
Submitted to the MODELS Student Research Competition

Scalable Graph Query Evaluation and
Benchmarking with Realistic Models

Gábor Szárnyas
Budapest University of Technology and Economics

Department of Measurement and Information Systems
MTA-BME Lendület Research Group on Cyber-Physical Systems

szarnyas@mit.bme.hu

Abstract
Model queries are widely used in model-driven engineer-
ing toolchains: models are checked for errors with validation
queries, model simulations and transformations require com-
plex pattern matching, while injective mappings for views
are defined with model queries. Efficient and scalable eval-
uation of complex queries on large models is a challenging
task. To achieve scalable graph query evaluation, I identified
key challenges such as the lack of credible benchmarks and
difficulties of obtaining real models for performance testing.
To address these challenges, my contributions target (1) dis-
tributed incremental graph queries, (2) a cross-technology
benchmark for model validation, (3) characterization of re-
alistic models, and (4) realistic models generation.

Keywords distributed queries, model validation, model
generation, benchmarking

1. Problem and Motivation
Model-Driven Engineering (MDE) is a development method-
ology used in many application domains such as criti-
cal applications (automotive, avionics and railway sys-
tems [7, 31, 58]). To increase the efficiency of development,
MDE facilitates the use of models in various modelling lan-
guages targeting different levels of abstraction. Models can
be used not only for presenting the structure and behaviour
of the system, but also for synthesizing various design ar-
tifacts (such as source code, configuration files, documen-
tation). To catch design flaws early, model validation tech-
niques check the well-formedness of models. Design rules
and well-formedness constraints are often captured in the
form of graph patterns [9] to highlight invalid model ele-

[Copyright notice will appear here once ’preprint’ option is removed.]

ments to systems engineers. MDE tools check these patterns
by evaluating graph queries.1

1.1 Scalable Graph Queries
As models are rapidly increasing in size and complexity, ef-
ficient execution of model validation operations is challeng-
ing for the currently available toolchains, like ARTOP [2],
Capella [38] or Papyrus [53].

The last decade brought considerable improvements
in distributed storage and query technologies, known as
NoSQL systems. These systems provide quick evaluation
of simple retrieval operations and they are able to answer
complex queries in a scalable manner, albeit not instantly.
Providing quick response times for evaluating such queries
over large and evolving data sets is still a challenging task.

Graph queries capturing validation constraints are often
complex, including many join, antijoin and filtering opera-
tions. However, most query technologies cannot efficiently
evaluate such operations for models with 10 million model
elements [48], while models of critical systems, software
and geospatial models are often 1–2 orders of magnitude
larger [43]. A possible solution for scalable graph queries
is to use distributed query processing techniques [16, 59].
This brings us to the first research question I investigated.

RQ 1. How to incrementally evaluate graph queries
over a distributed platform?

1.2 Benchmarking
To assess the performance of a graph query engine, a bench-
mark framework is of high importance. According to the
Benchmark Handbook [21], a useful benchmark is (1) rel-
evant, (2) portable, (3) scalable, and (4) simple. To ensure
relevance, the benchmark must use a representative work-
load and models similar to realistic ones. Providing relevant
results, while also guaranteeing the other three properties
(portability, scalability and simplicity) is a major challenge.

1 In this paper, I use the term graph as a synonym for instance model.

Scalable Graph Query Evaluation and Benchmarking with Realistic Models 1 2017/2/12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/78479607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For real-world industrial systems, both metamodels and
instance models are protected by intellectual property rights
(IPR). For example, AUTOSAR [7] is not an open standard,
but only available to members of the consortium, therefore
it is not suitable for an open performance benchmark. Sim-
ilarly, engineering models in the avionics and railway do-
mains are also not available to the public.

These challenges confirm the need for a benchmark
framework, which provides a real-world-like workload sce-
nario and evaluates realistic queries on realistic models.
Therefore, the second research question is the following.

RQ 2. How to assess query technologies for a contin-
uous model validation scenario?

1.3 Characterization of Realistic Models
While existing generators may produce large models in in-
creasing sizes, these models are usually simple and syn-
thetic, which hinders their credibility for industrial and re-
search benchmarking purposes. Up to my best knowledge,
there are no existing techniques to characterize models used
in MDE practice. To develop such a technique, first I had to
address questions about model metrics, such as:

• Which metrics can be used for characterizing models?
• Is is possible to distinguish models of different domains,

purely based on their metrics?

To answer these questions, I conducted a literature review
in other disciplines, e.g. network theory and social network
analysis. The high-level goal of the research is to answer the
following question.

RQ 3. What makes a model realistic?

1.4 Generating Realistic Models
Custom generators of graph-based models are used in MDE
for many purposes such as functional testing and perfor-
mance benchmarking of modeling environments to ensure
the correctness and scalability of tools. However, none is ca-
pable of generating realistic models scalable in size:

• Logic-based synthesis (like Alloy [25]) generate well-
formed models but lack scalability.

• Rule-based approaches [48] are capable of generating
large models by using transformation rules or random
mutations to add new elements. However, they provide no
guarantees that the resulting model is realistic. Some ap-
proaches do not even guarantee well-formedness, which
is a prerequisite for realistic models.

It is an open research question if it is possible to ensure
these properties.

RQ 4. How to generate scalable and realistic models?

2. Preliminaries
This section introduces an example used throughout the pa-
per and presents the concept of incremental queries.

2.1 Running Example: Railway Network
As a running example, I use a small railway network, defined
on the metamodel of the Train Benchmark [48], a model val-
idation benchmark (the benchmark and my related contribu-
tions are discussed in Section 4.2).2

Figure 1 shows a schematic representation of the network,
with routes (1–3), switches and segments. As the first switch
is set to a straight position and the second switch is set to a
diverging position, a train passing through this track would
follow route #3, hence that route active.

2

3

1Route

Route

Route

Switch

SwitchPosition

Segment

Segment

Segment
Segment

Segment

SwitchPosition

Switch

Figure 1. Railway example model. The positions of the
switches designate route #3 as active.

Figure 2. The graph of the railway example in Figure 1. The
metamodel is shown in the top left corner of the figure. The
graph pattern for finding the active routes is shown in the top
right corner.

Modeling tools often represent their models as graphs.
Figure 2 shows the example network as a labelled, attributed
graph, along with the metamodel of the graph. Routes follow
a set of switch positions that contain the prescribed position
(straight or diverging) of the switch. The railway track con-
sists of connected switches and segments.

2 To guarantee that the example is concise and easy to understand, the
example only uses a fraction of the Train Benchmark metamodel. The
benchmark uses models that are significantly more complex: they contain
more metamodel elements (types) and consist of more elements (objects).

Scalable Graph Query Evaluation and Benchmarking with Realistic Models 2 2017/2/12

The active route can be determined by evaluating a graph
query (by graph pattern matching). A route is active if all
its switches are in the position prescribed by the switch
positions of the route. In other words, a route is active if none
of its switches are set to a different position as the prescribed
position. This results in the pattern shown in the upper right
corner of Figure 2. In the example, the graph query selects
route #3 as the active one, as both its switch positions (6 and
8) are satisfied by the corresponding switches (10 and 13).

2.2 Incremental Query Evaluation
In many use cases, queries are continuously evaluated, while
changes affect only a restricted part of data. The queries and
transformations for simulation and well-formedness valida-
tion in MDE are typical examples of such a workload. The
goal of incremental query evaluation is to speed up such
queries, utilizing the (partial) results obtained during the pre-
vious executions of the query to compute the latest set of
changes. For example, if the current position of the second
switch in Figure 1 changes from diverging to straight, the
change only affects a small part of the graph (node 13 in Fig-
ure 2). This allows the incremental query engine to quickly
reevaluate the query: in this case, the active route is changed
from #3 to #2.

Incremental query evaluation algorithms use additional
data structures for caching interim results, hence they con-
sume more memory than search-based, non-incremental al-
gorithms. In other words, they trade memory consumption
for execution speed. While incremental query engines pro-
vide quick response times for various use cases [9, 48], their
excessive memory consumption limits their scalability.

3. Related Work
To appropriately address all the research questions in the
context of MDE, a wide range of multidisciplinary topics
needs to be covered.

Distributed incremental graph queries. The Rete algo-
rithm was originally created by Charles Forgy for rule-based
expert systems [20]. Bunke et al. [14] were the first to pro-
pose the Rete algorithm in the context of graph transforma-
tions. Bergmann et al. adapted the algorithm for the Eclipse
Modeling Framework in the EMF-INCQUERY project [9],
now part of the VIATRA project [55].

Query languages and execution engines have been de-
veloped to support incremental graph queries on a single-
machine environment. Drools [27] is an incremental busi-
ness rule engine for Java-based systems. INSTANS [40] pro-
vides incremental queries over RDF [57].

Various distributed, but non-incremental graph query sys-
tems exist, including an approach based on SAP HANA [29],
a graph transformation tool using the Bulk Synchronous
Parallel graph processing model [30], and Trinity, an RDF-
based query engine [45].

Cross-technology benchmark for continuous validation.
Numerous benchmarks have been proposed to compare the
performance of query and transformation engines, but no
openly available cross-technology benchmarks exist for con-
tinuous model validation.

The first transformation benchmark was proposed in [56],
which gave an overview of typical application scenarios of
graph transformations together with their characteristic fea-
tures. Many transformation challenges have been proposed
as cases for graph and model transformation contests. How-
ever, only [22, 61] focus on query performance, while others
measure the usability of the tools, the conciseness and read-
ability of the query languages and tests various advanced
features, including reflection, traceability, etc.

There are numerous benchmarks from the area of seman-
tic databases. SP2Bench [44] features a synthetic DBLP-
like dataset, the Berlin SPARQL Benchmark (BSBM) [11]
simulates an e-commerce application, while the DBpe-
dia SPARQL benchmark [35] features a real data set with
queries based on real-world user queries. The Linked Data
Benchmark Council (LDBC) recently developed the Social
Network Benchmark [19], a cross-technology benchmark,
which provides an interactive workload and focuses on nav-
igational pattern matching (i.e. traversal operations). While
some of these benchmarks feature update operations and
hence measure incremental query performance, they provide
workloads that significantly differ from MDE use cases.

Characterization of realistic models. Revealing essen-
tial structural similarities and differentiations among net-
works from different fields is a fundamental objective in
network theory with a wide range of applications. The au-
thors of [15] list 22 areas using network theory, including so-
cial network analysis, transportation, biomolecular networks
and chemistry. Network theory is also studied in physics,
e.g. in the context of statistical mechanics [5]. However,
most of these applications use untyped (one-dimensional)
networks. So far, existing multidimensional studies only
focused on models of a single application domain, such
as neighbourhood and centrality analysis of a social net-
work [12], relevance and correlation analysis of different
dimensions in Flickr [28], community detection in the net-
work of YouTube [52].

The authors of [10] use graph metrics to capture the struc-
ture and evolution of software products and processes in
order to detect significant structural changes, help estimate
bug severity, prioritize debugging efforts, and predict defect-
prone releases in software engineering. Metrics are also
used for understanding the main characteristics of domain-
specific metamodels, to study model transformations with
respect to the corresponding metamodels, and search corre-
lations between them via analytical measures [41].

Realistic model generation. The SP2Bench [44] bench-
mark uses a generator based on the statistics of the DBLP

Scalable Graph Query Evaluation and Benchmarking with Realistic Models 3 2017/2/12

Figure 3. Graph of the contributions. Research questions are typeset in bold. Proposed contributions are noted with dashed
border. The arrows indicate the relationship between contributions, e.g. the results for C3 could be directly used for C1 and C4.

library. The authors of [36] use Boltzmann samplers [17] to
ensure efficient generation of uniform models.

OMOGEN [13] is a tool for automatically generating test
models, used for testing model transformations. The tool
takes a metamodel and a set of model fragments as its inputs
and combines the fragments using several strategies to build
valid instances.

gMark [8] is a domain-independent framework for syn-
thesizing large graphs, allowing the user to specify parame-
ters – size, types, degree distributions and other constraints
– for the graphs to be generated. gMark is also able to gen-
erate query workloads with queries of different size, shape
and selectivity.

4. Approach and Contributions
Figure 3 summarizes key the research questions and contri-
butions of my research. This section presents my approach
along with achieved and proposed contributions.

4.1 Distributed incremental graph queries
To achieve scalable incremental query evaluation, I adapted
the Rete algorithm for distributed systems. I demonstrate the
Rete algorithm works on the ActiveRoute query (Figure 2).
As described in Section 2.1, the query collect Routes, where
all Switches along the route are in the position prescribed by
the corresponding SwitchPosition. In other words, without
using the universal quantifier (∀), it searches for routes that
do not have a SwitchPosition which prescribes a position
different from the current position of its target Switch [39].

Hence, the query can be formalized in relational algebra as:3

route ▷
(
follows ▷◁ σcurrentPosition ̸=position(

switch ▷◁ target ▷◁ switchPosition)
)
= {⟨3⟩}

where ▷◁ denotes the natural join operator that joins its
operands based on their common attributes, and ▷ denotes
the antijoin operator (also known as the anti-semijoin [46])
that keeps the tuples from its left operand which do not have
a matching tuples in its right operand.

Figure 4 shows a distributed Rete network implementing
this relational algebra expression. The network is allocated
to two machines, Server 1 and Server 2. This allows the
query engine to scale for larger graphs, for which the Rete
network would not fit in the memory of a single workstation.
However, this approach still has a bottleneck limiting scal-
ability: if a Rete node cannot fit to the memory of a single
workstation, it will run out of memory.

3 To formalize the query, the relations for the vertices and edges in Figure 2
can be defined as follows:

• route(route) = {⟨1⟩, ⟨2⟩, ⟨3⟩}
• follows(route, switchPosition) =

{⟨1, 4⟩, ⟨2, 5⟩, ⟨2, 7⟩, ⟨3, 6⟩, ⟨3, 8⟩}
• switch(switch, currentPosition) =

{⟨4, div⟩, ⟨5, str⟩, ⟨6, str⟩, ⟨7, str⟩, ⟨8, div⟩}
• target(switchPosition, switch) =

{⟨4, 10⟩, ⟨5, 10⟩, ⟨6, 10⟩, ⟨7, 13⟩, ⟨8, 13⟩}
• switchPosition(switchPosition, position) =

{⟨10, str⟩, ⟨13, div⟩}

Scalable Graph Query Evaluation and Benchmarking with Realistic Models 4 2017/2/12

Join

〈swP, sw, p〉

Route.

follows

〈r, swP〉

Switch.

currentPosition

〈sw, cP〉

SwitchPosition.

target

〈swP, sw〉

Selection, p ≠ cP

〈sw, cP, swP, p〉

SwitchPosition.

position

〈swP, p〉

Join

〈sw, cP, swP, p〉

Join

〈r, swP, sw〉

Route

〈r〉

Antijoin

〈r〉

a a

swP

r sw

swP swP

r

swP

sw

Results

Server 1 Server 2

Notifications

Model access adapter

Query results

Figure 4. Rete network for the ActiveRoute pattern.

Using these techniques and algorithms, I made following
contributions.

Combine distributed actor model with Rete-based query
evaluation network. I designed a distributed architecture
and prototyped INCQUERY-D, a Rete-based query engine
using actors for distributed scalability. I presented a detailed
performance evaluation in the context of model incremental
well-formedness validation. The results showed nearly in-
stantaneous complex query reevaluation well beyond 10M+
model elements, [47]. To further extend the scalability of the
system, I proposed sharding individual Rete nodes in [32].

Distributed termination protocol for asynchronous Rete.
As Rete is an asynchronous algorithm, determining if the
network is in a consistent state w.r.t. the latest change set
requires a distributed termination protocol. The protocol was
also presented in [47] and [32].

Experimental evaluation over distributed NoSQL databases.
The proposed architecture and algorithms are representation-
agnostic. They have been integrated with the Neo4j graph
database [23], the Titan distributed graph database and
4store, a semantic database [47].

Evaluation of Rete network optimization and allocation
strategies. Allocating the Rete nodes in the cloud is a com-
plex optimization problem, where the goal is to minimize
the cost of communication between the nodes. I presented
a solver-based approach for allocating Rete nodes in [33].
I also proposed optimization techniques used in relational
query optimization for enhancing the performance of graph
queries [50].

Uniqueness. Up to my best knowledge, existing technolo-
gies are either distributed [30, 45] or incremental [55], but
there is no system that provides scalable, distributed incre-
mental graph queries.

4.2 Cross-technology benchmark for continuous
validation

In Section 2.1, I used a running example from the Train
Benchmark framework. The Train Benchmark is an incre-
mental model validation benchmark, continuously devel-
oped by the Fault-Tolerant Systems Research Group since
2010. I have significantly extended the Train Benchmark,
both conceptually and implementation-wise. Figure 5 shows
the inputs of the benchmark process, the benchmark phases
and the benchmark results.

The Train Benchmark is a macro benchmark that aims
to measure the performance of continuous model vali-
dation with graph-based models and constraints captured
as queries. The benchmark is cross-technology, i.e. it is
implemented on a range technologies. The serialization
formats include Eclipse-based model-driven engineering
toolchains (EMF), graph databases [42], relational databases
(SQL) and semantic technologies (RDF [57]). The query en-
gines include relational engines (SQLite, MySQL), graph
transformation frameworks (VIATRA [55]), rule engines
(Drools [27]), graph query engines (Neo4j [37]) and SPARQL
engines (Sesame [3], Jena [1]). Also, the framework is ex-
tensible which allows users of the benchmark to incorporate
new technologies.

Earlier versions of the benchmark have been continuously
used for performance measurements since 2012 [47, 54].
The benchmark is also part of the benchmark suite used by
the MONDO EU FP7 [34] project and was selected as a
case for the 2015 Transformation Tool Contest [51] as well.
The benchmark framework is available as an open-source
project.4

Scalable technology-agnostic model generator. While the
original benchmark framework included a model generator,
its scalability was limited. I redesigned the model generator
focusing on two aspects: (1) ensuring scalability for large
models, and (2) allowing the framework users to easily adapt
new representations.

Propose novel query and transformation mixes for bench-
mark. The workload profile of the benchmark simulates
real-world model validation scenarios of users loading, val-
idating and transforming their models. The transformations
capture user edits and quick-fix like automated refactor-
ing operations. Some queries in the benchmark are struc-
turally similar to AUTOSAR [7] validation queries (pre-
sented in [9]), while other aim to test various features of
graph query engines (such as efficient filtering and evalua-
tion of negative conditions).

Automated visualization and reporting. The framework
features end-to-end automation [24] to (1) set up configura-
tions of benchmark runs, (2) generate large model instances

4 https://github.com/FTSRG/trainbenchmark

Scalable Graph Query Evaluation and Benchmarking with Realistic Models 5 2017/2/12

https://github.com/FTSRG/trainbenchmark

Read Transformation RecheckCheck

Iteration: × nRun: × kModel

Query

Scenario

{batch, inject, repair}

Benchmark results

{# of invalid elements,

execution times,

memory consumption}

execution timeexecution time # of invalid elements,

execution time
of invalid elements,

execution time

Figure 5. Phases of the Train Benchmark.

(3) execute benchmark measurements, (4) synthesize dia-
grams for measurements using R scripts5.

Cross-technology evaluation of incremental query execu-
tion time and memory consumption. This cross-technology
benchmark can be adapted to different model representation
formats and query technologies. This is demonstrated by 12+
reference implementations over four different technological
spaces (EMF, graph databases, RDF and SQL) presented
in [48].

Uniqueness. Compared to other benchmarks, the Train
Benchmark has the following set of distinguishing features:

• The workload profile follows a real-world model valida-
tion scenario by updating the model with changes derived
by simulated user edits or transformations.

• The benchmark measures the performance of both initial
validation and incremental revalidation.

• This benchmark was designed with cross-technology
adaptations in mind. It can be implemented with different
model representation formats and query technologies.

4.3 Characterization of realistic models
In [49], I presented multidisciplinary graph metrics and eval-
uated them on instance models from different domains. As a
result, I proposed some metrics which turned out to be useful
for characterizing the structure of models.

Adapt multidisciplinary metrics for engineering models.
I performed a literature review and identified several graph
metrics from other disciplines. For evaluating these metrics,
I gathered instance models from software and systems engi-
neering domains:

• AutoFOCUS system models [6],
• Building Information Models (BIM) [18],
• Capella system models [38],
• JaMoPP code models [26],
• railway models from the Train Benchmark [48],
• Yakindu [60] statecharts.

Statistical characterization of different domains and mod-
els. I used both exploratory and confirmatory data analysis
techniques in order to determine the “usefulness” of metrics.

5 https://www.r-project.org/

I considered a metric useful if it separates models of different
domains from each other, while provides similar values for
models within the same domain. I also investigated whether
some of these metrics can distinguish real models from auto-
generated synthetic ones.

Exploratory analysis relied on data visualization, while
confirmatory analysis used statistical methods (such as per-
forming Kolmogorov–Smirnov tests on the derived metrics
distributions). My initial finding is that different versions of
clustering coefficients (i.e. how tightly connected the model
elements are) were particularly useful for such classifica-
tions. But, unsurprisingly, no single metric was able to suf-
ficiently handle all the domains. The analysis also provides
some insights that needs to be considered in future model
generators to synthesize realistic models.

Automated classification of domain models using machine
learning. As a future research objective, I plan to use
machine learning techniques for automated classification of
domain models.

Uniqueness. Up to my best knowledge, this is the first
investigation for using multidimensional graph metrics for
both characterizing the realism of models and distinguishing
different domain models from each other.

4.4 Realistic model generation
As a proposed contribution, I plan to design and develop a
generator that is capable of producing realistic models scal-
able in size. While there are solutions for generating either
scalable or realistic models, there are no known approaches
for the combination of both, rendering this a high-risk re-
search task. The long-term research objective of generating
scalable and realistic models breaks down to the following
steps:

1. metrics guided generation of realistic models,
2. domain model generation by design space exploration [4],
3. scalable rule-based generation of domain models.

Acknowledgments
I would like to thank my advisor, Dániel Varró for his guid-
ance during my research. I would also like to express my
gratitude to István Ráth, Gábor Bergmann and numerous
colleagues an co-authors for sharing their suggestions and
ideas.

Scalable Graph Query Evaluation and Benchmarking with Realistic Models 6 2017/2/12

https://www.r-project.org/

References
[1] Apache Jena. http://jena.apache.org/.

[2] Artop: The AUTOSAR Tool Platform. https://www.artop.
org/.

[3] Sesame: RDF API and query engine. http://www.

openrdf.org/.

[4] H. Abdeen, D. Varró, H. A. Sahraoui, A. S. Nagy, C. De-
breceni, Á. Hegedüs, and Á. Horváth. Multi-objective op-
timization in rule-based design space exploration. In ASE,
pages 289–300, 2014.

[5] R. Albert and A.-L. Barabási. Statistical mechanics of com-
plex networks. Rev. Mod. Phys., 74(1):47–97, January 2002.

[6] V. Aravantinos et al. AutoFOCUS 3: Tooling concepts for
seamless, model-based development of embedded systems. In
Joint Proceedings of ACES-MB & WUCOR co-located with
MoDELS, pages 19–26, 2015.

[7] AUTOSAR Consortium. The AUTOSAR Standard. http:

//www.autosar.org/.

[8] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher,
A. Lemay, and N. Advokaat. Generating flexible workloads
for graph databases. Proc. VLDB Endow., 9(13):1457–1460,
Sept. 2016.

[9] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh,
Z. Balogh, and A. Ökrös. Incremental evaluation of model
queries over EMF models. In MODELS, pages 76–90, 2010.

[10] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos.
Graph-based analysis and prediction for software evolution.
In ICSE, pages 419–429, 2012.

[11] C. Bizer and A. Schultz. The Berlin SPARQL benchmark. In-
ternational Journal on Semantic Web & Information Systems,
5(2):1–24, 2009.

[12] P. Bródka, P. Kazienko, K. Musial, and K. Skibicki. Analysis
of neighbourhoods in multi-layered dynamic social networks.
Int. J. Computational Intelligence Systems, 2012.

[13] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L. Traon.
Metamodel-based test generation for model transformations:
an algorithm and a tool. In ISSRE, pages 85–94, 2006.

[14] H. Bunke, T. Glauser, and T. Tran. An efficient implemen-
tation of graph grammars based on the RETE matching al-
gorithm. In Graph-Grammars and Their Application to Com-
puter Science, 4th International Workshop, Bremen, Germany,
March 5-9, 1990, Proceedings, pages 174–189, 1990.

[15] L. d. F. Costa, O. N. Oliveira, G. Travieso, F. A. Rodrigues,
P. R. Villas Boas, L. Antiqueira, M. P. Viana, and L. E. Cor-
rea Rocha. Analyzing and modeling real-world phenomena
with complex networks: a survey of applications. Advances in
Physics, 60(3):329–412, 2011.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In OSDI, pages 137–150, 2004.

[17] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltz-
mann samplers for the random generation of combinatorial
structures. Combinatorics, Probability & Computing, 13(4-
5):577–625, 2004.

[18] C. Eastman, P. Teicholz, R. Sacks, and K. Liston. BIM Hand-
book: A Guide to Building Information Modeling for Own-

ers, Managers, Designers, Engineers and Contractors. Wiley
Publishing, 2008.

[19] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev,
A. Prat-Pérez, M. Pham, and P. A. Boncz. The LDBC social
network benchmark: Interactive workload. In Proceedings of
the 2015 ACM SIGMOD International Conference on Man-
agement of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015, pages 619–630, 2015.

[20] C. Forgy. Rete: A fast algorithm for the many patterns/many
objects match problem. Artif. Intell., 19(1):17–37, 1982.

[21] J. Gray, editor. The Benchmark Handbook for Database and
Transaction Systems (2nd Edition). Morgan Kaufmann, 1993.

[22] T. Horn, C. Krause, and M. Tichy. The TTC 2014 movie
database case. TTC 2014, page 93, 2014.

[23] B. Izsó, G. Szárnyas, I. Ráth, and D. Varró. IncQuery-D:
Incremental graph search in the cloud. In BigMDE, 2013.

[24] B. Izsó, G. Szárnyas, I. Ráth, and D. Varró. MONDO-SAM:
A framework to systematically assess MDE scalability. In
BigMDE@STAF, pages 40–43, 2014.

[25] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[26] JaMoPP. The Java Model Parser and Printer, 2016. http:

//www.jamopp.org/index.php/JaMoPP.

[27] JBoss. Drools. http://www.jboss.org/drools.

[28] P. Kazienko, K. Musial, and T. Kajdanowicz. Multidimen-
sional social network in the social recommender system. IEEE
Trans. Systems, Man, and Cybernetics, 41(4):746–759, 2011.

[29] C. Krause, D. Johannsen, R. Deeb, K. Sattler, D. Knacker, and
A. Niadzelka. An SQL-based query language and engine for
graph pattern matching. In ICGT, 2016.

[30] C. Krause, M. Tichy, and H. Giese. Implementing graph
transformations in the bulk synchronous parallel model. In
FASE. 2014.

[31] B. Luteberget, C. Johansen, and M. Steffen. Rule-based con-
sistency checking of railway infrastructure designs. In Inte-
grated Formal Methods - 12th International Conference, IFM
2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings, pages
491–507, 2016.

[32] J. Maginecz and G. Szárnyas. Sharded joins for scalable
incremental graph queries. In 23rd PhD Mini-Symposium,
Budapest University of Technology and Economics, 2016.

[33] J. Makai, G. Szárnyas, I. Ráth, Á. Horváth, and D. Varró.
Optimization of incremental queries in the cloud. In 3rd
International Workshop on Model-Driven Engineering on and
for the Cloud (CloudMDE) at MODELS, 2015.

[34] MONDO project. Scalable Modeling and Model Management
on the Cloud Project, 7th EU Framework Programme, 2016.

[35] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. DB-
pedia SPARQL benchmark: Performance assessment with real
queries on real data. In ISWC, 2011.

[36] A. Mougenot, A. Darrasse, X. Blanc, and M. Soria. Uniform
random generation of huge metamodel instances. In ECMDA-
FA, pages 130–145, 2009.

[37] Neo Technology. Neo4j. http://neo4j.org/.

Scalable Graph Query Evaluation and Benchmarking with Realistic Models 7 2017/2/12

http://jena.apache.org/
https://www.artop.org/
https://www.artop.org/
http://www.openrdf.org/
http://www.openrdf.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.jamopp.org/index.php/JaMoPP
http://www.jamopp.org/index.php/JaMoPP
http://www.jboss.org/drools
http://neo4j.org/

[38] PolarSys. Capella. https://www.polarsys.org/

capella/.

[39] A. Rensink. Representing first-order logic using graphs. In
ICGT, pages 319–335, 2004.

[40] M. Rinne, E. Nuutila, and S. Törmä. INSTANS: high-
performance event processing with standard RDF and
SPARQL. In ISWC, 2012.

[41] J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio. Min-
ing correlations of ATL model transformation and metamodel
metrics. In MiSE, pages 54–59, 2015.

[42] M. A. Rodriguez and P. Neubauer. Constructions from Dots
and Lines. Bulletin of American Society for Information
Science & Technology, August/September, 2010.

[43] M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe. Au-
tomated and transparent model fragmentation for persisting
large models. In Model Driven Engineering Languages and
Systems - 15th International Conference, MODELS 2012,
Innsbruck, Austria, September 30-October 5, 2012. Proceed-
ings, pages 102–118, 2012.

[44] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP2Bench: A SPARQL performance benchmark. Shanghai,
China, 2009. IEEE.

[45] B. Shao, H. Wang, and Y. Li. Trinity: a distributed graph
engine on a memory cloud. In SIGMOD, 2013.

[46] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database
System Concepts, 5th Edition. McGraw-Hill Book Company,
2005.

[47] G. Szárnyas, B. Izsó, I. Ráth, D. Harmath, G. Bergmann, and
D. Varró. IncQuery-D: A distributed incremental model query
framework in the cloud. In MODELS, pages 653–669, 2014.

[48] G. Szárnyas, B. Izsó, I. Ráth, and D. Varró. The Train Bench-
mark: Cross-technology performance evaluation of continu-
ous model validation. Software and Systems Modeling, 2017.
Accepted.

[49] G. Szárnyas, Z. Kővári, A. Salánki, and D. Varró. Towards the
characterization of realistic models: Evaluation of multidisci-
plinary graph metrics. In MODELS, pages 87–94, New York,
NY, USA, 2016. ACM.

[50] G. Szárnyas, J. Maginecz, and D. Varró. Evaluation of opti-
mization strategies for incremental graph queries. Periodica
Polytechnica, EECS, 2017. Accepted.

[51] G. Szárnyas, O. Semeráth, I. Ráth, and D. Varró. The TTC
2015 Train Benchmark case for incremental model validation.
In Proceedings of the 8th TTC, a part of STAF, 2015.

[52] L. Tang, X. Wang, and H. Liu. Community detection via het-
erogeneous interaction analysis. Data Min. Knowl. Discov.,
25(1):1–33, 2012.

[53] The Eclipse Foundation. Papyrus, 2015. https://eclipse.
org/papyrus/.

[54] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó,
I. Ráth, Z. Szatmári, and D. Varró. EMF-IncQuery: An inte-
grated development environment for live model queries. Sci.
Comput. Program., 98:80–99, 2015.

[55] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth,
and Z. Ujhelyi. Road to a reactive and incremental model

transformation platform: three generations of the VIATRA
framework. SOSYM, 15(3):609–629, 2016.

[56] G. Varró, A. Schürr, and D. Varró. Benchmarking for graph
transformation. In VL/HCC. IEEE Press, 2005.

[57] W3C. Resource Description Framework (RDF). http://

www.w3.org/standards/techs/rdf/.

[58] J. Whittle, J. E. Hutchinson, and M. Rouncefield. The state
of practice in model-driven engineering. IEEE Software,
31(3):79–85, 2014.

[59] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
Graphx: a resilient distributed graph system on spark. In
GRADES co-loated with SIGMOD/PODS, page 2, 2013.

[60] Yakindu. Statechart Tools. http://statecharts.org/.

[61] A. Zündorf. AntWorld benchmark specification, GraBaTs,
2008.

Scalable Graph Query Evaluation and Benchmarking with Realistic Models 8 2017/2/12

https://www.polarsys.org/capella/
https://www.polarsys.org/capella/
https://eclipse.org/papyrus/
https://eclipse.org/papyrus/
http://www.w3.org/standards/techs/rdf/
http://www.w3.org/standards/techs/rdf/
http://statecharts.org/

	Problem and Motivation
	Scalable Graph Queries
	Benchmarking
	Characterization of Realistic Models
	Generating Realistic Models

	Preliminaries
	Running Example: Railway Network
	Incremental Query Evaluation

	Related Work
	Approach and Contributions
	Distributed incremental graph queries
	Cross-technology benchmark for continuous validation
	Characterization of realistic models
	Realistic model generation

