8869 128 256 0.8906 4 64

Finally, let us analyze the third possibility when the
maximal single-photon probabilities of the spatial and time
multiplexers, provided that they are optimized themselves, are
equal within a given precision, that is, P

(1)
S, max = P

(1)
T , max =

P
(1)
T ,S, max. We have performed simulations for several com-

binations of the loss parameters ensuring this equality. We
have found that the maximal single-photon probability P

(1)
C, max

of the combined system can be slightly lower or higher
than the maximal single-photon probability P

(1)
T ,S, max of the

spatial and time multiplexers. The difference is generally
so small that it cannot be detected in an experiment. As a
consequence these quantities can be considered as roughly
equal. For certain parameter sets these probabilities are really
equal at the given precision. Beside this behavior we have
found some rather special sets of loss parameters for which the
single-photon probability of the combined system is definitely,
yet not significantly lower or higher than that of the spatial
or time multiplexed systems separately. Table II shows some
examples for all these behaviors. In this table we present the
maximal single-photon probabilities P

(1)
C, max of the combined

multiplexers and the number of multiplexed time windows Nopt

and spatially multiplexed SPDC sources Mopt at which they
can be achieved for various loss parameter combinations. The
maximal single-photon probabilities P

(1)
T ,S, max of the spatial and

time multiplexers if optimized themselves are also presented.
Rows 1–6 of Table II contain cases when the optimized

performance of the combined multiplexer is roughly equal
to that of the standalone spatial and time multiplexers. The
first three rows show examples for parameters for which the
single-photon probability of the combined multiplexer P

(1)
C, max

is slightly lower, while for the parameters in the second
three rows it is slightly higher than that of the standalone
multiplexers P

(1)
T ,S, max. We note that for the parameter set

presented in row 2 all the single-photon probabilities are equal
at the given precision, although the previous statement is true
for this example. Rows 7–9 of Table II show examples for

parameters for which the single-photon probability of the
combined multiplexer P

(1)
C, max is definitely lower, while for

the parameters in the last three rows it is definitely higher than
that of the standalone multiplexers P

(1)
T ,S, max. The difference

in the probabilities exceeds 0.002 (0.2%). Such a behavior
occurs only if at least one of the transmission and reflection
efficiencies of the applied PBSs differs for the time and
spatial multiplexers. An interesting feature that can be deduced
from Table II is that the product of the optimal number of
spatially multiplexed time multiplexers MC,opt and the optimal
number of multiplexed time windows NC,opt for the combined
system is equal to the optimal number of multiplexed time
windows NT,opt for the standalone time multiplexed source,

0.8

0.82

0.84

0.86

20 22 24 26 28

N

P
(1

) M = 1

M = 2

M = 4

M = 8

M = 16

M = 32

M = 64

M = 128

FIG. 5. The achievable maximal single-photon probability P (1) at
the optimal choice of the input mean photon number λopt as a function
of the number of multiplexed time windows N on semilogarithmic
scale for various numbers of spatially multiplexed time multiplexers
M . Loss parameters are the following: Vr = Vr,S = 0.996, Vt =
Vt,S = 0.97, Vp = 0.95, Vp0,S = 0.9922, VD = 0.9, Vb = 1.
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P
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) M = 1
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M = 64

M = 128

FIG. 6. The achievable maximal single-photon probability P (1) at
the optimal choice of the input mean photon number λopt as a function
of the number of multiplexed time windows N on semilogarithmic
scale for various numbers of spatially multiplexed time multiplexers
M . Loss parameters are the following: Vr = 0.993, Vr,S = 0.996,
Vt = 0.99, Vt,S = 0.98, Vp = 0.95, Vp0,S = 0.995, VD = 0.9, Vb =1.

that is, MC,optNC,opt = NT,opt. This property is valid for other
combined configurations, presented in Figs. 3–6, for certain
sets of the number of spatially multiplexed time multiplexers
M and the number of time windows N ensuring the best
performance of the given combined multiplexed system. In
these figures, such values of M are M � 32,16,16, and 32,
respectively. Table II also shows, taking into account previous
considerations as well, that by using combined multiplexing
systems realized in bulk optics single-photon probabilities
between 85% and 89% can be achieved experimentally.

Figures 5 and 6 show the achievable maximal single-photon
probability P (1) at the optimal choice of the input mean
photon number λopt as a function of the number of multiplexed
time windows N for various numbers of spatially multiplexed
time multiplexers M for the loss parameters presented in the
first and the last rows of Table II, respectively. In Fig. 6
one can see that beside the point corresponding to the
maximal single-photon probability (MC,opt = 4 and NC,opt =
64) there are other (M,N ) pairs for this configuration [(2,64),
(2,128), (2,256), (4,32), (4,128), (8,32), (8,64)] at which the
single-photon probability exceeds the maximal single-photon
probabilities of the standalone spatial and time multiplexers.
These figures also show that there are several choices of M

and N for which the single-photon probabilities are higher
than one can achieve by suboptimal use of a standalone spatial
or time multiplexer. Furthermore, these are not significantly
lower than the maximal value. The aforementioned benefits of
the combined approach, namely the decrease of the required
SPDC sources and improvement of the achievable repetition
rate, are also present in these cases.

Finally, we remark that though in our analysis we have
focused on finding those systems that produce the best

performance, we also checked the validity of the described
behaviors in systems having larger loss parameters. We have
performed additional calculations using several nonunit Vb

values introduced in Eq. (4) and for lower values of the
parameters appearing in the net transmission probability
Vnk . As we have mentioned before, our model with such
parameter range can also describe some waveguide-based
systems. Without presenting the details here, the results show
that the behavior of combined systems with higher losses
is qualitatively the same as one of those combined systems
analyzed in this section.

V. CONCLUSIONS

We have studied periodic single-photon sources based on
combined multiplexing, in which the outputs of several time
multiplexers are spatially multiplexed. We have set up a
general framework for the description and optimization of
such devices. Such systems can be realized most efficiently in
bulk optics. We have pointed out that due to the asymmetry
present in such a setup, it is possible to design an improved
priority logic for the spatial part of the multiplexer.

We have shown that combined multiplexing systems can be
optimized in order to achieve maximal single-photon probabil-
ity for various sets of loss parameters by the appropriate choice
of the number of spatially multiplexed time multiplexers, the
number of multiplexed time windows and the input mean
photon number.

According to our results concerning bulk optical combined
multiplexers, if either the spatial or the time multiplexer
outperforms the other, the combination can achieve an im-
provement compared to the worse one, even though it cannot
be superior to the absolute maximum defined by the better
one. If the spatial and time multiplexers themselves have a
similar optimum performance, their combination may yield an
enhanced single-photon probability in some special cases.

Finally, let us note that the performance of the combined
multiplexers is generally higher than that of the standalone
time or spatial multiplexers below optimized system size.
More importantly, the combination can lead to a decrease
in the number of the required SPDC sources or a possible
increase of the achievable repetition rate of the system
compared to the standalone use of the optimized spatial or
time multiplexers, while still maintaining a relatively high
single-photon probability. Moreover, combined multiplexing
allows continuous pumping of the system. All these features
of combined multiplexing can be essential from the point of
view of experiments.

ACKNOWLEDGMENTS

We thank the support of the Hungarian Scientific Research
Fund (OTKA) (Contract No. K83858) and the German-
Hungarian collaboration project TKA-DAAD (Project No.
65049). This paper is dedicated to the 650th anniversary of
the foundation of the University of Pécs, Hungary.
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[33] C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C.
Silberhorn, Phys. Rev. A 83, 031806(R) (2011).

[34] E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T.
Jennewein, Appl. Phys. Lett. 106, 081111 (2015).

[35] P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B.
U’Ren, C. Silberhorn, and I. A. Walmsley, Phys. Rev. Lett. 100,
133601 (2008).

[36] P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J.
Schaake, Phys. Rev. Lett. 105, 253601 (2010).

[37] T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, Opt.
Express 17, 12019 (2009).

[38] G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F.
Piacentini, S. V. Polyakov, and I. R. Berchera, Opt. Express
19, 1484 (2011).

[39] M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White,
Opt. Express 19, 22698 (2011).

[40] M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts,
P. Battle, and M. W. Munro, Opt. Express 15, 7479 (2007).

[41] A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, Phys.
Rev. Lett. 106, 013603 (2011).

[42] R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C.
Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky,
J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, Sci. Rep.
3, 2314 (2013).
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