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Abstract For a long time, insight problem solving has

been either understood as nothing special or as a particular

class of problem solving. The first view implicates the

necessity to find efficient heuristics that restrict the search

space, the second, the necessity to overcome self-imposed

constraints. Recently, promising hybrid cognitive models

attempt to merge both approaches. In this vein, we were

interested in the interplay of constraints and heuristic

search, when problem solvers were asked to solve a diffi-

cult multi-step problem, the ten-penny problem. In three

experimental groups and one control group (N = 4 9 30)

we aimed at revealing, what constraints drive problem

difficulty in this problem, and how relaxing constraints,

and providing an efficient search criterion facilitates the

solution. We also investigated how the search behavior of

successful problem solvers and non-solvers differ. We

found that relaxing constraints was necessary but not suf-

ficient to solve the problem. Without efficient heuristics

that facilitate the restriction of the search space, and testing

the progress of the problem solving process, the relaxation

of constraints was not effective. Relaxing constraints and

applying the search criterion are both necessary to effec-

tively increase solution rates. We also found that successful

solvers showed promising moves earlier and had a higher

maximization and variation rate across solution attempts.

We propose that this finding sheds light on how different

strategies contribute to solving difficult problems. Finally,

we speculate about the implications of our findings for

insight problem solving.

Introduction

Having an insight when solving a difficult problem can be

characterized as a moment of full comprehension of a

solution (Sternberg, & Davidson, 1995). Understanding the

underlying cognitive processes of this phenomenon seems

to be a promising way to learn more about the foundations

of creative, innovative, out-of-the-box thinking (Dietrich,

& Kanso, 2010; Gardner, 1978; Perkins, 1981). Our study

sheds light on the importance of search processes and

relaxation of constraints when solving a difficult problem.

Search and constraints

Two cognitive theories try to explain insight problem solving:

the ‘‘nothing special’’ approach and the representational

change theory.Kaplan and Simon (1990) assumed that insight

problems are nothing special (see Öllinger,&Knoblich, 2009;

Sternberg, & Davidson, 1995): they are like other problems,

and it is only their huge or ill-defined search space that makes

them difficult to solve. Often an exhaustive search is impos-

sible, so the problem solver has to find the right heuristics to

attain the solution.KaplanandSimon (1990) demonstrated for

the mutilated checkerboard problem that search can be
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facilitated by increasing the saliency of crucial problem fea-

tures, which in turn increases the solution rate. Based on this

idea, MacGregor, Ormerod and Chronicle (2001) built a

computational model for the nine-dot problem, probably the

most well-known insight problem (Burnham, & Davis, 1969;

Chronicle, Ormerod, & MacGregor, 2001; Kershaw, &

Ohlsson, 2004; Lung, & Dominowski, 1985; MacGregor

et al., 2001; Maier, 1930). The task is to connect nine dots,

arranged in a 3 9 3 matrix, by four connected straight lines

(Fig. 1). MacGregor et al. postulated that two heuristics are

crucial for the solution: the maximization heuristic states that

each move should connect as many dots as possible; the

progress monitoring heuristic tests the ratio of remaining

moves and unconnected dots after each move. The authors

suggested that the higher the mental look-ahead value, the

more likely problem solvers realize that the problem space

needs to be extended. For instance, a personwith a look-ahead

value of twomayplan to connect three dotswith the firstmove

and two dots with the secondmove. As can be seen in Fig. 1b,

it is impossible to connect the remaining four dots with the

remaining two straight lines.MacGregor et al. (2001) assumed

that this might be the moment, when the problem solver starts

looking for new and ‘‘promising’’ moves, like drawing lines

outside the given 3 9 3 grid (see Fig. 1c). A person with a

look-ahead value of one would need to draw one more line

before realizing that the solution is impossible.

All in all, heuristics explain how people restrict the

search space and realize that the current search space is not

sufficient, but they do not explain how people come up

with the new search space.

Ohlsson (1992, 2011) proposed the representational

change theory (RCT), which provides a mechanism exactly

for that. The idea is that prior knowledge constraints or

perceptual groupings are changed by mechanisms like con-

straint relaxation (Isaak, & Just, 1995) or chunk decompo-

sition (Knoblich, Ohlsson, Haider, & Rhenius, 1999). In

more detail, it is supposed that activation of information in

the working memory alters the related long-term memory

activation pattern, and eventually might help to realize pre-

viously unrecognized knowledge elements or actions

(Ohlsson 1992, 2011 Chaps. 3–5). For example, in the nine-

dot problem, people start with an overconstrained search

space, and keep their lines inside the 3 9 3 grid, where they

fail repeatedly. A representational change resolves the per-

ceptual grouping so that problem solvers can draw lines

outside the grid, to non-dot locations (see Fig. 1c). The

representational change nicely explains how a problem

representation and so the resulting search space is changed.

However, to equal insight with relaxing a single source

of difficulty could be misleading (Scheerer, 1963; Weis-

berg, & Alba, 1981a, b). It was demonstrated that telling

people about the main source of difficulty either directly or

via transfer tasks does not necessarily increase the solution

rate (Kershaw, Flynn, & Gordon, 2013; Lung, & Domi-

nowski, 1985; Öllinger, Jones, & Knoblich, 2014; Weis-

berg, & Alba, 1981a, b). A few theoretical accounts

combined heuristics with the representational change the-

ory, and avoided the single cause of difficulty assumption

(Kershaw, & Ohlsson, 2004; Ohlsson, 1984, 1992, 2011).

Jones (2003) investigated the interplay between heuristic

search and representational change. He showed that both

are necessary for insight problem solving, and that they can

be differentiated by move selection and eye-movement

patterns (see also Knoblich, Öllinger, & Spivey, 2005, for a

review). Kershaw et al. (2013) and Kershaw and Ohlsson

(2004) demonstrated that prior knowledge, processing of

problem information, and perceptual aspects of the prob-

lem are multiple causes of difficulty. Recently, Öllinger

et al. (2014) suggested that insight problem solving could

be characterized by stages of search and representational

change. They proposed that in the nine-dot problem, search

plays the dominant role initially. At this stage—as

MacGregor et al. (2001) convincingly showed—partici-

pants rely on a maximization heuristic, i.e., they try to

connect as many dots as possible with each line. After

repeated failures, successful solvers change the problem

representation that results in an expanded search space.

Importantly, this new search space is much larger and has

to be restricted by heuristics too, to guide the search. This

might explain, why relaxing a constraint by cues (Weis-

berg, & Alba, 1981a, b) without having the right heuristics

(MacGregor et al., 2001) fails, as well as why heuristics

Fig. 1 a The initial

configuration of the nine-dot

problem. b A solution attempt

with the first two moves that

connect five dots. The numbers

indicate the sequence of moves.

c A solution of the nine-dot

problem
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fail, if they are applied at the inappropriate search space

(Öllinger et al., 2014).

The current study

We investigated how constraint relaxation and an appro-

priate maximization criterion might drive the problem

solving process and how successful problem solvers differ

from unsuccessful problem solvers. To investigate these

questions, we used the ten-penny problem (Dow, & Mayer,

2004). The instruction is: ‘‘Show how you can arrange ten

pennies so that you have five rows of four pennies in each

row’’. The solution of the problem is shown in Fig. 2a. The

figure might seem confusing until lines are drawn between

the dots to form a pentagram (Fig. 2b).

In the nine-dot problem, search and maximization are

important both before and after the representational change

(Kershaw, & Ohlsson, 2004; Öllinger et al., 2014). Before

the representational change the search space is restricted by

the perceptual constraint but it is still large (see also Ker-

shaw, & Ohlsson, 2004), so it takes some time before the

problem solver realizes that it is impossible to solve the

problem within the perceptual boundaries. After the rep-

resentational change, the search space becomes unre-

stricted, in fact, infinite, since the problem solver realizes

that she can draw lines to non-dot points. At this point, a

maximization heuristic plays an important role to direct

search (MacGregor et al., 2001), and a large spatial

working memory capacity is beneficial for solving the

problem (Chein, Weisberg, Streeter, & Kwok, 2010).

In contrast, for the ten-penny problem, the search space

is infinite from the beginning, and it might overstrain the

working memory to manipulate ten single items. Manipu-

lating pennies seems to be a constraint that problem solvers

have to overcome to realize that they can manipulate the

five lines (along which they arrange the pennies) instead.

Paradoxically, relaxing the pennies constraint restricts the

search space (Kaplan, & Simon, 1990; Knoblich et al.,

1999; Ohlsson, 1992, see below), whereas in the nine-dot

problem constraint relaxation expands the search space.

Using lines is also a precondition for applying an efficient

maximization criterion: to maximize the intersections of

lines (MacGregor et al., 2001). All in all, both multi-step

problems require the concerted interplay of representa-

tional change and heuristic search, but these factors might

have different importance within the problem solving

process of the two problems.

Hypotheses: We predict that the difficulty of the ten-

penny problem is caused by the following two constraints:

1. Pennies constraint: problem solvers start out with the

assumption that they have to manipulate single pen-

nies. When they overcome this constraint, they start

using lines (rows of pennies) to arrange the pennies,

which reduces the complexity of the task.

2. Separate rows constraint: problem solvers assume that

pennies have to be arranged in separate rows, i.e., rows

do not intersect. The key to the solution is to use

intersecting rows where the pennies at the intersections

are part of more than one row.

There could be another constraint that problem solvers

assume that pennies have to be of equal distance to each

other. We think that this is only a minor constraint and left

it out of consideration in this study.

We also predict that besides these constraints there is also

an important process factor (Kershaw, & Ohlsson, 2004).

One has to draw lines so that the number of intersectionswith

the already drawn lines is maximal (equals to the number of

already drawn lines). Each line has to intersect with all other

lines, so each line has to have exactly four intersections (see

Fig. 2, maximization criterion).

Consequently, we hypothesized that to solve the ten-

penny problem, one has to overcome the hypothesized

constraints and has to apply a maximization criterion.

Thus, we predicted that providing hints about these factors

would increase solution rate.

To test our hypotheses, we introduced three experi-

mental groups and a control group. In the line group (LG),

participants received a hint that using lines instead of single

pennies would help to solve the problem. In the intersec-

tion group (IG), participants were informed additionally

that intersections of lines would help to solve the problem.

In the maximization group (MG) problem solvers received

the hints about lines and intersections and were also

informed that each line should have four intersections. The

control group (CG) did not receive any hints.

Fig. 2 a Solution of the ten-

penny problem with pennies.

b Solution of the ten-penny

problem using lines,

intersections, and pennies. c A

typical solution of the problem

by one of our participants
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We predicted that the solution rate of all experimental

groups would benefit from the provided hints. We expected

the following rank order for the solution rate

MG[ IG[LG[CG. We predicted a solution rate near

100 % in the maximization group.

A second aim of our study was to investigate how

successful problem solvers differ from unsuccessful ones.

We hypothesized, as an extension of MacGregor et al.

(2001) heuristic approach, that successful solvers would

show a higher variation in their solution attempts. This

means that successful problem solving behavior is char-

acterized using different strategies, and repeating solution

attempts less frequently. According to MacGregor et al.

successful solvers realize the necessity of searching for

new problem states, if the initial approach fails to attain the

criterion. That is, solvers would outperform non-solvers in

the variance of their applied moves. Our argumentation is

in close vicinity to the notion of mental set (Birch, &

Rabinowitz, 1951; Chi, & Snyder, 2011; Lovett, &

Anderson, 1996; Luchins, & Luchins, 1994; Öllinger,

Jones, & Knoblich, 2008; Werner, & Raab, 2013). Mental

set occurs when the repeated activation of a solution pro-

cedure increases the likelihood of selecting this very pro-

cedure in the future, irrespective of the existence of

simpler, more efficient alternative strategies (Lovett, &

Anderson, 1996), thus hindering the solution of the prob-

lem. We assumed that variation, as the counterpart of

repetition, would correlate with solution rate.

Methods

Participants

120 participants, 42 male, were recruited via e-mails, and

flyers at local universities of Munich. Most of them were

students receiving course credit for participating in psycho-

logical studies, others were paid 7€. The median age was

25 years (range 18–58). The four groups did not differ with

respect to age according to a one-way ANOVA, F(3,

112) = .59; p = .62. Participants were randomly assigned to

either the control group or to one of the experimental groups

(line group, intersection group, or maximization group).

Materials

Participants received white, blank DIN A4 papers to draw

their solution attempts.

Procedure

Participants were tested individually in a quiet room. They

gave informed consent. They received the following writ-

ten instructions (in German).

Imagine you have ten pennies. Arrange the pennies so

that you have five rows of four pennies in each row.

Please use paper and pencil to draw your solution

attempts. Please number your solution attempts

consecutively.

The time limit was 15 min. In the three experimental

groups, participants received hints after 5 min. The line

group received the following hint: For solving the prob-

lem, it could be helpful to use lines instead of pennies.

The intersection group received the following hint: For

solving the problem, it could be helpful to use lines

instead of pennies, and regard the intersections of lines as

places where pennies rest. The maximization group

received the following hint: For solving the problem, it

could be helpful to regard the intersections of lines as

places where pennies rest. Please try to draw five lines,

so that each line has exactly four intersections with the

rest of the lines.

Design

The between-subject factor was group and the dependent

measures were solution rate, the proportion of different

strategies, maximization score and variation score before

and after the hint (see the definition of these variables later)

(Table 1).

Data analysis

Strategies

According to our hypotheses, we defined three strategies

(see examples in Fig. 3):

Table 1 Design
Group 0–5 min 5–15 min

Control group (CG) No hint No hint

Line group (LG) No hint ‘‘Use lines’’

Intersection group (IG) No hint ‘‘Use lines and intersections’’

Maximization group (MG) No hint ‘‘Maximize the number of intersections’’

Except CG all groups were provided with hints after 5 min
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• Penny strategy: there are no lines in the figure, just

circles or dots (see Fig. 3a, b).

• Line strategy: there are lines in the figure, but they do

not intersect. Pennies are either represented in the

figure or not (Fig. 3c).

• Intersection strategy: there are intersecting lines in the

figure. Intersections could be in the middle of lines

(Fig. 3d) or at the end points (Fig. 3e); they could be at

any angle. Pennies are either represented in the figure or

not.

We identified one strategy for each figure (solution

attempt) that the participants drew. For figures identified

with intersection strategy, we counted the number of

intersections (for figures identified with any other strat-

egy, this value was zero per definition). The experimenter

marked which figures were drawn before and after the

hint.

31 attempts (9 in CG, 17 in LG, 4 in IG, and 1 in the

MG) out of 1229 total attempts (2.5 %) were not clas-

sifiable (e.g., the participants drew written statements or

formulas instead of drawings) and were excluded. When

using the intersection strategy, sometimes problem sol-

vers used more than five lines (in 94 solution attempts

out of the total 1198). We classified these attempts as

intersection strategy, but we did not count the number of

intersections, because the number could be higher than

10. We treated these cases as missing data for the

number of intersections.

Since we were interested in the effect of hints, we

excluded those participants who solved the task before

5 min elapsed (four participants).

Maximization score

To compare the search behavior of solvers and non-solvers,

we operationalized maximization behavior by applying the

following scoring system. Each solution attempt was

scored ?1, -1 or 0, depending on the order of the solution

attempts and their strategies. The first attempt was scored 0

if it was a penny strategy and it was scored ?1 if it was a

line strategy or an intersection strategy. Then, each con-

secutive solution attempt was scored ?1 if it had a ‘‘higher

order’’ strategy than the previous one, 0 if it had the same

strategy, and -1 if it had a ‘‘lower order’’ strategy. The

order of strategies was penny strategy\ line strat-

egy\ intersection strategy. Intersection strategies with

more intersections were considered ‘‘higher order’’ than

intersection strategies with less intersections. Then, we

calculated the maximization score by averaging the scores

separately for the first 5 min and for 5–15 min. The max-

imization score hypothetically ranges from -1 to ?1.

Here,weprovide a hypothetical sequenceof strategies after

a hint to illustrate the scoring (penny strategy = ps; line

strategy = ls; intersection strategy = is): hint ? ps ? ps

? ls ? ps ? is (three intersections) ? is (1 intersec-

tion) ? is (eight intersections) ? is (10 intersections).

Scores: ps (0), ps (0), ls (1), ps (-1), is (1), is (-1), is (1), is (1).

Maximization score after hint = 2/8 = 0.25.

Variation rate

As a measure of variation we defined the number of ?1

scores and -1 scores (see above) as change, both indicat-

ing changes in search strategy, and 0 as repetition, and then

Fig. 3 Examples for different

strategies: a, b penny strategy,

c line strategy, d intersection

strategy with seven

intersections, e intersection

strategy with five intersections
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normalized it with the number of solution attempts. A

number of 0 would mean that the participant used the

penny strategy all the time. A number of 1 would indicate

that the participant started with the line or the intersection

strategy and changed strategies in each consecutive solu-

tion attempt.

Number of attempts

We compared the number of solution attempts (fig-

ures drawn) between solvers and non-solvers.

Results

For our analyses, we used a 5 % significance level and all our

statistical tests were two tailed. For nominal data, we used v2

tests and estimated the effect size by U coefficient. The data

analysis on selected strategies, maximization scores, varia-

tion scores and solution attempts were evaluated by separate

one-way ANOVAs before and after hints. Additionally, a

reviewer of an earlier version of this manuscript suggested to

calculate the differences in thesemeasures between after and

before the hint to estimate the amount of change induced by

the hint and to compare the groups based on these values. For

ANOVAs, we reported gp
2 for estimating the effect size. For

t tests, we determined Cohen’s d as effect size.

We divided the results section into three parts. First, we

report results that serve as evidence for the hypothesized

sources of problem difficulty. Second, we analyzed the

impact of hints on problem solving behavior, finally we

provide a binary logistic regression analysis assessing the

influence of different predictors on the solution rate.

Sources of difficulty

Pennies strategy

We controlled whether groups differed in the usage of the

pennies strategy before 5 min. An ANOVA of the groups

(CG, LG, IG, MG) revealed no statistically significant

effect, F(3, 115) = .74, p[ .52, gp
2 = .02. Post hoc com-

parisons revealed no significant differences between the

groups. Table 2 shows the number of participants who had

a variation rate of zero, i.e., who used the pennies strategy

exclusively. Before 5 min elapsed, there were a high

number of participants with 0 variation rate. We did not

find significant differences by pairwise v2 tests (ps[ .40)

between groups. After receiving hints, almost all partici-

pants dropped the pennies strategy. Pairwise v2 tests

(Fisher’s exact test) showed significant differences between

the CG and all other groups: CG and LG, v2(1, 59) = 8.68,

p\ .003, U = .38, CG and IG, v2(1, 58) = 8.68, p\ .02,

U = .32, and CG and MG, v2(1, 59) = 11.64, p\ .001,

U = .44.

Intersection strategy

We checked whether the hints affected the frequency of

solution attempts with intersection strategy. For each par-

ticipant, we calculated the percentage of solution attempts

that was categorized as intersection strategy, separately for

the solution attempts before and after 5 min (see Fig. 4).

Before 5 min, the percentage of solution attempts catego-

rized as intersection strategy was quite low in all groups.

After the hint, it increased, especially in the intersection

group and the maximization group.

Table 2 Number of participants who had a variation rate of zero

Group Before 5 min After 5 min

Control group 18/30 (60 %) 10 (33 %)

Line group 17/29 (59 %) 1 (3 %)

Intersection group 13/28 (46 %) 2 (7 %)

Maximization group 17/29 (59 %) 0 (0 %)

Fig. 4 Percentage of solution

attempts categorized as

intersection strategy across

groups. Black bars intersection

attempts before 5 min, gray

bars intersection attempts after

5 min. At 5 min, a hint was

provided for the experimental

groups. The bars represent the

average value; the whiskers

represent SE
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Before 5 min, a one-way ANOVA with the between-

subject factor groups (CG, LG, IG, MG) revealed no sta-

tistically significant effect, F(3, 115) = .82, p[ .60,

gp
2 = .02. After 5 min, the percentage of solution attempts

categorized as intersection strategy varied with the exper-

imental condition. A one-way ANOVA with the between-

subject factor groups (CG, LG, IG, MG) revealed a highly

significant effect, F(3, 115) = 30.68, p\ .0001, gp
2 = .45.

Post hoc comparisons (Scheffé) revealed highly significant

differences between the control group and all experimental

groups (p\ .01). The line group differed significantly from

the intersection group (p\ .05) and from the maximization

group (p\ .01). There was no difference between the

intersection group and the maximization group.

We further assessed the impact of hints, by comparing the

increase in intersection strategy after 5 min (calculated as

the percentage of solution attempts with intersection strategy

after the hint minus before the hint), across groups. A one-

way ANOVA with the between-subject factor groups (CG,

LG, IG, MG) revealed a highly significant effect, F(3,

115) = 18.36, p\ .0001, gp
2 = .33. Post hoc comparisons

(Scheffé) revealed highly significant differences between the

control group and all experimental groups (p\ .01).

Maximization score

Figure 5 shows the average maximization score (see

‘‘Data analysis’’ section) for each group. Before the hint,

these were positive, but close to zero (Fig. 5 black bars).

After the hint, the value in the maximization group

showed a pronounced increase and the intersection group

showed a somewhat smaller increase (Fig. 5 gray bars).

Before the hint, a one-way ANOVA with the factor

groups (CG, LG, IG, MG) revealed no significant dif-

ference between groups, F(3, 115) = .73, p[ .50,

gp
2 = .02. After the hint, a one-way ANOVA with the

factor groups (CG, LG, IG, MG) showed a reliable

difference, F(3, 115) = 24.89, p\ .0001, gp
2 = .40. Post

hoc comparisons (Scheffé) indicated that the maximiza-

tion group differed highly significantly from all other

groups (p\ .01). There was no other significant differ-

ence between groups. To rule out the possibility that the

effect was caused by the higher amount of solvers in the

maximization group, we excluded the solution move

from the analysis, since the solution move added a value

of ?1. A one-way ANOVA revealed a highly significant

effect for the factor group, F(3, 109) = 12.29,

p\ .0001, gp
2 = .26. Post hoc tests (Scheffé) revealed

significant differences between the maximization group

and all other groups (p\ .01).

To evaluate the amount of increase of maximization due

to the hint, we calculated the difference of maximization

scores after 5 min minus before 5 min for each group. A

one-way ANOVA with the between-subject factor groups

(CG, LG, IG, MG) revealed a highly significant effect, F(3,

115) = 12.80, p\ .0001, gp
2 = .26. Post hoc comparisons

(Scheffé) revealed highly significant differences between the

maximization group and all other groups (p\ .01). There

were no further significant differences between the groups.

Hints, solution rate, and variation

Solution rate

We compared the solution rate (Table 3) across all

groups by pairwise v2 tests. The difference was signifi-

cant between MG and all other groups: CG and MG,

v2(1, 59) = 23.80, p\ .0001, U = .64; LG and MG,

v2(1, 58) = 26.01, p\ .0001, U = .67; IG and MG v2(1,
57) = 14.85, p\ .0001, U = .51. These p values are

considered significant even if we apply the conservative

Bonferroni correction for multiple tests (.05/6 = .0083).

There was no other significant difference between

groups.

Fig. 5 Average maximization

score across groups. Black bars

maximization score before

5 min, gray bars maximization

score after 5 min. After 5 min, a

hint was provided in the

experimental groups. The bars

represent the average value; the

whiskers represent SE
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Variation rate

We tested whether the four groups differed in the variation

rate of their solution attempts. We did two separate anal-

yses for the data before 5 min and after 5 min. As Fig. 6

illustrates the variation rate before 5 min was very similar

in each group. A one-way ANOVA with the factor groups

(CG, LG, IG, MG) revealed no significant difference

between the groups, F(3, 115) = 1.26, p[ .30, gp
2 = .03.

After 5 min, the line, intersection, and maximization

groups showed a pronounced increase in variation rates

(Fig. 6 gray bars). A one-way ANOVA with the factor

groups (CG, LG, IG, MG) showed a reliable difference,

F(3, 115) = 15.78, p\ .001, gp
2 = .30. Post hoc compar-

isons (Scheffé) indicated that the maximization group dif-

fered highly significantly from all other groups (ps\ .01).

The intersection group differed significantly form the

control group (p\ .05), and the line group showed a

marginal difference from the control group p = .05.

To evaluate the amount of increase of variation between

groups due to the hint, we computed the difference of

variation score after 5 min minus before 5 min for each

group. A one-way ANOVA with the between-subject factor

groups (CG, LG, IG, MG) revealed a highly significant

effect, F(3, 115) = 8.57, p\ .001, gp
2 = .19. Post hoc

comparisons (Scheffé) revealed highly significant differ-

ences between the maximization group and the intersection

group as well as between the maximization group and the

control group (p\ .01). There were no further significant

differences between the groups.

Solvers and non-solvers

We were interested whether solvers systematically differed

from non-solvers, irrespective of group. We compared

solvers and non-solvers with respect to the number of

participants that made intersections before the hint, and to

the variation rate of solution attempts.

Intersections

Our prediction was that solvers are more likely to realize the

importance of using intersections than non-solvers, even

before the hint (MacGregor et al., 2001). In total, there were

32 solvers and 84 non-solvers (see Table 3). We found that

47 % of solvers (15 participants), and 26 % of non-solvers

(22 participants) used intersections before 5 min. A v2 test

comparing the categories (1 = intersection before hint,

0 = no intersection before hint) between solvers and non-

solvers revealed a significant effect, v2(1, 116) = 4.56,

p\ .05, U = .20, indicating that there is an association

between using the intersection strategy in the first 5 min and

being a solver. The effect would even be more pronounced,

if we included the four solvers that solved the problem

without any hint, since all of them used intersections.

Variation rate

We tested whether solvers showed a higher variation rate

than non-solvers. We found an average variation rate of .43

(SD .24) for non-solvers, and .59 (SD .24) for solvers. An

independent groups t test (solver, non-solver) revealed a

significant main effect, t(114) = 3.10, p = .01, Cohen’s

d = .67, indicating a medium effect size.

Table 3 Solution rates across groups

Group Number of solvers/group size (%)

Control group (CG) 3/30 (10 %)

Line group (LG) 2/29 (7 %)

Intersection group (IG) 6/28 (21 %)

Maximization group (MG) 21/29 (72 %)

Fig. 6 Average variation score

across groups. Black and gray

bars variation rate before and

after 5 min, respectively. After

5 min, a hint was provided in

the experimental groups. The

bars represent the average

value; the whiskers represent SE
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Number of attempts

We tested whether solvers and non-solvers differed in the

number of their solution attempts. Non-solvers made an

average number of 10.93 attempts (SD 4.91), in contrast

solvers made 8.41 (SD 2.76). An independent groups t test

(solver, non-solver) revealed a significant main effect,

t(114) = 2.74, p = .01, Cohen’s d = .62, indicating a

medium effect size.

Binary logistic regression: condition, variation,

and maximization

We evaluated the predictive value of the number of solu-

tion attempts, maximization scores and variation scores for

solving the ten-penny problem. We conducted a binary

logistic regression analysis (BLR) (Hosmer, & Lemeshow,

2000). BLR provides a method of analyzing the influence

of dichotomous, discrete, or continuous predictors on a

binary outcome variable, and has already been successfully

applied to the analysis of insight problem solving (Kershaw

et al., 2013; Öllinger et al., 2014). BLR produces B values,

and odds ratios. B values indicate the direction of the

relationship; odds ratios indicate, for example, the likeli-

hood that a participant in a particular group can be cate-

gorized as a solver, e.g., an odds ratio of 2 of a particular

group illustrates that a participant of this group is two times

more likely to solve the problem than for the baseline (CG)

condition (c.f. Öllinger et al., 2014).

We entered two blocks in the model. The first block

included the dummy coded predictor groups (CG, LG, IG,

MG), the maximization and variation rates after 5 min, and

the number of solution attempts. We defined the control

group as reference category. The model of this block was

significant, v2(6, 115) = 63.51, p\ .01, and classified

87.8 % of the data correctly. The Nagelkerke R2 = .61,

showing that 61 % of the variability of the data could be

explained by the model. The model revealed a significant

influence of the two predictor’s maximization after 5 min

and variation after 5 min. The first showed an odds ratio of

2.18 and the second an odds ratio of 3.99. In the second

block, we controlled for the effect of interactions. We

entered all two-way interactions with the predictor groups

(maximization after 5 min 9 group, variation after

5 min 9 group, and attempts 9 groups). Although the

model of block 2 was significant, v2(15, 115) = 96.26,

p\ .01, there were no significant predictors in this model

and the odds ratios of most of the variables were out of

range. This might indicate that too many variables were fit

into the equation. Therefore, we could not further interpret

these results (Table 4).

Discussion

We aimed at investigating the multiple sources of problem

difficulty, and the role of search and constraints in a dif-

ficult multi-step problem, the ten-penny problem. We

hypothesized that a pennies constraint and a separate rows

constraint are parts of the problem difficulty. The first

constrains participants’ problem representation to use sin-

gle pennies to solve the problem (and not lines), the second

constrains participants’ problem representation to arrange

the pennies in separate rows that do not intersect. In three

experimental groups, we gradually relaxed these con-

straints. Additionally, we provided a maximization

heuristic that was intended to guide the search process.

Accordingly, one group was informed to use lines instead

of pennies (line group), a second group received the hint to

use intersection of lines to solve the problem (intersection

group), and a third group was instructed to maximize the

number of intersections (maximization group). The

experimental groups were contrasted with a naı̈ve control

group, which received no hint. We introduced

Table 4 Binary logistic

regression data modeling the

predictive influence of

maximization scores, variation

rate, and the factor group on

solving the problem

Model B SE Wald v2 df Sig. OR 95 % CI

Lower Upper

Block 1

Group 4.10 3 .25

LG -.11 1.08 .01 1 .92 .90 .11 7.42

IG .169 .94 .03 1 .87 1.17 .19 7.32

MG 1.42 .95 2.23 1 .14 4.13 .64 26.45

Max. after 5 min .78 .38 4.30 1 .04* 2.18 1.04 4.57

Variation after 5 min 1.38 .56 6.08 1 .01* 3.99 1.33 12.00

Attempts -.116 .09 1.61 1 .21 .89 .74 1.07

SE standard error, Sig. significance, OR odds ratio, CI confidence interval, LG line group, IG intersection

group, MG maximization group

* Significant effect
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maximization score and variation rate to investigate dif-

ferences in search behavior. We aimed at deciphering the

concerted interplay of heuristics and representational

change when solving a difficult multi-step problem to

elaborate on the ‘‘special view’’ of insight problem solving.

Sources of difficulty

First, we tested whether the hypothesized constraints

(pennies constraint and line constraint) and the maxi-

mization criterion affected the problem solving process.

Analyzing the distribution of zero variation participants

(Table 2) showed that before 5 min (no hints) more than

half of the participants across all groups used pennies

strategy exclusively. This supports our assumption that

using pennies and not lines was a constraint from the

beginning. Providing hints affected the search for alterna-

tive strategies of all experimental groups positively,

whereas the control group still contained a high number of

participants (33 %) that repeated the pennies strategy

throughout the experiment.

All groups significantly differed, except for the inter-

section group and the maximization group, when we

compared them based on the percentage of solution

attempts with the intersection strategy after 5 min

(CG\LG\ IG = MG). This means that all hints effec-

tively increased the probability of using intersections (see

Fig. 4).

Comparing groups based on their maximization score

after 5 min (Fig. 5 gray bars) showed a different pattern.

Only the maximization group differed from the other

groups (CG = LG = IG\MG).

Hints, solution rate, and variation

We tested the effect of hints on problem solving behavior.

We compared groups based on their solution rate, and their

variation rate. We found that the maximization group

performed better than all other groups, with a solution rate

of 72 %. Hinting to use lines (without mentioning the

number of intersections), or hinting to use intersections

(without mentioning the maximization criterion) did not

increase solution rates significantly, compared to the con-

trol group. The following unexpected rank order for the

solution rates was found: CG = LG = IG\MG. This

order mirrors the maximization score pattern.

Comparing variation rates after 5 min (Fig. 6 gray bars)

across groups revealed a different pattern

(CG\LG = IG\MG). When we compared the differ-

ence of the variation scores after 5 min minus before

5 min, the maximization group showed a higher difference

than the intersection group and the control group, but no

other differences were found. While the conclusions from

these statistical tests are less clear, it is safe to say, that the

hints in the maximization group increased the variation rate

more than the other hints.

Solvers and non-solvers

Looking at strategies within the first 5 min revealed that a

higher percentage of solvers (47 %) used intersections

before the hint than non-solvers (26 %). The four partici-

pants that were excluded from the analyses because they

solved the task in less than 5 min also used intersecting

lines for the solution. It seems conceivable that solvers

overcame self-imposed constraints but had no criterion to

restrict the search space at this early stage, and conse-

quently could not monitor the progress of the search pro-

cess properly.

We found that the variation rate differed significantly

between solvers and non-solvers. A lower variation

between attempts might be an indicator for the repetition of

solution approaches that could be the sign of a self-gen-

erated mental set, see zero variation participants in the

control group (Beeftink, van Eerde, & Rutte, 2008; Smith,

1995).

Last, we found that the number of attempts differed

between solvers and non-solvers. Non-solvers made more

attempts, which was expected since they worked on the

problem longer. However, the result is not trivial because it

also indicates that non-solvers did not quit trying to solve

the problem and did not cease problem solving attempts.

Binary logistic regression

Modeling the influence of group, variation and maxi-

mization after 5 min, and the number of attempts showed

that the only significant predictor was variation rate after

5 min and maximization rate after 5 min; that is, higher

variation and maximization rates are positively related to

the solution of the problem. Although the analyses revealed

no significant interaction of any of the chosen predictors

with the predictor group it seems plausible to assume that

in particular the maximization group that showed the

highest maximization and variation rates contribute to this

pattern. It is important to note that the hints of the maxi-

mization group affected multiple sources of problem dif-

ficulty (Kershaw, & Ohlsson, 2004) that helped to increase

the variation and maximization rate.

In sum, relaxing the underlying constrains and having

the insights to use lines and intersections is a necessary

but not sufficient for solving the task. Using lines seemed

to reduce the complexity of the task of manipulating ten

single pennies (grouping). The hint proved insufficient

without finding an appropriate maximization criterion that

helps to monitor the progress against the desired goal
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(MacGregor et al., 2001; Öllinger, Jones, & Knoblich,

2013a, b; Öllinger et al., 2014; Ormerod, MacGregor, &

Chronicle, 2002). Interestingly, successful problem sol-

vers were more likely to realize the importance of inter-

secting lines even before the hint, and also showed a

higher variation rate than non-solvers. The importance of

variation and maximization was demonstrated by the

BLR. A maximization criterion provides a mean to

monitor the problem solving progress and to find the goal

configuration of the pennies. The last statement could not

be fully confirmed by our experimental design, since the

maximization group did receive multiple hints (line,

intersection, maximization). An open question remains

whether providing exclusively a hint about a maximiza-

tion criterion increases the solution rate. First of all, we

think that it is almost impossible to find an appropriate

hint that does not relax the underlying constrains at the

same time, e.g., ‘‘Maximize the number of intersections

between the rows of pennies’’, or ‘‘Maximize the number

of pennies that mutually share pennies with other rows’’

might relax the line and the separate rows constraints too.

Even if there was an unambiguous hint, we would expect

no effect, just like in the nine-dot problem, where the

instruction to draw lines outside the boundary of the given

nine dots fails to increase solution rate (see Öllinger et al.,

2014). We suggest that further studies need to investigate

this claim in more detail.

Surprisingly, even in the maximization group not all

participants were able to solve the problem (28 % failed).

We predicted that the hints (line ? intersections ? maxi-

mization) would relax all main causes of problem diffi-

culty. This assumption was proven wrong. Either there is

still an additional source of difficulty, or the application of

the maximization heuristic overstrained some participants

(processing factor).

The inefficiency of hints was found in several other

insight studies (Chronicle et al., 2001; Kershaw et al.,

2013; Öllinger et al., 2014; Weisberg, & Alba, 1981a, b).

There is also evidence for the importance of the processing

factor for solving multi-step problems. MacGregor et al.

(2001) pointed out that a higher look-ahead value (see

introduction) is helpful to solve the nine-dot problem, since

a higher value allows realizing the violation of a progress

monitoring criterion earlier. Importantly, a higher look-

ahead value is associated with a higher working memory

capacity. In fact, Chein et al. (2010) demonstrated for the

nine-dot problem that participants with a higher spatial

working memory span drew lines more likely to non-dot

points, and benefited effectively from hints. Ash and Wiley

(2006) investigated the influence of individual working

memory differences on solving insight problems that

allowed either multiple moves or only a few moves in a

biased problem representation. The authors’ rationale was

that only solving the first class of problems should benefit

from a higher working memory span, because initially

these problems require restricting the search space before a

representational change could occur, so that the appropriate

search space could be used. Although the authors used

problems that had a smaller search space (like the eight-

coin problem, Ormerod et al., 2002), we believe that for the

ten-penny problem individual working memory differences

could play an important role too. It seems plausible to

assume that higher variation rates of successful solvers

might be closely linked to a higher working memory span,

allowing the problem solver to keep track of the history of

solution attempts preventing to repeat unsuccessful solu-

tion attempts. This ought to be investigated in further

studies.

Comparing solvers and non-solvers emphasized the

importance of varying solution attempts. Recently, Fedor,

Szathmáry, & Öllinger (2015) found that non-solvers

repeated their unsuccessful moves more often than solvers

in the five-square problem. We suggest that repeating

unsuccessful strategies could lead to a self-generated

mental set, which in turn, hinders progress; an assumption

that is coherent with the early experimental findings on

mental set (Birch, & Rabinowitz, 1951; Luchins, &

Luchins, 1959; Luchins, 1942). These studies showed that

the repeated activation of a successful strategy makes

people ‘‘blind’’ for a more efficient or alternative method

(see also Bilalić, McLeod, & Gobet, 2008, 2010). Öllinger

et al. (2008) showed that the repeated activation of a newly

learned insightful solution strategy can even block well-

known prior knowledge strategies (see also Chi, & Snyder,

2011). However, in the current study mental set did not

result from the repeated activation of a successful strategy,

but from the repeated activation of an unsuccessful

strategy.

A next reasonable step would be to investigate the

expectation and monitoring process of participants when

they solve insight problems, and to prevent them from

entering a self-generated mental set, instead, increasing the

variation of potential solution strategies (Beeftink et al.,

2008).

Implications for insight problem solving

Does it make sense to classify the ten-penny problem as

an insight problem? Or is it a problem that could be

solved by search (Newell, & Simon, 1972) and should be

regarded as nothing special? We opt for the first. Gener-

ally, we stated (see Öllinger et al., 2014) that all ‘‘clas-

sical insight problems’’ (Dow, & Mayer, 2004; Metcalfe,

& Wiebe, 1987; Weisberg, 1995) could be solved with or

without insight. The key component that might charac-

terize an insight problem is the problem solvers’ need for
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a representational change (Fleck, & Weisberg, 2013;

Ohlsson, 1992; Öllinger, & Knoblich, 2009). For the ten-

penny problem, it seems plausible that there are con-

straints that have to be relaxed, like using lines or inter-

sections, and this makes it ‘‘something special’’. As our

data show, relaxing constraints and finding new and

efficient strategies to restrict the search space was not

trivial. It was shown that mainly variation scores after

hints predict whether the problem will be solved or not.

Taken together the variation data showed that our hints

helped to relax the constraints and enhanced the problem

solving process.

Our findings could be seen as complementary to the

existing evidence about the nine-dot problem (see ‘‘Intro-

duction’’). This might reconcile the opposing positions of

Kaplan and Simon (1990) and Ohlsson (1992, 2011). While

the former assumed that insight problems are difficult due

to an ill-defined problem representation that results in a

much too large search space, the latter suggested that

insight problems are difficult (among other things) due to

an overconstrained problem representation. We suggest

that these assumptions only differ in the importance and

function that they attribute to constraints and heuristics in

the respective problem.

Typically, in the nine-dot problem, problem solvers start

searching in an overconstrained but still large search space,

then after repeated failures, they relax the perceptual con-

straint to attain a search space that allows to make non-dot

turns and contains the solution (Kershaw, & Ohlsson,

2004), which in turn has to be restricted by heuristics

(Öllinger et al., 2014). As MacGregor et al. (2001) con-

clusively showed the difficulty was not to find the maxi-

mization criterion, but to apply the maximization criterion

at the appropriate search space, a process that benefits from

higher spatial working memory capacity (Chein et al.,

2010).

In contrast, the ten-penny problem requires relaxing

constraints to restrict the large search space from the

beginning, and a large number of successful solvers real-

ized this need very early. Doing so allows applying the

maximization criterion to come up with the solution.

Bringing together lines, intersections, and the realization

how the number of intersections have to be maximized

could be seen as the main insight into the solution of the

problem. It might sound paradoxical; but for the ten-penny

problem, the relaxation of constraints restricts the search

space in contrast to several other studies, where constraint

relaxation increases the size of the search space (Ash, &

Wiley, 2006; Kershaw et al., 2013; Kershaw, & Ohlsson,

2004; Knoblich et al., 1999; Knoblich, Ohlsson, & Raney,

2001; MacGregor et al., 2001; Öllinger, Jones, Faber, &

Knoblich, 2013; Öllinger et al., 2008; Öllinger et al.,

2013a, b).

Conclusions

We think that our study enhances the ‘‘special view’’ by

demonstrating the concerted interplay of heuristics and

representational change and supports the multiple causes of

difficulty account of insight problem solving (Kershaw, &

Ohlsson, 2004). Moreover, we think that our study provides

a better understanding of the dynamics of insight problem

solving at least for multi-step problems. We found that

maximization and variation of solution attempts might be

beneficial to solve the problem. We propose that higher

variation rates help efficient search of the search space and

to avoid the repetition of unsuccessful solution attempts.

The first might be crucially dependent on a higher working

memory capacity (Ash, & Wiley, 2006; Chein et al., 2010)

that helps guiding attention to unvisited states of the search

space, and at the same time keeping track of the overall

problem solving process.

Finally, we propose that our findings about the impor-

tance of variation are in harmony with evolutionary

accounts of problem solving and creativity (Campbell,

1960; Dietrich, & Haider, 2014; Fernando, Goldstein, &

Szathmáry, 2010; Fernando, Szathmáry, & Husbands,

2012; Simonton, 1995). If evolution might be in fact at play

at the neuronal level, it is not surprising that a larger

variation among candidate hypotheses is crucial for the

evolution of the solution.
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