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ABSTRACT 

 

Introduction: Application of structure-based drug discovery in histamine receptor projects was 

previously hampered by the lack of experimental structures. The publication of the first X-ray 

structure of the histamine H1 receptor has been followed by several successful virtual screens and 

binding site analysis studies of H1-antihistamines. This structure together with several other 

recently solved aminergic G-protein coupled receptors (GPCRs) enabled the development of 

more realistic homology models for H2, H3 and H4 receptors. 

Areas covered: In this paper, we review the development of histamine receptors models and 

their application on drug discovery.  

Expert opinion: In our opinion, the application of atomistic histamine receptor models played a 

significant role in understanding key ligand-receptor interactions as well as in the discovery of 

novel chemical starting points. The recently solved H1 receptor structure is a major milestone in 

structure-based drug discovery, however our analysis also demonstrate that for building H3 and 

H4 receptor homology models other GPCRs may be more suitable as a template. For these 

receptors we envisage that the development of higher quality homology models will significantly 

contribute to the discovery and optimization of novel H3 and H4 ligands. 
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1. INTRODUCTION 

 

Histamine is a well-known signaling molecule and also a neurotransmitter that is recognized by 

four distinct histamine receptor subtypes numbered by the order of their discovery from H1 to 

H4. Compounds targeting histamine H1 and H2 receptors are already on the market as the 

frontline therapy of allergies and gastric ulcer, respectively. H3 receptors have a role in 

controlling sleep and cognitive processes that nominates this protein as a drug target against sleep 

disorders and cognitive dysfunctions. The youngest member of the family is histamine H4 

receptor that has been connected to inflammation and immune responses. 

Given the significant pharmacology relevance of histamine receptors a high number of ligands 

were reported with histaminergic activity. The first H1-antihistamine has been discovered by 

Ernest Fourneau and Daniel Bovet in 1933 that was recognized by the 1957 Nobel Prize in 

Medicine. Developing an animal model for anaphylaxis they found that piperoxan inhibited 

histamine-induced bronchospasm in guinea pigs [1]. After the identification of main 

pharmacophoric elements, such as the two aromatic rings connected by a carbon or nitrogen 

atom, the 2-3 atom long spacer to the amine function typically substituted by small alkyl groups, 

a high number of first generation, non-selective H1-antihistamines were developed. Second 

generation H1-antihistamines are more selective compounds with much limited brain penetration 

that prevents sedative side effects. The design principle for these compounds was also ligand-

based. Since most of these compounds are zwitterionic at physiological pH they could not 

penetrate across the blood-brain barrier.  

The discovery of the H2 receptor was based on the observation that known H1-antihistamines 

had no effect on histamine stimulated secretion of stomach acid. In 1964 drug hunters at Smith, 

Kline & French including James Black and Robin Ganellin hypothesized another type of 

histamine receptors and designed antagonists on the basis of the histamine structure [2]. After 

synthesizing and testing about 200 compounds they first identified Nα-guanylhistamine, a partial 

H2-receptor antagonist. Next, ligand-based design helped the team separating functional agonists 

from antagonists by retaining the imidazole part of the molecule for binding and modifying the 

sidechain to shift its functional activity. These efforts resulted in a thiourea lead that was 

converted to similar guanidines to prevent toxic effects. Systematic investigation of guanidine 

analogues finally led to cimetidine, the first prototypic H2 antagonist.  

While the discovery of H1-antihitamines was basically influenced by a physiological observation 

the development of H2 antagonists is one of the first cases of rational drug design. Although the 

structure of its molecular target was not known the design of new compounds was effectively 

supported by ligand-based approaches. The first known model of the histamine H1 receptor was 

created by Nauta in 1968 proposing the binding mode of 4-methyldiphenhydramine based on the 

structure-activity relationship and physicochemical properties of H1-antihistamimnes [3] 



The lack of structural information on the receptor proteins prevented the application of structure-

based design for new histaminergic ligands. The overall topology of seven transmembrane 

proteins has been first observed in the purple membrane that provided a 7 Å resolution map of 

alpha-helical segments by electron cryomicroscopy [4]  

 

 

Figure 1. Development in the structural biology of GPCRs (lower panel) and the structure-based 

design of histaminergic ligands (upper panel) 

 

 

The first structure in almost atomic resolution has been published by the same group in 1990 for 

bacteriorhodopsin [5] that was further refined to a 3.5 Å resolution structure in 1996 [6]. 

Although bacteriorhodopsin is a light-driven proton pump this structure has been used to develop 

early homology models for GPCRs. Timmermann and Leurs published the first atomistic model 

of the histamine H1 receptor in 1995 [7] investigating the binding modes of histamine, 2-methyl-

histamine and 2-phenyl-histamine as agonists and cyproheptadine as antagonist on 

bacteriorhodopsin-based homology models. This model has been further refined in a subsequent 

study analyzing the relationship of the H1 antagonist pharmacophore model and the binding 

mode of H1 antagonists in a guinea pig H1R homology model [8].  



The first true GPCR structure has been published for bovine rhodopsin by the Palczewski group 

in 2000 [9].Although this structure was a great step ahead for modeling pharmaceutically relevant 

GPCRs, the largely different function of rhodopsin and also the low sequence identity limited the 

development of a reliable model of histamine receptors for structure-based design purposes. 

Despite these limitations improved homology model of the H1 receptor has been developed and 

used for the binding mode analysis of different H1-antihistamines [10].  

The high resolution rhodopsin structure allowed the construction of homology models for the two 

new histamine receptors H3 [11] and H4 [12] as well. 

The real breakthrough in the structural biology of aminergic GPCRs was the disclosure of the 

beta2 and beta1 structures in 2007.  The availability of these structures allowed the development 

of better quality homology models especially for the H3 [13] and H4 [14] receptors. Finally, the 

first X-ray structure of the histamine H1 receptor appeared in 2011 [15] that, together with other 

high resolution GPCR structures, provided a solid basis for the structure-based design of ligands 

acting on H1, H3 and H4 receptors. 

In this paper we review the structure based attempts of designing new histaminergic compounds 

by virtual screening and also understanding their binding mode and optimizing them towards 

highly active and selective compounds.   

 

2.1. H1 RECEPTOR 

Timmermann and Leurs published the first atomistic models of the histamine H1 receptor (H1R) 

in 1995 [7] and 1999 [8]. In these first modeling attempts, the authors proposed binding modes 

for agonists [7] and antagonists [8] using a homology model of the guinea pig H1R based on the 

low-resolution bacteriorhodopsin structure. Despite the fact that bacteriorhodopsin is not a GPCR 

and it lacks some of the conserved GPCR sequence motifs the models provided useful insights. 

The role of Lys200(5.39 in Ballesteros-Weinstein numbering) in the binding of histamine was 

suggested by the receptor models and was confirmed by site-directed mutagenesis. Similarly, the 

authors verified the predicted receptor-antagonist interactions (Trp167(4.56), Phe433(6.52), and 

Phe436(6.55)) and suggested that they interact with the trans-aromatic ring of the H1 antagonists. 

Additionally,Lys200(5.39) was predicted to interact with zwitterionic H1 antagonists. The 

prediction was validated by site-directed mutagenesis: Lys200(5.39)Ala mutation showed 50- 

(acrivastine) to 8-fold (d-cetirizine) loss of affinity while structural analogs lacking the 

carboxylate group were unaffected. Thus the authors proposed Lys200(5.39) as a specific anchor 

point for zwitterionic “second generation” H1 antagonists. 

 

An improved homology model of the H1R based on the bovine rhodopsin structure has been 

developed and used for the binding mode analysis of different H1-antihistamines [10]. In this 

study, seven new potential aromatic interaction points (Tyr108(3.33), Phe184(5.32), 



Phe190(5.38), Phe199(5.47), Phe424(6.44), Trp428(6.48), Tyr431(6.51)) were suggested that 

were found in close proximity of the docked antagonists. In addition, it was found that optimal 

interactions with the endogenous agonist histamine would require the adjustment of 

transmembrane helix (TM) 5 of the model which was based on the inactive conformation of 

bovine rhodopsin. 

 

Human and guinea pig H1R models based on the bovine rhodopsin structure were also published 

[16]. Several known agonists and antagonists were docked and complexes were further refined by 

MD simulations. The docking predictions suggested that Asn84(2.61) in human H1R which is 

replaced by a serine in guinea pig H1R can be responsible for the species-selectivity of 

histaprodifen-histamine dimer, VUF4669 and VUF4801. The authors suggested that Asn84(2.61) 

is a selectivity switch interacting with Tyr458(7.43) and the latter residue is involved in ligand 

binding. 

 

The LigPath approach uses a combination of directional guiding (translation of the ligand along a 

guided line) and Monte-Carlo search (random motions of ligand and receptor) to calculate the 

ligand’s pathway into the binding pocket. LigPath was applied to find the binding path of 

histaprodifen from the extracellular part into the guinea pig H1R model which was built using the 

bovine rhodopsin template [17]. The calculations suggested that Tyr194(5.34), Phe193(5.32), 

Phe436(6.55) and Phe433(6.52) guide the positively charged histaprodifen into the binding 

pocket. 

 

A bovine rhodopsin based homology model was combined with NMR experiments on histamine 

to investigate the agonist binding site of H1R [18]. Unfortunately the histamine structure 

suggested by NMR could not be properly fit into the H1R model. Nevertheless based on the 

model the authors proposed histamine’s amine group to form an ion pair with Asp107(3.32), 

while the imidazole ring to associate with Asn198(5.46) and Thr194(5.42). They also suggested 

that the TM8 helix is missing from H1R, however, the presence of this helix was later confirmed 

by the H1R crystal structure [15]. 

 

A guinea-pig H1R model built on the bovine rhodopsin template was used to study the activation 

mechanism of the receptor by MD simulations [19]. Although only a short simulation time was 

applied, the restrained simulation resulted in different active and inactive models and thus the 

authors were able to propose intermediate states and an approximate activation mechanism of the 

guinea pig H1R. The calculations suggested that a Trp428(6.48)/Phe432(6.52)-switch induces a 

conformational change in Phe424(6.44) in TM6. An additional difference they found was the 

interaction of Ser114(3.39) with Asn460(7.45) and Asp73(2.50) in the active and inactive states, 

respectively.  

 

A H1R homology model based on the β2-adrenergic receptor has been reported to investigate the 

binding mode of AMDA (9-(aminomethyl)-9,10-dihydroanthracene) analogs [20]. Docking 



analysis suggested that AMDA analogs interact with Asp107(3.32) and their rings primarily bind 

to residues in TM5 and TM6. The role of Tyr108(3.33) and I454(7.39) in binding AMDA 

analogs was also suggested. 

 

Sato and Hirokawa published an extended template-based modeling approach that they applied to 

build a H1R model [21]. Their protocol used the bovine rhodopsin and the β2-adrenergic receptor 

structures as templates. The model required some fine-tuning to achieve good enrichment (Tc50 

> 0.5 – an enrichment indicator calculated from a protein ligand interaction fingerprint (PLIF) 

and its Tanimoto coefficient) in their tests and finally they reached a model with a 1.25 Å Cα 

RMSD from the H1R X-ray structure. 

 

A β2-adrenergic receptor based H1R homology model has also been reported [22]. In this study, 

ligand affinity of agonist histamine and antagonists mepyramine and (2S, 4R)-(–)-trans-4-phenyl-

2-N,N-dimethylaminotetralin (PAT) were tested against wild-type and several mutant H1Rs 

(107Asp(3.32)Ala, Tyr108(3.33)Ala, Trp158(4.56)Ala, Phe199(5.47)Ala, Trp428(6.48)Ala, 

Tyr431(6.51)Ala, Phe432(6.52)Ala, Phe435(6.55)Ala, Tyr458(7.43)Ala). The results were 

interpreted using the H1R homology model. In addition, the authors found that in the MD relaxed 

model Lys191(5.39) was able to move closer to histamine to form tight interactions. The β2-

adrenergic receptor based homology model was also compared to the recently published H1R 

crystal structure and RMSD of 2.91 Å was found. 

 

Finally, the first X-ray structure of H1R in complex with the first generation antihistamine 

doxepin appeared in 2011 [15]. The structure showed that doxepin directly interacts with several 

previously suggested binding site residues (Table 1). Furthermore, previously not reported 

Ile115(3.40) was found to interact with doxepin. Interestingly, an anion-binding region was also 

identified occupied by a phosphate ion. It is suggested that Lys191(5.39) and/or Lys179(5.27) 

and/or His450(7.43) are able to interact with carboxylate group containing H1 antagonists 

validating the predictions based on earlier H1 models. The previously postulated disulfide bond 

between Cys180(5.28) in extracellular loop 2 (ECL2) and Cys100(3.25) in TM3 was also 

confirmed. For seven residues in ECL2 (Phe168–Val174) the authors found no interpretable 

densities suggesting that some GPCR models lacking parts of ECL2 may still be valid for some 

purposes as this region is very flexible. The side chain of Asn198(5.46) is pointing toward the 

membrane bilayer, however, it seemed to be able to easily rotate upon histamine binding. The 

other histamine binding residue Lys191(5.39) was also found far from either Asp107(3.32) or 

Asn198(5.46) suggesting that the antagonist conformation shows significant differences from an 

agonist binding conformation. As proposed in previous modeling studies [8,10] Trp152(4.50) is 

facing the membrane and does not directly contribute to ligand binding. The ‘ionic lock’ feature 

that is found in the rhodopsin but missing from other GPCR structures is also missing from H1R: 

no interaction between Arg125(3.50) and either Glu410(6.30) or with Asp124(3.49) could be 

observed. 



 

One of the first published virtual fragment screening has been performed on the X-ray structure 

of the human histamine H1 receptor [23]. A fragment-like subset of ZINC database containing 

compounds with a formal charge of +1 (108,790 fragments) were docked to the binding pocket of 

hH1R by PLANTS. Fragments with binding modes contacting to Asp107(3.32) were selected 

(95,147). Interaction fingerprints were generated from the interactions identified for doxepin co-

crystallized with hH1 receptor and used for rank order the remaining database. The novelty of the 

resulting 354 fragments was checked by comparing them to known H1 antagonists. Finally, 26 

were experimentally tested and 19 fragments showed hH1 affinity (10 µM to 6 nM). This 73% hit 

rate is remarkable taking that compounds with limited molecular weight and chemically 

dissimilar to known H1 ligands were selected for the experimental testing. 

 

In a recent study, the H1R crystal structure was used to analyze the interactions between the H1R 

and a series of 129 H1 ligands [24]. These authors combined ligand-based CoMSIA analysis with 

molecular docking into the H1R crystal structure refined with MD. Protonated side chain of the 

ligands interacted with Asp107(3.32) and interactions were formed with a lipophilic cavity. 

 

Very recently a function-specific virtual screening approach has been reported on the H1R crystal 

structure [25]. The authors combined energy-based docking scores (PLANTS) with molecular 

interaction fingerprints (IFP). After screening a fragment-like set of the ZINC database 

containing compounds with at least one positively charged group, 74 compounds were purchased 

and tested experimentally. Hit rates of 61%, 45%, and 73%, were obtained for the IFP, PLANTS, 

and combined approaches, respectively. 

 

 

2.2. H2 RECEPTOR 

Interestingly, only a small number of structure-based modeling studies have been reported in the 

literature on H2R. Limited occurrence of such studies, however, could be explained by the 

successful ligand-based rational drug design strategies that led to the identification of anti-ulcer 

H2 inhibitors. 

 

In an early study, a bovine rhodopsin based H2R model was constructed [26]. Asp271(7.36) in 

the human H2R, which is replaced by Ala in guinea pig H2R, was found to be responsible for 

species-specificity of guanidine H2 ligands such as impromidine and arpromidine. The role of 

Asp271(7.36) was also confirmed by site-directed mutagenesis. The authors suggested that an 

Asp271(7.36) – Tyr17(1.31) interaction in guinea-pig H2R stabilizes a receptor conformation 

suitable for accommodating guanidine type ligands. Ionic interaction between the ligands and 

Asp98(3.32) was observed. Tyr182(5.38) and Asp186(5.42) were suggested as hydrogen bond 

partners in TM5. 

 



In a more recent study, a homology model of H2R was constructed based on the β1-adrenergic 

receptor [27]. The authors combined a pharmacophore model with structure-based modeling 

using induced fit docking and MD simulations on selected H2 agonists. The model was validated 

for virtual screening in a retrospective study using 47 known H2 agonists, 38 other subtype 

selective ligands and 620 assumed inactives. Best performance was found with induced fit 

docking: rate of retrieved actives increased from 46.8% to 69.5% among top 10% of the ranked 

database. Regarding binding site residues, the authors found that interactions with Asp98(3.32), 

Asp186(5.42) and Tyr190(5.46) played key roles in the binding of H2 agonists. 

 

 

2.3. H3 RECEPTOR 

As an early attempt to model the human and rat H3 receptors a previously developed endothelin 

receptor model was used as a template to understand species-specificity of ligand binding [28]. In 

this study, residue differences at positions 119(3.37) and 122(3.40) were suggested and later 

confirmed experimentally to be responsible for higher affinities of H3 antagonists in the rat 

receptor. 

 

After the bovine rhodopsin structure became available, novel homology models were published 

for H3R. In one study, Axe and coworkers interactively docked known H3 antagonists to a model 

relaxed by MD simulations in a continuum lipid bilayer model [11]. Dibasic ligands interacted 

with Asp114(3.32) and Glu206(5.46) simultaneously and formed hydrophobic interactions with 

aromatic residues Tyr115(3.33) and Trp371(6.48). 

 

In an early study, a bovine rhodopsin based H3R model optimized by short MD simulations in a 

membrane environment was used for the optimization of H3 antagonist [29]. A docking-based 

threshold was defined that was able to discriminate known H3 ligands with 70% accuracy. 

 

Another bovine rhodopsin based H3R model was used to rationalize the binding modes of 

arylbenzofurans [30]. The initial model was built by Swiss-Model server and subsequently short 

MD simulation in a water-vacuum-water environment was applied. Histamine and selected H3 

antagonists were docked into this model using constraints between (i) Asp114(3.32) and side 

chain amine moiety and between (ii) imidazole NH and Glu206(5.46). The oxygen of the 

benzofuran series was found to interact with Tyr189(5.29). Hydrophobic interactions with 

Ala122(3.40), Phe211(5.51), Val214(5.54), Phe367(6.44), Phe398(7.39), Leu401(7.42), 

Trp371(6.48) and Tyr189(5.29) were also observed. 

 

In another study, bovine rhodopsin based H3R model built by Gmodel was published [31]. 

Gmodel is an approach for building GPCR models by normal mode-based refinement that uses a 

small set of relevant low-frequency vibrational modes derived from the Random Elastic Network 

model. First, it generates an ensemble of alternative models for docking. Then, the receptor-



ligand complexes are filtered by mutational and binding affinity data. The binding mode of 

various ligands including thioperamide, ciproxifan and clobenpropit was analyzed. Imidazole 

ring and the thiourea groups of thioperamide interacted with Asp114(3.32) and Tyr189(5.29), 

respectively. Ciproxifan formed interactions with Asp114(3.32), Thr119(3.37), Ala122(3.40), 

while its ether oxygen was found in close proximity of Tyr374(6.51). Imidazole ring of 

clobenpropit interacted with Asp114(3.32) while its central NH group was H-bonded to 

Thr375(6.52) and its benzyl ring was found close to Thr119(3.37) and Ala122(3.40). The model 

was validated for virtual screening by a large-scale retrospective analysis. One selected model 

was shown to retrieve 15% of the actives at the top 1% of the rank-ordered screening database. 

 

A H3R model using bovine rhodopsin as a template refined in a DPPC membrane by MD 

simulations was generated and combined with a pharmacophore model to identify novel H3 

ligands [32]. The model was retrospectively validated for virtual screening by a set of 418 H3 

antagonists with a wide range of affinities (50 µM-90 pM). The discriminating power of the 

model was assessed by randomly chosen decoys as well as by a focused library resembling a 

similar physicochemical property distribution as the active set. At the top 80% of the ranked 

database 11.4% and 23% decoys were found for the randomly selected and focused decoys, 

respectively. Prospective screening on this model yielded seven virtual hits that were tested in a 

[3H]Nα-methylhistamine binding assay. The measured Ki values ranged between 0.079 and 6.3 

µM. Based on previous literature data [33] the authors assumed a binding mode for the imidazole 

containing H3 ligands lacking a protonated amine function, where the imidazole moiety was 

pointing to Asp114(3.32). 

 

Another bovine rhodopsin based model of H3R was published by Bajda et al. [34]. In their study 

the binding mode of selected diether derivatives of piperidine and homopiperidine was analyzed. 

The authors suggested that the heterocyclic nitrogen of the ligands interacts with Glu206(5.46). 

 

Homology model of rat H3R was modeled using the bovine rhodopsin template to analyze the 

binding mode of imidazole derived H3 antagonists [35]. MD simulations were applied to test the 

stability of the proposed poses. The authors found that the imidazole ring interacted with 

Asp114(3.32). Based on the model, 2-[3-(1H-imidazol-4-ylmethyl)-piperidin-1-yl]-1H-

benzimidazole was designed and tested showing high potency (inhibition of [3H]R-α-

methylhistamine-specific binding to rat cerebral cortex membranes: pKi = 7.81 ± 0.02, 

antagonism of R-α-methylhistamine-induced inhibition of twitch response of guinea-pig isolated 

ileum pKb = 8.53 ± 0.12).  

 

A bovine rhodopsin based model of the H3R was used to investigate the role of TM5 residues in 

ligand binding [36]. Mutation of Glu206(5.46) showed reduction of affinity and potency of 

several agonists, such as histamine, R-α-methylhistamine, imetit and impentamine. The authors 

found that the protonated nitrogen of histamine interacts with Asp114(3.32) while the imidazole 



NH group binds to Glu206(5.46). It has to be mentioned that TM5 required some manual 

adjustments to form interactions with the imidazole ring. 

 

The availability of the β2- and β1-adrenergic structures allowed the development of better quality 

homology models. In particular, a β2-adrenergic receptor based H3R model was used to 

understand the species-differences in pharmacological properties of imoproxifan (inverse agonist 

at rat H3R, but almost full agonist at human H3R) [13]. The molecular modelling studies 

suggested that both amino acid differences in TM3, at position 3.37 and 3.40, are responsible for 

the differences in imoproxifan pharmacology. 

 

Kim et al. published the development of H1, H2, H3 and H4 receptor models using the 

GEnSeMBLE (GPCR ensemble of structures in membrane bilayer environment) Monte Carlo 

protocol [37] focusing on the binding mode analysis of subtype selective H3 antagonists [38]. 

During model building ~35 million combinations of helix packings were sampled to predict the 

10 most stable packings for each of the four subtypes. These 10 best protein structures were used 

for docking calculations with the DarwinDock Monte Carlo protocol to sample ∼50 000 x 1020 

poses for various agonists and antagonists. Glu206(5.46) contributed most to the binding of H3 

selective agonists and Glu206(5.46) / Ser203(5.43) were suggested to play a role in H3/H4 

subtype selectivity. In addition, Met378(6.55) in H3R (replaced by a threonine in H4R) was 

proposed to form subtype specific hydrophobic interactions with the ligands. In the predicted 

binding mode of histamine, protonated ethylamine and imidazole NH groups interacted with 

Asp114(3.32) and Glu206(5.46), respectively. The authors found that human H1R and H3R 

structures derived from the human β2-adrenergic receptor were significantly more favorable 

energetically than models derived from the turkey β1-adrenergic receptor. In contrast, for human 

H2R and H4R the structures derived from the turkey β1-adrenergic receptor were most favorable. 

 

Sirci and coworkers reported the identification of new H3 antagonist fragments using ligand-

based and protein-based molecular fingerprints [39]. In their study they used the FLAP approach 

(FLAP: Fingerprint for Ligands And Protein) with interacting molecular fields (MIFs) to identify 

pharmacophores on a H3R homology model built on the H1R structure as a template.  Linear 

discrimination analysis (LDA) was used to discriminate compounds by their affinities. In a 

retrospective study FLAP outperformed both Tanimoto ECFP-4 similarity, ROCS shape 

similarity and also docking methods including PLANTS and GOLD. Subsequently, the authors 

screened 156,090 fragment-like compounds from ZINC using FLAP. Twenty nine compounds 

were selected and tested experimentally. Nineteen compounds (63%) with significant H3 affinity 

(0.5-10 µM) were identified. 

 

Levoin and coworkers analyzed the binding mode of dibasic H3 ligands using a H1R based H3R 

model [40]. They proposed a ligand orientation perpendicular to the membrane plane, bridging 

Glu206(5.46) to acidic amino acids of the extracellular loops, such as Glu175(4.51) and 

Glu191(5.31). Interestingly, the authors found that this binding mode was more in line with 



ligand-based alignment of dibasic H3 ligands than other models involving Asp114(3.32). It has to 

be mentioned that the proposed binding modes have not been confirmed experimentally yet. 

 

Very recently, a series of 20 new chlorophenoxyalkylamine derivatives was synthesized and 

tested against human H3R [41]. The binding modes of these compounds were predicted on a H3R 

model based on the recently published M3 muscarinic acetylcholine receptor due to its highest 

sequence homology to H3R. The authors observed salt bridge between the nitrogen of most 

cycloalkylamine ligands and Glu206(5.46). Further interactions were seen with residues 

Tyr189(5.29), Trp174(4.50), Leu177(4.53), Ala190(5.30), Glu191(5.31), Tyr194(5.34), 

Trp196(5.36). 

 

 

2.4. H4 RECEPTOR 

After the discovery of the H4 receptor, one of the earliest modeling studies was published by 

Shin et al. [12]. In this paper, a homology model of human H4R was constructed based on the 

bovine rhodopsin structure. The authors assumed that the protonated side chain amine and NH 

groups of histamine interact with Asp94(3.32) and Glu182(5.46), respectively. Their role in 

histamine binding was confirmed by site-directed mutagenesis. Potential role of Asn147(4.57) 

and Ser320(6.52) in receptor activation was also suggested by the experiments. 

 

Our group reported H4R homology models based on the bovine thodopsin template [42]. The 

binding mode of histamine was predicted by analyzing lipophilic and H-bonding surfaces of the 

binding site and the results of docking calculations. We suggested that the protonated amine 

function of histamine interacts with Glu182(5.46), while the imidazole ring forms H-bonds with 

Asp94(3.32) and Thr323(6.55). The role of the latter residue in histamine binding has not been 

investigated experimentally yet. In this study ligand supported homology models with histamine, 

JNJ7777120 and OUP-16 were constructed using docking and subsequent optimization. The 

discriminating power of the models was tested in a retrospective screening scenario. Highest 

enrichments factors ranging 61-92 were obtained with a ligand supported model using histamine 

as a ligand. 

 

In a subsequent study, we used our previously developed histamine-H4R and JNJ7777120-H4R 

complexes to investigate the activation mechanism of H4R [43]. The complexes were subjected 

to MD simulations. During the simulations, the interaction between histamine’s imidazole NH 

and Asp94(3.32) broke, however, both residues formed strong interactions with Glu165(5.29) 

resulting in a stable triad. Interestingly, histamine formed an interaction with Asn147(4.57) that 

was previously proved to be important in hH4R activation [12]. When simulating the histamine-

H4R complex, we found several signs of GPCR activation including the intracellular part of TM6 

moved outward relative to TM3 and TM7. The interaction with Glu182(5.46) in the JNJ7777120-



H4R complex remained stable, while the interaction of the indole NH and Asp94(3.32) broke for 

a short period of time and re-formed. 

 

Our group published a large-scale virtual screening study using a bovine rhodopsin based hH4R 

model [44]. In this study, > 8.7M compounds were screened by docking and the most promising 

hits were selected by two protocols: (i) docking poses for the highest ranked 2,000 structures 

were inspected visually and (ii) the highest ranked 45,000 ligands were post-filtered for 

compounds with at least one protonated amine and one additional H-bond donor moieties and 

subjected to diversity selection using MACCS Structural Keys with a maximum Tanimoto 

coefficient of 0.7. The hit rates were 4.6% and 7.2% for selection methods (i) and (ii), 

respectively, suggesting that a combined structure- and ligand-based approach can be more 

effective than standalone docking. Altogether 16 compounds showed significant H4 affinity 

(minimum 20% [3H]histamine displacement at 5 μM concentration) including a compound with a 

Ki of 85 nM. Several novel scaffolds were identified that could serve as starting points for 

subsequent medicinal chemistry optimizations.  

 

Our group also reported a retrospective and prospective screening study using snapshots from a 

previously described MD simulation of H4R built on the bovine rhodopsin structure [45]. 

Ensemble docking on selected snapshots that demonstrated highest enrichment factors in the 

retrospective analysis was used to identify new H4 ligands. 

 

Based on the bovine rhodopsin template, Jongejan et al. constructed a homology model of H4R 

and used it to interpret site-directed mutagenesis data for H4 agonists including histamine, 

clozapine and nonimidazole agonist VUF 8430 [46]. Interestingly the authors found that the 

binding of histamine and VUF8430 are significantly affected by the Glu182(5.46)Gln mutation, 

while the effect on clozapine and JNJ7777120 binding was minor. The authors suggested that the 

protonated amine functionality of the ligands interacts with Asp94(3.32). Interestingly they also 

suggested that the vicinity of ionic Asp94(3.32) changes the pKa of Glu182(5.46) and thus the 

latter residue is assumed to be protonated by default. Another plausible interpretation of the 

mutational results is that clozapine and JNJ7777120 only require an H-bond acceptor 

functionality at position 182(5.46) and the ionic carboxylate group is not necessary for binding. It 

is also possible that while some ligands are able to interact with the side chain oxygen of 

Gln182(5.46), others such as histamine and VUF8430 may only be able to reach the terminal 

amine group of Gln182(5.46) which replaces the oxygen of Glu182(5.46). Nevertheless, further 

studies would be necessary to draw firm conclusions regarding the binding mode of these ligands 

at the H4R binding site. 

 

After the adrenergic GPCR crystal structures became available, several novel H4R models 

utilizing these templates have been published. In a study of Schultes et al. the binding mode of 

substituted and unsubstituted indolecarboxamides and 2-aminopyrimidines were reported [47]. 

They built separate H4R homology models using H1R or the β2-adrenergic structures. In the 



models residues Asp94(3.32) and Glu182(5.46) were considered in their deprotonated form. It 

was found that both indolecarboxamides and 2-aminopyrimidines formed more stable interaction 

with these residues when the piperazine group faced the Asp94(3.32) residue. Additionally, 

Leu175(5.39) formed interaction with most ligands in the above binding mode. Leu175(5.39)Val 

mutation reduced the affinity of all tested ligands by 0.6-1.5 pKa units. 

 

While looking for amino acids involved in the binding of H4 agonists, Lim et al. identified 

Phe169 in ECL2 to be responsible for species differences in agonist affinity between the human 

and mouse H4Rs [14]. 

 

Igel and coworkers reported the synthesis of cyanoguanidine-type H4 agonists [48]. The most 

potent compound (2-cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine (UR-

PI376)) (hH4R pEC50 = 7.47 (α=0.93)) showed only negligible effects on H1R or H2R and 

significant selectivity over H3R (hH3R pKB=6.00 (α=-0.28)). Its binding mode was analyzed 

using a hH4R homology model based on the β2-adrenergic receptor after manual docking in a 

previously suggested binding mode [46] assuming a protonated Glu182(5.46) and refined by MD 

simulations. The predicted binding mode suggested that the cyanoguanidine moiety forms 

hydrogen bonds with Asp94(3.32) as well as the hH4R-specific Arg341(7.36) residue. 

 

 

More recently the binding mode of H1 agonists and antagonists at the H4R binding site were 

analyzed to identify dual H1/H4 acting ligands [49]. Eighteen H1 antagonists and 22 H1 agonists 

showed lower affinity to hH4R than to hH1R. Suprahistaprodifen the only tested ligand that acted 

as a partial agonist on hH4R was docked into inactive and active hH4R models in two different 

orientations. The inactive hH4R was built using the crystal structure of the human β2-adrenergic 

receptor, while the active model of the hH4R was generated with distance-restrained MD 

simulation. The authors suggest that astemizole possessing some similarity with JNJ7777120 

could be a good starting point for the development of dual H1/H4 antagonists. 

 

The same model was used for the binding mode analysis of phenylhistamine, histaprodifen and 

phenoprodifen analogs [50]. For the development of an active-state model the authors used the 

opsin crystal structure. The positively charged amine of phenylhistamines was found to interact 

with Asp94(3.32), while the imidazole and phenyl groups were accommodated by an aromatic 

pocket consisting of Tyr95(3.33), Trp316(6.48) and Tyr319(6.51). The imidazole group did not 

form stable H-bonds during the MD simulations. Similar binding mode was detected for 

histaprodifen. The authors also predicted Gibbs energies of ligand binding with GROMACS 4.0.2 

using thermodynamic integration that yielded a good correlation with the experimentally 

determined affinities (r2=0.89). 

 

3D-QSAR models were also combined with receptor docking to identify critical ligand binding 

residues in H4R [51]. H4R was modeled using the β2-adrenergic receptor as a template refined 



by MD simulations. The authors suggest that there are two potential binding modes for 

clobenpropit, while the addition of a cyclohexyl group to the isothiourea moiety prevents one of 

them. They found that while the binding of clobenpropit is affected by mutations of Gln347(7.42) 

or Thr323(6.55) the cyclohexyl analog is only significantly affected by mutated residue 

Asn147(4.57). They suggest that introducing a larger residue in the 4.57 position may stabilize 

the orientation of Glu182(5.46) in a way that is not compatible with the binding mode of the 

cyclohexyl analog. 

 

A new H4R model was created using the structure of the β2-adrenergic receptor selected by the I-

TASSER approach [52]. A total of 392 structural analogs of JNJ7777120, thioperamide and 

VUF6002 retrieved from PubChem were docked into the model and six compounds with 

particularly high docking scores were identified. Their binding mode shared an interaction with 

the conserved Asp94(3.32) residue. 

 

A chimeric H4R model has been created using the H1R crystal structure while the kink in helix 

TM4 was modeled based on the human β2-adrenergic receptor. [53]. JNJ7777120 was first 

manually docked into the receptor, and after minimization JNJ7777120 was re-docked by IFD 

and the complex was subjected to MD simulations. Structurally diverse frames were selected for 

fragment docking based on RMSD values of the interacting residues around the JNJ7777120 

ligand. Virtual screening of 13,000 fragments gave 11 and 8 hits with larger than 20% 

displacement at 10 µM on a single structure or on an ensemble of structures, respectively. The 

identified hits formed interactions with Asp94(3.32) and/or Glu182(5.46). 

 

In a retrospective study, preliminary H4R homology models were prepared as described above 

[53] and the impact of molecular dynamics sampling on the discriminative power of structure-

based virtual screening was analyzed [54]. The study utilized the GDD ligand set [55] and 

revealed that particular snapshots from MD were able to outperform the initial models 

(enrichment factors were 26.7 and 13.3, respectively).  

 

Pappalardo et al. published a successful application of ligand- and structure-based modeling 

approach to index chemicals for their H4 antagonism [56]. In their study, ligand-based Intelligent 

Learning Engine (ILE) and Iterative Stochastic Elimination (ISE) approaches were combined 

with molecular docking into H4R models based on the H1R crystal structure as a template 

complemented with MD refinement in a DOPC membrane model. The combined approach 

showed enrichment factors of 14.6-16.4 on a ChEMBL validation set. Subsequently, the authors 

made a selection from the ZINC database, and the approach resulted in 11 candidate ligands 

awaiting for experimental validation. 

 

Feng et al. published a study using H1R based H4R models refined by MD [57]. They docked 

several H4 antagonists and agonists into preliminary models of H4R and H3R. It was found that 

most docked ligands primarily interact with Asp94(3.32) and Glu182(5.46) through their 



protonated ethylamine side chains and imidazole NH groups, respectively. MD simulations of 

clobenpropit showed that in both possible binding modes the interaction formed by the 

protonated amine and either Asp94(3.32) or Glu182(5.46) was more stable, while the imidazole 

interaction was unstable. The authors also report that the simulations in H4R indicated subtype 

specific interactions with Glu155(5.19) and Thr323(6.55), however it has to be noted that 

clobenpropit has a similar (slightly lower) affinity for H4R vs H3R (H3R: pKi=8.6 H4R: 

pKi=8.1), therefore their effect on clobenpropit binding may be less significant. Simulations in 

the presence of histamine showed conformational changes in TM5, TM6 and TM7. An outward 

movement of the intracellular end of TM6 could be also observed which is consistent with a 

proposed activated form of GPCRs [58]. 

 

In another study, the binding mode of 2-amino-4-(4-methylpiperazin-1-yl)-1,3,5-triazine 

derivatives with different aryl substituents in the 6-position was investigated at the H4R binding 

site [59]. The authors used a H1R based homology model of H4R following the protocol of Feng 

et al. [57]. For all docked ligands, interactions with only Asp94(3.32) were found. On the other 

hand, the protonated methylpiperazine nitrogen in most active ligands was found in very close 

proximity to Glu182(5.46) and could form weak hydrogen bonds. Hydrophobic interactions were 

found with the following residues: Tyr225(6.51),  Tyr95(3.33), Phe228(6.54), Thr178(5.42), 

Val64(2.53), Ile69(2.58) and Trp90(3.28).  

 

Homology model of H4R based on the H1R crystal structure has been also used for the structure-

based optimization of a set of bispyrimidines [60]. In this work, the authors attempted to 

exchange the metabolic hot spot methylpiperazine moiety that is frequently found in both the 

indolecarboxamide and 2-aminopyrimidine series of H4 ligands. The methylpiperazine was 

replaced by another 2-aminopyrimidine group yielding bispyrimidines with improved metabolic 

stability. Interestingly, indolecarboxamides and 2-aminopyrimidines were similarly affected by 

the Leu175(5.39)Val mutation. When the aromatic indole / benzene rings were substituted with a 

chlorine the mutation caused a drop in affinity, while unsubstituted compounds were unaffected. 

This very interesting finding suggests that the corresponding rings occupy a similar pocket in 

H4R and the substitution position is close to Leu175(5.39).  

 

CONCLUSION 

The physiological and pathophysiological significance of histamine receptors initiated a high 

number of research programs aiming subtype selective histamine receptor ligands. In addition to 

ligand based approaches that typically drove the discovery of selective histamine H2 receptor 

antagonist structure based approaches are contributed significantly to the identification of several 

histamine H1 and more importantly a number of histamine H3 and H4 ligands. In the lack of high 

resolution structure for histamine receptors structure based approaches used primarily homology 

models. A variety of virtual screening protocols have been developed that allowed the 

identification of novel subtype selective chemotypes for H1, H3 and H4 receptors. Docking based 

binding mode analyses often coupled to site directed mutagenesis studies were successfully used 



understanding protein-ligand interactions and developing structure-activity relationships (SAR). 

The increasing availability of GPCR X-ray structures provides further templates for the 

development of higher quality homology models that, in combination with further histamine 

receptor structures would make the contribution of structure based approaches even more 

significant.       

 

 

EXPERT OPINION 

The early days of histamine research were impacted by ligand-based design that resulted in a 

number of histamine H1 and H2 receptor ligands both of which have significant contribution to 

human pharmacotherapy. The endogenous agonist, histamine was used as a starting point 

designing H1 and H2 receptor antagonists. The increased availability of GPCR structures, 

however, also contributed to the understanding of receptor functions, activation mechanism and 

the molecular mechanism of drug actions. Characterization of the H1 and in less extent the H2 

binding site was typically realized by binding mode analyses often connected to site-directed 

mutagenesis studies. These combined analyses led to the identification of key residues with 

significant role in subtype and species selectivities as well as functional activities. Evolution of 

structural templates from the low resolution electron cryo-microscopy structure of 

bacteriorhodopsin, through rhodopsin and β-adrenergic receptors to the first high resolution 

structure of the human H1 receptor allowed the development of several histamine receptor 

models with improved quality. The increasing knowledge on the structural details of protein 

ligand interactions was especially important for histamine H3 and H4 receptor ligands. Since the 

structural biology of GPCRs developed parallel with the discovery of these receptors structural 

studies on H3 and H4 receptors contributed significantly to the design of highly potent and 

selective ligands. The phylogenetic and sequential differences between H1, H2, and H3, H4 

receptors suggest the latter two histamine receptors more similar to each other than H1 or H2 

receptors. Consequently, the design of selective H3 and H4 compounds can benefit heavily from 

structural models of these receptors and the binding mode analysis of their ligands. A high 

number of studies contributed to the structural description and comparative analysis of H3 and 

H4 binding sites that allowed the identification of selective high affinity ligands of both targets. 

The improved quality of the homology models also allowed a number of virtual screening studies 

that resulted in new chemotypes for H3 and H4 ligand discovery. Given the increasing number of 

GPCR structures one of the key questions of homology modeling is the selection of appropriate 

templates. Although the crystal structure of the H1 receptor has already been solved it seems that 

this structure is less than optimal for H3 and H4 structural models. Analysis of receptor 

sequences and also the results of binding mode analyses and virtual screening studies suggest that 

β-adrenergic and muscarinic structures might serve as better templates [61]. From the present set 

of potential templates muscarinic M1, M2 and M3 structures seem to be preferred (Table 5), 

however, this should be carefully considered before developing new models of H3 and H4 

receptors. The other crucial point in model development is the refinement procedure. Recent 

studies revealed that induced fit docking of known ligands together with site-directed 



mutagenesis studies could improve the models significantly. Similar benefits could be realized 

with ligand supported homology modeling protocols. The refinement of homology models is 

often completed with molecular dynamics simulations that might improve the quality of the 

binding site. Retrospective virtual screening can be used evaluating the resulted structural models 

selecting the best quality structure with the highest enrichment. Alternatively, multiple frames 

from molecular dynamics simulations would also serve as receptor structures for ensemble 

docking applications that can maximize the outcome of prospective virtual screening. Structure-

based design of new histamine H3 and H4 ligands, however, requires intensive interactions 

between computational and experimental scientists. Computational experts together with 

medicinal chemists and molecular and structural biologists can contribute more effectively to the 

design of new chemotypes for histaminergic receptors, especially for the therapeutically less 

exhausted H3 and H4 receptors. We expect that the next significant step forward in the field 

should be the disclosure of high resolution X-ray structures of these pharmacologically highly 

relevant drug targets.  
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Article highlights box:  

- Before 2011 homology models dominated the structure-based drug design of histamine receptor 

ligands 

- Studies on the binding mode analysis of histamine receptor ligands combined with site-directed 

mutagenesis successfully identified key receptor interaction points 

- Virtual screening studies complemented with experimental testing yielded numerous chemical 

starting points for optimization 

- The publication of the H1 receptor in complex with doxepin was a major milestone in the field 

- Modelling of the pharmaceutically highly relevant H3 and H4 receptors, that are 

phylogenetically more distinct from H1R, is still challenging 
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*This study reports the comparative analysis of screening performances obtained by multiple- 

template homology models and X-ray structure of the human histamine H1 receptor 



 

Table 1. Key interaction points for histamine H1 and H2 receptor ligands identified by modeling (1) and confirmed experimentally (2). Residues found to be 

not involved in binding are also indicated (0). 
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Table2. Key interaction points for histamine H3 receptor ligands identified by modeling (1) and confirmed experimentally (2). Residues found to be not 

involved in binding are also indicated (0). 
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Table3. Key interaction points for histamine H4 receptor ligands identified by modeling (1) and confirmed experimentally (2). Residues found to be not 

involved in binding are also indicated (0). 
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R: benzene ring with various substituents 
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Table4. Retrospective and prospective structure-based virtual screening studies on histamine receptors collected from the literature. 

Subtype Template Seq identity 

Software Screening 

Reference Protein 

modelling 
Docking Database A Hit rate EF(%) Best Compound 

H4 
bovine 

rhodopsin 
21% Modeller FlexX-Pharm 

Otava/Enamine 
decoys + literature 

actives 

999, 1483 and 
3002 decoys + 

14 actives 
- 

92.1 (at 
top0.5%) 

- [42] 

H1 H1R 100% - 

PLANTS + IFP 

 

ZINC, fragment-
like, filtered for 

basic moiety 
95,147 73% - 

pKi = 8.68

 [23] 

 543 ChEMBL and 
59 CNS drug 

active sets, 7088 
Bioinfo db decoys 

- - 

39.3 
(ChEMBL), 
57.6 (CNS 

drugs) 

- 

H4 
bovine 

rhodopsin 
21% Modeller FlexX ZINC + suppliers 8.7M 

4.6% 
(selection 1), 

7.2% 
(selection 2), 

4.3% 
(selection 3) 

- 

Ki = 85nM

 

[44] 

H1 

bovine 
rhodopsin 
and beta2-
adrenergic 
receptor 

18% 
(b.rhod) / 

31% 
(beta2) 

Modeller Glide SP 
ZINC DUD decoys 

+ Drugbank 
actives 

 - 

Tc50 > 0.5 
– 

enrichme
nt 

indicator 
calculated 

from a 
protein 
ligand 

interactio
n 

fingerprin
t (PLIF) 
and its 

- [21] 



Tanimoto 
coefficient 

H1 H1 X-ray 100% - PLANTS + IFP 
ZINC, fragment-

like, filter for basic 
moiety 

108,790 

61%, 45%, 
and 73%, 

were 
obtained for 

the IFP, 
PLANTS, and 

combined 
approaches 

- 

pKi = 8.20

 

[25] 

H3 
bovine 

rhodopsin 
21% 

replacing 
bovine 

rhodopsin 
side 

chains by 
H3R using 
SCWRL3.0 

GOLD 

in house actives + 
WDI decoys 

418 actives + 
473 

random/focus
ed WDI 
decoys 

- 

11.4% 
random 
and 23% 
focused 

decoys in 
the top 

80% 

- 

[32] 

 

WDI / MDB 
filtered: Mw <600, 

sec/tert amine 
functionality > 0 

13,524 100% - 

Ki = 79nM

 
 

H3 
bovine 

rhodopsin 
21% Gmodel 

Glide HTVS + 
SP 

in-house, lead-like 400,000 - 
15 (at top 

1%) 
- 

[31] 

 

GPCR SARfari 
monoamine 

actives 
700 - 

~4.5 (at 
top 10%) 

- 

H3 
bovine 

rhodopsin 
21% Modeller 

Manual 
docking and 

MD 
refinement 

training set: 
literature H3 

antagonists (Ki: 80 
pM - 10 uM), test 
set: in-house H3 

antagonists (Ki: 26 
pM - 10 uM) 

100 
(literature), 

1000 (in-
house) 

- 

70% 
accuracy 

in 
discrimina

tion of 
affinity 
classes 

- [29] 

H4 H1R 25% 
replacing 
H1R side 

AutoDock 4.2 
actives from 

ChEMBL, decoys 
56 (actives), 
137 (decoys) 

- 14.6-16.4 - [56] 



chains by 
H4R using 

SCWRL 

from ZINC 

H4 
H1 3RZE + 
beta2 for 
TM4 kink 

25% (H1R) 
/ 27% 

(beta2) 
Modeller Glide SP GDD 

30 active and 
1170 inactive 

ligands 
- 

26.7 (at 
top1%) 

- [54] 

H3 H1 3RZE 27% Modeller FLAP 

Actives: ChEMBL 
with pKi> 7.0 + in-
house 60 actives 

(≥50% radioligand 
displacement 

from H3R at 10 
μM), decoys: 871 

inactives 

60 (in-house 
actives), 871 

(decoys) 
- 

26.6-61.3 
(at top1%) 

- 

 

[39] 

ZINC fragment-like 156 090 18 / 29 (62%) - 

pKi=6.27

 

H4 
H1 3RZE + 
beta2 for 
TM4 kink 

25% (H1R) 
/ 27% 

(beta2) 
Modeller Glide SP 

in-house 
fragments 

12905 8/50 (16%) - 

Ki = 8.4 μM

 

[53] 

 

 

 

  



 

Table 5. Most suitable templates for histamine receptor homology models suggested by the PDB database. Templates and corresponding values were obtained 

by searching on the sequence of histamine receptors excluding ICL3 region. 

 

 

 

 1. template 2. template 3. template 

Name PDB Length Identity Positive Gap Name PDB Length Identity Positive Gap Name PDB Length Identity Positive Gap 

H1 H1 3RZE 202 96% 96% 0% M2 4MQS 291 34% 48% 15% beta2 4GBR 281 32% 52% 12% 

H2 beta2 4GBR 284 33% 53% 10% beta1 2VT4 281 35% 51% 13% M2 4MQS 288 29% 44% 17% 

H3 M2 4MQS 278 30% 51% 16% M1 5CXV 160 41% 63% 1% M3 4DAJ 167 37% 61% 1% 

H4 M3 4U15 161 36% 59% 4% M1 5CXV 175 34% 54% 5% M2 4MQS 177 34% 56% 7% 



 


