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The short pulses of X-ray free-electron lasers can produce diffraction patterns

with structural information before radiation damage destroys the particle. From

the recorded diffraction patterns the structure of particles or molecules can be

determined on the nano- or even atomic scale. In a coherent diffraction imaging

experiment thousands of diffraction patterns of identical particles are recorded

and assembled into a three-dimensional distribution which is subsequently used

to solve the structure of the particle. It is essential to know, but not always

obvious, that the assembled three-dimensional reciprocal-space intensity

distribution is really consistent with the measured diffraction patterns. This

paper shows that, with the use of correlation maps and a single parameter

calculated from them, the consistency of the three-dimensional distribution can

be reliably validated.

1. Introduction

The main tool for determination of structures at the sub-

nanometre scale is X-ray crystallography. X-ray crystal-

lography needs crystals, but, unfortunately, not all molecules,

viruses or other small but important biological objects can be

easily crystallized. Therefore, it is of great importance to

develop methods of structure determination without the need

for crystals. Coherent diffraction imaging (CDI, Sayre et al.,

1998; Miao et al., 1999, 2001, 2004, 2015; Neutze et al., 2000;

Hajdu, 2000; Huldt et al., 2003; Chapman et al., 2006, 2011; Loh

et al., 2010, 2012; Seibert et al., 2011) exploits the short and

intense pulses of an X-ray free-electron laser (XFEL) to

record a diffraction image of a particle in the short time before

radiation damage destroys the sample. The recorded image is

very noisy and the orientation of the particle is unknown.

Thousands of images of identical particles must be recorded

and these images must be assembled into a consistent three-

dimensional data set. In order to do this, the orientations of

the individual particles have to be found.1 Several methods for

orienting the images have been developed, many of them for

cryo-electron microscopy (cryo-EM), which has much in

common with CDI. These methods either are based on the

information in the intersection of the images (common-line

methods, DeRosier & Klug, 1968; Hart, 1968; Crowther, 1971;

van Heel, 1987; Frank, 1996; Penczek et al., 1996; Fuller et al.,

1996; van Heel et al., 2000; Shneerson et al., 2008; Bortel &

Tegze, 2011; Yefanov & Vartanyants, 2013; Zhou et al., 2014)
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1 In special circumstances (a very large number of very noisy images with well
known noise characteristics) methods based on Bayesian information theory
(Loh & Elser, 2009; Fung et al., 2008; Giannakis et al., 2012; Schwander et al.,
2012; Moths & Ourmazd, 2011; Meyer et al., 2014; Walczak & Grubmüller,
2014) can produce a three-dimensional data set consistent with the measured
images without finding the orientations of the individual images. These cases
will be discussed later in the paper.
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or use a model to start with and improve it by an iterative

process (Loh & Elser, 2009; Fung et al., 2008; Tegze & Bortel,

2012, 2013; Meyer et al., 2014; Walczak & Grubmüller, 2014).

When, finally, a three-dimensional intensity distribution is

assembled, its consistency should be checked. Most iterative

orientation methods can give some indications (e.g. a sudden

jump in some parameters) that the solution is found (Tegze &

Bortel, 2012), but these are not always clear. There also could

be images of different particles or aggregates included in the

solution which do not fit and should be left out.

Here we show a reliable method to test the consistency of

the assembled three-dimensional distribution. The method is

also useful to identify and reject individual images due to

contamination. First we will discuss the basics of CDI

experiments, and then introduce the concept of correlation

maps and the consistency parameter. Finally, we discuss some

special cases, when difficulties may arise.

2. Coherent diffraction imaging experiments

In CDI experiments a stream of identical particles is injected

into the XFEL beam. When the short and very intense X-ray

pulse hits the particle, the particle becomes highly ionized and

explodes due to the strong Coulomb forces. However, this

explosion needs time to develop. If the X-ray pulse is short

enough (a few femtoseconds), then the X-rays scattered

elastically by the particle will give information on its un-

damaged structure (Solem, 1986; Neutze et al., 2000). The

scattered X-rays are recorded by a two-dimensional detector.

The measured patterns represent spherical sections of the

three-dimensional intensity distribution in reciprocal space

(part of the Ewald spheres). The centre of the diffraction

patterns (corresponding to forward scattering) coincides with

the origin of the three-dimensional reciprocal space. Many

(thousands or even millions) of diffraction patterns are

recorded on randomly oriented particles. These diffraction

patterns are then assembled into a three-dimensional intensity

distribution by an orientation algorithm (Shneerson et al.,

2008; Fung et al., 2008; Loh & Elser, 2009; Bortel & Tegze,

2011; Tegze & Bortel, 2012, 2013; Yefanov & Vartanyants,

2013; Kassemeyer et al., 2013; Zhou et al., 2014; Hosseinizadeh

et al., 2014). If the diffraction patterns are measured up to a

scattering vector qmax, then the three-dimensional distribution

will also have a radius of qmax.

3. Correlation map

Here we introduce the concept of correlation maps, which can

be used to test the consistency of the measured images with

the three-dimensional distribution assembled by any method.

To check the consistency of the three-dimensional distri-

bution we compare it to the measured images Mm (m =

1 . . .NM, where NM is the number of images) in all possible

orientations. Only the measured images and the assembled

three-dimensional distribution are used in the comparison.

The orientations of the images determined during the orien-

tation process or even the knowledge of the method used to

orient the images are not necessary. Orientation of an image

can be defined by the three Euler angles �, � and � (Fig. 1).

The first two angles (�, �) describe the direction of a unit

vector normal to the image, while the angle � gives the

rotation about this normal vector as an axis, i.e. the rotation

of the two-dimensional image about its centre. We set up an

approximately uniform grid (�n, �n) of the orientation

subspace (�, �) (Tegze & Bortel, 2012). The angular distance

�grid between neighbouring grid points is chosen according to

the pixel size �q of the image as �grid � �q=k (k is the

wavenumber of the X-rays and radius of the Ewald sphere).

Here we suppose that the pixel size is chosen correctly, i.e.

satisfying the requirements of (over)sampling (Sayre et al.,

1998; Miao et al., 2003). We use only parts of the images inside

a circle inscribed into them, corresponding to a sphere of the

radius qmax in the three-dimensional distribution. We cut

spherical sections Sn with all (�n, �n) orientations from the

three-dimensional distribution. The choice of the � angle is

arbitrary at this point. Since the data in the images and in the

three-dimensional distribution are usually defined on rectan-

gular grids, we will need interpolation. We transform both the

images Mm and the cut sections Sn to an evenly spaced polar

grid (#i, ’j) with #i ¼ i�#, i ¼ 1 . . .N#, N#�# ¼ #max and

’j ¼ j�’, j ¼ 1 . . .N’, N’�’ ¼ 2�. Note that 2k sinð#max=2Þ
¼ qmax and the azimuthal coordinate ’ and Euler angle �
represent rotations about the same axis.

Now we can compare each image Mm to each cut section Sn
rotated by �j 0 ¼ j 0�’, j 0 ¼ 1 . . .N’. The similarity of two sets

of data {aj} and {bj}, j= 1 . . .N, can be expressed in terms of the

Pearson correlation (Rodgers & Nicewander, 1988):

CP fajg; fbjg
� � ¼

P
jðaj � aÞðbj � bÞ

P
jðaj � aÞ2� �1=2 P

jðbj � bÞ2� �1=2

where a ¼ ð1=NÞPj aj. We compute the correlation between

an image Mm and cut section Sn rotated relative to each other

by �j 0 about the centre as
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Figure 1
Orientation of an image (here represented by a grid) is defined by the
Euler angles �, � and �.
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cmnj 0 ¼
1

N#

XN#

i¼1

CP fMmð#i; ’jÞg; fSnð#i; ’j�j 0 Þg
� �

:

Here we used the equality Snð#i; ’j ��j 0 Þ ¼ Snð#i; ’j�j 0 Þ. The
Pearson correlation CP is calculated along index j for each

circle of the image and these correlations are averaged. This

construction has the advantage that the correlation matrix

elements can be calculated for all �j 0 angles at the same time

with the help of fast Fourier transform (FFT) algorithms using

the cross-correlation theorem (Weisstein, 2016). The correla-

tion of a given imageMm and the cut section Sn depends on the

three Euler angles: cmnj 0 ¼ cmð�n;�n;�j 0 Þ. In principle, this

function could be used for the consistency test; however, it is

not easy to comprehend. To make it more useful, we take the

maxima for the relative rotation �j 0:

cmax
m ð�n;�nÞ ¼ maxj 0cmð�n;�n;�j 0 Þ:

The function cmax
m ð�n;�nÞ can be plotted as a Mollweide

projection in order to map the three-dimensional directions to

a two-dimensional graph. The Mollweide projection (Feeman,

2000) is an equal-area map projection generally used for

global maps of the world or night sky. This plot shows the best

achievable agreement of the three-dimensional distribution

and a given image as the function of its axis direction. If the

three-dimensional distribution is correct and the image Mm

corresponds to the same (asymmetric) particle, then this

correlation map should feature a single, well pronounced peak

above a more or less constant background.

We will show the usefulness of the correlation map using the

example of the lysozyme molecule. A great number (NM =

20 000) of synthetic CDI patterns were calculated for

randomly oriented molecules using structure data from the

Protein Data Bank (PDB entry 3lzt, Walsh et al., 1998). The

images were oriented using the correlation maximization

(CM) method (Tegze & Bortel, 2012). Details of the simula-

tion and the orientation process were described in our earlier

papers (Tegze & Bortel, 2012, 2013). The CM method starts

initially from a random three-dimensional distribution and

constructs the next three-dimensional distribution from all

images in the best-fitting orientations. Fig. 2 shows the

correlation maps of a randomly selected image at the begin-

ning (a), just before (b) and after (c) convergence is reached.

The map at the beginning of the orientation process is rather

featureless (Fig. 2a). Just before convergence, the correlation

map shows some broad features (Fig. 2b) but they are very

different from the single narrow peak appearing when

convergence is reached (Fig. 2c). The maximum correlation of

the peak depends basically on the noisiness of the image, since

the three-dimensional distribution assembled from many

images has much less noise. For noiseless images the corre-

lation maximum should be slightly below unity (allowing for

small errors due to the interpolations).

If the particle has rotational symmetry, then a measured

diffraction image may fit in more than one orientation to the

three-dimensional distribution and more than one peak may

appear on the map. The number of peaks depends on the

symmetry and can be reduced in some special orientations of

the particle. The treatment of symmetry in the orientation

process and in the correlation map goes beyond the scope of

the present work and we will discuss it in a forthcoming paper.

We note here only that in the case of symmetric particles the

correlation map for a consistent three-dimensional distribu-

tion would show peaks of about equal heights.

In the asymmetric case, the presence of the single narrow

peak in all correlation maps for each image indicates that we

have a consistent three-dimensional distribution and all

images correspond to the same type of particle. If not all but

many correlation maps show the distinct peak, then we still

have a consistent three-dimensional distribution and the

correlation maps with peaks correspond to identical particles.

The maps without the peak belong to other kinds of particles

(different conformations, contaminants, solvent droplets etc.)

and their contribution should be left out

from the three-dimensional distribution

(Tegze & Bortel, 2013). In Fig. 3 we

show correlation maps calculated for

images of lysozyme, cytochrome (PDB

entry 2xl6, Hough et al., 2011) and

Arg–lysozyme (a complex of lysozyme

with arginine, PDB entry 3agi, Ito

et al., 2011) molecules and a three-

dimensional distribution assembled

from lysozyme images only.

4. C factor

In the previous section we have shown

that looking at the correlation maps

can help us to decide whether the

assembled three-dimensional distribu-

tion is consistent or not. However, when

a great number of images are used to

construct the three-dimensional distri-

research papers

Acta Cryst. (2016). A72, 459–464 Tegze and Bortel � CDI: consistency of the assembled distribution 461

Figure 2
Correlation maps and C factor. Correlation maps of a randomly selected diffraction image of
lysozyme at various stages of the iteration process by the CM method (a)–(c). C factor as a function
of iteration number (d). The arrows indicate the values corresponding to the correlation maps
shown on (a)–(c).
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bution, it is not easy to check all correlation maps visually. So

we need a single parameter indicating the measure of confi-

dence in our assembled three-dimensional distribution. This

confidence parameter should be near to unity if all correlation

maps feature single peaks well above the background and near

to zero otherwise. Here we describe how such a parameter can

be calculated from the correlation maps.

First we find the angles ð�nmax
m
;�nmax

m
Þ corresponding to the

maxima of the cmax
m ð�n;�nÞ correlation maps. Then we

exclude a circular region around the maximum. The radius of

the region should be larger than the expected width of the

peak so that this region would contain the peak if it exists. A

safe estimate for the radius of the excluded angular region is

0.25 rad. Now we can calculate the mean c
bg
m and standard

deviation �bg
m of the background for each correlation map and

take their average cbg and �bg, respectively. If

cmax
m ð�nmax

m
;�nmax

m
Þ> cbg þ 6�bg

then we can be confident that the peak rises well out of the

background and the corresponding image fits well to the

three-dimensional distribution in one orientation. Let us call

the number of images satisfying the above conditionNpeak. We

define the confidence parameter (C factor, in analogy with the

crystallographic R factor) as the fraction of well fitting images:

C ¼ Npeak=NM:

The value of the C factor is one if all images fit well in one

orientation and close to zero if only a few or none fit well. We

show the development of the C factor during orientation of

simulated lysozyme diffraction images in Fig. 2(d).

We tested the confidence parameter for simulated diffrac-

tion images of various molecules and various levels of noise. In

most of the cases the C factor indicates well that the images

are correctly oriented (C ’ 1). There were two notable

exceptions: when images of different molecules were mixed

and when relatively few (a few hundreds instead of many

thousands) images were used to construct the three-

dimensional distribution.

If the value of the C factor is below one, this may indicate

that images of more than one kind of particle are mixed. Then

one should select those images that satisfy the condition above

and try to assemble a three-dimensional distribution from

them (Tegze & Bortel, 2013).

When relatively few images are used for assembling the

three-dimensional distribution, the confidence parameter is

not reliable. In the top panel of Fig. 4 we plotted the C factor

as a function of the number of images for the three-

dimensional distributions assembled from the correctly

oriented images (circles) and from the same images oriented

randomly (triangles). It is clear that the C factor cannot

distinguish between these two cases if the number of images is

below a few hundred. The reason for this is very simple. When

assembling the three-dimensional distribution from a small

number of images, only a couple of images contribute to each

462 Tegze and Bortel � CDI: consistency of the assembled distribution Acta Cryst. (2016). A72, 459–464
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Figure 4
Dependence of the C factor on the number of images. Circles and
triangles indicate values for three-dimensional distributions assembled
from correctly and randomly oriented images, respectively. Top panel: the
three-dimensional distribution is assembled from all images. Middle
panel: the image, for which the correlation map is calculated, is excluded
from the three-dimensional distribution. Bottom panel: asterisks indicate
the percentage of undefined voxels in the three-dimensional distribution
assembled from all correctly oriented images.

Figure 3
Correlation maps of lysozyme (a), cytochrome (b) and Arg–lysozyme (c)
diffraction images with a consistent three-dimensional distribution
assembled from lysozyme images. The map for lysozyme shows a strong
peak, while the one for cytochrome shows none. Since Arg–lysozyme
consists of a slightly distorted lysozyme and a much smaller arginine, a
very weak peak appears on the corresponding map.
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voxel, except in a small region in the centre. If an image is

compared to the three-dimensional distribution in the same

orientation in which the image was used for assembling the

three-dimensional distribution, the correlation will always be

high, independent of how the image was oriented. To avoid

this problem, when making the correlation map for a certain

image, we should compare the image to a three-dimensional

distribution assembled from all images but excluding that

single image. This means that we have to construct as many

three-dimensional distributions as the number of images.

Fortunately, we have to do this only when the number of

images is not very large. Technically, we can construct the

distribution from all images and then subtract the contribu-

tions of the single image in question. The C factor derived

from correlation maps calculated by the above method is

reliable also for a relatively small number of images (middle

panel of Fig. 4). It becomes unreliable only when the number

of images is so small that many voxels of the three-

dimensional distribution are undefined (bottom panel of

Fig. 4).

5. Applicability and limitations

The correlation maps and the C factor give reliable informa-

tion on the consistency of the assembled three-dimensional

distribution produced by any method, if the noise level of the

images allows the determination of their orientations.

However, in cases when the signal-to-noise ratio in the

measured images is very low, orientations of the individual

images cannot be found. If the statistical properties of the

noise are well known and a very large number of images are

measured, then methods based on Bayesian information

theory (Loh & Elser, 2009; Fung et al., 2008; Giannakis et al.,

2012; Schwander et al., 2012; Moths & Ourmazd, 2011; Meyer

et al., 2014, Walczak &Grubmüller, 2014) can produce a three-

dimensional data set consistent with the measured images

without finding the orientations of the individual images. In

practice, other, not very well characterized contributions

(originating e.g. from the electronic noise and imperfections of

the detector) to the noise are always present, which may

prohibit the success of these methods for images with such

very low signal-to-noise ratio. If the same methods are applied

to images with lower noise level, then the orientations of the

individual images can be found, and the correlation maps and

the C factor can be used reliably to test the consistency of the

three-dimensional distribution.

In our view such validation should be performed on all

three-dimensional intensity distributions assembled by any

method from CDI experimental data before attempting the

real-space density reconstruction. This would characterize the

quality of the diffraction data separately from the recon-

structed structure, and could prevent unreliable or possibly

false results from being obtained.

Finally, we note that the correlation maps and the C factor

introduced in this paper could also be used in the case of

cryo-EM.

6. Summary

We have introduced the concept of correlation maps and the C

factor (confidence parameter) to test the consistency of three-

dimensional distributions assembled from images of single-

particle experiments. We have shown that for all practical

cases, when the particle has no symmetry, the appearance of a

single peak in all correlation maps or the value of the C factor

indicate that the three-dimensional distribution is consistent

with the measured images. This validation method works well

for three-dimensional distributions assembled by any (itera-

tive or common-line) methods. We proposed the use of the C

factor for verification of all three-dimensional assembled

diffraction data. The method in its present form is not

applicable to particles with symmetry. The case of symmetric

particles will be discussed in a forthcoming paper. The results

presented here, with some modifications, could be applied for

the case of cryo-electron microscopy as well.
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