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Abstract—Modeling the tumor growth under angiogenic inhi-

bition is an important step towards designing tumor treatment

therapies based on mathematical tools. Our goal is to create a

model for tumor growth that describes the underlying physio-

logical processes adequately while being as simple as possible.

We propose a second-order model containing linear terms and

one bilinear term modeling the dynamics of tumor volume and

inhibitor level, and work out the parametric identification process

for the model. The parametric identification of the model is done

using measurements from experiments on C57Bl/6 mice with C38

colon adenocarcinoma treated with bevacizumab. The control

group of the mice received one injection at the beginning of

the experiment, these measurement data are used for parametric

identification, while the case group of mice received injection

at each day of the treatment, these measurements are used to

validate the model. The validation showed that the proposed

model is capable of describing the tumor growth dynamics.

Index Terms—Tumor growth model, Angiogenic inhibition,

Bevacizumab, Minimal model

I. INTRODUCTION

Angiogenesis (formation of new blood vessels) is a phys-
iological process that helps tumors grow over a certain size
and can be inhibited with the application of the appropriate
drugs [1]. Inhibiting angiogenesis thus indirectly affects tumor
growth and is a potential therapeutic tool that can be applied
against cancer mechanisms [2]. However, in clinical practice
the optimal therapeutic protocol is still unknown [3]. Creating
a model-based optimal protocol could significantly help to
increase the quality of cancer treatments, and has been inves-
tigated by many authors [4], [5], [6], [7]. However, all these
control design methods require a practical model describing
the physiology of tumor growth and the effect of the inhibitor
on the tumor growth.

There are different tumor growth models that can be found
in the literature, from the simplest models using linear dynam-
ics to complex models with nonlinear terms in their differential
equations [8]. The advantage of the linear models is their
simplicity, their disadvantage is that they usually can not
describe physiologically important phenomena. The advantage
of nonlinear complex models is that they can describe many
physiologically important phenomena, however they do that at
the expense of the usability of the models.

The most widely used and accepted model that defines
tumor growth under angiogenic inhibition was proposed by
Hahnfeldt at al [9]. This is a second-order model, thus rel-
atively simple, but uses nonlinear terms in the differential

equations. Tylcz at al. gave a model of the dynamics of the
vascularization of the tumor under treatment with angiogenic
inhibitor in [10], mainly describing the dynamics of the mode
of action of the inhibitor.

In [11] it was shown that linear dynamics can describe the
measurements for tumor growth without any therapy. However,
it turned out in [12] that the linear dynamics may fail if there
is therapy, since the effect of therapy and the self-induced
growth of the tumor can not be distinguished if a linear model
is used to describe the dynamics. We propose a simple second-
order model in Section II were the only nonlinear term in the
differential equations is the one describing the effect of the
inhibition in order to solve this problem.

The model proposed here uses linear pharmakokinetics
to describe the level of the inhibitor in the patient, linear
dynamics to define the growth of the tumor, and bilinear
dynamics to define the inhibition of tumor growth by the drug.
The symbolic solution to the differential equations governing
the tumor growth dynamics can be written explicitly if there
is only one injection at the beginning of the treatment. This
explicit result can be linearized in the parameters and linear
parameter estimation can be carried out with least squares
estimation as explained in Section III.

The parametric identification of the model is done using
measurements from C57Bl/6 mice experiments, where the
mice were implanted subcutaneously with C38 colon adeno-
carcinoma, and received treatment with bevacizumab [13]. The
mice were separated into a control group and a case group.
The mice in the control group received only one injection at
the beginning of the treatment, while the mice in the case
group received injection at each day of the treatment. The
parametric identification of the proposed model is done using
the measurements from the control group, and the results
are validated using the measurements from the case group in
Section IV.

The model given in Section II is a simple model that
is capable to express the effect of inhibitor separately from
the growth mechanism of the tumor, as it will be shown in
Section IV. Moreover, the validation of the model shows that
it describes the measurements appropriately.
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II. A MINIMAL MODEL OF TUMOR GROWTH UNDER

ANGIOGENIC INHIBITION

The dynamics of the proposed model of tumor growth is
governed by the differential equations

ẋ = ax− bxy (1)

ẏ = −cy (2)

where x is the time function of tumor volume given in mm3,
y is the time function of the level of inhibitor in the host given
in mg/kg (i.e. mg of inhibitor per body mass kg of the host),
and the parameters of the model are

• a : the tumor growth rate, measured in 1/day;
• b : the inhibition rate, measured in kg/ (mg · day);
• c : the clearance of the inhibitor, measured in 1/day.

Equation (2) defines the linear pharmakokinetics of the in-
hibitor. According to this equation, the depletion of the in-
hibitor is governed by a linear differential equation, thus its
time function is given by an exponential function

y(t) = y(0)e−ct (3)

with y(0) being the initial condition. Therefore, if the amount
of injection y(0) is given to the patient, the level of the
inhibitor in the patient is described by (3) if there was
no inhibitor present in the patient before the injection. The
parameter c is the clearance of the inhibitor. If we know the
half-life of the inhibitor denoted by T1/2, then the clearance
can be calculated as

c =
ln 2

T1/2
. (4)

Equation (1) describes the dynamics of tumor growth. The
first term on the right-hand side of (1) specifies exponential
growth of tumor volume with growth parameter a. This term
defines an unstable system if a is positive, i.e. the tumor
grows uncontrollably (described by an exponential function),
and there is no upper bound for the tumor volume. Note that
the lack of upper bound is considered as a disadvantage of
exponential tumor growth models, however we found that this
model fits the measurements adequately. The second term on
the right-hand side of (1) defines the inhibition effect of the
applied drug onto the tumor growth. This term depends on the
product of the tumor volume and the inhibitor level, indicating
that if there is no tumor, then there is no inhibiting effect
regardless of the amount of inhibitor present in the host. This
bilinear term is the most simple term that can describe this
phenomenon. The rate of inhibition is the constant b, and since
the sign of the second term is negative, b is positive if the
inhibitor slows down the growth process (thus inhibits tumor
growth).

The solution of the differential equation (1) is

x(t) = x(0)eat−by0/c(e−ct
−1), (5)

with x(0) being the initial tumor volume and y(0) being the
amount of drug injected at time 0, provided that there were
no inhibitor present in the host before injection.

The model given by (1)-(2) is equivalent to the fictive
chemical reaction given by the following reaction steps with
species X representing the tumor volume and the species Y
representing the inhibitor level:

• O
a

−−→ X that defines that there is an inner flow of the
species X with a reaction rate coefficient a from an outer
species O (that represents the species outside the region
of the model);

• Y
c

−−→ O that defines that there is an outflow of the
species Y with a reaction rate coefficient c;

• X+Y
b

−−→ Y that defines that the species X and Y react
and after the reaction the species X disappears with a
reaction rate coefficient b.

The connection of this chemical reaction and the differential
equations (1)-(2) can be described by the methods that can be
found e.g. in [14], [15].

We emphasize here that the model described by (1)-(2) is the
simplest model that specifies the tumor growth dynamics under
angiogenic inhibition, capturing the following phenomena:

• it describes (unstable) tumor growth;
• it describes inhibition of tumor growth by the drug, while

retaining the positivity of the model;
• it describes the linear pharmakokinetics of the inhibitor.

However, the proposed model can not capture the following
phenomena that are physiologically important:

• giving an upper bound for the tumor growth;
• describing the indirect effect of the inhibitor on tumor

growth through modeling the dynamics of the supporting
vasculature.

Most tumor models incorporate the description of these phe-
nomena into the model too, however we have found that the
proposed model explains the measurements well without these
phenomena being incorporated into the model, as it will be
shown in Section IV.

The only equilibrium point of the model given by (1)-(2) is
the trivial equilibrium, i.e. the equations

0 = ax∞ − bx∞y∞ (6)

0 = −cy∞ (7)

are satisfied only at x∞ = 0 and y∞ = 0. This equilibrium
is unstable, since the Jacobian of the system of differential
equations (1)-(2) at the equilibrium point is
(

ax− bxy
−cy

)′
∣
∣
∣
∣
∣
x=0,y=0

=

(
a− by −bx

0 −c

)∣
∣
∣
∣
x=0,y=0

=

(
a 0
0 −c

)

(8)

that has a positive eigenvalue if a > 0, which implies unstable
tumor growth without inhibition. This can be interpreted such
that if we give only one injection at the beginning of the
treatment, the tumor volume will not be stabilized in an
equilibrium, but it will grow with growth rate a after the
inhibitor is depleted.
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However, if we extend the inhibitor dynamics by adding
an inhibitor inflow rate I (e.g. to model further injections or
infusion), i.e. (2) becomes

ẏ = −cy + I, (9)

then the equilibria of the model are the solutions to

0 = ax∞ − bx∞y∞ (10)

0 = −cy∞ + I∞ (11)

that are at

y∞ =
a

b
(12)

I∞ = c
a

b
(13)

with x∞ ∈ R
+. Thus if there is an exogenous inhibitor dosage,

then the equilibrium is independent of the tumor volume, and
only depends on the parameters of the model. Note that we
will use the model without the input I in the parametric
identification in Section III, since we will only have one
injection at the beginning of the measurements that can be
modeled as an initial condition for (2).

III. PARAMETRIC IDENTIFICATION OF THE MODEL USING

LEAST SQUARES ESTIMATION

The measurements used for parametric identification of
the model are from experiments where C57Bl/6 mice were
implanted subcutaneously by C38 colon adenocarcinoma, and
the tumor volumes were measured every two days starting
from three days after the implantation. In the control group,
mice received one injection of 10 mg/kg bevacizumab at
the third day. In the case group, mice received 1/18 mg/kg
injection each day starting from the third day for 18 days.
The tumor volumes were measured with calipers and MRI,
the calculation of tumor volume based on these measurements
and more details of the experiment can be found in [13],
[16]. The parametric identification was done by utilizing the
measurement from the control group, while validation of the
model was done using the measurements from the case group.

Since the injection was at the third day of the experiment,
and the measurements were also carried out starting from
the third day, we will treat the third day as t = 0 day in
the mathematical description. The parametric identification is
carried out using the measurements from the control group
where the mice received only one injection, and there were
no inhibitor present in the mice before the injection, thus the
tumor volume can be described by

x(t) = x(0)eat−10b/c(e−ct
−1), (14)

which can be acquired by substituting y(0) = 10 mg/kg into
(5). We know from [17] that the half-life of the inhibitor be-
vacizumab is 3.9 days if it is injected intravenously into mice,
thus the clearance of the inhibitor is c = ln(2)/3.9 1/day. We
suppose that this clearance is valid in our measurements as
well. Thus, the remaining unknown parameters in (14) are the

parameters x(0), a, and b. These parameters can be acquired
using least squares estimation.

Equation (14) can be linearized in the parameters by taking
the logarithm of both sides resulting in

lnx(t) = lnx(0) + at− 10b/c
(
e−ct

− 1
)

(15)

that can be rearranged to get

lnx(t) =
(
1 t −10/c (e−ct

− 1)
)





lnx(0)
a
b



 . (16)

For each mouse, there are ten measurements carried out in
times T0, T1, . . . , T9 with Ti = 2i days, provided that the
third day of the experiment is considered as T0 = 0 day. Then
the equation consisting of the regression vector and regression
matrix for measurements acquired from one mouse is







lnx(T0)
lnx(T1)

...
lnx(T9)








=








1 T0 −10/c
(
e−cT0 − 1

)

1 T1 −10/c
(
e−cT1 − 1

)

...
...

...
1 T9 −10/c

(
e−cT9 − 1

)








·

·





lnx(0)
a
b



 . (17)

If we denote the vector on the left-hand side of (17) made up
from the measurements from mouse i by Yi with i = 1, 2, 3, 4
(since there are measurements from four mice in the control
group), and the matrix on the right-hand side of (17) by X ,
then the least squares estimation problem for measurements
acquired from experiments from four mice can be written as







Y1

Y2

Y3

Y4







︸ ︷︷ ︸

Y

=







X
X
X
X







︸ ︷︷ ︸

X̂





lnx(0)
a
b





︸ ︷︷ ︸

β

(18)

and the solution of the least squares estimation problem is

β =
(

X̂⊤X̂
)−1

X̂⊤Y. (19)

IV. RESULTS AND DISCUSSION

The parametric identification carried out using the measure-
ments on four mice from the control group resulted in the
following parameters:

• x(0) = 45.46 mm3;
• a = 0.27 1/day;
• b = 0.0074 kg/ (mg · day).

The result of the simulation with the identified parameters
and the same scenario as in the experiments in the control
group is depicted in Fig. 1 along with the measurements from
the four mice from the control group. The simulation result is
in the convex hull of the measurements. Since the parameters
resulted from least squares estimation based on (14), these
result approximate the measurements best in least squares
sense.
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Fig. 1. The tumor volume measurements from the four mice from the control
group, and the simulation result carried out with the minimal model with
model parameters acquired with least squares estimation
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Fig. 2. The tumor volume measurements from four mice from the case
group, and the simulation result carried out with the minimal model with
model parameters acquired with least squares estimation

The same parameters were used to simulate the scenario for
the case group, i.e. in which case 1/18 mg/kg bevacizumab
was injected into the mice every day. The result of the
simulation with measurements from four mice from the case
group are in Fig. 2. The simulation result is in the convex hull
of the measurements, showing that the model gives relevant
results.

The results in Figs. 1 and 2 show that the proposed model
can capture the dynamics of tumor growth under inhibition by
bevacizumab. The performance of the model is good in the
same scenario as the control group, since the measurements
from the control group were used for parametric identification.
However, the measurements from the case group were not
taken into account in the identification process, the perfor-
mance of the model is still good in the same scenario as the

case group.
In our earlier works, linear models were identified for

the growth of C38 colon adenocarcinoma in mice without
treatment, and we have found that the tumor growth rates
were 0.23 1/day and 0.42 1/day [11], however the a =
0.23 1/day growth rate was dominant. For the proposed model
we acquired a = 0.27 1/day with treatment here that is
very close to the growth rate we acquired for the (different)
measurements without treatment in [11]. In [12] identification
of a linear tumor growth model was done for experiments
with and without bevacizumab treatment. The tumor growth
rate without treatment was found to be a = 0.29 1/day, but
it was a = 0.11 1/day with treatment, since the effect of the
inhibitor was taken into consideration by a linear term, so it
was added to the rate of tumor growth. The application of the
model proposed here solves this problem by using the bilinear
term in (1), thus the effect of tumor growth and inhibition is
clearly separated that can be seen in the values of the identified
parameters as well, since the tumor growth rate with therapy
is similar to the case without therapy.
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