
Automated Model Merge

by Design Space Exploration ⋆

Csaba Debreceni1, István Ráth1, Dániel Varró1,
Xabier De Carlos2, Xabier Mendialdua2 and Salvador Trujillo2

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2.
{debreceni,rath,varro}@mit.bme.hu

2 IK4-IKERLAN Research Center,
P. J.M. Arizmendiarrieta, 2 20500 Arrasate, Spain

{xdecarlos, xmendialdua, strujillo}@ikerlan.es

Abstract. Industrial applications of model-driven engineering to de-
velop large and complex systems resulted in an increasing demand for
collaboration features. However, use cases such as model di�erencing and
merging have turned out to be a di�cult challenge, due to (i) the graph-
like nature of models, and (ii) the complexity of certain operations (e.g.
hierarchy refactoring) that are common today. In the paper, we present
a novel search-based automated model merge approach where rule-based
design space exploration is used to search the space of solution candi-
dates that represent con�ict-free merged models. Our method also allows
engineers to easily incorporate domain-speci�c knowledge into the merge
process to provide better solutions. The merge process automatically cal-
culates multiple merge candidates to be presented to domain experts for
�nal selection. Furthermore, we propose to adopt a generic synthetic
benchmark to carry out an initial scalability assessment for model merge
with large models and large change sets.

1 Introduction

Scalable collaborative model-driven engineering (MDE) for complex projects
with multiple stakeholders and development groups working in a distributed
way (both geographically and in time) is a major research challenge [21]. In tra-
ditional software engineering, version control systems (VCS) such as SVN or Git
assist to work with textual documents in o�-line collaboration scenarios having
long transactions and complex modi�cations between commits. Since multiple
collaborators may try to commit changes to the same document, a comparison or
di�erence is calculated prior to local commit, which may cause con�icts between
remote changes (already published to the server) and local changes (aimed to be

⋆ This paper is partially supported by the EU Commission with project MONDO
(FP7-ICT-2013-10, #611125) and the MTA-BME Lendület 2015 Research Group
on Cyber-Physical Systems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/78478821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

committed now). Such con�icts need to be resolved by merging the remote and
local changes in a consistent way before a commit succeeds.

Unfortunately, the direct use of VCS in MDE is hindered by numerous fac-
tors implied by the di�erences between graph-based documents (e.g. models)
and textual documents (e.g. source code). A major challenge is related to model
comparison, which is also computationally more expensive over graphs, and it
gave birth to advanced industrial strength frameworks like EMF Compare [1]
or Di�/Merge [2] built into model-level version control systems (like in Papyrus
UML or AMOR [5]). In order to achieve scalability for large models, these frame-
works frequently assume that unique identi�ers are available for model elements.
That assumption results in more e�cient model comparison algorithms.

While model comparison is computationally more challenging, resolving con-
�icting model changes is still a cumbersome task in practice, which is frequently
performed manually by the engineers. EMF Compare and Di�/Merge enable
automated con�ict resolution in a programmatic way � but writing code for an
automated merge is hardly a task for a domain expert. Furthermore, domain-
speci�c con�ict resolution strategies are rarely taken into consideration in indus-
trial frameworks, hence the well-formedness of merge results is questionable.

In this paper, we propose a novel automated search-based model merge tech-
nique [20] which builds on o�-the-shelf tools for the model comparison step, but
uses guided rule-based design space exploration (DSE) [18] for merging models.
In general, rule-based DSE aims to search and identify various design candidates
to ful�ll certain structural and numeric constraints. The exploration starts from
an initial model and systematically traverses paths by applying operators. In our
context, the results of model comparison will be the initial model, while target
design candidates will represent the con�ict-free merged models.

While many existing model merge approaches detect con�icts statically in a
preprocessing phase, our DSE technique carries out con�ict detection dynami-
cally during exploration time as con�icting rule activations and constraint vi-
olations. Then multiple consistent resolutions of con�icts are presented to the
domain experts. Our technique allows to incorporate domain-speci�c knowledge
into the merge process by additional constraints, goals and operations to provide
better solutions. Finally, we propose to adapt a generic scalability benchmark
for assessing model merge performance for large models and large change sets,
which is also an innovative aspect of the paper.

The rest of the paper is structured as follows: A motivating case study of
modeling wind turbine control systems is presented in Sec. 2 together with the
basics of model comparison and merge. A high-level overview of our approach
is provided in Sec. 3. A detailed explanation of executing a merge process is
discussed in Sec. 4. The case study will also serve as an initial assessment of the
usefulness of a domain-speci�c merge technique while scalability evaluation will
be carried out by adapting the Train Benchmark [29] in Sec. 5. Related work is
summarized in Sec. 6 while Sec. 7 concludes our paper.

2 Preliminaries

2.1 From Model Comparison to Model Merge

Model comparison refers to identifying the di�erences between models. It re-
quires reliability, precision and completeness as the merge process frequently
relies on the output of this phase to detect con�icts and to resolve the detected
con�icts. Altmanninger et al. [6] classi�es model comparison methods based on
the kind of information available. Only models are provided as input for state-
based techniques, while change-based comparison relies on a list of the performed
changes, e.g. op1, op2, . . . opn.

Based on the results of model comparison, model merge synthesizes a com-
bined model which reconciles the identi�ed di�erences. This is not always possi-
ble due to con�icts between model changes carried out by di�erent collaborators.
A merged model is called syntactically correct if it corresponds to its metamodel,
and consistent when additional constraints of the domain are satis�ed.

We use a simpli�ed di�erence model derived from the EMF Compare tool [1]
to store the changes in EMF models. This allows us to accept di�erent types of
comparison model (e.g. EMF Compare or Di�/Merge [2]) as an input of model
merge. It contains the following default change types: (1) create or delete an
object; (2) set, add or remove a value or an object to/from an attribute or
a reference, respectively. Furthermore, we annotate the priority of changes as
may or must which will be decided by users. Changes with must priority are
mandatory to be involved in the solutions while the others with may priority
can be omitted.

In the paper, we focus on three-way merge, which also uses the common
ancestor O of local copy L and remote copy R to derive the merged modelM . To
determine the changes executed on O, a comparison is conducted between O ↔ L
and O ↔ R. The solution of merge M is obtained by applying a combination of
changes performed either on L or R to the original model O.

2.2 A motivating model merge scenario

The domain of our motivating example describesWind Turbine Control Systems
(WTCS) developed by IK4-Ikerlan where di�erent artefacts and algorithms for
controlling a wind turbine are speci�ed and connected to sensors and actuators.
Models are speci�ed by several collaborators, and consequently modi�cations
could result in merge con�icts.

We introduce a simpli�ed example of a wind turbine (WT1) in Fig. 1. Real
models are obviously larger, sample models of this paper contain only artifacts
related to the cooling of the Generator Subsystem:

� Inputs: Wind turbine WT1 gets data from a temperature sensor speci�ed by
the SystemInput identi�ed as Temperature.

� Outputs: WT1 acts on two fans for cooling the wind turbine generator spec-
i�ed by the SystemOutputs: Fan1Activator and Fan2Activator.

(a) Original model

(b) Local instance (modi�ed by User1) (c) Remote instance (modi�ed by User2)

Fig. 1: Local and remote changes for 3-way merge

� Params: temperature limits for starting generator cooling can be speci�ed
by SystemParams: CoolingTempLimit1 and CoolingTempLimit2.

Subsystem Generator contains all the control units for cooling the Generator:

� CoolingFan1: this control unit (of type FanCtrl) speci�es the control algo-
rithm for fan #1 with High priority cycle with Temperature as SystemInput,
Fan1Activator as SystemOutput, CoolingTempLimit1 as SystemParam.

� CoolingFan2: this control unit (of type FanCtrl) speci�es the control algo-
rithm for fan #2 with High priority cycle with Temperature as SystemInput,
Fan2Activator as SystemOutput and CoolingTempLimit2 as SystemParam.

As a running example, we investigate the following scenario:
Local changes. The �rst expert creates a Local version of the model with

the following changes: (L1) the cycle attribute of CoolingFan1 is changed to Normal,
(L2) CoolingFan2 instance is deleted. (L3) A new control unit (WTCtrl) is created
with CoolingPump id. The new control unit is of type PumpCtrl with High cycle.
Its input references the existing Temperature and its param references the existing
CoolingTempLimit2. In contrast, (L4) its output references a new SystemOutput

instance identi�ed as PumpActivator.
Remote changes. Another expert also remotely modi�ed and already com-

mitted the model (before the �rst expert working on the local version managed
to commit the model) to introduce the following remote changes: (R1) the cycle

Table 1: Elements of ∆(L) and ∆(R)

∆(L,O)comparison model ∆(R,O)comparison model

attribute{CoolingFan1,cycle,Normal} attribute{CoolingFan1,cycle,Low}
delete{CoolingFan2} attribute{CoolingFan2,cycle,Low}
create{CoolingPump,WTCtrl,WT1,ctrls} delete{CoolingTempLimit2}
attribute{CoolingPump,type,PumpCtrl} reference{CoolingFan2,param,
attribute{CoolingPump,cycle,High} CoolingTempLimit1}
reference{CoolingPump,param,CoolingTempLimit2}
create{PumpActivator,SystemOutput,WT1,outputs}
reference{CoolingPump,output,PumpActivator}

attribute of CoolingFan1 is changed to Low, (R2) the cycle attribute of CoolingFan2
is changed to Low, (R3) deletes SystemParam instance identi�ed as CoolingTem-

pLimit2 and (R4) changes param reference of control unit identi�ed as CoolingFan2
to SystemParam instance identi�ed as CoolingTempLimit1.

Model comparison. Table 1 shows the result of model comparison between
the di�erent versions of the model calculated by using existing tools (using e.g.
EMF Compare or Di�/Merge [2]). The di�erences between the local and the
original model is denoted with ∆(L,O) (or shortly ∆L), while ∆(R,O) (or ∆R)
represents the di�erences between the remote and the original model.

Change annotation. After the comparison, the local collaborator annotates
local changes L2, L3 and L4 and remote change R2 as must which prescribes
that all such changes have to be present in the merged model unless some of
them are in a con�ict. In such a case, the merged model should contain as many
(non-con�icting)must changes as possible, while some (con�icting)must changes
might be omitted from the merged model. All other changes are marked as may
to denote that the corresponding change may be included in the merged model.

Challenges. The following challenges need to be addressed for our example:

� Calculatemerged models automatically as a maximal subset of non-con�icting
changes from the local and remote change set. When there is a large number
of possible combination of changes where some of them are selected from
the local and the others from the remote branch, a merged model may be
restricted to solutions compliant with must and may change annotations.

� Use domain-speci�c goals and constraints to restrict merged models to con-
sistent ones (to ensure that all inputs and parameters are referenced by at
least one control unit and each output is referenced by di�erent control unit).

� Specify domain-speci�c composite operations to guide the merge process into
a consistent solution (e.g. to remove inputs, parameters and outputs not
referenced by any control unit).

3 Model Merge by Design Space Exploration: Concepts

3.1 Conceptual overview

We propose to exploit guided rule-based design space exploration (DSE) [18]
for automated model merge with an architecture depicted in Fig. 2. Rule-based

Fig. 2: Architecture of DSE Merge

DSE aims at �nding optimal solutions from the several design candidates which
satisfy several structural and numeric constraints, and they are reachable from
an initial model along a trajectory by applying a sequence of exploration rules.
The input of a rule-based DSE includes (1) the initial model used as the start of
the exploration; (2) goals which need to be satis�ed by solutions; (3) the set of
exploration rules; (4) constraints that need to be respected in each exploration
state and (5) further guidance for the exploration process.

We applied three-way model merge to a DSE problem as follows:

1) the initial model contains the original model O and two di�erence models
(∆L and ∆R)

2) the main goal is that there are no executable changes left in ∆L and ∆R
along a speci�c exploration path.

3) the operations are de�ned by change driven transformation rules to process
generic change objects (create, delete, set, add, remove) of the di�erence
models, and potentially composite (domain-speci�c) operators;

4) constraints may identify inconsistencies and con�icts to eliminate certain
trajectories;

5) as main exploration strategy, any changes annotated as must are tried to
be merged before resolving may changes.

Input. Our model merge approach takes three models as input: the original
model O and the di�erence models between local and original models ∆L as
well as the remote and original models ∆R. These together constitute the initial
model for DSE. The calculation of the di�erence models ∆L and ∆R is carried
out by an external comparison tool such as EMF Compare or Di�/Merge. Fur-
thermore, in order to derive e�cient state encoding for the exploration process,
we assume that each element in the original model has some unique identi�er.

Output. The output of the merge process automatically derived by DSE is a
set of solutions where each solution consists of (i) the merged model M derived
by applying a (non-extensible and non-con�icting) subset of local and remote
changes on the original model O; (ii) the set of non-executed changes ∆L′,∆R′;
and (iii) the collection of the deleted objects stored in Cemetery.

3.2 Key aspects of exploration process

Each solution is derived along a trajectory from the initial state to a solution
state by applying generic and domain-speci�c operations. Along this trajectory,
we transform the original model O into the merged model M , and the change
models ∆L and ∆R are gradually reduced to ∆L′ and ∆R′. In each exploration
step, con�icts are detected and resolved by incrementally tracking the matches
(activations) of operations and constraints. Finally, a solution state is identi�ed
if all goals are satis�ed without violating a constraint along the trajectory.

Operations. We incorporate two kinds of operations in the exploration based
model merge: generic merge operations [30] and (domain-speci�c) composite op-
erations [14,23] (such as refactorings, or repair rules). Each operation is captured
by (graph) transformation rules [16], which consist of a precondition described
as a graph pattern (using the EMF-IncQuery language [10] in our case) and an
action part which captures model manipulations.

Generic merge operations are change-driven transformations [9], which con-
sume or produce change models as additional input or output. The precondition
selects an applicable change c from the deltas ∆L ∪ ∆R and may require the
existence of certain model elements in the origin model O. The action part of a
generic merge operation (1) modi�es the original model O to apply a change, (2)
moves the change c from the di�erence set ∆L∪∆R into a completed set Comp
to prevent the application of the change multiple times. Thus such change-driven
rules transform state-based merging into operation-based merging [12].

By default, domain-speci�c composite operations only manipulate the model
O without consuming the deltas. Therefore, they need to be complemented with
generic change-driven rules which identify the model-level changes carried out
by them and record them as di�erence models in the completed set. In most
cases, domain experts are responsible for capturing complex (domain-speci�c)
operations only at the preparation of the merge tool for the speci�c domain.
Collaborating engineers only use them as part of the merge process.

Con�ict detection and resolution. A local change l ∈ ∆L and a remote
change r ∈ ∆R may be con�icting, i.e. it is impossible to obtain a consistent
merged model M by applying both l and r. Alternatively, in an operation-based
interpretation, a con�ict denotes a pair of operations o1 and o2, whereas one op-
eration masks the e�ect of the other (i.e., they do not commute) or one operation
disables the applicability of the other [23].

Instead of static (a priori) detection of con�icts as proposed in [17,24,27], we
detect con�icts on- the-�y during the exploration process by relying upon the
incremental book-keeping of rule activations and constraints. In each state of the
DSE, we investigate one by one all (enabled) activations of transformation rules,
and try to �nd a solution by �ring them. In case of a con�ict, (1) �ring one rule
may prevent the application of another activation, or (2) both rules are �reable,
but the result state violates a constraint. When two operations are con�uent
(i.e. they can be applied in arbitrary order), state encoding of DSE [19] helps
identify that an already traversed state is reached. Hence applying operations in
a di�erent order has no impact on the results.

Activations of rules and constraints are continuously and e�ciently main-
tained when �ring an operation (either generic or composite), thus disabled
rules and violated constraints are immediately identi�ed. For that purpose, we
rely upon the reactive VIATRA framework [8] and incremental model queries.
The technicalities of con�ict detection will be illustrated in Sec. 4.

Con�ict resolution by exploration strategy. In case of a con�ict be-
tween two operations, DSE will investigate both trajectories as possible resolu-
tions and derive two separate solutions correspondingly. Thus a merged model
M derived automatically as a solution contains no con�icts by de�nition.

In case of many con�icts, the result set can too large to be presented to
experts. Therefore, in order to reduce the number of solutions retrieved by DSE
and guide the exploration in case of con�icts, model changes can be prioritized
by the collaborators as may and must (see Table 1) prior to executing merge.

� If a change c1 with must priority is in con�ict with another change c2 of
may priority, then the merge will always select the former (c1).

� If two con�icting changes c1 and c2 are both annotated with may than the
merge will randomly select one.

� However, if two changes c1 and c2 of must priority are in con�ict, then the
merge process will enumerate both of them separately (in di�erent solutions).

Goals. In generic, we aim to apply as many changes in ∆L and ∆R as pos-
sible to derive the merged model M . When extending a trajectory by any of
the remaining changes in ∆L′ or ∆R′ would cause a con�ict with some already
applied change, a solution state of the DSE is reached. Technically, it is detected
by the termination of the rule system, i.e. no operations are activated. Addition-
ally, domain experts can provide domain-speci�c goals that act as heuristics for
the exploration and provide consistent solutions.

Altogether, we de�ne a fully automated model merge approach where all pos-
sible resolutions of con�icts are calculated, and all consistent merged models are
prompted to experts, which was claimed to be bene�cial in [31]. Representation
of solutions contains several layouts (e.g. tree, graph) and metrics (e.g. number of
executed changes) which help experts select the best solution for their purpose.

4 Elaboration of Model Merge on an Example

4.1 Operations and goals

Change-driven rules for generic operations. We de�ned the following generic
operations in the merge process for creating/deleting object, setting/adding/re-
moving attribute and setting/adding/removing reference. For space considera-
tions, we only discuss operations for setting an attribute (setAttribute) and
deleting an object (deleteObject) in details (depicted in Fig. 3).

� setAttribute(ac,o): The precondition prescribes that an attribute change ac
is available in change set ∆L′ ∪ ∆R′ and its object o exists in the current
model. Its action sets (i) attribute ac.attribute of object o to the given value
ac.value, and (ii) moves the change ac to the completed set Comp.

(a) Generic setAttribute (b) Generic deleteObject

(c) Domain-speci�c goal (d) Domain-speci�c operation

Fig. 3: Operations and goal

� deleteObject(dc,o): The precondition states that a delete change dc is avail-
able in the current change set ∆L′ ∪∆R′ and its referred object o exists in
the current state of the model where o is a leaf in the containment hierarchy.
The action part (i) deletes the object o from current state, (ii) puts it into
Cemetary and (iii) moves the change dc to the completed set Comp.

Domain-speci�c goals and operations. Our example introduced in Sec. 2
requires to extend model merge with domain-speci�c knowledge to guarantee the
consistency of solutions. In the Wind Turbine Control System (WTCS) domain,
it is mandatory that all SystemInput and SystemParam instances should be refer-
enced by at least one control unit and each SystemOutput has to be referenced
by a unique control unit. Model merge needs to respect such domain speci�c
knowledge, which can be captured by additional goals speci�ed as constraints
and depicted in a graphical representation in Fig. 3c.

A domain-speci�c operation called unreferencedPart can be de�ned to elimi-
nate unreferenced SystemInput, SystemOutput and SystemParam instances (see Fig. 3d).
Here the precondition selects the unreferenced object o while the action part (i)
initiates a new delete change independently from the current change set and (ii)
executes the action part of the generic delete operation.

4.2 Con�ict detection in a sample exploration step

Con�ict detection and resolution is carried out during exploration by incremen-
tally tracking rule activations and special constraints. We illustrate this step in
the context of our running example (see Fig. 4, which is an extract of iteration

Fig. 4: Con�ict resolution with incrementally tracking constraints and operations

3 and 9 of merge session from Sec. 4.3). It demostrates a delete/use con�ict: si-
multaneously setting the cycle attribute of CoolingFan2 and deleting CoolingFan2.
Any solution of model merge may only contain one of the two changes.

1. In the beginning, both operations have an activation (left in Fig. 4) in the
context of object CoolingFan2. Initially, all changes are located in ∆L or ∆R,
cemetery and completed changes are empty. In this state, all constraints are
satis�ed, but goals are violated which means this state is not a solution.

2. Our merge process �rst selects and executes the deleteObject operation (top
branch of Fig. 4) which removes CoolingFan2 from the model, moves CoolingFan2
to the cemetery, and the corresponding change is moved from ∆L to the
completed set Comp. As a side e�ect, operation setAttribute loses its activation
in the context of CoolingFan2 since its precondition is no longer be satis�ed in
the new state. This fact is immediately identi�ed by the underlying reactive
transformation engine [8]. In the new state, the exploration incrementally
checks that all constraints are satis�ed and goals are violated, and then selects
another enabled (activated) operation for execution.

3. Later, after backtracking to the �rst state, operation setAttribute is scheduled
for execution on object CoolingFan2 (bottom branch of Fig. 4). As a result,
Cemetery remains empty, the change is moved to the completed set, all goals
are violated, and all constraints are satis�ed. As a main conceptual di�erence,
the activation of deleteObject is not disabled on CoolingFan2 as the correspond-
ing object still exists, hence its precondition is satis�ed.

4. Next, the process selects and executes deleteObject operation. As a result,
CoolingFan2 is moved to the cemetery and the change is moved from ∆R to
the completed set Comp. We detect this con�ict by (incrementally) checking
a generic merge constraint: there are two changes in the completed-set Comp

which modi�es the same object. In this case, exploration has to backtrack and
�nds another executable operation.

Obviously, the �rst type of constraint could also be detected by using similar
constraints as for the second type. However, lost activations reduce the number
of states to be traversed, thus they are preferred. Furthermore, note that when
two operations are applicable in both order with a con�uent result, the state
encoding of DSE identi�es that the same model is reached as a state.

4.3 A merge scenario on the motivating example

A possible execution of the DSE Merge is depicted in Fig. 5 which displays the
completed changes for two solutions. In each iteration, one change is processed.

� Itr. 1-2: all must changes are available and the algorithm randomly picked
the createObject of CoolingPump and PumpActivator.

� Itr. 3: at this point only two con�icting transitions have activation; the algo-
rithm picked deleteObject for CoolingFan2 non-deterministically. This leads to
a state where the precondition of setAttribute operation cannot be satis�ed
any longer, thus it is disabled.

� Itr. 4-5: only may operations have activation where a setAttribute operation
is selected that set the cycle attribute of CoolingFan1 to normal. Because
of the generic constraint, the other setAttribute related to the same object
(CoolingFan1) is disabled. The same happens when executing deleteObject for
CoolingTempLimit2 that disables the setReference operation which should con-
nect CoolingPump and CoolingTempLimit2.

� Itr. 6: this (aggregated) step is composed of all iterations that execution of
operation setAttribute related to the newly created CoolingPump.

� Itr. 7: on this trajectory, deletion of CoolingFan2 leads the model into a state
where the Fan2Activator output is not referenced by any control unit. Thus
our domain-speci�c (composite) operation (unreferencedPart) has an activa-
tion that is executed on the model. After this iteration, there are no more
activations and all goals are satis�ed, so Solution #1 is found.

� Itr. 8: after the solution, the strategy backtracks until it �nds an activation
for a must operation that should lead the model into a partially traversed
state and forks the trajectory. Only the setAttribute operation related to Cool-
ingFan2 can be executed. After the execution, deleteObject of CoolingFan2

could have activation, but it is disabled by the generic constraint.
� Itr. 9-11: The same activations are available as for the 4th iteration except
the domain-speci�c operation. The algorithm randomly executes these op-
erations and �nds Solution #2.

Resolved con�icts. In iteration 3 and 8, two con�icting operations marked
with must are executed which forks the exploration into two separate solutions
to resolve the con�icts. At iterations of 4 and 9, two operations with may mark
are in con�ict. In each trajectory, only one of them is selected. Similar happens
in iteration 5 and 10, but this time the same operation is selected in each branch.

Fig. 5: Possible execution of
the process Fig. 6: Merged Model from

Solution #1

Solution. There are two solutions in the output of the merge process. We
discuss solution #1 in details where the merged model is depicted in Fig. 6.
It also displays in dashed line the deleted objects stored in Cemetery, namely,
CoolingTempLimit2, CoolingFan2 and Fan2Activator. There are four non-executed
changes as shown in the bottom left corner of Fig. 6.

5 Evaluation

As the state-of-the-art of model merge still lacks well-accepted benchmarks to
measure scalability of model merging components (e.g. [22] measures precision
and recall), we propose a new scalability benchmark for model merge by adapting
of the Train Benchmark [29], which is an existing performance benchmark for
model queries and well-formedness constraints (and also a case of the TTC 2015
contest [28]). The benchmark uses a domain-speci�c model of a railway system
originating from the MOGENTES project [4]. From the existing benchmark, we
reuse (1) the model generator to derive models of di�erent size conforming to
a railway metamodel, (2) the fault injector which changes the generated model
(e.g. by changing structural features, and creating or deleting objects) to violate
prede�ned well-formedness constraints, and (3) repair actions which pseudo-
randomly resolve such violations in accordance with to a random seed value.

Based upon these components, we summarize how synthetic models are gen-
erated that contain con�icts serving as input for model comparison and model
merge: (1) First, we generate a well-formed model. (2) Next, we inject several
faults into the generated model. The result of this phase acts as original (O)
model. (3) Then, local and remote changes are simulated by repairing these vi-
olations either in the local model (L) or remote model (R) or in both of them
with di�erent random seeds. In the latter case, the framework repairs the same
problems in both cases by using di�erent values, which leads to a con�ict be-
tween two models. (4) We calculate the di�erences between the two with an

Size ∆
Di�
(sec)

Merge (sec)
0%

con�ict
50%

con�ict
100%

con�ict

11710

120 4.672 1.265 2.095 3.477
240 7.329 2.241 3.345 4.109
480 12.951 3.923 4.650 8.813
960 23.323 8.853 12.008 21.842
1920 26.368 11.352 19.766 29.948

23180

120 7.233 2.686 2.924 6.262
240 7.569 4.355 5.106 8.596
480 13.695 9.433 14.127 17.796
960 23.383 18.219 22.474 40.589
1920 41.857 34.181 57.207 96.806

46728

120 17.258 6.679 8.156 12.567
240 18.592 10.625 12.623 20.047
480 27.410 19.063 24.210 39.855
960 40.915 37.961 51.924 90.295
1920 69.344 165.203 180.534 217.343

Size ∆
Di�
(sec)

Merge (sec)
0% con�ict 50%

con�ict
100%

con�ict

87396

120 28.302 10.654 13.556 22.913
240 30.711 20.285 24.377 37.501
480 36.378 38.154 48.655 76.703
960 49.382 75.567 92.797 153.234
1920 80.934 162.845 205.423 367.357

175754

120 59.236 21.332 27.699 43.492
240 79.068 42.308 50.843 79.492
480 93.395 80.130 95.332 162.106
960 97.313 157.720 185.030 279.367
1920 118.439 311.525 362.841 626.946

354762

120 176.200 47.410 57.695 89.101
240 177.280 84.678 104.739 166.990
480 188.028 156.568 198.307 317.629
960 209.440 307.878 406.879 636.156
1920 257.355 1,342.081 1,401.882 1,535.091

Table 2: Scalability measurement results

existing comparison tool (EMF Compare). (5) Finally, these two model have to
be merged with may annotations for changes using our merge tool.

We evaluate our DSE-based automated merge approach to assess its scalabil-
ity using our benchmark where we investigate the scalability of the approach by
measuring execution time for model comparison (carried out by EMF Compare)
and model merge with respect to (i) the size of models, (ii) the size of change
set, and (iii) the number of changes in con�ict. For the evaluation, we gener-
ated models where the number of model elements is from 10, 000 to 350, 000, the
number of faults injected into the models (i.e. size of the change set) is from 10
to 2000 while the number of con�icts are set to 0%, 50% and 100% of the total
number of changes. Measurement results are summarized in Table 2 taking the
average of 5 separate runs.

Analysis of results. As expected, merge time is linear in model and change
size, and also proportional to comparison time. Furthermore, fewer con�icts im-
ply faster merge time. Our results also show that runtime of merge is lower than
compare time in case of smaller change sets (120,240), and gradually outgrows
it as the change set increases. However, change sets of an average commit in real
projects are even smaller than our smallest case (see also the evaluation in [23]),
which means that our scalability results represent a pessimistic setup.

6 Related work

Several approaches address the model merge as depicted in Table 3. To position
them against our approach, we use several characteristics proposed in a survey
on model versioning [6], which also guides the structure of this section.

Comparison Basis. Based on the model comparison technique, the ap-
proaches may be classi�ed into state-based and operation-based. [1,2,13,14,25,30]
and DSE Merge are state-based as they execute a comparison process between
model states. However, [23] uses operations as input where even more complex
operations as just the simple add, update, and delete operations are considered.

Con�ict Detection. Finding the con�icting changes in the merge pro-
cess is crucial task for a correct resolution. Most approaches use an initial

Basis
Con�ict
Detection

Merge
Automation

Merge
Operations

Objectives Guidance Evaluation

EMF Compare [1] state static semi generic - - scalability

EMF Di�/Merge [2] state static semi generic - - scalability

Westfachtel [30] state runtime semi generic goals - preliminary

N-way Merge [25] state static semi generic - - preliminary

AMOR [13] state static semi
generic,
composite

goals -
precision
recall

Dam H.K. et al. [14] state static auto composite
goals,

constraints
repair plan

scalability
(closed)

MOMM [23] operation runtime auto composite
�xed
goals

global search
prioritized

real data

DSE Merge state runtime auto
generic,
composite

goals
contraints

local search
may/must

scalability
(open)

Table 3: Comparison of model merge approaches

phase to statically analyze the changes and look for con�icting pairs such as
in [1, 2, 13, 14, 25]. [30] de�nes transformation rules for searching con�icts where
the satis�ed preconditions selects the con�icts in each iteration. [23] uses con�ict
detection algorithm between operations [12]. DSE Merge identi�es con�icts in-
crementally as violations of constraints or as deactivations of merge operations,
while dependencies between rules and constraints are handled automatically by
the underlying DSE engine. This extends [14] where inconsistency constraints
are handled incrementally while con�ict detection happens as preprocessing.

Merge Automation. Most approaches [1, 2, 13, 25, 30] are semi-automated
as they use a two-phase process: (i) they apply the non-con�icting operations
and then (ii) let the user prioritize and select the operation to apply in case
of two con�icting changes. This always results in a single solution due to the
manual resolution by the user. In comparison, [14, 23] and DSE Merge resolve
the con�icts automatically in di�erent ways and o�er several solutions.

Merge operations. In this context, merge operations are responsible for
applying the changes in the merged model. [1,2,25,30] use generic operations for
changes. The extension [11] of [30] adaptively learns resolution patterns from user
that can be applied on the models which results in composite operations. [23]
applies the input operations which are composite refactorings in their case. [14]
uses basic generic operators for con�icts but generates composite operations as
repair plans from the description of inconsistency constraints. Our DSE Merge
approach allows to combine both generic and domain-speci�c composite opera-
tors in the form of change-driven transformation rules.

Objectives. Quality of the merge model can be improved by objectives that
have to be satis�ed during (contraints) or at the end (goals) of the merge process.
This is an unsupported feature in [1,2,25]. [23] uses two �xed goals which are the
base of the con�ict resolution. [14] provides support for incrementally detecting
violations of inconsistency constraints. [13] is connected to an additional model
checker component [11] which allows to check OCL constraints as goals. [30]
allows to de�ne well-formedness constraints in OCL that act as goals. DSE Merge
let the users to provide additional constraints and goals using graph patterns in
addition to a built-in termination condition when no operations are activated.

Guidance. The execution of the merge process can use guidance to �nd
the solution(s) faster. The tool [26] of [30] uses a dedicated fusing algorithm for

the model merge phase using a �xed priority strategy of merge operations. [23]
bases their tool to a global search genetic algorithm (NSGA-II [15]) where the
operations are also prioritized related to their importance. DSE Merge is built
on top of the ViatraDSE framework [19] using rule-based guided local search
exploration. Furthermore, annotating changes withmay/must can further reduce
the result set retrieved to the user, which is another key di�erence wrt [14,23].

Evaluation. [23] provides an empirical evaluation of the tool based on real
data, but its scalability is not discussed as their largest model was the same as
our smallest. [14] represents an scalability evaluation of its tool with the largest
size of 33.000 model element and 1, 650 changes. [25] and [26] show a preliminary
evaluation which show the relevance of the approach on very small models and
change set. [13] evaluated by [22], but scalability is not discussed. For comparing
models, [1] has a scalability test presented in [7]. Scalability of [2] is not well
covered, however, we evaluated ourselves on the proposed benchmark [3]. DSE
Merge is evaluated on an open scalability benchmark [29]. As future work, we
plan to create an empirical user study from the usability aspect of our tool.

Summary. To summarize the key di�erences with [14] and [23], we rely on
state-based comparison, apply a guided local-search strategy (vs. [23]), detect
con�icts at runtime and allow complex generic merge operations (vs. [14]). Inter-
nally, we uniquely use incremental and change-driven transformations to derive
the merged models. Finally, we report scalability of merge process for models
which are at least one order of magnitude larger compared to [14] and [23].

7 Conclusion

The current paper presented an automated technique for three-way model merge
exploiting design space exploration in the background. The original model and
two di�erence models (original model↔remote version, and original model↔local
version) calculated with existing model comparison tools (e.g. EMF Compare or
Di�/Merge) serve as an input of our technique. Our technique automatically
derives consistent and semantically correct merged models in all possible ways
and also highlights the remaining (unresolved thus con�icting) model di�erences.
Our approach incorporates the use of change-driven model transformations [9]
to capture and execute merge operations, and relies on an incremental reac-
tive model transformation engine [8] to detect and resolve merge con�icts. We
proposed scalability benchmark for scalability aspect of merge components that
demonstrates that DSE-based model merge can be executed for models around
350,000 elements and con�icting change sets with 1000 elements.

Our approach is fully implemented in a tool developed as part of a European
project, which operates on well-known open source components of the Eclipse
framework, such as EMF Compare [1] or Di�/Merge for [2] for model compar-
ison and using the Viatra DSE [18, 19] as underlying design space exploration
framework built on reactive transformations [8].

As future work, we plan to improve our model merge technique by further
search strategies to better exploit the dependencies between rules and constraints

and compare it with other search-based merge techniques [23]. Currently, we
are conducting an experimental user evaluation to compare the usability of the
presented DSE Merge tool with EMF-Compare and Di�/Merge.

Acknowledgments We thank to Gábor Szárnyas for improving the syntectic
performance benchmark for the evaluation and András Szabolcs Nagy for his
assistance on design space exploration.

References

1. EMF compare, https://www.eclipse.org/emf/compare/
2. EMF Di�/Merge, http://eclipse.org/diffmerge/
3. Evaluation of EMF Compare and Di�/Merge, https://github.com/FTSRG/

publication-pages/wiki/Evaluation-of-EMF-Diff-Merge-and-EMF-Compare

4. Mogentes EU project, http://www.mogentes.eu/
5. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M., Schwinger,

W., Wimmer, M.: AMOR�towards adaptable model versioning. In: 1st Int. Work-
shop on Model Co-Evolution and Consistency Management, in conjunction with
MODELS. vol. 8, pp. 4�50 (2008)

6. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. IJWIS 5(3), 271�304 (2009)

7. Barbero, M.: EMF Compare 2.0: Scaling to millions. In: EclipseCON '13, Boston
8. Bergmann, G., Dávid, I., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z., Varró,

D.: Viatra 3: A reactive model transformation platform. In: Theory and Practice of
Model Transformations - 8th International Conference, ICMT 2015, Held as Part
of STAF 2015, L'Aquila, Italy, July 20-21, 2015. Proceedings. pp. 101�110 (2015)

9. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transformations
- change (in) the rule to rule the change. Software and System Modeling 11(3),
431�461 (2012)

10. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A Graph Query Language for EMF
models. In: Proc. of ICMT'11. Springer (2011)

11. Brosch, P., Egly, U., Gabmeyer, S., Kappel, G., Seidl, M., Tompits, H., Widl, M.,
Wimmer, M.: Towards semantics-aware merge support in optimistic model version-
ing. In: Models in Software Engineering - Workshops and Symposia at MODELS
2011, Wellington, New Zealand, October 16-21, 2011, Reports and Revised Selected
Papers, pp. 246�256 (2011)

12. Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.: An intro-
duction to model versioning. In: Formal Methods for Model-Driven Engineering -
12th International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012.
Advanced Lectures, pp. 336�398 (2012)

13. Brosch, P., Seidl, M., Wieland, K., Wimmer, M.: We can work it out: Collab-
orative con�ict resolution in model versioning. In: Proceedings of the Eleventh
European Conference on Computer Supported Cooperative Work, ECSCW 2009,
7-11 September 2009, Vienna, Austria, pp. 207�214 (2009)

14. Dam, H.K., Reder, A., Egyed, A.: Inconsistency resolution in merging versions of
architectural models. In: 2014 IEEE/IFIP Conference on Software Architecture,
WICSA 2014, Sydney, Australia, April 7-11, 2014. pp. 153�162 (2014)

https://www.eclipse.org/emf/compare/
http://eclipse.org/diffmerge/
https://github.com/FTSRG/publication-pages/wiki/Evaluation-of-EMF-Diff-Merge-and-EMF-Compare
https://github.com/FTSRG/publication-pages/wiki/Evaluation-of-EMF-Diff-Merge-and-EMF-Compare
http://www.mogentes.eu/

15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182�
197 (2002)

16. Ehrig, H., Kreowski, H.J., Rozenberg, G.: Handbook of graph grammars and com-
puting by graph transformation, vol. 2. World Scienti�c (1999)

17. Feather, M.S.: Detecting interference when merging speci�cation evolutions. In:
ACM SIGSOFT Software Engineering Notes. vol. 14, pp. 169�176. ACM (1989)

18. Hegedus, A., Horváth, A., Ráth, I., Varró, D.: A model-driven framework for guided
design space exploration. In: Proc. of the 2011 26th IEEE/ACM Int. Conf. on
Automated Software Engineering. pp. 173�182. IEEE Computer Society (2011)

19. Hegedüs, Á., Horváth, Á., Varró, D.: A model-driven framework for guided design
space exploration. Autom. Softw. Eng. 22(3), 399�436 (2015)

20. Kessentini, M., Werda, W., Langer, P., Wimmer, M.: Search-based model merging.
In: Genetic and Evolutionary Computation Conference, GECCO '13, Amsterdam,
The Netherlands, July 6-10, 2013. pp. 1453�1460 (2013)

21. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., et al.: A research roadmap towards
achieving scalability in model driven engineering. In: Proc. of the Workshop on
Scalability in Model Driven Engineering. p. 2. ACM (2013)

22. Langer, P., Wimmer, M.: A benchmark for con�ict detection components of model
versioning systems. vol. 33 (2013)

23. Mansoor, U., Kessentini, M., Langer, P., Wimmer, M., Bechikh, S., Deb, K.:
MOMM: multi-objective model merging. Journal of Systems and Software 103,
423�439 (2015)

24. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28(5), 449�462 (2002)

25. Rubin, J., Chechik, M.: N-way model merging. In: Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE'13, Saint Petersburg, Rus-
sian Federation, August 18-26, 2013. pp. 301�311 (2013)

26. Schwägerl, F., Uhrig, S., Westfechtel, B.: Model-based tool support for consistent
three-way merging of EMF models. In: Proc. of the workshop on ACadeMics Tool-
ing with Eclipse. p. 2. ACM (2013)

27. Steyaert, P., Lucas, C., Mens, K., D'Hondt, T.: Reuse contracts: Managing the evo-
lution of reusable assets. In: Proceedings of the 1996 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
'96), San Jose, California, October 6-10, 1996. pp. 268�285 (1996)

28. Szárnyas, G., Semeráth, O., Ráth, I., Varró, D.: The TTC 2015 Train Benchmark
Case for Incremental Model Validation. Transformation Tool Contest pp. 129�141
(2015)

29. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: An integrated development environment for live
model queries. Sci. Comput. Program. 98, 80�99 (2015)

30. Westfechtel, B.: Merging of EMF models - formal foundations. Software and System
Modeling 13(2), 757�788 (2014)

31. Wieland, K., Langer, P., Seidl, M., Wimmer, M., Kappel, G.: Turning con�icts into
collaboration. Computer Supported Cooperative Work 22(2-3), 181�240 (2013)

	Automated Model Merge by Design Space Exploration
	Introduction
	Preliminaries
	From Model Comparison to Model Merge
	A motivating model merge scenario

	Model Merge by Design Space Exploration: Concepts
	Conceptual overview
	Key aspects of exploration process

	Elaboration of Model Merge on an Example
	Operations and goals
	Conflict detection in a sample exploration step
	A merge scenario on the motivating example

	Evaluation
	Related work
	Conclusion

