
Chapter 2
Microwave-Assisted Syntheses in Organic
Chemistry

Nóra Zs. Kiss, Erika Bálint and György Keglevich

Abstract The second part focuses on the summary of typical organic chemical
reactions selected, such as coupling reactions (C–C bond formation reactions,
carbon–heteroatom bond formations), condensations (aldol-type-, Claisen-,
Knoevenagel reaction), multicomponent reactions (Mannich-, Biginelli-, Hantzsch-,
Bucherer–Bergs-, Strecker-, Gewald-, Kabachnik-Fields-, Kindler-, Passerini-,
Ugi- and domino reactions), cycloadditions (including Diels–Alder reactions). The
authors tried to compile fashionable reactions that have been reviewed less in the
past years.

Keywords Microwave � Organic chemical reactions � C–C and C–heteroatom
coupling reactions � Condensations � Multicomponent reactions � Cycloadditions

2.1 Introduction

In the last decades the MW technique has been intensively used to carry out organic
reactions of almost all kinds, and has become a useful non-conventional means of
performing organic syntheses. This chapter is aimed at giving insights into the new
trends of MW-assisted chemistry, placing the stress on the substantial areas of
up-to-date synthetic organic chemistry by presenting a selection of the recent
literature.
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2.2 Coupling Reactions

Carbon-carbon bond forming reactions represent a hot topic in organic chemistry
that may benefit from the advantages of MW irradiation resulting in shorter reaction
times, as well as simplified accomplishments [1].

Attention has been devoted to develop simple reaction conditions making pos-
sible easy product isolations by environmentally benign accomplishments using
simple catalysts and green solvents. To face the problems of air sensibility and high
cost of typically used P-ligands, as well as the difficulties in respect of handling of
the reaction mixtures, efforts have been made to develop ligand-free procedures.
Driven by environmental concerns, attempts have been made to use water as the
solvent.

2.2.1 C–C Bond Formation Reactions

2.2.1.1 Heck Reaction

Singh described a versatile phosphine-free protocol for the arylation and benzylation
of alkenes under MW irradiation in water (Scheme 2.1) [2]. The Heck reaction was
carried out in the presence of Pd(L–proline)2, an air-stable, water-soluble catalyst
complex. The substituted olefins (1) were obtained in good yields.

Hervé and Len reported the first MW-assisted, ligand-free cross-coupling reac-
tion of unprotected nucleosides in water. The reaction of 5-iodo-2’-deoxyuridine (2)
with various acrylate derivatives was carried out in the presence of Pd(OAc)2
(Scheme 2.2) [3, 4].

R1 R2 + YX

MW
80-140 °C, 10-50 min

1% Pd(L-proline)2
TBAB (1 eq.)
10% NaOAc

R1 R2
Y

1, 74-94%R1 = COOMe, COOEt, COOBu,
COOtBu, CN, nHex, Ph

R2 = H, Ph
Y = Ar, Bn
X = Br, I

H2O

Scheme 2.1 A phosphine-free Heck reaction
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The use of task-specific ionic liquids (ILs) is also a “hot topic”. A MW-assisted
ligand-free and base-free Heck reaction was carried out in a task-specific
imidazolium ionic liquid by Dighe and Degani (Scheme 2.3) [5]. The in situ
formed palladium complex proved to be an excellent catalyst in terms of activity,
selectivity and recyclability under MW irradiation.

2.2.1.2 Suzuki–Miyaura Reaction

A few examples of Suzuki–Miyaura cross-coupling reactions using water as the
solvent carried out under MW irradiation can be found in the literature [6–8]. In this
series, an up-to-date environmentally friendly synthesis was reported by Cohen and
co-workers for the preparation of various 5–substituted thiazoles in the presence of
TBAB as a phase transfer catalyst (Scheme 2.4) [9].
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Scheme 2.2 Ligand-free coupling of a nucleoside in water

X
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120 °C, 5-20 min

PdCl2 / ILY1

Y1

(E)-product

Y2

X = Cl, Br, I
Y1 = 4-OCH3, 4-COCH3, 4-COOEt, etc.
Y2 = COOEt, CN, Ph, etc.
IL = 1-(2-cyanoethyl)-3-(2-hydroxyethyl)-1H-imidazol-3-ium tetrafluoroborate

4, 53-88%

Scheme 2.3 A ligand- and
base-free Heck reaction in
ionic liquid
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N
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N
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100 °C, 1-10 h

Pd cat. (0.05 eq.)
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H2O

6, 73-98%

Ar = Ph, 4-ClPh, 4-FPh, 4-CF3Ph, 3-CF3Ph, 3,3'-di(CF3)Ph, etc.
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5

Scheme 2.4 Preparation of
5–substituted thiazoles in
water by Suzuki–Miyaura
coupling
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An efficient and solvent-free Suzuki–Miyaura coupling has been developed to
form fused tricyclic quinolones using basic alumina as a solid-support and a Pd
catalyst under MW irradiation (Scheme 2.5) [10]. The recyclable catalytic system
along with the solvent- and base-free conditions, short reaction time and easy
handling are remarkable advantages of the synthesis.

Other examples can also be found, where MW irradiation proved to be beneficial
in Suzuki–Miyaura cross-couplings by shortening the reaction times (usually to
minutes), and increasing the yields, as compared to those obtained by traditional
heating [8, 11–13].

2.2.1.3 Hiyama Reaction

A green strategy for the synthesis of biaryls involves a sodium hydroxide activated
ligand- and solvent-free Hiyama cross-coupling reaction in the presence of
resin-supported Pd nanoparticles under MW heating (Scheme 2.6). A macroporous
commercial resin, Amberlite XAD-4, impregnated with Pd nanoparticles (PdNPs)
of size 5–10 nm was used efficiently in the coupling of a variety of bromo- and
chloroarenes with phenyl-trimethoxysilane. The method of Shah and Kaur benefits
from operational simplicity, general applicability and recyclability. The absence of
organic solvents, activators and ligands fulfils the requirements of green chemistry
[14].

N

Br

Br O
O

n

MW
120 °C, 3 min

0.1% Pd(PPh3)4

Basic alumina

n = 2-4
Ar = 4-MeOPh, furan-2-yl, thiophen-3-yl, pyridin-3-yl, etc.

N

Ar

Ar O
O

n
8, 83-90%

+ ArB(OH)2
(2 eq.)

7

Scheme 2.5 A solvent-free Suzuki–Miyaura coupling

X Si(OMe)3+

X = Cl, Br
R = 2-Me, 3-Me, 3-COMe, 4-MeO, 4-CHO, 4-COMe, 4-NO2, 4-NHCOMe, etc.

RR
MW

110 °C, 6-12 min

NaOH
resin-PdNPs 9, 76-96%

Scheme 2.6 Ligand- and solvent-free Hiyama cross-coupling to form biaryls
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2.2.2 Carbon–Heteroatom Bond Formations

Carbon–heteroatom bond formations were also studied intensively under
MW-assisted conditions to reduce reaction times, simplify catalyst systems, or
eliminate organic solvents.

2.2.2.1 Microwave-Assisted C–N Bond Formation

Gupta and Singh described a simple and environmentally-friendly C–N coupling of
a wide range of aryl halides and amines under ligand-free and solvent-free MW
conditions (Scheme 2.7) [15]. Not only short reaction times were required, but the
heterogeneous catalyst applied could be recovered by simple filtration, and could be
re-used.

Aryl halides and amines were also subjected to iron/copper co-catalyzed
ligand-free reactions under MW irradiation (Scheme 2.8) [16]. It is worth men-
tioning that the simple reaction conditions were associated with a broad substrate
scope.

Halopyridines and various nitrogen nucleophiles were subjected to a
MW-assisted copper-catalyzed cross-coupling without the use of any ligands or
solvents (Scheme 2.9) [17].
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Y2
Y3

H
N

Y4
N

Y1

Y2

Y4

Y3

+
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110-160 °C, 20 min

10% NiCl2
.H2O

Et3N (1.4 eq.)
10, 28-92%X = Cl, Br, I

Y1, Y2 = H, 4-Me, 2-NH2, 4-CF3, 2,4-di-NO2
Y3, Y4 = H, alkyl, aryl, benzyl

Scheme 2.7 Ligand- and solvent-free C–N coupling of aryl halides and amines

X

Y1

+ Y2Y3NH

MW
150 °C, 15 min

Cu(acac)2 (0.1 eq.), Fe2O3 (0.2 eq.)

Cs2CO3 (2.0 eq.)
DMSO : H2O = 1 : 1

NY2Y3

Y1

11, 22-93%X = Cl, Br, I
Y1 = H, Me, OMe, Cl, NO2, CF3
Y2,Y3 = alkyl, benzyl, aryl, heterocycle

Scheme 2.8 Iron/copper co-catalyzed ligand-free C–N bond formation
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N-arylimidazoles of pharmaceutical interest were also prepared by a
MW-assisted solvent-free N-arylation [18].

2.2.2.2 Microwave-Assisted C–P Bond Formation

The Hirao reaction [19] is an important tool for the formation of P–C bond. See also
Sect. 3.5. Many publications highlight the beneficial effect of MW irradiation in the
Hirao reaction [20–23]. Keglevich and Jablonkai developed the first P-ligand- and
solvent-free Pd-calayzed coupling of different >P(O)H species with aryl-bromides
in the presence of Pd(OAc)2 under MW conditions (Scheme 2.10) [24]. This
accomplishment is the first example for P-ligand-free Hirao reactions.

Arylphosphonates, phosphinates or phosphine oxides could all be formed in the
coupling reaction of >P(O)H species and aryl halides in the presence of Cu or Ni
salts [25]. Starting from the salts of the >P(O)H species, there was no need for any
catalysts [26].

2.3 Condensations and Multicomponent Reactions

During condensations, two or more molecules are combined, usually in the presence
of a catalyst to form the product with the elimination of water or another simple
molecule.

Multicomponent reactions are convergent reactions, in which three or more
compounds react to form a product, where the majority of the atoms of the com-
ponents is incorporated in the newly formed product. Most of the classical

N
+

X = F, Cl, Br, I
Y1Y2 = aryl, benzyl, heterocycle

MW
100 °C, 1 h

10% Cu2O
K3PO4.H2O (2 eq.)

X

Y1Y2NH
N

NY1Y2

12, 10-91%

Scheme 2.9 Ligand- and solvent-free C–N bond formation of pyridine-derivatives
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O
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Y2
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Ar = Ph, 4-MeC6H4, 4-ClC6H4, 4-FC6H4, 4-EtO2CC6H4, 4-MeC(O)C6H4

13, 73-95%
no solvent

Scheme 2.10 A novel P-
ligand-free Hirao reaction
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multicomponent reactions involve the participation of carbonyl compounds and/or
their derivatives.

In general, traditional conductive heating methods are used to realize conden-
sations and multicomponent reactions. These methods are often slow, and the
conventional heating is not really suitable from the point of view of energy
efficiency. The use of MW irradiation is more efficient and ecofriendly to carry out
these reactions, as shorter reaction times, enhanced reaction rates, and higher yields
can be attained in comparison with conventional heating [27].

In this subchapter, several MW-assisted condensations, as well as multicompo-
nent reactions, such as aldol-, Claisen- and Knoevenagel condensations, Mannich-,
Biginelli-, Bucherer-Bergs-, Strecker-, Gewald-, Hantzsch-, Kabachnik-Fields-,
Kindler-, Passerini-, Ugi- and domino reactions will be discussed.

2.3.1 Aldol-Type Condensations

Aldol condensation is a typical way to form a carbon–carbon bond. In the con-
densation, an enolizable aldehyde or ketone reacts with a carbonyl compound to
form a β–hydroxyaldehyde or β-hydroxyketone, followed by a dehydration step to
give a conjugated enone.

A MW-assisted method was developed by Marijani et al. for the synthesis of
hydroxy-cyclopentenones (14) by the condensation of benzil with ketones carried
out in the presence of KOH/EtOH at 180 °C for 2–8 min (Scheme 2.11) [28].

The MW-assisted aldol-type condensations of 3-methyl-2-cyclohexenones and
aromatic aldehydes were studied using BiCl3 as the catalyst in the absence of any
solvent (Scheme 2.12) [29].

Y2H2C CH

O

14, 82-98%

MW
180 °C, 2-8 min

KOH/EtOH

OO

Y1 Y1

+
R1
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O

Y1

R1
OH

R2

Y1

Y1 = Br, H

Y2 = H, Me, Ph
R1 = H, Me
R2 = H, Me

Scheme 2.11 MW-assisted synthesis of hydroxy-cyclopentenones
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Scheme 2.12 Condensation of 3-methyl-2-cyclohexenones and aromatic aldehydes
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2.3.2 Claisen Condensations

The Claisen condensation [30] is the “ester analogue” of the aldol condensation.
During the reaction, two esters, or one ester and another carbonyl compound react
with each other in the presence of a strong base to form a β-keto ester or a
β-diketone.

An ultraviolet absorbent, 4-tert-butyl-4′-methoxydibenzoylmethane (trade name
Avobenzone) (16) was synthesized by the Claisen condensation of
4-methoxyacetophenone and methyl 4-tert-butylbenzoate in a household MW oven
using sodium amide as the base, and toluene as the solvent (Scheme 2.13) [31].

2.3.3 Knoevenagel Condensations

The Knoevenagel reaction [32] is a modified aldol condensation between an
aldehyde or ketone, and an active methylene group containing compound in the
presence of a base catalyst. The reaction is usually followed by a spontaneous
dehydration step resulting in an unsaturated product.

A high nitrogen containing mesoporous carbon nitride (MCN) was applied as a
metal-free base catalyst in the Knoevenagel condensation of aromatic aldehydes with
ethyl cyanoacetate (Scheme 2.14) [33]. The reactions were performed in toluene
under MW irradiation, and the products (17) were obtained in yields of 75–95 %.

The condensation of 3-α-carboxy ethylrhodanine (18) with substituted aromatic
aldehydes in the presence of sodium acetate in glacial acetic acid was studied under
MW irradiation at 150 °C for 10–15 min (Scheme 2.15) [34]. The reactions afforded
5–benzylidene-3-α-carboxy ethylrhodanine derivatives (19) in high yields.

MW
320 W, 1 h

toluene

O

MeO
+

O
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O
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O

tBu
16, 70%

Scheme 2.13 Claisen condensation of 4-methoxyacetophenone and methyl 4-tert-butylbenzoate
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Y = H, Me, iPr, OH, NO2, Cl 17, 75-95%

Scheme 2.14 Knoevenagel condensation of aromatic aldehydes with ethyl cyanoacetate
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The MW-assisted Knoevenagel reactions of 2,5-disubstituted
indole-3-carboxaldehydes (20) and active methylene group containing com-
pounds were studied by Biradar and Sasidhar (Scheme 2.16) [35]. The reactions
were carried out in a household MW oven, in the presence of ammonium acetate
under solvent-free conditions. It was found that without catalyst, the yields were
very low and sometimes no reaction occurred.

2.3.4 Mannich Reactions

The Mannich reaction [36] is a three-component condensation, where a primary or
secondary amine (or ammonia) reacts with an aldehyde and a ketone. The final
product is a β-amino-carbonyl compound, also known as a Mannich base.

β-Amino-carbonyl derivatives (23) were synthesized in the three-component
condensation of aniline derivatives, aromatic aldehydes and cyclohexanone using
CeCl3 as the catalyst under solvent-free and MW conditions (Scheme 2.17) [37].
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Scheme 2.15 Condensation of 3-α-carboxy ethylrhodanine with aromatic aldehydes
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Scheme 2.16 Knoevenagel reaction of 2,5-disubstituted indole-3-carboxaldehydes
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MW-assisted Mannich reactions of secondary amine hydrochlorides,
paraformaldehyde and substituted acetophenones were studied by Luthman and co–
workers (Scheme 2.18) [38]. The reactions were carried out in dioxane on a small
(2 mmol) and also on a larger (40 mmol) scale.

Mannich-type reactions of secondary amines, aldehydes and acetylene deriva-
tives were investigated by Leadbeater et al. (Scheme 2.19) [39]. The condensations
were performed in dioxane, in the presence of CuCl and a small amount of ionic
liquid (IL) under MW irradiation. Using IL as the solvent instead of dioxane, a
decomposition was observed.

NH2 + Ar CHO +

O

NH

OAr
CeCl3

23, 83-95%

MW

100 °C, 3 min

Y Y

Y = tBu, 3-MeO, 3-F, 2,4-F, 3,4,5-F, 4-CN
Ar = Ph, 4-EtPh, 4-ClPh, 2-FPh, 4-FPh

Scheme 2.17 MW-assisted solvent-free condensation of anilines, aromatic aldehydes and
cyclohexanone
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Scheme 2.18 Mannich reaction of amine hydrochlorides, paraformaldehyde and acetophenones
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Scheme 2.19 Mannich-type reaction of secondary amines, aldehydes and acetylenes
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The MW-assisted condensation of a 2-hydroxy-chalcone (26) was studied with
secondary amines and paraformaldehyde (Scheme 2.20) [40]. The reactions were
performed in dioxane without any catalyst at 100 °C for 10–45 min, and the
corresponding products (27) were obtained in yields of 81–97 %.

2.3.5 Biginelli Reactions

The Biginelli reaction [41] is a multicomponent one-pot condensation of an alde-
hyde, a β–keto ester and an urea derivative to afford dihydropyrimidinones, which
are of a wide range of pharmaceutical and therapeutic properties [42, 43].

MW-assisted Biginelli reactions of aromatic aldehydes, 1,3-dicarbonyl com-
pounds and urea or thiourea were studied by Japanese researchers (Scheme 2.21)
[44]. The condensations were carried out using tributyl borate as the catalyst under
solvent-free conditions, and the corresponding dihydropyrimidinones (28) were
obtained in high yields.

Chinese researchers elaborated a fast and solvent-free MW-assisted method for
the synthesis of dihydropyrimidinone derivatives (29), but in this case, a
heteropolyanion-based IL was applied as the catalyst (Scheme 2.22) [45].
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Scheme 2.20 Condensation of a 2-hydroxy-chalcone
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Ar = Ph, 4-MeOPh, 2-ClPh, 3-NO2Ph

R = Me, OMe, OEt
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Scheme 2.21 Biginelli reaction of aromatic aldehydes, 1,3-dicarbonyl compounds and ureas
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There is a good example, where the multicomponent reaction of aromatic
aldehydes, acetoacetamine derivatives and ureas was performed under solvent-
and catalyst-free conditions (Scheme 2.23) [46]. MW irradiation at 120 °C for
12–16 min furnished the dihydropyrimidinones (30) in 70–75 % yields.

Fang and Lam reported a modified MW-assisted Biginelli reaction of aromatic
aldehydes, 2–oxosuccinic acid and substituted ureas, which led to
aryl-oxo-tetrahydropyrimidinyl-carboxylic acid derivatives (31) by cyclization
accompanied by decarboxylation (Scheme 2.24) [47]. The reactions were
performed in THF, and were catalyzed by trifluoroacetic acid (TFA).

The synthesis of 3,4-dihydropyrimidin-2(1H)-ones (33) was studied starting
from an IL supported aldehyde (32), a β–ketoester and an urea (Scheme 2.25) [48].
HCl was used as catalyst, and the reactions were carried out in the absence of
solvent under MW irradiation. The corresponding products (33) were obtained in
good yields after the cleavage of the IL moiety realized by transesterification with
NaOMe/MeOH at reflux.
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Scheme 2.22 MW-assisted synthesis of dihydropyrimidinones
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Scheme 2.23 A solvent- and catalyst-free Biginelli reaction under MW irradiation
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Scheme 2.24 Condensation of aromatic aldehydes, 2–oxosuccinic acid and substituted ureas
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2.3.6 Hantzsch Reactions

The Hantzsch dihydropyridine synthesis [49] is a four-component reaction with the
participation of an aldehyde, two equivalents of a β-ketoester and a “nitrogen
donor”, such as ammonium acetate, or ammonia. Subsequent oxidation (or
dehydrogenation) may lead to pyridine-3,5-dicarboxylates, which may undergo
decarboxylation to yield the corresponding pyridines.

Westman and Öhberg developed a MW-assisted Hantzsch reaction of different
aldehydes, β-ketoesters and aqueous ammonium hydroxide (Scheme 2.26) [50].
NH4OH was used as the reagent, and also as the solvent. After an irradiation at
140–150 °C for 10–15 min, the corresponding dihydropyridines (34) were formed
in moderate to good yields.

A bismuth nitrate-catalyzed cyclocondensation was reported by American
researchers (Scheme 2.27) [51]. A series of dihydropyridines (35) were synthesized
using a series of aldehydes, 1,3-diketo compounds and ammonium acetate or
amines under solvent-free MW conditions.
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1.) MW
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Scheme 2.25 Biginelli reaction of IL supported aldehyde, β–ketoesters and ureas
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Scheme 2.26 Hantzsch reaction of aldehydes, β-ketoesters and aqueous ammonium hydroxide
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Silicotungstic acid nanoparticles dispersed in the micropores of Cr-pillared clay
(STA/Cr–P) were used as heterogeneous catalysts for the solvent-free synthesis of
1,4–dihydropyridines (36 or 37) (Scheme 2.28) [52]. During these reactions, aryl
aldehydes or chalcones were reacted with ethyl acetoacetate and ammonium acetate
under continuous MW irradiation at 900 W. After regeneration, the STA/Cr-P
catalyst was re-usable for several times.

A MW-assisted synthesis of 1,4-dihydropyridines (38) using task-specific ILs as
a soluble support was described by Bazureau and co-workers (Scheme 2.29) [48].
In the first step, the functionalized IL phase-bound aldehyde (32) was reacted with
the β–ketoester and aminocrotonate under solvent-free and MW-assisted condi-
tions. 5-N-(2-Hydroxyethyl)pyridinium hexafluoroborate ([PEG1py][PF6]) was
used as the IL. Then, the IL support was cleaved from the product by transesteri-
fication with NaOMe/MeOH at reflux. The desired compounds (38) were obtained
in yields of 85–86 %.

+ +
Me OEt

O O
Me N

H
Me

EtOOC

MW
900 W, 5-15 min
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70-86%

COOEt

CHO

Y
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Y

O
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Y

or

Me N
H
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Y

64-78%

Y = H, NO2, Cl, etc.
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36
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Scheme 2.28 Synthesis of 1,4-dihydropyridines in the presence of STA/Cr-P catalyst
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Scheme 2.29 Hantzsch reaction of IL phase-bound aldehyde, β–ketoester and aminocrotonate
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2.3.7 Bucherer-Bergs Reactions

The Bucherer-Bergs reaction [53, 54] is a multi-component transformation with the
participation of carbonyl compounds (aldehydes or ketones), cyanohydrines or
potassium cyanide and ammonium carbonate, which leads to the formation of
hydantoins.

5,5-Disubstituted hydantoins (39) were obtained in high yields by the conden-
sation of carbonyl derivatives, potassium cyanide and ammonium carbonate in the
presence of EtOH/H2O under MW conditions (Scheme 2.30) [55].

The synthesis of phenylpiperazine hydantoin derivatives was studied by Polish
researchers [56]. The compounds were obtained in four steps, where the first step
was the Bucherer-Bergs reaction of acetophenone with potassium cyanide and
ammonium carbonate under MW conditions (Scheme 2.31).

2.3.8 Strecker Reactions

The Strecker synthesis [57] provides an amino acid from an aldehyde or ketone.
The oxo component is condensed with ammonium chloride in the presence of
potassium cyanide to furnish an α-aminonitrile, which is subsequently hydrolyzed
to give the desired amino acid.

The Nafion-Fe-catalyzed Strecker reaction of various aldehydes or ketones with
amines and trimethylsilyl cyanide were investigated, and the corresponding
α-aminonitriles (41) were obtained in yields of 49–97 % under solvent-free MW
conditions (Scheme 2.32) [58].

EtOH/H2O

100 °C, 2-13 min
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Y1

O

Y2
+ KCN + (NH4)2CO3 NH

H
N OO

Y2
Y1

39, 83-99%Y1 = H, iBu, cHex, Ph, 4-ClPh, 3-MePh

Y2 = Me, Ph, 4-MePh, 4-MeOPh

Scheme 2.30 MW-assisted synthesis of 5,5-disubstituted hydantoins

EtOH/H2O

55 °C
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+ KCN + (NH4)2CO3

R

OMe

HN NH

O

OMe

R

R = H, F
40

Scheme 2.31 Bucherer-Bergs reaction of acetophenone, potassium cyanide and ammonium
carbonate
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A series of α-aminonitriles (42) were synthesized via a catalytic Strecker-type
reaction of aldehydes, amines and trimethylsilyl cyanide (Scheme 2.33) [59]. The
reactions were carried out at low temperature in the presence of Co(II) complex
supported on mesoporous SBA-15 under solvent-free MW-assisted conditions.

A somewhat Strecker analogous reaction accompanied by decarboxylation was
studied by Seidel and co–workers. Proline was reacted with different aldehydes and
trimethylsilyl cyanide in butanol under MW irradiation as shown in Scheme 2.34
[60].

2.3.9 Gewald Reactions

The Gewald reaction [61] involves the synthesis of 2-aminothiophene derivatives
via the multi-component condensation of an α-methylene carbonyl compound, an
α-cyanoester and elemental sulfur in the absence of a base.

Kirsh and co-workers developed a MW-assisted procedure for the Gewald
reaction of aldehydes, activated nitriles and sulfur (Scheme 2.35) [62]. The con-
densations were carried out at 70 °C for 20 min using morpholine as the base, and
ethanol as the solvent.
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The condensation of ketones with cyanoacetate or malononitrile and sulfur was
studied under MW conditions (Scheme 2.36) [63]. The multicomponent reactions
were performed using KF-alumina as the catalyst instead of an organic base, and the
2–aminothiophenes (45) were obtained in short times and in yields of 55–92 %.

A guanidine-catalyzed Gewald condensation was reported (Scheme 2.37) [64]. In
the course of the reaction, a mixture of cyclopentanone, 2-cyano-N-o-tolylacetamide
and elemental sulfur was irradiated continuously in a MW reactor in the presence of a
1,1,3,3-tetramethylguanidine lactate IL. This reaction was also carried out in ethanol.

The synthesis of thiophene derivatives (49) on a soluble polymer-support utilizing
the Gewald reaction was investigated (Scheme 2.38) [65]. The condensations were
carried out in a household MW oven starting from various aldehydes or ketones,
a PEG-supported cyanoacetic ester (47) and sulfur, in the presence of
diisopropylethylamine (DIPEA) under solvent-free conditions. Then, the product (48)
was acylated, and the PEG support was cleaved from the molecule by KCN in
methanol. The desired thiophene derivatives (49) were obtained in yields of 48–95%.

Y1 CHO + + S8
SY1 NH2

morpholine

MW
70 °C, 20 min

Y1 = Ph, 3,4-diMeOPh, 4-MeOPh, cHex, etc.

Y2 = CN, COOEt, CONH2

Y2 CN
EtOH

Y2

44, 50-99%

Scheme 2.35 MW-assisted Gewald reaction of aldehydes, activated nitriles and sulfur

+ + S8
SR2 NH2

KF-Alumina

MW
100 °C, 3.5-8 min

R1 = H, Me, Ph

R2 = H, Me, Et, COOEt

Y CN
EtOH

Y

45, 55-92%

R1

O
R2

R1

Y = COOEt, CN

Oor
( )n n= 1, 2, 3, 4

Scheme 2.36 KF-alumina catalyzed Gewald reaction

O Me
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46, 81%

Scheme 2.37 Condensation of cyclopentanone, 2-cyano-N-o-tolylacetamide and sulfur
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2.3.10 Kabachnik-Fields Reactions

The Kabachnik-Fields reaction [66, 67] is a three-component condensation of an
amine, an oxo compound, and a >P(O)H reagent forming α-aminophosphonates or
α-aminophosphine oxides, which are synthetic targets of some importance, as the
resulting species are the P–analogues of α-amino acids. See also Sect. 3.10.

A MW-assisted catalyst-free and solvent-free Kabachnik-Fields reaction of
amines, aldehydes and dimethyl phosphite was described by Chinese researchers
(Scheme 2.39) [68]. The condensations were carried out in a multimode MW
reactor at 80 °C for 2 min, and the corresponding α-aminophosphonates (50) were
obtained in yields of 40–98 %.

Ordónez and co-workers reported a MW-assisted highly diastereoselective
synthesis of α–aminophosphonates (51) by the three-component reactions of chiral
amines, alkyl or aryl aldehydes and dimethyl phosphite (Scheme 2.40) [69]. The
condensations were performed in the absence of any catalyst and solvent.

R

O
Y1 + +OCCH2CN

O
S8

SY1 NH2

R
O

O
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solvent-free

MW
130 W, 15 min 1.) 0 -> 25 °C 
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SY1 N
H

R
OMe
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Y2

O
49, 48-95%
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Scheme 2.38 Synthesis of thiophene derivatives on a soluble polymer-support
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Scheme 2.39 MW-assisted catalyst- and solvent-free Kabachnik-Fields reaction
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Scheme 2.40 MW-assisted diastereoselective synthesis of α–aminophosphonates
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Bis(α-aminophosphonate) pesticides were synthesized by the Kabachnik-Fields
reaction of terephthalaldehyde, 2 equivalents of aniline derivatives and diethyl- or
dibutyl phosphite under catalyst- and solvent-free MW-assisted conditions
(Scheme 2.41) [70].

2.3.11 Kindler Reactions

The Kindler reaction [71] is a three-component condensation of an aldehyde, an
amine and elemental sulfur resulting in the formation of thioamides. The modifi-
cation of this condensation, where ammonium polysulfide is used instead of sulfur,
is the Willgerodt-Kindler reaction.

Thiobenzamide derivatives (53) were synthesized by the condensation of
benzaldehyde or 4-(dimethylamino)benzaldehyde, morpholine and sulfur in a
household MW oven (Scheme 2.42) [72]. The reactions were studied using acid and
also base catalysts, and it was observed that the bases were more efficient.

Another MW-assisted Kindler reaction was reported by Kappe and co-workers
(Scheme 2.43) [73]. The three-component condensation of aldehydes, amines
and elemental sulfur leading to thioamides 54 was performed using
1–methyl-2-pyrrolidone (NMP) as the solvent at 110–180 °C for 2–20 min.
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+

NH2 CHO

CHO

2 + 2 HP

O OR

OR

MW

solvent-free HN

P NH

P

Y

Y = H, Cl, Br, F

R = Et, Bu

O

O

Y

Y
RO

OR

OR
RO
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Scheme 2.41 Synthesis of bis(α-aminophosphonate) pesticides under MW conditions
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Scheme 2.42 MW-assisted synthesis of thiobenzamide derivatives
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Scheme 2.43 Kindler
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2.3.12 Passerini Reactions

The Passerini reaction [74] is a multi-component transformation among a car-
boxylic acid, a ketone or an aldehyde, and an isocyanide to form the corresponding
α-hydroxy carboxamide.

Brazilian researchers described the solvent-free MW-assited Passerini reaction of
substituted carboxylic acids, aldehydes and isonitriles (Scheme 2.44) [75]. The
corresponding α-acyloxy carboxamides (55) were obtained in good yields at 60 or
120 °C within 1–5 min.

Boron-containing α-acyloxyamide analogues (57 and 59) were synthesized from
a boron-containing acid (56), aldehydes and cyclohexyl isocyanide (Scheme 2.45
(1)), or from a boron-containing aldehyde (58), acids and cyclohexyl isocyanide
(Scheme 2.45 (2)) in water under MW conditions [76].
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Scheme 2.44 Solvent-free MW-assited Passerini reaction of carboxylic acids, aldehydes and
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The three-component reaction of trolox derivatives (60), furoxan aldehyde (61)
and phenylethylisocyanide was also described (Scheme 2.46) [77]. The reactions
were carried out in water at 60 °C under MW irradiation for 5 min.

2.3.13 Ugi Reactions

The Ugi four-component condensation [78] with the participation of an amine, an
aldehyde or ketone, a carboxylic acid and an isocyanide affords α-aminoacyl amide
derivatives, which may be of potential pharmaceutical applications.

A one-pot Ugi reaction followed by intramolecular O–alkylation is an elegant
example. The synthesis starts from 2-aminophenols, aldehydes, α–bromocarboxylic
acids and isocyanides under MW irradiation (Scheme 2.47) [79].

The MW-assisted special Ugi reaction of levulinic acid, amines and isonitriles
afforded the corresponding lactams (65) in moderate to excellent yields at 100 °C
after 30 min (Scheme 2.48) [80].
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Scheme 2.46 The condensation of trolox derivatives, furoxan aldehyde and
phenylethylisocyanide
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Scheme 2.47 MW-assisted one-pot Ugi reaction followed by an intramolecular O–alkylation
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Scheme 2.48 Ugi reaction of levulinic acid, amines and isonitriles under MW conditions
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The synthesis of five- and six-membered lactams via Ugi reaction was also
reported (Scheme 2.49) [81]. The condensation of 4-acetylbutyric acid or levulinic
acid, amines and isocyanides was carried out under solvent-free MW conditions in
a short time.

2.3.14 Domino Reactions

In the domino reaction, called also tandem or cascade reaction, two or more
transformations take place under the conditions applied without adding any addi-
tional reagents or catalysts. These reactions may include multistep synthesis and
among others, protection-deprotection steps. Work-up procedures and purifications
can be avoided.

Efficient four- and six-component domino reactions were developed, where
2–(2′–azaaryl)imidazoles (67) and anti-1,2-diarylethylbenzamide derivatives (68)
were obtained under solvent-free MW-assisted conditions (Scheme 2.50 (1) and
(2)) [82].

Substituted quinolones (69) were prepared by a montmorillonite K-10 catalyzed
multicomponent domino reaction of amines, aldehydes and terminal arylalkyne
under MW irradiation (Scheme 2.51) [83].
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Scheme 2.49 The synthesis of five- and six-membered lactams via MW-assisted Ugi reaction

MW
150 °C, 15-34 min

67, 70-90%

solvent-free

Ar' CN

NH4OAc

Ar

O

Ar

O
+

NH

N

Ar

Ar

Ar'

MW
150 °C, 16-30 min

solvent-free
NH4OAc

Ar

O

Ar

O
+

Ar

O

Ar

O
NH4OAc

68, 80-92%

Ar N

Ar

Ar

NH

O

Ar

Ar = Ph, 4-ClPh, 4-Br-Ph, 4-FPh, 4MePh, 2-thienyl, etc.

Ar' = 2-pyridinyl, 5-bromopyridine-2-yl, 3-methylpyridine-2-yl, 2-pyrazinyl, 2-pyrimidinyl

(1)

(2)

Scheme 2.50 MW-assisted solvent-free four- and six-component domino reactions

32 N.Zs. Kiss et al.



2.4 Cycloadditions

Cycloaddition reactions are pericyclic reactions in which two or more unsaturated
compounds are combined with the formation of a cyclic adduct. Thus, cycloaddi-
tions provide heterocyclic and multicyclic scaffolds in a single-step. Cycloadditions
involving atomic efficient transformations represent another widely investigated
group of MW-assisted organic reactions [84].

2.4.1 [2+2] Cycloadditions

[2+2] Cycloadditions provide a synthetic tool towards four member rings, such as
cyclobutanes, cyclobutenes, β-lactams, oxetenes, cyclobutanones, and their
derivatives. These reactions usually require photochemical activation, or the use of
a Lewis acid under thermal conditions. A few examples were described, where MW
irradiation was found to be beneficial [85].

Ovaska reported a facile MW-assisted intramolecular [2+2] cycloaddition
starting from germinal allenyl-propargyl-substituted cyclopentane derivatives (70),
leading to strained tricyclic 5–6–4 ring systems (71) resembling to natural ster-
purenes (Scheme 2.52) [86].

A similar regioselective intramolecular cycloaddition was described for the
formation of bicyclic compounds by Brummond and co-workers. Bicycloalkadienes
were formed efficiently when 72 was irradiated by MW at 250 °C in toluene, in the
presence of an IL as an additive (Scheme 2.53) [87].
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Scheme 2.51 Montmorillonite K-10 catalyzed multicomponent domino reactions
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An intermolecular Staudinger [2+2] cycloaddition of a phenyl thiodiazoacetate
to an imine was enhanced by MW irradiation (Scheme 2.54). The authors aimed at
the investigation of nonthermal microwave effects (see also Chap. 4.), and they
found no significant difference in the stereoselectivity of the MW-assisted or the
thermal variation. However, the reaction speed was somewhat increased under MW
conditions [88].

A regiospecific protocol was described for the formation of highly functionalized
dienes. 2–Amino-3-dimethylaminopropenoates were reacted with acetylene
derivatives to furnish eventually 1–amino-4-(dimethylamino)buta-1,3-diene
derivatives (76) (Scheme 2.55). The reaction takes place via a cyclobutene inter-
mediate (75) by retro-electrocyclisation [89].

Pfeffer and co-workers investigated the synthesis of dicyclobutene tetraester 77
by the reaction of norbornadiene and DMAD in the presence of [RuH2(CO)(PPh3)3]
as a catalyst complex. While under conventional heating almost no product for-
mation was obtained, under MW irradiation, the corresponding cycloadduct was
formed already after 2 min (Scheme 2.56) [90].
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2.4.2 [3+2] Cycloadditions

1,3-Dipolar cycloadditions are among the most efficient procedures to form
five-membered heterocycles [84]. The reaction of azides with alkynes or nitriles are
powerful “click reactions” resulting in 1,2,3-triazoles or tetrazoles. Under tradi-
tional thermal conditions, these cycloadditions require often high reaction
temperatures.

The copper-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the best
“click reactions” to date, as the use of Cu(I) catalysts provides a significant rate
acceleration as compared to the uncatalyzed 1,3-dipolar cycloaddition [91]. Several
examples confirmed that further enhancement can be obtained by MW irradiation
[92].

A new green method have been developed for the formation of 1,2,3-triazoles by
Taher and co-workers. A highly active and stable poly-phenylenediamine supported
copper(I) catalyst (Cu(I)-pPDA) was found to promote the 1,3-dipolar cycloaddi-
tion between terminal alkynes and azides (Scheme 2.57). Thus, the MW-assisted
solvent-free accomplishment provides 1,2,3-triazoles (74) of pharmaceutical
importance with excellent yields [93].

Other metal-catalyzed azide–alkyne cycloaddition reactions have also been
reported under MW heating. The synthesis of 1,2,3-triazoles via Ru-catalyzed
azide–alkyne cycloaddition (RuAACs) was described by Fokin. It is noteworthy
that while the 1,4-disubstituted triazoles were obtained in the Cu(I)-catalyzed
azide–alkyne cycloaddition, the Ru-catalyzed version led to the 1,5-regioisomers of
1,2,3-triazoles (Scheme 2.58). MW irradiation provided higher yields, cleaner
products in shorter reaction times, as compared to the results obtained on traditional
heating, upon which by-products were also formed [94].

A.) Δ
RuH2(CO)(PPh3)3

100 °C, 14 h
toluene

B.) MW
RuH2(CO)(PPh3)3

100 °C, 2 min
DMF

MeOOC
COOMe

MeOOC
COOMe

Δ : <10%
MW : 76%

+ DMAD

(2 eq.) 77

Scheme 2.56 MW-assisted synthesis of a dicyclobutene tetraester
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Y1 = H, Br
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cat: Cu(I)-pPDA
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N
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Scheme 2.57 An environmentally benign synthesis of 1,2,3-triazoles
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An interesting example for 1,3-dipolar cycloadditions is the reaction of an
azaphosphonate and an acetylenic ester to furnish the corresponding 1,2,3-triazole
as a mixture of two regioisomers (80A and 80B) (Scheme 2.59). While the reaction
took place in toluene at 110 °C after 30 h, the solvent-free MW-assisted variation
was complete after 5 min [95].

Kappe described the first example of an organocatalytic tetrazole-formation under
MW-assisted conditions. The catalyst (5-azido-1-methyl-3,4-dihydro-2H-pyrrolium
azide) was formed in situ. The cycloaddition of azides with organic nitriles resulted
in a series of 5-substituted-1H-tetrazoles in high yields (Scheme 2.60) [96].

2.4.3 Diels–Alder Cycloadditions

The [4+2] cycloaddition of a conjugated diene and a dienophile is widely used to
form highly functionalized and fused ring systems. In most cases, the syntheses take
place with a high degree of chemo-, regio- and stereoselectivity.

Triazoles are known for their poor reactivity in [4+2] cycloaddition reactions.
However, an example was described in which the 1,2,3-triazole ring acted as a
diene towards dimethyl acetylenedicarboxylate (DMAD) in MW-assisted

N3
Y1

+ Y2

MW
110 °C, 20 min

[CpRuCl]4

DMF

NY1
NN

Y2

Y1 = H, Me, OMe, Cl, I, COOEt
Y2 = alkyl, heteroaryl

79, 43-92%

Scheme 2.58 MW-assisted
Ru-catalyzed azide–alkyne
cycloaddition
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Scheme 2.59 1,3-Dipolar cycloaddition of an azaphosphonate to an acetylenic ester
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N N
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Y

81, 79-95%
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Scheme 2.60 Organocatalytic tetrazole-formation under MW irradiation
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solvent-free Diels–Alder cycloadditions followed by a rearrangement to afford
functionalized pyrazole heterocycles (83) (Scheme 2.61). The yields could be
increased using a supported Lewis acid catalyst, which could be recycled at least
five times without a decrease of activation [97].

Zheng observed the Diels–Alder reaction between Danishefsky’s diene and ethyl
α-substituted acrylate derivatives to provide cycloadducts 85 (after deprotection with
(+)-10-camphorsulfonic acid (CSA) or pyridinium p-toluene sulfonate (PPTS) from
84) (Scheme 2.62). TheMWheating drastically accelerated the cycloaddition resulting
in the desired products in high yields. Compared to the traditional thermal conditions,
the method of Zheng offers a 14–48-fold rate acceleration with serious increase in the
yields. The adducts so-obtained are useful intermediates in the synthesis of a biotin
conjugate of monocyclic cyanoenone with high antiinflammatory activity [98].

The MW-assisted intramolecular Diels–Alder cyclization of alkenylaminofu-
ranes at 180 °C in o-dichlorobenzene led to 4-monosubstituted indoles (87) after
dehydrative aromatization of intermediate 86 (Scheme 2.63). Interestingly, no
reaction was observed on conventional heating, whereas under MW-assisted con-
ditions, the cyclization furnished the desired 4-substituted indoles in high yields
[99]. Thus, the strategy shown is a convenient alternative to the transition
metal-mediated coupling processes affording such heterocycles.

N
N

NR1

R2

Ph

+

CO2Me

CO2Me MW
80-130 °C, 20 min

silica-bound AlCl3
N

N

R2N

CO2Me

CO2Me
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R1

NR1-
N

N

MeO2C

R2

Ph

CO2Me

83, 35-94%R1 = H, Et, Pr, CH3OCH2, Ph, CHO, CO2Me
R2 = H, Me, Et, Pr, CH3OCH2

82

Scheme 2.61 MW-assisted solvent-free [4+2] cycloaddition of triazoles to DMAD
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Scheme 2.62 An effective MW-assisted [4+2] cycloaddition of Danishefsky’s diene
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Scheme 2.63 Intramolecular Diels–Alder cyclization of furan derivatives
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Kočevar developed an efficient synthesis of 1,5,6-trisubstituted indoles involving
two MW-assisted steps. The first step is the Diels–Alder cycloaddition reaction
between (Z)-1-methoxybut-1-en-3-yne with 2H-pyran-2-ones (88) yielding substi-
tuted aniline derivatives (89). In the next step, the adducts underwent intramolecular
cyclization under acidic conditions to give the corresponding indole derivatives
(90) (Scheme 2.64). It is worth mentioning that the analogous cycloaddition
reactions carried out under high-pressure conventional heating conditions needed
very long reaction times up to 138 days, and in two cases anomalous products were
obtained [100].

The Diels–Alder cycloaddition of 3-nitro-1-(p-toluenesulfonyl)pyrrole with
N-acetyl-N-isopropyl-1,3-butadiene afforded an indole derivative (91) under
solvent-free MW-assisted conditions after the elimination of the nitro group and
in situ aromatization [101]. It is noted that the reaction did not occur on conven-
tional heating (Scheme 2.65).

A MW-assisted intramolecular didehydrogenative Diels–Alder reaction of
styrene-ynes (92) was reported to furnish fluorophores 93 (Scheme 2.66) [102,
103].
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Scheme 2.64 MW-assisted synthesis of 1,5,6-trisubstituted indoles
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Scheme 2.65 Solvent-free MW-assisted [4+2] cycloaddition of a pyrrole derivative
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Scheme 2.66 Didehydrogenative Diels–Alder reaction of styrene-ynes under MW conditions
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4-Substituted-2,3-dihydrofuro[2,3-b]pyridines and 5-substituted-3,4-dihydro-
2H-pyrano[2,3-b]pyridines (95) featuring close structural similarity to bioactive
molecules were obtained by the intramolecular hetero Diels–Alder cycloaddition of
alkyne triazines (94) under MW conditions in good yields (Scheme 2.67) [104].
MW activation proved to be efficient to promote the cycloaddition reaction.

1,4-Dihydropyridines (97) were prepared by an aza-Diels–Alder [4+2]
cycloaddition strategy (Scheme 2.68) promoted by MW irradiation. The
1,4-dihydropyridine prepared (97) was converted further to antihypertensive drug
Amlodipine (not shown here) [105].

The MW-assisted [4+2] cycloadditions for the synthesis of drug-like heterocycles
was also reported. The [4+2] cycloaddition of 1,4-diaryl-1-aza-1,3-butadienes (98)
with allenic esters at 100 °C followed by a tandem 1,3-H-shift provided
1,4-dihydropyridines (100) in excellent, 83–96 % yields (Scheme 2.69).
Comparative thermal reactions required 33–76 h resulting in lower yields [106]. The
unsymmetrically substituted 1,4-dihydropyridines (100) obtained are well-known
for their potential biological activities.
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Scheme 2.67 Intramolecular inverse electron demand Diels–Alder reactions under MW irradiation
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Scheme 2.68 Aza-Diels–Alder cycloaddition to form an 1,4-dihydropyridine derivative
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Scheme 2.69 MW-assisted synthesis of unsymmetrically substituted 1,4-dihydropyridines

2 Microwave-Assisted Syntheses in Organic Chemistry 39



2.5 Conclusions

In summary, MW-assisted coupling reactions, condensations, multicomponent
reactions and cycloadditions providing an access to a wide variety of different
scaffolds were presented. In all cases, MW irradiation led to shorter reaction times
and higher yields in comparison with conventional heating, or even promoted
reactions that were unsuccessful on conventional conditions.
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