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ABSTRACT
In case of collaborative modeling, complex systems are de-
veloped by different stakeholders. To guarantee security,
access control policies need to be enforced during the col-
laboration. Levels of required confidentiality and integrity
may vary across modeling artifacts, and even features of a
single model element.

Fine-grained rule-based access control was proposed to
meet the needs of flexible and concise access control. Rule-
based policies are inherently subject to conflicts between
the rules; these conflicts should be interpreted in a consis-
tent but also predictable way that caters to the preferences
of the policy engineer.

We propose a deterministic, parameterizable resolution
strategy between conflicting rules to calculate effective ac-
cess permissions for each fact in the model. Our approach is
illustrated using a case study of the MONDO EU project.

1. INTRODUCTION

1.1 Background and Motivation
The adoption of model driven engineering (MDE) by sys-

tem integrators (like airframers or car manufacturers) has
been steadily increasing in the recent years [23]. The use
of models also intensifies collaboration between distributed
teams of different stakeholders (system integrators, software
engineers of component providers/suppliers, hardware engi-
neers, specialists, certification authorities, etc.) via model
repositories, which significantly enhances productivity and
reduces time to market. An emerging industrial practice of
system integrators is to outsource the development of various
design artifacts to subcontractors in an architecture-driven
supply chain.

∗This paper is partially supported by the EU Commission
with project MONDO (FP7-ICT-2013-10), no. 611125. and
the MTA-BME Lendület 2015 Research Group on Cyber-
Physical Systems.

Collaboration scenarios include traditional offline collab-
orations with asynchronous long transactions (i.e. to check
out an artifact from a version control system and commit lo-
cal changes afterwards) as well as online collaborations with
short and synchronous transactions (e.g. when a group of
collaborators simultaneously edit a model, similarly to well-
known on-line document / spreadsheet editors). Several col-
laborative modeling frameworks (like CDO [8], EMFStore
[9], etc.) exist to support such scenarios.

However, such collaborative scenarios introduce signifi-
cant challenges for security management, both in terms of
confidentiality and integrity. For instance, the detailed in-
ternal design of a specific component needs to be hidden to
competitors who might supply a different component in the
overall system, but needs to be revealed to certification au-
thorities in order to obtain certification proofs and credits.
On the other hand, there are highly critical aspects of the
model that may only be modified by (or with approval from)
specialists having the appropriate qualifications.

Capturing security policies on the storage (file) level in-
stead of the model level results in inflexible fragmentation
of models in collaborative scenarios; this can be solved by
fine-grained access control, where each model element and its
features can have its own set of permissions. On the other
hand, large industrial models can have millions of model ele-
ments, thus explicitly assigning permissions for each of them,
as well as maintaining the permissions after changes to the
model, would be labor-intensive and error-prone, and would
make it difficult to understand the system of privileges.

A rule-based approach for concisely defining fine-grained
model access control policies has been proposed in [4]. A
single rule may grant or deny permissions for a large number
of assets in a model.

However, due to this implicit nature, it is possible that
several rules would be in direct conflict with each other,
assigning contradictory nominal permissions for some model
element. It is also possible for rules to conflict indirectly, if
the fragment of the model revealed to a user in not consistent
with itself, or with the allowed write operations.

In either case, the access control mechanism must resolve
conflicts in a deterministic way by deriving the effective per-
missions from the nominal ones, to present a consistent and
secure updateable view to each user.

1.2 Goals and Contributions
The main objective of the paper is to propose a conflict

resolution technique to support secure collaboration based
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Figure 1: Simplified Metamodel of Wind Turbine Con-
trollers

on a rule-based fine-grained access control policy, as pro-
posed in [4]. In particular, we aim to address the following
goals:
G1 Deterministic Conflict Resolution

the solution must define a deterministic application of
the access control rules to obtain the same effective
permissions after every execution;

G2 Consistency of Effective Permissions
the solution must synthesize secure models that are
compatible with all internal consistency rules;

G3 Flexible Adaptation to the Intention of the Policy Owner
the solution must provide the concept of a parame-
terizable policy language that is able to fine-tune the
resolution of conflicting rules.

In this paper, we propose a configurable, multi-stage con-
flict resolution approach that considers internal and external
propertiesof rules, as well as dependencies among the as-
sets they apply to, when determining their precedence. We
demonstrate the applicability of the proposed approach on
a case study.

2. CASE STUDY

2.1 Modeling Language
Our conflict resolution concepts will be illustrated using

a simplified version of a modeling language for system inte-
grators of offshore wind turbine controllers, which is one of
the case studies of the MONDO EU FP7 project [2]. The
metamodel, defined in Ecore [19] and depicted by Fig. 1,
describes how the system is modeled as modules providing
and consuming signals that send messages after a specific
amount of time defined by the frequency attribute. Mod-
ules are organized in a containment hierarchy of composite
modules shipped by external vendors, and ultimately con-
taining control unit modules responsible for a given type of
physical device (such as pumps, heaters or fans) with specific
cycle priorities. For external engineers, a documentation is
attached to each signal to clarify its responsibilities. Some of
the signals are treated as confidential intellectual property.

A sample instance model containing a hierarchy of 3 Com-

posite modules with 4 Control units as submodules, pro-
viding 6 Signals altogether where two of them are Con-

fidential Signals, is shown on Fig. 2. Boxes represent
objects (with attribute values as entries within the box).
Arrows with diamonds represent containment edges, while
arrows without diamonds represent cross-references. Differ-
ent type of lines, boundaries and letters in squares are re-

Figure 2: Sample Wind Turbine Instance Model

lated to the granted permissions that will be discussed later
during the paper.

2.2 Security Requirements
Designing wind turbine control units requires specialized

knowledge. There are 3 kinds of control units, and each
kind can only be modified by specialist users with the ap-
propriate qualification: heater, pump and fan control engi-
neers. Specialist are not allowed to modify (and in some
cases, read) parts of the model that would require a dif-
ferent kind of qualification. For this purpose, the following
security requirements are stated in relation with control unit
specialists:
R1 Each group of specialists shall be responsible for a spe-

cific kind of control unit (owned control units).
R2 Specialists must see only those signals that are in scope

for their owned control units, i.e. signals provided by
a module that is either (a) a composite that directly
contains an owned control unit, or (b) any submodule
(incl. the owned control unit) contained transitively in
such a composite.

R3 Specialists must be able to modify signals provided by
their owned control units.

R4 Specialists must see which modules consume signals pro-
vided by their owned control units.

R5 Specialists must not able to see confidential signals.

3. PRELIMINARIES

3.1 Model Facts as Assets
In our previous work [4], models are decomposed to a set of

elementary model facts. For example, EMF models consist
of the following kinds of model facts:
Object facts are pairs formed of a model element (EOb-

ject) with its exact type (EClass), for each model ele-
ment object; e.g. obj(c1,Composite).

Attribute facts are triples formed of a source EObject, an
attribute name (EAttribute) and the attribute value,



for each (non-default) attribute value assignment; e.g.
attr(c1, vendor,B).

Reference facts are triples formed of a source EObject, a
reference type (EReference) and the referenced EOb-
ject, for each containment link and cross-link between
objects; e.g. ref(c1,consumes,s4).

Note that there are multi-valued attributes and references,
where an EObject is allowed to host multiple attribute val-
ues (or reference endpoints) for that property. For such
properties, each of these multiple entries at a source EOb-
ject will be represented by a separate attribute (or refer-
ence) model fact. Moreover, there are opposite references
defined as a pair of references where the existence of a re-
lation depends on its pair. For example, the opposite of a
containment reference eContainment is the container refer-
ence eContainer.

These model facts are the assets that the access control
policy will protect; though there are a few deviations from
one-to-one correspondence, such as a reference and its op-
posite reference (if exists) are considered a single asset.

3.2 Model Obfuscation
Obfuscation is defined as the process of ”making some-

thing less clear and harder to understand, especially inten-
tionally”. The first purpose of obfuscation in programming
was to distribute C sources in an encrypted way to prevent
the access to confidential intellectual property in the code
[14]. In a modeling environment, the same concept applies.

A model obfuscator such as VIATRA Model Obfuscator
[22] obfuscates structured graph-like models (e.g. XML doc-
uments, EMF-based models) by altering data values (such as
names, identifiers or other strings) in a way that the struc-
ture of the model remains the same. Two data values that
were identical before the obfuscation will also be identical af-
ter it, but the obfuscated value computed based on an input
obfuscation string will be completely different (e.g. ”root”
may become ”oA3DD43CF5”).

Several publications [13, 18] discuss implementation of the
obfuscation function which is out of scope of this paper. We
assumes that an obfuscated identifier remains unique and it
is possible to revert it by the original owner of the model
using a private key.

In the context of access control, obfuscated data describes
the existence of a model fact (e.g. a value is assigned to the
attribute of an object), but the meaning of that fact remains
secret. Additionally, when only the existence of object needs
to be presented, its identifiers would be obfuscated while
the other features are hidden (if the object is identified by
a set of its attribute values e.g. in our example language
Fig. 1, where each object is identified by an id attribute).
Hence, the correspondences between the objects of the orig-
inal model and its secure view remains.

3.3 Definition and Applicaton of Rules
In [4], we introduced a rule-based access control approach,

where the rules are defined by graph queries (model queries).
Such a query is essentially a formula that can be evaluated
on the model. When a query is evaluated, the results con-
sist of a set of pattern matches. Rules grant or deny read
and write permissions to the assets identified by the pattern
matches of a query.

For example, Lst. 1 describes security rule permitControl
to fulfill security requirement R1. Here objectControl rep-

resents a graph pattern in EMF-IncQuery [21] syntax that
specifies a query against a wind turbine model, while per-

mitControl is the rule that grants read and write opera-
tions to a heater control engineer on model facts identified
by the query. In this case, a match consists of a single ob-
ject <ctrl> of type HeaterControl. In the instance model
of Fig. 2, the pattern has only one match: <ctrl3>. The
rule permits the modification of the asset <ctrl3> by the
engineer HeaterCtrlEng.

Listing 1 Query and Rule Definition

1 pattern objectControl(ctrl:Control)
2 { HeaterControl(ctrl); }
3

4 rule permitControl allow RW to HeaterCtrlEng
5 { query: objectControl }

Lst. 2 introduces rules that fulfill the remaining security
requirements without a detailed description of the queries as
it is out of the scope of this paper. Security requirement R2
is covered by rule viewSignal that would grant read permis-
sion for signals s3, s4, s5 and s6. Rule editSignal would
allow the editing of signals s3 and s4 described in security
requirement R3. Rule viewConsume would permit the read-
ability of references ref(ctrl1,consumes,s3), ref(c1,consumes,s3)
and ref(c1,consumes,s4) to satisfy security requirement R4.
Finally, rule denyConfSignal denies the visibility of confi-
dential signals s4 and s6 required by security requirement
R3.

Listing 2 Rule Definitions for the Example

1 rule viewSignal allow R to HeaterCtrlEng
2 { query: ... }
3 rule editSignal allow W to HeaterCtrlEng
4 { query: ... }
5 rule viewConsume allow R to HeaterCtrlEng
6 { query: ... }
7 rule denyConfSignal deny R to HeaterCtrlEng
8 { query: ... }

3.4 Consistency of Secure View
An arbitrary set of model facts does not necessarily con-

stitute a valid model; there may be internal consistency con-
straints imposed on the facts by the modeling platform to
ensure the integrity of the model representation and the abil-
ity to persist, read, and traverse models. Goal G2 requires
that secure models must be synthesized as a set of model
facts compatible with all internal consistency rules.

We distinguish these low-level internal consistency rules
from high-level, language-specific well-formedness constraints.
Violating the latter kind does not prevent a model from be-
ing processed and stored in the given modeling technology,
as error markers can be placed on such violations. Thus only
internal consistency is required for access control.

Object Existence Attributes and references imply that the
objects involved exist, having a type compatible with
the type of the attribute or reference.

Containment Hierarchy Objects must either be root ob-
jects of the model, or be transitively contained by a
root object via a chain of objects that are all existing.



Opposite Features For reference types having an oppo-
site, reference facts of the two types come in symmetric
pairs.

Multiplicity Constraints Number of a specific references
of an object needs to satisfy the multiplicity constraints.

3.5 Secure View of the Running Example
Fig. 2 contains markers to describe the filtered model pre-

sented to the heater control engineer. The user can modify
the two objects marked with blue label and bold outline
(ctrl3 and s3), and can additionally see the signal with
orange label and dashed outline (s5). Objects with white
label and dashed outline are hidden (ctrl2, s1, s2, s4 and
s6) which implies that their attributes are unreadable and
unmodifiable. Objects (root, ctrl1, c1, c2, ctrl4) that
contain other visible objects, but must themselves be un-
readable, appear with identifiers obfuscated id (marked with
an O in a square), and their other attributes hidden (marked
with an H in a square). Dashed edges are hidden references,
thin edges are readable, while thick edges are writable.

4. PARAMETERIZABLE POLICIES
To meet goal G3, the policy language provides parameters

to fine-tune the conflict resolution.

Default Read When none of the rules specify the read ac-
cess of an asset, the default read value will be used. It
can be allow, obfuscate, deny.

Default Write When none of the rules specify the write
access of an asset, the default write value will be used.
It can be allow, deny.

Conflict Resolution For conflict resolution, the strategy
should decide between a permissive or a restrictive res-
olution. In case of permissive resolution, rule that al-
lows an operation takes precendence over a denial rule.
But, the restrictive resolution prioritizes denying rules
over allowing ones.

Moreover, these values shall be specified on global, user
and root levels to define different type of rules for each user
and model. Root level settings are the most specific settings
that associate the values with the root objects of a model.
User level settings are connected to the current user and are
applied when there are no root level settings for a root ob-
ject. Finally, global level settings are the most general ones
independent from the users and root objects and applied if
there are no default values are specified. This means, global
settings are mandatory, but user and root are optional.
For the running example, user specific default values are

set as follows: read and write operations are denied by de-
fault and a restrictive conflict resolution will be used.

5. ANALYSIS OF CONFLICTS

5.1 Conflict types
Several rules can state contradict permission levels for the

same assets. Moreover, the read and write operations of
an asset may depend on other assets by consistency rules.
These conflicts have to be resolved in order to obtain the
conflict-free effective permissions which are actually enforced.

We classified the conflict types into 3 category represented
in Table 1 based on the asset on which the rules are applied
and the operation (read,write) they want to grant or deny.

Type I. A conflict of Type I. appears when two or more
rules apply to the same asset and specify different per-
mission levels for the same operation. For example,
rule viewSignal allows the read operation of confiden-
tial signal s4, but rule denyConfSignal denies it.

Type II. A conflict of Type II. appears when two or more
rules apply to the same asset but on a different oper-
ation. For example, rule editSignal allows the write
operation on confidential signal s4, but rule denyCon-

fSignal denies the read operation on confidential sig-
nal s4.

Type III. A conflict of Type III. appears when two or
more rules apply to different assets that depend on
each other (see Sec. 3.4). For example, rule viewCon-

sume allows to see the consumes reference from com-
posite module c1 to confidential signal s4, but secu-
rity requirement denyConfSignal denies the visibility
of confidential signal s4.

Table 1: Conflict Categories

Asset Operation
Type I. same same
Type II. same different
Type III different -

Type I. Same Asset and Operation.
An asset cannot both be readable and hidden; neither can

it be both writeable and unmodifiable at the same time.
Naturally, when two or more different permission levels are
applied to the same operation type (read/write) of the same
asset, a conflict occurs.

Example. In our running example, rule viewSignal allows
to read signal s4, but rule denyConfSignal denies to read it
(depicted in Fig. 3).

Figure 3: Type I. Conflict in the Example

Type II. Same Asset, Different Operation.
In case of different operations, we have to discuss the con-

flicting combinations of read and write permissions. As Ta-
ble 2 shows, most of the cases are valid. On the other hand,
if an asset is writable then it has to be readable while an un-
readable asset cannot be writable. Moreover, giving write
permission to an obfuscated asset is questionable. It should



mean that the users are only allowed to set obfuscated val-
ues which is not common in practice. Our approach works
well regardless whether this combination is allowed or not.

Table 2: Compatibility matrix of access and operations
types

Read

W
ri
te

Deny Obfuscate Allow
Deny ✓ ✓ ✓
Allow ✗ ? ✓

Example. Back to our example, rule editSignal allows to
write object s4, but denyConfSignal denies to read it (de-
picted in Fig. 4). Note that when the former rule dominates
both the read and write permissions are granted.

Figure 4: Type II. Conflict in the Example

Type III. Different Assets.
An object asset can be in conflict with its attributes and

references. Moreover, we refine the list of assets introduced
in Sec. 3.3 with opposite, containment and identifier assets.

An opposite asset is a pair of reference facts that are each
others opposites. Both of them must have the same per-
missions. Containment asset is also a special reference asset
defining parent and child relation between two objects. A
chain of containment assets describes a containment hierar-
chy. Identifier asset is a set of attribute facts that identifies
an object.

Read Dependency Readability of an object can be in
conflict with one of its attributes when the attribute is read-
able/obfuscated but the object is unreadable.

In case of a reference, its source and target objects have to
be taken into account. When a reference has to be readable,
both of its source and target objects have to be readable
too. Conversely, if either of the source and target object are
unreadable references between them have to be invisible.

When an object asset o is readable its parent and the
container reference have to be visible as well. This means
that all the objects have to be visible in the containment
hierarchy until o. Conversely, when a containment reference
asset is invisible, none of its children should be visible.

In addition, if an object is visible all of its identifiers have
to be visible, and conversely, if any of the identifiers is not
visible, the object has to be invisible. Moreover, if an object
is present in the filtered model solely to satisfy the depen-
dencies of other assets (contained objects, reference links)
and not because an explicit rule, it should be obfuscated.

If an object is explicitly obfuscated by the rules, or due
to dependencies as explained above, its identifier attributes

shall be obfuscated and other attributes need to remain hid-
den by default.

Finally, in case of a readable object, all of its features are
also readable by default. However, this is merely a weak
consequence: rules can specifically override this default for
each feature.

Example. Application of rule viewConsume makes the con-
sumes reference between control unit ctrl1 and signal s3
visible (depicted in Fig. 5). Signal s3 is readable because of
the application of rule viewSignal, but control unit ctrl1

which is the source of the reference is invisible by default.
Internal consistency constraints demand to make ctrl1 vis-
ible. It also implies that the composite module root which
is the container of ctrl1 needs to be visible.

Figure 5: Type III. Conflicts - Read dependencies

Write Dependency Write permission means that the as-
set can be modified. In case of a writable/unwritable object,
all/none of its features are writable by default. Once again,
rules can specifically override this default for each feature.

When an object asset is writable it does not mean that
it can be deleted. For that behavior, the containment refer-
ence that holds the object must also be modifiable. When a
containment reference is writable, all of its children can be
deleted (if they themselves are writeable) or moved to un-
der another containment reference (if the other containment
reference is also writable).

If an identifier is modified, it is equivalent to an object be-
ing deleted and a new one created at the same place. This
also means that a containment reference is deleted and a new
one is created. Thus, if any of the identifiers is writable the
containment reference has to be writable. And if a contain-
ment reference asset is unmodifiable, none of the identifiers
are writable.

Read vs. Write Dependency Writable assets have to
be visible. Hence, we investigate conflicts between readable
assets associated with the same object asset. Thus read and
write dependent conflicts are special cases of resolving read
dependencies.

Multiplicity Constraints The presented conflict reso-
lutions handle the following internal consistency constraints:
object existence, containment hierarchy, opposite features de-
scribed in Sec. 3.3. Now, we investigate the multiplicity con-
straints. Multiplicity of a feature type defines the number
of possible target values or objects and consists of a lower
and upper limit ([lower]..[upper]). However, not all type of
multiplicity constraints are supported by our approach.



0..* If there are no multiplicity restrictions, the presented
approach works well without further considerations.

0..m This type of multiplicity constraint defines an un-
settable feature (attribute or reference) may have up to m
values per object, where m is a finite integer (typically 1).
Applying read permissions may only decrease the number
of model facts in the filtered model, thus this multiplicity
constraint is met in the secure view regardless whether the
value is readable, hidden or obfuscated. However, for a given
object with one or more feature values that are invisible to
the user (the security rules deny the read permission to the
asset formed by the specific feature value), write access con-
trol must prevent the user from adding new values to the
feature (even if the security rules would allow write permis-
sions for model fact formed by the new value) if, together
with the hidden values, they would exceed the upper limit
in the unfiltered model.

1..1 This type of multiplicity constraint defines a feature
where a value must always be set. If the user is not allowed
to read the associated model fact, then an obfuscated (and
unmodifiable) value must be provided so that the secure
view is a consistent model. For instance, the identifier of a
visible object cannot be hidden, only obfuscated.

k..m This rare type of multiplicity constraint defines a
feature with at least k ≥ 1 and at most m > 1 values per
object, where m can be unlimited. It implies that at least
k distinct values need to be visible to the user, but if fewer
than that number are readable, there is no self-evident de-
terministic way for selecting a subset of hidden values for
obfuscation. Therefore our approach is only applicable if no
such feature values are hidden from the user when the host
object itself is visible.

5.2 Formal treatment of conflicts

5.2.1 Ordering and connections
The set Π of priority classes is totally ordered using >Π,

i.e. from any two classes, one of them has higher prior-
ity. Each rule is assigned an (external) priority class, but
multiple rules can be in the same class; in fact, we expect
to commonly find policies where all query-based rules share
the same priority class.

The permission levels for an operation are totally ordered
according to permissiveness, i.e. LevelsW = {denyW <W
allowW } and LevelsR = {denyR <R obfuscateR <R allowR}.
In case further refinements to the permission model is neces-
sary, it would be fairly easy to extend our approach so that
the ordered set is replaced with a finite lattice.

Detecting conflicts relies on the notion of Galois connec-
tions. For partially ordered sets A and B, a (monotone) Ga-
lois connection is an ordered pair ⟨f, g⟩ of monotone (order-
preserving) functions, the lower adjoint f : A ↦→ B and the
upper adjoint g : B ↦→ A, with the property that f(a) > b⇔
g(b) < a (or equivalently, f(a) ≤ b⇔ g(b) ≥ a). Intuitively,
f(a) puts an upper bound on B-values that are related to
a in a certain way, while g(b) is a lower bound for A-values
that have this same connection with b.

A key observation is that the compatibility matrix (see
Table 2) between the read and write permissions of a sin-
gle asset encodes such a Galois connection; this is a con-
sequence of the fact that an incompatible pair of read and
write permission levels can always be made compatible ei-
ther by choosing a more permissive read or a more restric-

tive write level. In other words, for each read permission
level pR ∈ LevelsR, there is a corresponding write permis-
sion level ⌈pR⌉ such that pR is compatible with write permis-
sion level pW if and only if pW ≤W ⌈pR⌉. Dually, for each
pW ∈ LevelsW , there is a ⌊pW ⌋ such that pW is compatible
with a read permission level pR iff ⌊pW ⌋ ≤R pR. Concretely,
⌈denyR⌉ = denyW , ⌈allowR⌉ = allowW , ⌊denyW ⌋ = denyR,
and ⌊allowW ⌋ = allowR or obfuscateR (the adjoint of ob-
fuscation is left open by the Table). This will be useful for
resolving type II conflicts.

5.2.2 Judgments
In the context of determining permissions for a given user,

we treat lower bounds (e.g. “this object must be visible, at
least in an obfuscated form”) and upper bounds (e.g. “this
object must not be completely readable, it may be obfus-
cated at best”) on a permission level as separate judgements.

We define a permission set as a set of judgments, where
each judgment j is a tuple j = ⟨a, o, p, ψ, π⟩, where a ∈
Assets is an asset, o ∈ {R,W} is an operation (read or
write) to be performed on the asset, p ∈ Levelso is a permis-
sion level associated with the operation, ψ ∈ Ψ = {>,<}
indicates whether the judgment puts that permission level
as an upper respectively lower bound for the final permission
decision, and π ∈ Π is a priority class. A valid permission
set is complete, i.e. for each asset and operation, it must
contain at least one upper bound and one lower bound judg-
ment, and by the ordering of permission levels, the lowest
(strictest) upper bound must not be higher than the highest
(strictest) lower bound.

The initial permission set is obtained from rules and de-
faults. For all assets and operations, default permissions are
included as a pair of judgments (one upper bound, one lower
bound, both with the same permission level), with a priority
class that is lower than the priority of any query-based rule;
this ensures completeness. For each match of the queries
of security rules that apply for the user, a pair of upper
and lower bound judgments are added; the asset is given
by the pattern match, and the operation, priority class and
permission level are determined by the rule header. While
not discussed in this paper, it is possible to have rules that
impose e.g. an upper bound only.

The goal is to derive the resolved permission set, where the
highest (most permissive) lower bound is equal to the lowest
upper bound for each asset and operation (thereby identi-
fying a single permission level as the effective permission),
and there are no conflicts (due to sanity or dependencies)
between the judgments. Sec. 5.2.3 will discuss how conflicts
are formalized.

5.2.3 Conflict detection
Conflict detection is the task of determining which judg-

ments contradict which ones. For upper bound judgment j>
and lower bound judgment j<, we denote their conflict by
j> ̸⊒ j<. The symmetric relation j ̸∼ j′ := j ̸⊒ j′ ∨ j′ ̸⊒ j
denotes a conflict where either of the two judgments can
be the upper bound. Compatibility (the lack of conflict in
either direction) is denoted by the symmetric relation j ∼ j′.

Conflicts are detected in the following cases (excerpt), al-
ways between an upper bound and a lower bound judgment:

Type I. ⟨a, o, p,>, π⟩ ̸⊒ ⟨a, o, p′, <, π′⟩ iff p < p′; i.e. oc-
curs if there are contradictory judgments for the same asset
and operation.



Type II. ⟨a,R, pR, >, πR⟩ ̸⊒ ⟨a,W, p′W , <, π′
W ⟩ iff pR <R

⌊p′W ⌋ (equivalently ⌈pR⌉ <W p′W by the identity introduced
above); i.e. occurs if the read and write judgments for the
same asset are incompatible.

Type III. ⟨a,R, pR, >, πR⟩ ̸⊒ ⟨a′, R, p′R, <, π′
R⟩ for a ̸= a′

iff one of the following cases is true:
(A) a = obj(x, τ) ∧ a′ = ref(x, τ ′, y) ∧ (pR = denyR ∧ p′R ̸=
denyR); i.e. a reference link asset is visible, while its source
endpoint isn’t.
(B) a = ref(y, τ, x) ∧ a′ = obj(x, τ ′) ∧ (pR = denyR ∧ p′R ̸=
denyR), where τ is a containment edge type; i.e. an object
asset is visible, while the containment link that holds it isn’t.
(C) etc. (See for Sec. 5.1 informal description of all cases.)

Note that the permission-related conditions in cases III/A
and III/B can be rephrased as (pR <R L<(a,o),(a′,o′)(p

′
R)),

where the function L<(a,o),(a′,o′)(.) is defined as

L<(a,o),(a′,o′)(p
′
R) =

{
denyR, if p′R = denyR

obfuscateR, otherwise

The equivalence stands as there is no read permission level
more restrictive than denyR, only the lower branch of the
function definition will lead to actual conflicts. We can
also reason about the dependent asset based on its depen-
dency asset; the statement is further equivalent to (p′R >R
L>(a′,o′),(a,o)(pR)), where

L>(a′,o′),(a,o)(pR) =

{
denyR, if pR = denyR

allowR, otherwise

Note that the two newly introduced functions are distin-
guished by having different ordering directions in their su-
perscripts; and that the subscript identifies first the asset-
operation pair whose permission is restricted in that direc-
tion, and second the asset-operation pair whose permission
level determines the threshold.

In this case, functions L<(a,o),(a′,o′)(.) and L>(a′,o′),(a,o)(.)

play a similar role than ⌊.⌋ respectively ⌈.⌉ do in type II
conflicts. Thus for each dependency between asset-operation
pairs, we have such a pair of functions that form a Galois
connection.

For uniformity in case of type II conflicts, let ⌊p′⌋ =
L<(a,o),(a,o′)(p

′) and ⌈p⌉ = L>(a,o′),(a,o)(p). Likewise, intro-

ducing L<(a,o),(a,o)(p) = L>(a,o),(a,o)(p) = p for type I con-
flicts, we can treat all three kinds of conflicts uniformly,
using the mathematical foundation of Galois connections.
Finally, for the cases where two assets have no dependency,
L<(a,o),(a′,o′)(.) and L>(a′,o′),(a,o)(.) are defined to take the
most respectively least restrictive value, so that they will
not indicate conflict for any permission levels.

Using this notation, the following three statements are
equivalent:

• ⟨a, o, p,>, π⟩ ̸⊒ ⟨a′, o′, p′, <, π′⟩

• p < L<(a,o),(a′,o′)(p
′)

• p′ > L>(a′,o′),(a,o)(p)

Essentially, conflict occurs if and only if the upper bound
judgment is too restrictive to be compatible with the lower
bound one, or equivalently, the lower bound is too permissive
to be compatible with the upper bound.

5.2.4 Propagation of consequences
As a judgment imposes compatibility constraints on its de-

pendencies, its consequences can be propagated and directly
represented as additional judgments on foreign asset/opera-
tion pairs. Using the propagated consequence judgments, all
conflicts can be transformed into type I conflicts.

For judgment j = ⟨a, o, p, ψ, π⟩ of bound ψ ∈ Ψ = {>
,<}, with ⟨a′, o′⟩ as a dependency, the propagated strong
consequence judgment is defined as j⟨a′,o′⟩ := ⟨a′, o′, l, ψ, π⟩
where l = Lψ(a′,o′),(a,o)(p). By the equivalent forms of conflict

stated above, it follows that for any j′ = ⟨a′, o′, p′, ψ′, π′⟩,
j ̸∼ j′ iff j⟨a′,o′⟩ ̸∼ j′, where the latter is a type I conflict,
expressed on the same asset and operation.

Extending the above notion, is also possible to propa-
gate weak consequences that encapsulate a default effect of
a given judgement, not a necessary condition. For example,
all contained elements of a visible object should also be made
visible by default - unless another rule denies the read per-
mission. A weak consequence does not inherit the priority
of the original judgement, but is assigned a lower priority
instead, and may be overridden by more dominant judge-
ments without conflicting with the original judgement. It
can be formally captured as j∗⟨a′,o′⟩ := ⟨a′, o′, l∗, ψ, π∗⟩ with
l∗ =Wψ

(a′,o′),(a,o)(p) (where W
ψ
(a′,o′),(a,o) is not necessarily a

Galois connection). We propose to assign a priority class to
these weak consequences that is lower than the priority of
any user-specified rule, but higher than the priority of global
defaults that such a weak consequence may override.

5.3 Domination of Rules
Computing the effective permission requires us to resolve

the conflicts and provide a consistent secure view of the
model. If there are conflicts, it is inevitable that some rules
will not fully apply to all assets identified by their query, but
rather will be overruled by other, more dominant rules on
some assets. There are two ways to compare rules in order
to determine which one will dominate, as explained below.

External Priority Rules may be decorated with exter-
nal priority information, where the policy engineer directly
expresses which rule shall dominate over which one.

Internal Priority In case of two rules belong to the same
priority class, we can still compare them based on the per-
mission level they apply. Between the permission levels,
we defined a precedence order: deny < obfuscate < allow.
Based on this precedence, either the most restrictive (min)
or the most permissive (max) rule can be selected as domi-
nant, as per preferences of the policy engineer.

Example. As we introduced in Sec. 3.3 a restrictive conflict
resolution is used in the running example. In the conflict of
Fig. 3, the deny permission level is more restrictive than
allow, thus signal s4 remains hidden from the secure view.

5.4 Formal treatment of conflict resolution

5.4.1 Resolution step
Conflicting rules may dominate each other either by ex-

ternal priority, or, if they share a priority class, by internal
priority. Thus within each priority class for rules, either the
more permissive or the more restrictive rule is considered
dominant, by discretion of the policy engineer. For each
priority class π ∈ Π, one of the bounds ψπ ∈ Ψ = {>,<}



is given to indicate dominance; e.g. if ψπ is >, restrictive
judgments will dominate over permissive ones in the same
equivalence class.

Thus using ψπ and the Galois connections discussed in
Sec. 5.2.1, we can now introduce the following domination
relation between two conflicting judgment: if j ̸∼ j′ for
j = ⟨a, o, p, ψ, π⟩ and j′ = ⟨a′, o′, p′, ψ′, π′⟩,

j ≻ j′ := (π >P π
′) ∨ (π = π′ ∧ ψ = ψπ)

Observations: (a) the domination relation introduces a
partial ordering among judgments, (b) two conflicting judg-
ment are related by this domination relation one way or the
other, i.e. one of them is always dominant over the other.
A resolution step takes two judgments that are in a Type

I conflict, compares them using the dominance relation, and
modifies the dominated judgment to make it compatible
with the dominant judgment. For j = ⟨a, o, p, ψ, π⟩ and
j′ = ⟨a, o, p′, ψ′, π′⟩ with j ̸∼ j′ ∧ j ≻ j′ the conflict resolu-
tion replaces j′ with j′′ = ⟨a, o, p, ψ′, π′⟩. Executing such a
step transforms a permission set to a different one. Obser-
vations on the resolution step:

• j′′ relaxes j′, i.e. upper bounds are raised when re-
placed, while lower bounds are lowered.

• j′′ ∼ j is guaranteed by the construction.

• The resolution step upholds the completeness of the
permission set.

5.4.2 Resolution process
The resolution process (see Alg. 1) iterates over judgments

in the order of domination, to propagate their consequences
(also the weak consequences, unless contradicted by a previ-
ously processed judgement) and resolve any type I conflicts
they are in.

Algorithm 1 The resolution process in pseudocode

◃ The policy is assumed as an implicit global parameter
function GetEffectivePermissions(model, user)

permissionSet← getInitialPermissions(model, user)
processed← ∅
loop

if permissionSet ⊆ processed then
return permissionSet

end if
j ← chooseDominant(permissionSet\processed)
processed← processed ∪ {j}
for all dependencies ⟨a′, o′⟩ of j do ◃ propagate

conseq ← {j⟨a′,o′⟩}
if j′ ∈ processed : j∗⟨a′,o′⟩ ∼ j′ then ◃ weak

conseq ← conseq ∪ {j∗⟨a′,o′⟩}
end if
permissionSet← permissionSet ∪ conseq

end for
conflicts← typeIConflictsOf(j, permissionSet)
for all j′ ∈ conflicts do ◃ resolve locally

j′′ ← ResolutionStep(j, j′) ◃ j dominates
permissionSet← permissionSet ∪ {j′} \ {j′′}

end for
end loop

end function

We have the following success criteria against the resolu-
tion process, derived from the goals stated in Sec. 1.2:

Termination the process must eventually halt.

Correctness the process must yield a resolved permission
set upon termination.

Confluence in order to work predictably and determinis-
tically, the effective permissions must be completely
determined by the user in question, the model and of
course the policy.

The presented algorithm is terminating, as (for given as-
sets) there is a finite space of possible judgments, each of
which is processed at most once.

Once a judgment j has been processed, it will not be re-
moved from the permission set anymore, as all judgments
that could potentially dominate it have already been pro-
cessed, and neither propagation nor resolution would cre-
ate such dominating judgments anymore. It will not enter
into new conflicts as the dominating party either, since all
of its consequences have been propagated, so any judgment
that would propagate a strong consequence that would be
dominated by it, would never be processed, but would have
previously been removed in a resolution step. Note that
weak consequences are not propagated if they would create
a conflict with an already processed judgement.

When a judgment is processed, its local (type I) conflicts
are resolved; as it cannot enter new conflicts, there will be
no more type I conflicts when the process terminates. This
also means that there are no more conflicts of any type, since
all strong consequences have been propagated. All the while
the completeness of the permission set is maintained, thus
the end result is a resolved permission set, and the process
is correct.

Note that when processing a judgment, the associated
propagations and resolutions yield deterministic results. Thus
confluence requires that the end result is the same regard-
less of the order that judgments are selected for processing
in chooseDominant(.). The process has free choice only be-
tween judgments that do not dominate each other; in this
case they are of the same priority class and bound, so the
end result will contain all of their transitive consequences
(with no domination between them), and conflicts will be
confluently resolved to be compatible with the conjunction
of all these judgments, independently of the order of steps.

5.5 Elaboration on the Running Example
The effective permissions calculation on the running ex-

ample works as follows.
Initialization Before all, the initial permission set is de-

termined. The default judgements are assigned to the model
assets, which deny read and write operations for each ele-
ment, as described in Sec. 5.4.2. Then each query-based
security rule in the policy is evaluated on the model, and
judgments to override the default values are created for the
assets that are identified by query results.

• permitControl allows read and write operations for
obj(ctrl3, Control).

• viewSignal allows read for obj(s3, Signal), obj(s4, Con-
fidentialSignal), obj(s5, Signal) and obj(s6, Confiden-
tialSignal).



• editSignal allows write operation for obj(s3, Signal),
obj(s4, ConfidentialSignal).

• viewConsume allows read for ref(ctrl1, consumes, s3),
ref(c1, consumes, s3) and ref(c1, consumes, s4).

• denyConfSignal denies read and write for obj(s4, Con-
fidentialSignal) and obj(s6, ConfidentialSignal).

We place all the above query-based rules in a single prior-
ity class π1 (superior to both default permissions and weak
consequences), and select the restrictive conflict resolution
type specified in Sec. 3.3, i.e. ψπ1 => so that upper bound
judgements dominate.

As a result, judgements based on denyConfSignal take
precedence above all other rules, and are picked first for be-
ing processed. The viewSignal and editSignal judgements
on s4 and s6 are in type I conflict with these more dominant
denials, and are thus overridden - the confidential signals
remain hidden.
The denial judgements are propagated to dependencies:

since s4 and s6 are hidden, any provides or consumes ref-
erences pointing to them must also remain hidden. These
propagated strong consequences have the same priority class
and are also upper bounds on permissions, so they dominate
over e.g. viewConsume. Thus these conflicts will be resolved
next by relaxing the existing lower bounds, thereby hiding
the references.
Next, judgements from the other five rules (except where

overridden by the denial) are selected as dominant ones, and
they propagate strong consequences. For instance, the visi-
bility of ref(ctrl1, consumes, s3) has not been overridden by
the denial of confidential signals, so its starting point ctrl4
must be present at least in an obfuscated form, thus the
propagated strong consequence is a lower bound judgement
of the same priority class. Similarly, s5 remained visible, so
its containing object ctrl4 must be at least obfuscated, which
in turn will propagate as additional lower bounds on the visi-
bility of c2, c1 and finally the root. These propagated strong
consequences will override the default judgement of hiding
these objects. And as a consequence of having these objects
visible but obfuscated, the identifier attributes (such as the
id of c2) will also be visible with obfuscation; non-identifier
attributes such as vendor remain hidden.

At the same time, as read access was granted to objects
ctrl3, s4 and s5 (and not overridden by denyConfSignal),
they propagate their weak consequence of making all their
attribute values, contained objects and outgoing references
visible, unless precluded by any rule (e.g. in case of s4). As
ctrl3 and s3 are also writable, their attributes are made
writable by default as well.

Finally, the default judgements, where left intact, are pro-
cessed. They neither override any judgements nor propagate
meaningful consequences. For example, s4 kept the default
permissions denyR and denyW .

Discussions.
We think that the properties of the resulted secure model

is worth to discuss. In the example, the heater control engi-
neer can see only control unit ctrl3, signals s3 and s5. The
rest of the objects are obfuscated or hidden, thus no confi-
dential information is presented to the user. Furthermore,
control unit ctrl3 and its signal s3 are editable and remov-
able. However, the user cannot delete these object in the

current state of the model, because the consumes references
pointing to s3 are only readable. Removing the control unit
or the signal would also imply that the consumes references
be removed from the model, but these operations are denied.
Thus the specialist needs to collaborate with the other en-
gineers and cannot delete on their own those elements from
the model on which other users depend. On the other hand,
our specialist can create a new heater control unit under
composite c1, and the signal can be moved under this new
unit (without deleting incoming references); this enables the
specialist to delete the previous unit.

In addition, control unit ctrl3 does not consume any sig-
nals in the model. Because of the fact that the control
unit and all of its features are editable, the heater control
engineer has the permission to create new consumes ref-
erences in the model. Currently, the signal s5 is visible
in the model, which means that the specialist can create a
ref(ctrl3,consumes,s5) reference.

6. RELATED WORK
File-based Access Control. Off-the-shelf file systems

typically require resources (files and folders) to be explicitly
labeled with permissions that take the form of an Access
Control List (ACL), or the simplified form user/group/others.
An ACL consists of entries (judgements) regarding which
user/subject is granted or denied permission for a given op-
eration. Conflict resolution is usually priority-based (first
entry applies) within the access control list, and restrictive
among type II and type III conflicts (e.g. contents of a hid-
den folder cannot be seen, regardless of ACLs inside).

File-based solutions can be directly applied to MDE, but
cannot provide fine-grained access control, where different
parts of a model file have different permissions. Our policies
are fine-grained, use implicit rules (so that model elements
do not have to be explicitly annotated with judgements,
which is difficult to manually maintain as the model evolves),
and respect the modeling-specific challenges of consistency
(such as permission dependencies of cross-references); all the
while being more flexible in the conflict resolution method.

Access Control for XML Documents. A number
of standards such as XACML [12] (OASIS standard) pro-
vide fine-grained access control for XML documents. These
type of documents are similar to models in a way, that they
consists of nodes with attributes that may contain other
nodes. XACML provides several combining algorithms to
select from contradicting policies. Similarly to our solu-
tion, it may use external and internal priorities together
(ordered-(deny/permit)-overrides) or only internal priorities
(unordered-(deny/permit)-overrides). In [10], fine-grained
access control is formalized using XPath for XML docu-
ments, which claims that the visibility of a node depends
on its ancestors, thus when a node is granted access, then
access is also granted to its descendants. However, other
dependencies are not discussed related to XML Documents.

Context-aware Access Control RDF Stores. Models
can be persisted into triples to store them in triple or quad
stores (Neo4EMF[3], EMF Triple). Graph-based access con-
trol is a popular strategy for many RDF stores (4store [11],
Virtuoso , IBM DB2) developed for storing large RDF data.
In case of RDF, fine-grained specification of access control
permissions are defined at triple level. In [1], a graph-based
policy specification language proposed over SPARQL [17],
but resolution of contradicting rules are not discussed. Amit



Jain et. al. [15] propose an access control model for RDF
and a two-level conflict resolution strategy that also takes
inconsistencies into account similar to our solution. But, it
uses only restrictive resolution without any configuration of
default values or priorities between rules.

Collaborative Modeling Environments. Currently,
fine-grained access control is not considered in the state of
the art tools of MDE such as MetaEdit+[20], VirtualEMF[6],
WebGME[16]. The collaborative hardware design platform
VehicleFORGE stores their model in graph-based databases
and has an access control scheme TrustForge [7] that uses an
implementation of KeyNote [5] trust management system.
This system is responsible for evaluating the request ad-
dressed to the database, which can be configured in various
ways. It supports unlimited permission levels and it is also
able to handle consistency constraints by adding them as
assertions. Conflict resolution strategies are not discussed.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed formal foundations for

describing the interpretation of rule-based access control
policies in MDE. We have identified the necessary criteria
(deterministic, conflict-free resolution) for successfully in-
terpreting such policies. We have proposed a framework of
conflict resolution processes that is guaranteed to meet these
criteria, and yet be flexible enough so that it can adapt to
the preferences of the the policy engineer. We have demon-
strated the problems and an example solution using a case
study inspired by a real-world industrial domain.

As future work, we (i) plan to define a textual syntax
for the proposed security policy language that includes the
defaults, the query-based rules and also the conflict resolu-
tion options, and investigate (ii) preselected sets of policy
options (such as the resolution strategies of XACML) and
accompanying “design patterns” on how policies should be
constructed. Efficient incremental computation of the effec-
tive permission set also remains a challenge for the future.
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