
Sharded Joins for
Scalable Incremental Graph Queries

János Maginecz, Gábor Szárnyas
Budapest University of Technology and Economics

Department of Measurement and Information Systems
Email: janos.maginecz@gmail.com, szarnyas@mit.bme.hu

Abstract—Model query operations form the basis of model-
driven software engineering tools and model transformations.
While the last decade brought considerable improvements in
distributed storage technologies, known as NoSQL systems,
evaluation of graph-like queries on large models requires further
research. Unlike typical NoSQL workloads, model queries often
include lots of join and complex filtering operations. Thus, the
evaluation of such queries on continuously changing data proves
to be a challenge for query engines. In this paper, we present
INCQUERY-DS, a distributed graph query engine, which utilizes
sharding to allow scaling for larger models.

I. INTRODUCTION

Model-driven software engineering (MDE) plays an impor-
tant role in the development processes of critical embedded
systems. With the dramatic increase in complexity that is
also affecting critical embedded systems in recent years,
modeling toolchains are facing scalability challenges as the
size of design models constantly increases, and automated tool
features become more sophisticated. Many scalability issues
can be addressed by improving query performance.

Traditional query approaches reevaluate the entire query on
every modification, which is expensive for large datasets. In
contrast, with incremental query evaluation, the reevaluation is
only calculated on parts of the model impacted by the change.
This leads to a significant speedup for large, continuously
changing data. The Rete algorithm [3] is an incremental algo-
rithm that keeps the partial matches in memory. These matches
are stored in nodes that are also the units of computation, i.e.
each node performs a relational algebraic operation.

Sharding or horizontal partitioning of data is a technique
widely used in NoSQL databases and stream processing en-
gines [12]. However, up to our best knowledge, it has not been
applied to incremental query engines. In this paper we adopt
the idea of sharding to distributed query processing networks.

While sharding mitigates the problem of memory exhaus-
tion, we should also reduce the memory consumption of our
tools without performance degradation. The performance of
the join operation is crucial in this area, hence we also present
the performance comparison of different join algorithms.

This work was partially supported by the MONDO (EU ICT-611125)
project and the MTA-BME Lendület 2015 Research Group on Cyber-Physical
Systems.

II. PRELIMINARIES

A. Running Example: the Train Benchmark

We use the Train Benchmark [5] to present the core concepts
of our approach.1 The benchmark was designed to measure the
efficiency of model queries under a real-world MDE workload.
It defines a railway network composed of typical railroad
items, including routes, semaphores, and switches (Figure 1).

Fig. 1: Train Benchmark example model.

B. Model Validation with Graph Queries

Engineering models can be represented as typed graphs with
labeled vertices and edges. For example, the edges of the graph
in Figure 1 can be represented with the following relations:

• follows (Route,SwitchPosition) : (1, 2), (1, 5), (8, 9)
• gathers (Route,Sensor) : (1, 4), (8, 11)
• sensor (Switch,Sensor) : (3, 4), (6, 7), (10, 11)
• target (SwitchPosition,Switch) : (2, 3), (5, 6), (9, 10)

Well-formedness validation constraints are often checked
with graph queries [2]. The model is queried with graph pat-
terns that search for violations of the constraint in the model.
The result of a graph query is a set of tuples. The RouteSensor
constraint requires that all sensors that are associated with a
switch that belongs to a route must also be associated directly
with the same route. The constrain can be translated to a graph
query (in the lower left corner of Figure 2), which looks for
sensors that are connected to a switch, but the sensor and the
switch are not connected to the same route.

Graph queries can be formalized in relational algebra. Here
we only elaborate the join and antijoin operations, as their
performance has the greatest effect on query evaluation. The
rest of the operations are discussed in [13].

1The framework is available as an open-source project at https://github.
com/FTSRG/trainbenchmark

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/78479608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/FTSRG/trainbenchmark
https://github.com/FTSRG/trainbenchmark

• The join operation (▷◁) is used to connect relations based
on their attributes. The natural join operation performs
the join based on mutual attributes of the relations.
Example: the target ▷◁ follows ▷◁ sensor query selects the
matching ⟨SwitchPosition,Switch,Route,Sensor⟩ tuples.

• The antijoin operation (▷) is used to express negative
conditions. Formally, r ▷ s = r \ πR (r ▷◁ s).
Example: the sensor ▷ gathers query selects the
⟨Switch,Sensor⟩ pairs not connected to a Route.

Based on these examples, the RouteSensor query can be
formalized as:

target ▷◁ follows ▷◁ sensor ▷ gathers

On the example graph, the result set consist of the tuple
(5, 6, 1, 7). This indicates that the model is not well-formed
w.r.t. the RouteSensor constraint, as there should be a gather
edge from node 1 to node 7.

C. Incremental Query Evaluation

Rete [13] is an algorithm for incremental query evalua-
tion. It ensures incrementality by keeping partial matches in
memory. This is essentially a space-time tradeoff, an approach
widely used in computer science (e.g. lookup tables, caching).

Production

〈swP, sw, r, sen〉

Join A

〈swP, sw, r〉

Join B

〈swP, sw, r, sen〉

Antijoin

〈swP, sw, r, sen〉

swP swP

sw te

r,sen r,sen

follows

〈r, swP〉
sensor

〈te, sen〉
gathers

〈r, sen〉
target

〈swP, sw〉

In
p

u
t

n
o

d
e

s

W
o

rk
e

r

n
o

d
e

s

P
ro

d
u

c
tio

n

n
o

d
e

s

The RouteSensor pattern

sensor

gathers target

follows

sw: Switch

swP:

SwitchPosition
route: Route

sensor: Sensor

NEG

(2,3), (5,6), (9,10) (1,2), (1,5), (8,9) (3,4), (6,7), (10,11) (1,4), (8,11)

(2,3,1),

(5,6,1),

(9,10,8)

(2,3,1,4),

(5,6,1,7),

(9,10,8,11)

(5,6,1,7)

 Δ (1,7)

Fig. 2: The RouteSensor pattern and its Rete network.

The Rete algorithm constructs a network of processing
nodes consisting of three layers (Figure 2). The partial matches
(represented as tuples) are propagated through the network as
messages.

• Input nodes store the model elements: target, follows,
sensor and gathers.

• Worker nodes implement relational algebra operators:
Join A, Join B and Antijoin.

• Production nodes store the results of the query.
If the engineer inserts the missing gathers edge by adding

the tuple (1, 7) to the gathers input node (marked with a ∆
character in the figure), the Rete network only has to reevaluate
the results of Antijoin and Production nodes.

III. RELATED WORK

EMF-INCQUERY is an incremental query engine for mod-
els defined in the Eclipse Modeling Framework (EMF). It uses
the Rete algorithm for incremental query evaluation [2]. As
EMF-INCQUERY is a single workstation tool, the memory
consumption of the Rete algorithm does not allow it to scale
for arbitrarily large models.

Similarly to EMF-INCQUERY, INCQUERY-D is based on
the Rete engine but it was designed from the ground up
as a distributed pattern matching system [13]. It allows for
using NoSQL databases and triplestores as data sources,
which means that the input of the engine can be distributed.
INCQUERY-D’s workflow is similar to its predecessor, but it
deploys the Rete nodes over a distributed system.

Drools [10] is a business rule management system that
provides a rule engine that is capable of checking well-
formedness constraints. Drools also uses the Rete algorithm
as well to support incremental query evaluation. Rete-based
query evaluation is used for processing Linked Data as well.
INSTANS [11] uses this algorithm to perform complex event
processing on streaming RDF. Diamond [9] also uses a Rete
network to evaluate SPARQL queries on RDF data sets.

IV. OVERVIEW OF THE APPROACH

This section describes the methods used to make
INCQUERY-DS fast and scalable.

Runs on
Node

Deploys

Rete network

Input

Runs on
Node

I

II

III

Fig. 3: The architecture of INCQUERY-DS.

A. Sharded Rete Algorithm

As a Rete node stores partial matches of the graph, its
memory consumption is proportional to the size of the model.
This causes memory exhaustion for large models. However,
it is possible to split a Rete node to multiple node shards.
This way a logical node can be distributed across multiple
computers, splitting the memory requirements between the
shards (Figure 3).

Previous work [14] only focused on distributing the Rete
nodes between the machines in the cloud, but did not shard
individual Rete nodes in the network. This implies that each
Rete node needs to fit in the memory of a single computer,
which limits the scalability of the system. For example, in the
network for RouteSensor most of the memory is consumed by
a single node (Join B), so distributing the Rete network does
not allow it to scale for arbitrarily large models. However,
sharding allows us to distribute the content of a single Rete
network on multiple machines.

To achieve high performance, the computations of a Rete
node must be performed based on the contents of a single
shard (thus avoiding the communication overhead between the
shards). For the join/antijoin nodes this requires tuples with the
same join key, from both inputs, to be sent to the same shards.

A sharded layout is shown in Figure 4. Node Join B is split
into two shards, Shard 0 and Shard 1, allocated on Host II and
Host III. The tuples of Join A, {(2, 3, 1), (5, 6, 1), (9, 10, 8)},
joined against the tuples of the sensor input node,
{(3, 4), (6, 7), (10, 11)}. The join keys are their second (sw)
and first (te) attributes, respectively.

For distributing the tuples, we use two hash functions.
First, we map the join key to a number. Consider the simple
hash function h(⟨k1, k2, . . . , kn⟩) = 37

∑
i ki mod 16. This

produces the following hash values for the keys:

h(⟨3⟩) = 15, h(⟨6⟩) = 14, h(⟨10⟩) = 2

To shard the tuples, we use another hash function, which
simply uses modulo s, where s is the number of shards: g(x) =
x mod s. Here, s = 2, hence

g(h(⟨3⟩)) = 1, g(h(⟨6⟩)) = 0, g(h(⟨10⟩)) = 0

Based on the hash values, the tuples with the join key 6
and 10 are processed by Shard 0, while the tuples with the
join key 3 are processed by shard 1.

Production

〈swP, sw, r, sen〉

swP swP

target

〈swP, sw〉
follows

〈r, swP〉
sensor

〈te, sen〉
gathers

〈r, sen〉

Antijoin

〈swP, sw, r, sen〉
[Host I]

r,sen r,sen

Join B – Shard 1

〈swP, sw, r, sen〉
[Host III]

sw te

Join B – Shard 0

〈swP, sw, r, sen〉
[Host II]

sw te

Join A

〈swP, sw, r〉
[Host I]

 Δ(2,3), (5,6), (9,10) (1,2), (1,5), (8,9) (3,4), (6,7), (10,11) (1,4), (8,11) (1,7)

(2,3,1),

(5,6,1),

(9,10,8)

(2,3,1,4)

(5,6,1,7)

(5,6,1,7)

(6,7),

(10,11)

(5,6,1),

(9,10,8)

(3,4)(2,3,1)

(5,6,1,7),

(9,10,8,11)

Fig. 4: Layout of the sharded Rete network for RouteSensor.

INCQUERY-DS makes the degree of sharding for each Rete
node a separate decision, i.e. some nodes might have many
shards, while others may remain unsharded. This greatly af-
fects the performance of the network. Efficient node allocation
is out of the scope of this paper, but is discussed in [8].

B. Join node optimization

As mentioned in our previous report [7], different join algo-
rithms and their underlying data structures have a significant
effect on the query performance. To elaborate this, we compare

the incremental performance of the hash join and the sort
merge join algorithm [4]. We implemented both algorithms
with both the standard Scala library data structures2 and a
third-party collection framework, GS-Collections3 (developed
by Goldman Sachs Group, Inc).

V. EVALUATION

A. Benchmark environment

The benchmarks were executed on virtual machines with
the following setup: 2 cores of an Intel Xeon E5420 processor
running at 2.50 GHz, 8 GBs of memory, Ubuntu 14.04 LTS
operating system, Oracle JDK 8 runtime with 4 GBs of heap
memory, and Gigabit Ethernet network.

B. Benchmark phases

We use the “Repair” scenario of the Train Benchmark. In
this scenario, the model is loaded and validated. Next, a subset
of the model is transformed and revalidated (Figure 5). This
aims to simulate the workload of a user applying quick fixes
to the model. The memory consumption and execution time is
recorded for each phase.

Fig. 5: Phases of the Repair Scenario.

C. Benchmark goals

We benchmarked various aspects of the system.
1) Scalability: To measure the scalability improvements

provided by the sharded join algorithm, we executed a bench-
mark on three machines in four settings:

• As a non-incremental baseline, we used Jena [1], a state-
of-the-art RDF-based SPARQL in-memory query engine.

• To compare the scalability of the various degrees
of distribution the benchmark measured 3 variants of
INCQUERY-DS.

– The Local variant acts as an incremental baseline,
allocating all nodes on a single machine.

– The Distributed variant allocates each node on sep-
arate computer, but does not utilize sharding.

– The Sharded variant also allocates two nodes on
separate computers, but the third node is split into
two shards, allocated on different machines.

The transformation change set is indicated with a ∆ char-
acter in Figure 4. This figure also shows the allocation of the
worker nodes in the Sharded variant.

2) Join Algorithm Performance: We compared the perfor-
mance of join algorithms and collection frameworks. This
benchmark was executed on a single machine and only used
Join A.

2http://docs.scala-lang.org/overviews/collections/overview.html
3https://github.com/goldmansachs/gs-collections

http://docs.scala-lang.org/overviews/collections/overview.html
https://github.com/goldmansachs/gs-collections

D. Benchmark results

Figure 6 and Figure 7 show the results of the benchmarks.
In both figures, the x-axis shows the number of triples in the
model, while the y-axis shows the time required for the run.
Both axes use a logarithmic scale.

1) Scalability: Figure 6 shows the results for repeated
evaluations of the RouteSensor query. For large models (5M+
triples), Jena is two orders of magnitude slower than the
incremental variants. Compared to the Local variant, the
network overhead of Sharded INCQUERY-DS is apparent,
but the response time in the “Transformation and Recheck”
phase is still within the subsecond range. The Sharded variant
handles models twice as large as the Distributed variant. The
Distributed variant fails on the largest model, because Join B
runs out of memory.

Read and Check Transformation and Recheck

●
●

● ●
●

●
●

●

●
●

●
●

●

●
● ● ● ● ● ● ●

●
●

●
●

●

0.01

0.05
0.1

0.5
1

5
10

50
100

500

5k
1

9k
2

45k
8

191k
32

751k
128

2.9M
512

12M
2048

46M
8192

5k
1

9k
2

45k
8

191k
32

751k
128

2.9M
512

12M
2048

46M
8192

Modell size [# of triples]
Model size alias

E
xe

cu
tio

n
tim

e
[s

]

●IncQuery−DS Local IncQuery−DS Distributed IncQuery−DS Sharded Jena

Fig. 6: Scalability of the RouteSensor query with hash join.

2) Join Algorithm Performance: Figure 7 displays the ex-
ecution times of the different join algorithms with different
underlying data structures. The “Check” phase times do not
differ significantly, but the implementation using sort merge
join are characteristically slower than the hash joins in the
“Transformation and Recheck” phase, since the merge join
algorithm has to iterate over relevant parts of the data. Com-
paring the GS and Scala hash joins, we can conclude that the
GS variant provides a modest improvement in both scenarios.

Table I shows the memory consumption of each algorithm-
implementation pair on the Join A node. The memory con-
sumption of the different algorithms does not differ signif-
icantly, but the GS implementations use consistently less
memory in every observation.

Join node \ Model size alias 512 1024 2048
GS-HashJoiner 30.0 54.5 103.7
Scala-HashJoiner 36.5 68.5 131.6
GS-MergeJoiner 34.0 63.1 120.5
Scala-MergeJoiner 37.3 69.9 134.0

TABLE I: Memory usage of the Join A node [MB]

Check Transformation and Recheck

0.01

0.05
0.1

0.5
1

5
10

50
100

500

5k
1

9k
2

45k
8

191k
32

751k
128

2.9M
512

12M
2048

5k
1

9k
2

45k
8

191k
32

751k
128

2.9M
512

12M
2048

Model size [# of triples]
Model size alias

E
xe

cu
tio

n
tim

e
[s

]

GS−HashJoiner GS−MergeJoiner Scala−HashJoiner Scala−MergeJoiner

Fig. 7: Comparison of different join algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented and evaluated a truly scalable
incremental query evaluation framework prototype. The results
imply that the approach provides high performance for use
cases requiring incremental query evaluation, while scaling
well for large models.

As future work, we plan to integrate INCQUERY-DS with
existing stream processing frameworks, e.g. Kafka [6].

ACKNOWLEDGEMENTS

We want to thank Gábor Bergmann and István Ráth for their
continuous support.

REFERENCES

[1] Apache Software Foundation. Apache Jena. https://jena.apache.org/.
[2] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and

A. Ökrös. Incremental evaluation of model queries over EMF models. In
Model Driven Engineering Languages and Systems - 13th International
Conference, pages 76–90. Springer, 2010.

[3] C. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligences, 19(1):17–37, 1982.

[4] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems - the
complete book (2. ed.). Pearson Education, 2009.

[5] B. Izsó, G. Szárnyas, and I. Ráth. Train Benchmark. Technical report,
Budapest University of Technology and Economics, 2014.

[6] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, 2011.

[7] J. Maginecz. Scalable incremental graph query evaluation. Student
Report, Budapest University of Technology and Economics, 2015.

[8] J. Makai, G. Szárnyas, Á. Horváth, I. Ráth, and D. Varró. Optimization
of Incremental Queries in the Cloud. In CloudMDE, 2015.

[9] Miranker, Daniel P. et al. Diamond: A SPARQL query engine, for linked
data based on the Rete match. AImWD, 2012.

[10] Red Hat. Drools. http://www.drools.org/.
[11] M. Rinne. SPARQL update for complex event processing. In ISWC’12,

volume 7650 of LNCS, pages 453–456. 2012.
[12] M. Stonebraker. SQL databases v. NoSQL databases. Communications

of the ACM, 53(4):10–11, 2010.
[13] G. Szárnyas. Superscalable Modeling. Master’s thesis, Budapest

University of Technology and Economics, Budapest, 2013.
[14] G. Szárnyas, B. Izsó, I. Ráth, D. Harmath, G. Bergmann, and D. Varró.

IncQuery-D: A Distributed Incremental Model Query Framework in the
Cloud. In ACM/IEEE 17th International Conference on Model Driven
Engineering Languages and Systems, pages 653–669. Springer, 2014.

https://jena.apache.org/
http://www.drools.org/

	Introduction
	Preliminaries
	Running Example: the Train Benchmark
	Model Validation with Graph Queries
	Incremental Query Evaluation

	Related Work
	Overview of the Approach
	Sharded Rete Algorithm
	Join node optimization

	Evaluation
	Benchmark environment
	Benchmark phases
	Benchmark goals
	Scalability
	Join Algorithm Performance

	Benchmark results
	Scalability
	Join Algorithm Performance

	Conclusion and Future Work
	References

