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Tectonic evolution of the Zagros Orogen in the realm
of the Neotethys between the Central Iran and Arabian
Plates: An ophiolite perspective
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The Zagros Orogenic Belt includes the Fold and Thrust Belt, the High Zagros Belt, the Outer Zagros
Ophiolitic Belt, the Sanandaj—Sirjan Metamorphic Belt, the Inner Zagros Ophiolitic Belt, and the Urumieh—
Dokhtar Magmatic Belt. We divide the High Zagros evolutionary history into five stages: (1) triple junction
formation, (2) continental lithosphere rifting, (3) generation, spreading, and maturation of the Neotethys
Ocean, (4) subduction of the oceanic lithosphere, and (5) collision. The Neotethys triple junction, located at
the southeastern corner of the Arabian Plate, formed during the Late Silurian—Early Carboniferous.
Subsequently, this triple junction became a rift basin due to normal faulting and basalt eruption. The
rifting stage occurred during the Late Carboniferous—Early Permian. Thereafter, extension of the basin
continued, leading to spreading and maturation of the Neotethys oceanic basin during the Late Permian—Late
Triassic. Probably at the end of the Late Triassic, closure of the Paleotethys Basin caused the initiation of two
northeastward subductions: (1) oceanic—oceanic and (2) oceanic—continental. Oceanic—oceanic subduction
continued until the Late Cretaceous and was terminated by the emplacement of the Outer Zagros Ophiolites,
whereas oceanic—continental subduction continued until the Middle Miocene. Subduction in the southern
Neotethys Basin between the Arabian and Central Iran Plates caused a tensional regime between Sanandaj—
Sirjan and Central Iran, and the formation of a back-arc basin that by its closing led to the emplacement of the
Inner Zagros Ophiolites during the Late Cretaceous.
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Introduction

The Alpine—Himalayan Orogenic Belt consists of two branches in Iran, the Alborz
Mountains with an E-W trend and the Zagros Orogen with an NW-SE trend (Alavi
1994; Agard et al. 2005). The Zagros Orogen extends from eastern Turkey through
northern Iraq and northwest of Iran to the Hormuz Strait and Oman (Alavi 1994;
McQuarrie 2004; Agard et al. 2005; Homke et al. 2010). Because of the key situation
of the Zagros Orogen within the Alpine—Himalayan Orogenic Belt and its importance
in revealing the nature of Neotethys Ocean evolution and closure, numerous studies
have been carried out on its magmatic, sedimentary, metamorphic, and structural
characteristics (e.g., Takin 1972; Stocklin 1977; Berberian and King 1981; Sengdr
1984; Dercourt et al. 1986; Sengor et al. 1988; Glennie 1992; Alavi 1994; Stampfli and
Borel 2002; Mohajjel et al. 2003; Golonka 2004; Shahabpour 2005; Agard et al. 2005;
Kazmin and Tikhonova 2006; Robertson 2007; Sheikholeslami et al. 2008; De Vera
et al. 2009; Allahyari et al. 2010; Homke et al. 2010; Saura et al. 2011; Ghazi et al.
2012; Saccani et al. 2013; Chiu et al. 2013; McQuarrie and van Hinsbergen 2013,
among many others). On the basis of tectonomagmatic and structural features, the
Zagros Orogen is subdivided into nine subzones (Falcon 1969; Berberian 1995;
Emami et al. 2010; Homke et al. 2010), which are the Mesopotamian—Persian Gulf
Foreland, the Dezful Embayment, the Fold and Thrust Belt, the Crush Zone (High
Zagros or Imbricated Zone), the Outer Zagros Ophiolite Belt, the Sanandaj—Sirjan
First Metamorphic Belt, the Mesozoic Magmatic Belt, the Sanandaj—Sirjan Second
Metamorphic Belt, and the Urumieh—Dokhtar Magmatic Belt (UDMB) (Fig. 1). The
formation of the Zagros Basin is related to the rifting and separation of Central Iran
from the northern margin of Gondwana, which formed the Neotethys Basin (Agard
et al. 2005; Yousefirad 2011; Chiu et al. 2013). Closure of the Neotethys Ocean and
the collision between the Central Iran and Arabian Plates formed the Zagros Orogen
(Yousefirad 2011; Chiu et al. 2013). To reconstruct the Zagros Orogen evolution,
several models have been presented, but none can explain all of its geologic aspects
completely. In this contribution, we try to present a comprehensive reconstruction
model for the Zagros Orogen to better explain its characteristics, by reviewing and
discussing all hypotheses.

Geologic context

The Zagros Orogen is a result of the closure of the southern Neotethys, located
between the Iranian and Arabian Plates (Alavi 1994; Talbot and Alavi 1996; Stampfli
and Borel 2002; Casini et al. 2011). Ophiolites, which are Neotethys oceanic
lithosphere remnants, are emplaced along the Zagros Orogen. These ophiolites are
emplaced along two main belts (Figs 1 and 2; Stocklin 1977; Homke et al. 2010;
Ghazi et al. 2012). The first one is the Khoy—Nain—Shahr Babak—Dehshir—Baft
Ophiolitic Belt (Inner Zagros Opbhiolitic Belt or IZOB; Shafaii Moghadam and Stern
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Fig. 1
Structural map of the Iran Plateau and the Zagros Orogen. Only Neotethys-related ophiolites are shown;
dashed lines are concealed faults and solid lines are main faults

2011), located between the Sanandaj—Sirjan and Central Iran; the second one is the
main ophiolitic belt of Piranshahr—Kermanshah—Neyriz—Haji-Abad [Outer Zagros
Ophiolitic Belt (OZOB); Shafaii Moghadam and Stern 2011], located between the
Sanandaj—Sirjan and Zagros (Fig. 1). The IZOB resulted from the closure of the
southern Neotethys Basin, while the OZOB resulted from the closure of the
Neotethyan back-arc basin (Alavi 1994; Ghasemi and Talbot 2006; Allahyari
et al. 2010; Casini et al. 2011; Ghazi et al. 2012; Saccani et al. 2013). In a
schematic cross-section across the Zagros Orogen, the main structural elements are
shown. These structures are cover sediments, the Cenozoic Magmatic Belt, the Inner
Ophiolite Belt, the Second Metamorphic Belt, the Mesozoic Magmatic Belt, the First
Metamorphic Belt, the Outer Ophiolite Belt, the Crush Zone, the Fold and Thrust
Belt, the Dezful Embayment, and the Persian Gulf-Mesopotamian Foreland (Fig. 2).
In the following, we will explain why it is necessary to divide the Sanandaj—Sirjan
metamorphic zone into two subzones (the First Metamorphic Belt and the Second
Metamorphic Belt).

The Fold and Thrust Belt on the Arabian Plate is a result of deformation of the
Zagros Orogenic Belt (ZOB) passive margin sediments that were caused by continental
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Schematic cross-section from structural elements of the ZOB (not to scale). These structural elements from
NE to SW include cover sediments, the Cenozoic Magmatic Belt, the Inner Ophiolite Belt (Khoy—Nain—
Shahr Babak—Dehshir—Baft Ophiolites), the Second Metamorphic Belt, the Mesozoic Magmatic Belt (island
arc), the First Metamorphic Belt, the Outer Ophiolite Belt (Neyriz—Kermanshah—Haji-Abad Ophiolites), the
Crush Zone (or High Zagros), the Fold and Thrust Belt, the Dezful Embayment, and the Persian Gulf-
Mesopotamian Foreland

collision (Alavi 1994; Ghasemi and Talbot 2006; Horton et al. 2008; Allahyari et al.
2010; Saccani et al. 2013). In the Sanandaj—Sirjan Metamorphic Belt (SSMB), two
metamorphic belts are distinguished, which are separated by an andesitic—granitic
Mesozoic island arc (Berberian and Berberian 1981; Desmon and Beccaluva 1983;
Malekizadeh 1999; Mohajjel et al. 2003; Chiu etal. 2013). In the ZOB, the metamorphic
belt is located in the northeast of the ophiolitic belt (Figs 1 and 2). Therefore, the
direction of subduction was northeastward, and because two metamorphic belts were
formed, two northeastward subductions must have occurred (Fig. 2). The presence of a
volcanic arc and an island arc indicates that two subductions, one is oceanic—oceanic
and the other oceanic—continental, were active (Ghasemi and Talbot 2006; Agard et al.
2007; Ghazi et al. 2012; Saccani et al. 2013). The oceanic—oceanic subduction arc-
related calc-alkaline granitoid rocks of Siah Kuh of Early Jurassic age (199 Ma; Arvin
et al. 2007) and other similar rocks are reported from the SSMB (Berberian and
Berberian 1981; Malekizadeh 1999; Shahabpour 2007). The Chah Dozdan granite and
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Chah Ghand gabbro are Middle Jurassic age (159-167 Ma; Sheikholeslami 2002). The
other Mesozoic rocks in the SSMB are the Middle Jurassic Boroujerd Plutonic Complex
(169 Ma; Khalaji et al. 2007; Mahmoudi et al. 2011), the Astaneh Pluton (168 Ma), the
Alvand Pluton (165 Ma; Mahmoudi et al. 2011), the Late Jurassic (157-149 Ma)
Ghorveh Pluton, the mid-Cretaceous (109 Ma) I-type Hasan Salarn Pluton near the town
of Saqqez (Mahmoudi et al. 2011), and the Middle Jurassic (165 Ma) Aligoodarz
granitoid complex (Esna-Ashari et al. 2012). Likewise, Chiu et al. (2013) distinguished
I-type granitoids of Middle to Late Jurassic ages (176144 Ma) in the SSMB and
granodiorite—diorite of Middle Jurassic age (166—167 Ma) in the UDMB.

In the ZOB, the Neyriz, Kermanshah, and Haji-Abad Ophiolites are unconformably
covered by Late Cretaceous limestone and Paleocene volcanic and volcaniclastic rocks
(Ricou 1974; Ghasemi and Talbot 2006; Saccani et al. 2013). The Nain, Shahr Babak,
Dehshir, and Baft Ophiolites are also covered by Upper Cretaceous pelagic limestone
(Babaei et al. 2005; Shahabpour 2005; Ghasemi and Talbot 2006; Azizi et al. 2006;
Shafaii Moghadam and Stern 2011; Ghazi et al. 2011; Saccani et al. 2013). Therefore,
the emplacement time of these ophiolites is Upper Cretaceous.

The Inner Zagros Ophiolitic Belt (IZOB)

This ophiolitic belt includes the Khoy, Nain, Shahr Babak, Dehshir, and Baft
ophiolitic complexes and is located between the Central Iran and Sanandaj—Sirjan
continents, with an NW-SE trend (Figs 1 and 2). A back-arc basin of the southern
Neotethys Basin existed between the Central Iran and Sanandaj—Sirjan (Glennie 1992;
Ghazi and Hassanipak 1999; Golonka 2004; Ghasemi and Talbot 2006; Shafaii
Moghadam et al. 2009; Ghazi et al. 2011, 2012). The IZOB is a result of this
back-arc basin closure.

The Khoy Ophiolite complex

The Khoy ophiolitic complex is located in the northwest of Iran. The ophiolite
mantle sequence consists of serpentinized lherzolite and harzburgite with minor
wherlite, pegmatitic gabbro, meta-gabbro, layered gabbro, pyroxenite dikes/veins,
dunite veins, amphibolite, and rodingite veins (Fig. 3; Ghazi and Hassanipak 1999;
Ghazi et al. 2003; Juteau 2004; Azizi et al. 2006; Moazzen and Oberhénsli 2008). The
Khoy Ophiolite crustal sequence includes gabbro, massive, and flow basalt, and Late
Cretaceous—Early Paleocene turbiditic sediments intercalated with pillow lavas and
pelagic limestone (Fig. 3). Based on the studies by Khalatbari et al. (2003) and
Pessagno et al. (2005), there are two ophiolitic complexes in the Khoy area: (1) an old
polymetamorphic ophiolite, whose oldest metamorphic amphibole yielded a Late
Jurassic apparent *°K—*°Ar age; therefore, its primary magmatic age should logically
be pre-Jurassic (Upper Triassic) and (2) a younger non-metamorphic Upper
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Cretaceous ophiolite. Based on radiometric dating of the gabbro, the maximum age for
the formation of this ophiolite complex is Late Albian (108-109 Ma) and its
emplacement age is 110-111 Ma (Ghazi et al. 2003). In some areas, the ophiolitic
rocks are unconformably overlain by the Paleocene—Eocene Fajan conglomerate that
contains ophiolitic mafic and ultramafic blocks (Ghazi and Hassanipak 1999; Azizi
et al. 2006; Pessagno et al. 2005).

The Nain Ophiolite

The Nain Ophiolite is related to the closure of the Neotethys back-arc basin
(Ghasemi and Talbot 2006; Rahmani et al. 2007; Ghazi et al. 2012). The Nain
Ophiolite mantle sequence includes serpentinized harzburgite, with some lherzolite
and pyroxenite sills, and its crustal sequence includes plutonic and volcanic rocks,
such as pegmatitic gabbro, diorite, granodiorite, diabase, basaltic andesite, andesite,
and more silicic rocks (tonalite, trondhjemite, and aplite) (Fig. 3; Ghasemi and Talbot
2006; Rahmani et al. 2007; Shafaii Moghadam and Stern 2011; Ghazi et al. 2011,
2012). The compositional diversity of extrusive rocks (from basaltic andesite to
andesite), with various Upper Cretaceous sedimentary rocks, indicates that the Nain
Ophiolite has island-arc tholeiite (IAT) signatures (Hassanipak and Ghazi 2000;
Ghasemi and Talbot 2006; Shafaii Moghadam et al. 2009; Ghazi et al. 2012).
“OAr/°Ar dating on hornblende gabbro indicated the ages of 101.2+0.9 Ma, 99.7 +
0.9 Ma, and 99+ 1.2 Ma, and suggested that the generation age of this ophiolite is
Upper Albian; zircon U-Pb data show that the age of Nain Ophiolite is 103—101 Ma
(Hassanipak and Ghazi 2000; Azizi et al. 2011). The basement of the Nain Ophiolite
complex is garnet amphibolite with low pitch lineation (Rahmani et al. 2007; Shafaii
Moghadam et al. 2009). The Nain Ophiolite was covered by Coniacian—Maastrichtian
pelagic limestone and chert (Rahmani et al. 2007; Shafaii Moghadam and Stern 2011).

The Shahr Babak Ophiolite

The Shahr Babak Ophiolite is a part of the IZOB; its mantle sequence includes
lherzolite, foliated harzburgite, dunite, serpentinite, and pyroxenite. The foliated
harzburgite is crosscut by diabasic dikes and small-sized lenses of isotropic gabbro
(Fig. 3; Ghazi and Hassanipak 1999; Ghasemi and Talbot 2006; Shafaii Moghadam
et al. 2009; Shafaii Moghadam and Stern 2011). The Shahr Babak Ophiolite crustal
sequence includes gabbro, pillow and massive lavas, diorite, and plagiogranite.
Plagiogranitic veins commonly crosscut the isotropic gabbro (Fig. 3). Extrusive rocks
of the Shahr Babak Ophiolite are basaltic andesite to rhyodacite—rhyolite and
trachyandesite (Shafaii Moghadam and Stern 2011). Shafaii Moghadam et al.
(2010) determined that the basaltic andesite and rhyodacite were generated in an
island-arc environment and that the trachyandesite has IAT signatures. The Shahr
Babak Ophiolite is covered by Coniacian—Maastrichtian pelagic limestone (Ghasemi
and Talbot 2006).
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The Dehshir Ophiolite

The Dehshir Ophiolite crops out at the intersection of two faults (the Nain—Dehshir
and the Dehshir—Baft Faults). The mantle sequence of this ophiolite includes
clinopyroxene-bearing harzburgite, plagioclase lherzolite, and clinopyroxene (Fig. 3;
Shafaii Moghadam and Stern 2011). The Dehshir Ophiolite crustal sequence includes
pillow lavas, basaltic and basaltic—andesitic massive flows, basaltic—dacitic sheeted
dikes, leucogabbro, and isotropic gabbro (Fig. 3; Shafaii Moghadam and Stern 2011).
Gabbroic and diabasic dikes crosscut the peridotite. Metamorphic rocks in the Dehshir
Ophiolite complex are actinolite schist, amphibolite, slate, and marble. This ophiolite
complex is covered by Turonian—Maastrichtian pelagic limestone; therefore, its
emplacement age is Upper Cretaceous (Shafaii Moghadam and Stern 2011; Shafaii
Moghadam et al. 2012).

The Baft Ophiolite

The Baft Ophiolite crops out along the Dehshir—Baft Fault. The Baft Ophiolite mantle
sequence includes serpentinized and foliated harzburgite with patches of chromitite and
minor lherzolite with diabasic dikes (Fig. 3; Ghasemi and Talbot 2006; Shafaii
Moghadam and Stern 2011). The Baft Ophiolite crustal plutonic and volcanic rocks
consist of gabbro; diorite; pillow basalts; basaltic, andesitic, and dacitic lava flows; and
basaltic, andesitic, and dacitic sills in pyroclastic rocks. Basalts have both features of
mid-ocean ridge [tholeiites similar to normal mid-ocean ridge basalt (N-MORB)] and
intra-plate affinities [intermediate between enriched mid-ocean ridge basalt (E-MORB)
and IAT] (Alavi 1994; Arvin and Robinson 1994). Based on lithostratigraphic relation-
ships, the Baft Ophiolite was formed during the Cretaceous and was emplaced before the
Paleocene (Lippard et al. 1986; Shafaii Moghadam and Stern 2011).

The Outer Zagros Ophiolitic Belt (OZOB)

The OZOB crops out along the southern Neotethys suture. The OZOB, which
includes the Piranshahr, Kermanshah, Neyriz, and Haji-Abad Ophiolites, is the result
of the Late Cretaceous closure and collision between the Sanandaj—Sirjan and the
Arabian Shield (Fig. 1). Stratigraphic columns for these ophiolites are shown in Fig. 4.

The Piranshahr Ophiolite

The Piranshahr Ophiolite is located in the northwest of Iran close to the town of
Piranshahr and extends to the Rayat Ophiolites in NE Iraq and to the Cilo Ophiolite in
SE Turkey (Okay et al. 2010; Hajialioghli and Moazzen 2014). The Piranshahr
Ophiolite mantle sequence consists of serpentinite, tectonized harzburgite and minor
lherzolite, dunite with cumulithic texture, wherlite, and troctolite with Cr-spinel
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Stratigraphic sequence of Piranshahr, Kermanshah, Neyriz, and Haji-Abad Ophiolites (not to scale)

(Fig. 4; Khodabandeh and Soltani 2004). They are mantle residues with distinct
geochemical signatures of both mid-ocean ridge and suprasubduction zone affinities
(Hajialioghli and Moazzen 2014). The crustal sequence includes gabbro, dibasic dikes,
rare pillowed basalts, and radiolarite overlain by Late Cretaceous pelagic limestone
(Fig. 4; Khodabandeh and Soltani 2004; Hajialioghli and Moazzen 2014).

The Kermanshah Ophiolite

The Kermanshah ophiolitic complex, located along the main Zagros reverse fault, is
an ophiolitic mélange, which includes dismembered ophiolitic sequences. The mantle
sequence predominately includes lherzolite, dunite, and harzburgite, and its crustal
sequence includes cumulative gabbro, sheeted dikes, pillow lavas, and diorites, and a
volcanic sequence that ranges in composition from sub-alkaline basalt through
alkaline basalt to trachyte (Fig. 4). Ghazi and Hassanipak (1999) recognized both
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island-arc tholeiitic and alkaline lavas. Tholeiitic basalt is a normal mid-ocean ridge to
enriched mid-ocean ridge basalt (Allahyari et al. 2010). The E-MORB characteristics
of middle ocean ridge basalt and the lherzolite composition of peridotite indicate that
partial melting and the sea-floor spreading rate was low. Ghazi and Hassanipak (1999),
using geochemical data, clearly distinguished two distinct types of sub-alkaline basalt,
suggesting an island-arc affinity, as well as alkaline basalt, suggesting a typical
oceanic island. During the Maastrichtian, the Kermanshah Ophiolite was thrusted into
the Lower Triassic—-Upper Cretaceous Bisoton limestone (Lippard et al. 1986;
Berberian 1995; Ghasemi and Talbot 2006). The Amiran Formation conglomerate
of Maastrichtian—Paleocene age contains ophiolite clasts. Subsequently, the initial
thrusting of the Kermanshah Ophiolite occurred during Maastrichtian—Paleocene time
(Alavi 1994; Hooper et al. 1995; Ghasemi and Talbot 2006). The Paleocene volcanic
rocks and Eocene shallow-water limestone unconformably cover the Kermanshah
Ophiolite (Braud 1987; Ghasemi and Talbot 2006).

The Neyriz Ophiolite

The Neyriz Ophiolite is a part of the OZOB that preserved the oceanic litho-
spheric units. There are three imbricated sheets in the Neyriz Ophiolite that, from
bottom to top, consists of the Pichakun Series (including Upper Triassic limestone,
Middle Jurassic oolitic limestone, and Lower Cretaceous conglomeratic limestone), a
mélange unit, and an ophiolite unit (Ricou 1968; Ghasemi and Talbot 2006; Shafaii
Moghadam and Stern 2011). The Neyriz Ophiolite sequence includes layered and
serpentinized harzburgite with minor lherzolite, residual dunite, scattered podiform
chromitite, pyroxenitic sills or dikes, gabbro, diabasic—basaltic—andesitic dikes,
diorite, plagiogranite, mafic and silicic volcanic differentiates (including MORB),
and a sheeted dike complex in the Tang-e-Hana area (Fig. 4; Arvin 1982; Sarkar-
inejad 1994; Nadimi 2002; Robertson 2002; Babaei et al. 2005; Ghasemi and Talbot
2006). The Neyriz Ophiolite complex is tectonically juxtaposed beneath cataclas-
tically deformed island-arc volcanic and volcaniclastic rocks called the Hassanabad
unit by Babaie et al. (2000). Geochemical analyses reveal that the Hassanabad unit is
of predominantly calc-alkaline island-arc composition (Babaie et al. 2000). Based on
“OAr/°Ar dating, the Neyriz Ophiolite complex was formed at 96-98 Ma (Haynes
and Reynolds 1980) and was emplaced at 89 Ma (Lanphere and Pami¢ 1983;
Ghasemi and Talbot 2006). The Neyriz Ophiolite complex was thrust into Late
Triassic to Middle Cretaceous sediments of the Pichakun Series and is unconform-
ably overlain by Late Cretaceous anhydritic limestone of the Tarbur Formation
(Ricou 1968, 1974).

The Haji-Abad Ophiolites

The Haji-Abad (or Esfandagheh) Ophiolite, as a part of the OZOB, is located in the
northwest of the town of Esfandagheh. The Haji-Abad Ophiolite mantle sequence
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includes depleted harzburgite and residual dunite with aligned spinel and podiform
chromitites (Fig. 4; Babaei et al. 2005; Ghasemi and Talbot 2006; Shafaii Moghadam
et al. 2012). Leucogabbroic and gabbroic dikes and metamorphosed diabasic dikes
crosscut the harzburgite. The Haji-Abad Ophiolite crustal sequence includes pillowed
and massive lava flow, which is covered by Upper Cretaceous pelagic limestone
(Fig. 4; Shafaii Moghadam and Stern 2011). Small tonalitic intrusions into the crustal
sequence occur, and a fine-grained plagiogranitic sill crosscuts the tonalitic intrusions
(Fig. 4). On the basis of their ages, the Haji-Abad Ophiolite is divided into two
complexes: (1) Late Triassic—Cretaceous and (2) Upper Cretaceous in age (Ghasemi
et al. 2002; Ahmadipour et al. 2003; Shafaii Moghadam et al. 2012). The older
complex, which has suprasubduction zone geochemical signatures, is covered by
marble and amphibolite of the Upper Triassic—Lower Jurassic Sargaz—Abshur com-
plex (Shafaii Moghadam and Stern 2011; Ghasemi et al. 2002). The younger one was
formed in the Late Cretaceous and is covered by volcaniclastic sandstone and siltstone
turbidites (Shafaii Moghadam et al. 2012).

Evolution of the ophiolite suites

Using the spatial distribution of the major ophiolitic complexes of the Zagros
Orogen and other features, we describe the tectonomagmatic and tectonostratigraphic
evolution of this Orogen in five stages: (1) triple junction formation, (2) continental
lithosphere rifting, (3) generation, spreading, and maturation of the Neotethys Ocean,
(4) subduction of the oceanic lithosphere, and (5) collision.

Triple junction formation stage (Late Silurian—Early Carboniferous)

The formation of the Neotethyan triple junction began when a thermal bulge
(plume) formed in the Gondwana continent through hot spots (Lapierre et al. 2004;
Chauvet et al. 2009, 2011; Saccani et al. 2013). This plume rose toward the upper
levels and lower depths of the mantle. By underplating beneath the Gondwana
lithosphere, this lithosphere thinned and swelled (Fig. 6). Thereafter, by initiation of
three radial fractures, three arms of the Neotethys Basin formed (Numan 2001;
Lapierre et al. 2004; Chauvet et al. 2009). The joining of these three arms formed
the Neotethys triple junction. This triple junction is located at the southeast corner
of the Arabian Plate (Lapierre et al. 2004; Jassim and Goff 2006; Chauvet et al.
2009, 2011; Saccani et al. 2013). Extension into the continental lithosphere
occurred by normal faulting. In many references, the rifting time of Neotethys
is stated as Early Permian (e.g., Dercourt et al. 1986; Sengor et al. 1988; Glennie
1992; Ziegler 2001; Stampfli and Borel 2002; Shahabpour 2005; Almutury and Al-
Asadi 2008; Muttoni et al. 2009; Allahyari et al. 2010; Homke et al. 2010; Saccani
et al. 2013). However, comparing the lithostratigraphic columns of the ZOB and the

Central European Geology 59, 2016



S0y
daneiodeas

e

g ey

g

g

TN
Wi WEped

Ty

W swpivs

g [ewreg

S s
W K010

wg pusgieN

w sy

-

g 4Py

12 djirlu et al.

g nopi

o5 o]
e

uorsau
PuONGIO

g uwwoy

Spo1 0N

g poy somo [

“wig wod)

wg poy 0ddy

1 N

(o[eos 03 J0U SSOUNDIY}) URI[ [BNUD)) PUE ‘SIB JOLIJU] ‘UBISOZNUY ‘UBISAINT ‘BIqely Jo uwnjod drydeidneng

oy pu ojeys I auowspueg

Wwowsseg snosus|
pue dnydiouren

I
—re—

g 7

‘wowseg 02|
[ im—

w3 GRS

g oy

w uepeq

g ey Gy

g zukoN

“wy youung

wy ueapeny

g rnpir,

wg yoars

i eed

uel| [enuad

(soibez 1se3)
sied Jouaju|

E
o

o
W yseq

g ZkoN

W yapaed

“wy uewsy

1 URIRSYORD)

(souibez [enuag)
uejsaznyy

awswoiuo) I

wawseg snoous
‘pu ydioumaly

——

LT
T

[mowecs ]

g RS

wig uwEereg

o
“w uepeq

sekepy iy
g nsieg
TN
W] ermon

“wig nereny

‘i Yeares

"1 wref

g uwzeggeys

g ueresyovey

g
g u ogBY

(soibez 1sap\)

uejsain

Juowoseg
owdiowersiy

‘wj beg

g el
“wi g ynep

W PEA
-
Jmy
‘i Jrepng
W i
g i

Wi AR
g
Ui bremng
T
‘i YiH
“wy Awpng
g vy,
Wy qremng
‘i ypeAtg
g v

wg
Bwnry

T———

‘w4 sy

W

g papeH
wy weq

Wy Jyoy

“wg fregy

I

eiqely

S0y
omdrowreiapy
wiojeleld
uonounf uejuoaeq
ayduy
Bumry
uoneinew
pue
Buipeaids EIESTT
oIsseInr aIppIN
osseinp seddn
uononpgns
| 4
5
8
2
I @
Busaosied
sua003
2020610

Buunsoln

o)

dlozoua:

¢ 814

Central European Geology 59, 2016



Tectonic evolution of the Zagros Orogen 13

Arabia (Fig. 5), it can be observed that from the Pre-Cambrian to the Late
Ordovician, the two blocks of the Central Iran and Arabian Plates together formed
a stable shield (Fig. 6; Gondwana Shield). In the Early Silurian (Caledonian
Orogeny), this shield was divided into two segments of the Central Iran and
Arabian Plates (Fig. 6). The uprising magmatic plumes and their under-plating
caused swelling and bulging of the lithosphere (Fig. 7; Lapierre et al. 2004;
Chauvet et al. 2009, 2011). Subsequently, this swelling led to the termination of
sedimentation and oceanic regression. Therefore, the lack of Ordovician and
Silurian to Carboniferous strata along the Central Zagros and the existence of
terrigenous sediments (Sare-Chahan and Zakeen Formations) in the Zagros Crush
Zone indicate that during this time, the Neotethys plume was emplaced beneath the
lithosphere of Gondwana and led to epeirogeny between the Central Iran and
Arabian Plates (Fig. 5).

Continental rifting stage (Late Carboniferous—Early Permian)

From the Late Silurian to the Early Carboniferous, the three arms of the
Neotethys and its triple junction were probably formed (triple junction formation
stage); then, by the eruption of plume magmas, the alkaline basalt of Dehbid and
other extrusive rocks were generated (Fig. 6; Ghasemi and Talbot 2006). Magma
eruption may have occurred during the Carboniferous and have led to subsidence
along normal faults. This subsidence also created a shallow-water sedimentary
basin. This basin is determined by the deposition of evaporates and terrigenous
sediments (Faraghan and Dalan Formations). With continuing activity of normal
faults, depth increased and the Neotethys Basin was formed (Almutury and
Al-Asadi 2008). During the early stages of rifting, the basin was almost dry or
contained fresh-water lakes (Fig. 7; Almutury and Al-Asadi 2008). Eventually, the
floor of the Neotethys rift subsided and formed a shallow sea. This subsidence and
spreading occurred from the Late Carboniferous to Liassic time (Koop and Stoneley
1982; Shahabpour 2005; Sheikholeslami et al. 2008; Homke et al. 2010; Emami
et al. 2010; Saccani et al. 2013). Continental sediments accumulated in the
depressions of the down-faulted blocks, and basaltic magma was injected into the
rift system (Fig. 7; Almutury and Al-Asadi 2008). Flood basalt could have
extended over large areas of the rift zone during this phase (Van der Pluijm and
Marshak 1997; Ghasemi and Talbot 2006). Subsidence of the basin floor led to the
formation of a passive margin along the northern and southern margins of the
Arabian Plate (Figs 6-9; Koop and Stoneley 1982; Agard et al. 2005; Jassim and
Goff 2006; Arfania and Shahriari 2009). During the Late Permian to Late Triassic,
the deep-water continental slope was formed along the northwestern and northeast-
ern margins of the Arabian Plate (Fig. 6; Faugeéres and Pujol 1991; Shahabpour
2005; Ghasemi and Talbot 2006; Allahyari et al. 2010; Yousefirad 2011; Saccani
et al. 2013).
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Arabian Plate

Late Silurian-

Early Permian Late Triassic

Late Cretaceous—
Paleocene

Continental Lithosphere
Oceanic Lithosphere

Foreland Basin
Structures Boundary
Transform Fault
Main Fault
Sunduction Direction
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Rifting Position
Mid-Ocean Ridge

Rotation Trend

Movement Trend

Fig. 6

Reconstruction history of the ZOB. (a) Formation of the Neotethys Basin triple junction. (b) Spreading and
maturation in the Late Triassic. (c) Beginning of subduction of the southern Neotethys Basin and formation
of the Khoy Back-arc Basin and Nain—Baft Back-arc Basin in the Early Jurassic, and then the beginning of
subduction of the Neotethys back-arc basin in the Late Jurassic. (d) Closure of the Neotethys Back-arc Basin
and the Neotethys southwestern subduction in the Late Cretaceous—Paleocene. (e) Recent structural elements
of the ZOB

Central European Geology 59, 2016



Tectonic evolution of the Zagros Orogen

Late Triassic Southeatern Paleotethys
<= Sanandaj-Sirjan m> Suture Zone
Cover sediments Neotethys Cover sediments

Oceanic Crust

Afican | Arabian &b ' = Central Iran
Plate | Plate = Plate

Mid-Ocean Ridge

" . Southeatern
Middle Jurassic Neotethys Sanendafiigen
. » Paleotethys
Cover sediments island arc @ Suture Zone
\ Oceanic Crust

African | Arabian
Plate |

Early Cretaceous

‘Southeatern
Neotethys Sanandaj-Sirjan

= Nain-Baft
island arc
\\0 Oceanic Crust
African |

i = —— 2\ O Central Iran
Plate | o ~—2 Plate

Paleotethys
<= Suture Zone

Late Cretaceous-Paleocene

Southeatern
Sanandaj-Sirj

=P First Metamorphic Neotethys R

Folded zone e § QP <= ;:I«i‘:?gﬁ

g D Oceanic Crust Nain-Baft
African) Arabian ~ A N eawes Central Iran Eurasia
Plate | Plate =7 PO/ Plate |

Late Eocene-Late Miocene

<= —p

Paleotethys
Suture Zone

Yy 7(Z_/ Central Iran Eurasial
Plate &

sland arcs
magmatic belt

Folded zone

Neyriz-Haji Abad ophiolites
Second metamorphic belt

Nain-Baft ophiolites

Urmieh-Dokhtar
eogene sediments

i
1
1
y

N

Fig. 7
Reconstruction history of the SE ZOB

Generation, spreading, and maturation of the oceanic lithosphere (Late
Permian—Late Triassic)

15

At this stage, the Neotethys Ocean attained maximum width, and the shallow-water
rift basin spread and led to the separation of the Central Iran continent and the Arabian
Plate. This caused the extension of the narrow oceanic basin (Sengor 1984; Stampfli
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2000; Stampfli and Borel 2002; Robertson 2007). Through this spreading, the basin
became deeper and wider (Fig. 6).

Due to the shallow nature of the basin during the rifting stages, evaporation was
considerable; salt and sandstone was deposited on the floor of the rift as the Faraghan
and Dalan Formations (Fig. 7). Thick salt and sandstone deposits of these formations lie
at the base of the passive margin basin (Figs 5 and 6). At the center of the basin, where it
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was deeper and wider, limestone of Khaneh Kat Formation was deposited (Figs 5 and 6).
The spreading stage was terminated by the beginning of subduction related to the
closure of the Paleotethys Basin in the northern Iran in the Late Triassic (Fig. 7).

Subduction of the oceanic lithosphere stage (Triassic—Late Cretaceous)

At this stage, the Neotethys Basin, on account of the Arabian Plate movements
caused by the opening of the Atlantic Ocean rift (Stampfli 2000; Bird et al. 2007),
changed the divergence régime to one of the convergence (Fig. 6). The observed
absence of sedimentation from Late Triassic to Lower Early Jurassic (Fig. 5) was a result
of'the closure of a Paleotethys Basin branch along North Iran (Berberian and King 1981;
Bagheri and Stampfli 2008; Zanchi et al. 2009; Buchs et al. 2013). From the Late
Permian to the Late Triassic, forces from the spreading of the Neotethys mid-ocean
ridge caused the subduction of the Paleotethys oceanic lithosphere; following closure of
the Paleotethys Ocean in the Late Triassic, tectonic forces caused epeirogeny in the
Neotethys Basin. Then, during the Upper Late Triassic to the beginning of the Lower
Jurassic, the high slab pushing forces of the Neotethys mid-ocean ridge caused a break
in the Neotethyan oceanic lithosphere, which led to the onset of the subduction in the
lower Early Jurassic (Figs 7-9). New studies by Chiu et al. (2013), which indicate a
Middle Jurassic age for the oldest magmatic arc rocks of the SSMB and the UDMB,
confirm this. The subduction led to the transformation of two passive margins into a
passive margin and an active margin. The subduction of the Neotethys oceanic
lithosphere beneath the Iranian and Anatolian continental lithosphere (McQuarrie and
van Hinsbergen 2013) led to the eruption of magmas formed as volcanic arcs (Figs 7-9;
Alavi 1994; Shahabpour 2007; Chiu et al. 2013). Likewise, it led to the formation of the
Neotethyan back-arc rift in the Middle Jurassic age (Figs 6-9; Azizi et al. 2006;
Ghasemi and Talbot 2006; Shafaii Moghadam et al. 2009; Ghazi et al. 2012).

The subduction period extended from the Upper Early Jurassic age to the Lower
Miocene age (Mohajjel et al. 2003; Golonka 2004; Yousefirad 2011; Ghazi et al. 2012;
Chiu et al. 2013). Therefore, the UDMB, with a Middle Jurassic age to Late Miocene
age, can be considered as a volcanic arc of the Neotethys subduction system (Figs 7-9;
Berberian and Berberian 1981; Berberian and King 1981; Berberian et al. 1982; Alavi
1994; Shahabpour 2007; Chiu et al. 2013). The UDMB consists predominately of
intrusive and extrusive calc-alkaline igneous rocks and a low volume of shoshonitic
and alkaline rocks (Chiu et al. 2013). The subduction of the Neotethys oceanic
lithosphere created a tensional back-arc basin (Fig. 6; Kazmin and Tikhonova 2006;
Azizi et al. 2006). The Khoy, Nain, Shahr Babak, Dehshir, and Baft Ophiolites mark
the site of the Nain—Shahr Babak—Dehshir-Baft and of the Khoy Back-arc Basins,
which opened between the SSMB and Central Iran (Fig. 6). Ghasemi and Talbot
(2006) proposed an Upper Triassic—Lower Cretaceous age for the formation of the
back-arc basin, whereas Ghazi et al. (2012) suggest an Early Jurassic time for its
opening. Given that these ophiolites and their related igneous rocks have back-arc
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basin features and that the Neotethys subduction began in the lower Early Jurassic age,
rifting in this basin more likely occurred in the Middle Jurassic age. Likewise, Shafaii
Moghadam et al. (2009) and Arfania and Shahriari (2009) believe that the lithosphere
of this basin crumpled without subduction, whereas Ghazi et al. (2012), based on
geochemical evidence from the related volcanic rocks with back-arc basin features,
suggested that subduction in the back-arc basin began in the Late Jurassic age.
Ghasemi and Talbot (2006) suggested the Late Cretaceous—Paleocene and Ghazi et al.
(2012) suggested the Late Cretaceous (Maastrichtian) as closure time of this basin.
Deposition of Late Cretaceous limestone over the Inner Zagros Ophiolite remnants
confirms the Late Cretaceous as the closing time.

Concerning subduction in the southern Neotethys Basin, many researchers sug-
gested that two subduction systems existed (Shahabpour 2005; Agard et al. 2005;
Ghasemi and Talbot 2006; Afrania and Shahriari 2009; Allahyari et al. 2010;
Yousefirad 2011; Ghazi et al. 2012; Saccani et al. 2013; Chiu et al. 2013), which
is confirmed by the existence of both island-arc and volcanic-arc remnants (Figs 1 and
2). Agard et al. (2005) believe that the first subduction was oceanic—continental
subduction. Following this, intra-oceanic fracturing formed an oceanic—oceanic
subduction (second subduction). The position of the second subduction was close
to the northern margin of Arabia (Kazmin and Tikhonova 2006; Agard et al. 2007;
Allahyari et al. 2010; Saccani et al. 2013). There is no general agreement on when the
second subduction was initiated. Desmons and Beccaluva (1983) and Dercourt et al.
(1986) believe that the second subduction initiation time was Late Cretaceous.
Ghasemi and Talbot (2006) declared mid-Cretaceous time at the start of the second
subduction. Likewise, Agard et al. (2005) and Yousefirad (2011) suggested an Early
Cretaceous age, whereas Saccani et al. (2013) suggested an early mid-Cretaceous age
for this event. Agard et al. (2007) believe that stress accumulation in the weakest zone
of the oceanic lithosphere led to buckling, rupture, and formation of a new subduction
zone close to the Arabian Plate margin in the Lower Cretaceous that subsequently
caused obduction of the oceanic lithosphere at the Arabian Plate margin. However, the
presence of I-type arc-related calc-alkaline granitoid rocks of Siah Kuh of Early
Jurassic age (199 Ma) from the SSMB (Berberian and Berberian 1981; Malekizadeh
1999; Arvin et al. 2007), of the Chah Dozdan granitic and Chah Ghand gabbroic rocks
of Middle Jurassic age (Sheikholeslami 2002), of the lower Late Cretaceous Kerman-
shah boninitic intra-oceanic island arc (Allahyari et al. 2010; Saccani et al. 2013), and
of low-to-medium-pressure metamorphism accompanied by coeval Jurassic andesitic
intrusions and volcanism ranging from gabbro to granite with K/Ar ages between
118 + 10 Ma and 164 +4 Ma along the South SSMB (Berberian and Berberian 1981;
Afrania and Shahriari 2009) indicate that the beginning of the second subduction
occurred prior to the Cretaceous, and was probably of Upper Late Triassic—Lower
Early Jurassic timing. Therefore, both subductions simultaneously began in the Early
Jurassic (Figs 7-9). Chiu et al. (2013), using U-Pb dating of 50 samples from intrusive
and extrusive igneous rocks of the UDMB and the SSMB, distinguished five
subduction-related magmatic episodes that include: (1) Middle to Late Jurassic
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(I-type, 176-144 Ma), (2) Late Cretaceous (72—81 Ma), (3) Early Eocene to Late
Oligocene (25-55 Ma), (4) Early to Late Miocene (22—6 Ma), and (5) Late Miocene to
Late Pliocene (11-0.4 Ma) magmatism. The first episode was the result of two
subductions, one is oceanic—oceanic and the other oceanic—continental, whereas the
second and third episodes were the results of collision and continuing subduction.

The fourth episode represents the termination of the subduction-related magmatic
activities, which ceased progressively from northwest to southeast, with magmatic
activities ending in the Early Miocene (ca. 22 Ma) in Meghri (Armenia), the Middle
Miocene (ca. 16 Ma) in Kashan, and the Late Miocene (ca. 10-6 Ma) in Anar,
respectively. The fifth episode indicates post-collisional volcanism that began ca. 11
Ma in the Saray (eastern side of Lake Urmia), along with later eruptions in the Sahand
(6.5—4.2 Ma) and the Sabalan (<0.4 Ma) volcanoes (Chiu et al. 2013). Based on the
mentioned ages and episodes, two main magmatic gaps (between the Late Jurassic to
Late Cretaceous and the Late Cretaceous to Early Eocene — Azizi and Moinevaziri
2009; Chiu et al. 2013) can be distinguished, which probably resulted from subduction
of a cold oceanic lithosphere and/or low-angle subduction (Chiu et al. 2013).

Collision stage (Late Cretaceous—Late Miocene)

At this stage, the Neotethys oceanic lithosphere was totally consumed. Following
this, passive continental margin and island-arc collision occurred in the Late Cretaceous
(Golonka 2004; Kazmin and Tikhonova 2006; Allahyari et al. 2010; Saccani et al.
2013). This collision caused obduction of the Neotethys oceanic lithosphere remnants
into the Arabian Plate margin, but in the Zagros Crush Zone, there remained a shallow-
water oceanic basin, where Upper Cretaceous limestone was deposited (Fig. 5; Alavi
1994; Ricou 1974; Haynes and McQuillan 1974; Babaei et al. 2005; Ghasemi and Talbot
2006; Yousefirad 2011). Erosion of continental collisional highs carried an enormous
volume of detrital materials into the remaining shallow-water basin of the Neotethys.
The Amiran Formation was formed in this way (Fig. 5; Braud 1987; Ghasemi and Talbot
2006; Yousefirad 2011). The foreland basin formed following the collision is the
Mesopotamian—Persian Gulf of NW—SE trend; the hinterland basins are the depressions
that are usually located between Zagros and Central Iran (Fig. 1; Homke et al., 2010;
Emami et al. 2010; Saura et al. 2011). After the closure of the oceanic lithosphere
between the Arabian Plate margin and the Neotethys island arcs, and the emplacement of
the Outer Zagros Ophiolites, the subduction of Neotethys oceanic lithosphere between
the island arcs and the Sanandaj—Sirjan Zone continued until the Late Miocene (Figs 6-9).
Based on the southern Neotethys Basin structural elements that include Foreland Basin
Sediments, Fold and Thrust Belt, Crush Zone, ophiolite remnants, the First Metamor-
phic Belt, island-arc magmatic rocks, the Second Metamorphic Belt, and the magmatic
belt (Fig. 1), two subduction systems and two collisions can be considered for evolution
of'the Tethysides along the Zagros Orogen. The beginning of both subductions occurred
in the Upper Late Triassic, but collision occurred at different times.
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The first collision was due to the closure of the basin between the passive
continental margin and the forearc in the Late Cretaceous; the second collision was
caused by basin closure between the back-arc and the active continental margin, which
occurred in the Late Miocene (Figs 6-9). A large amount of evidence indicates that the
first collision occurred in the Upper Cretaceous. The Neyriz Ophiolite is unconform-
ably covered by the Late Cretaceous anhydritic limestone of the Tarbur Formation
(Fig. 4; Ricou 1968, 1974). The Amiran Formation conglomerates of Maastrichtian—
Paleocene age (Fig. 5) have ophiolite clasts, showing that the emplacement time of
these ophiolites is pre-Maastrichtian. Paleocene volcanism and Eocene shallow-water
limestone deposition unconformably cover the Kermanshah Ophiolite (Braud 1987;
Ghasemi and Talbot 2006). The Haji-Abad Ophiolite is overlain by Upper Cretaceous
pelagic limestone. Based on “°Ar/*° Ar dating, the Neyriz Ophiolite complex formed at
96-98 Ma (Haynes and Reynolds 1980) and was emplaced at 89 Ma (Lanphere and
Pami¢ 1983; Ghasemi and Talbot 2006). The Nain—Shahr Babak—Dehshir—Baft
Ophiolites are also covered by Coniacian—Maastrichtian pelagic limestone (Babaei
et al. 2005; Ghasemi and Talbot 2006; Shafaii Moghadam and Stern 2011). Therefore,
the presence of an Upper Cretaceous unconformity, coverage by Upper Cretaceous
limestone and volcanic rocks, and ophiolitic clasts in the Amiran conglomerate all
indicate that in the Upper Cretaceous, the Neotethys Back-arc Basin between the
Central Iran and Sanandaj—Sirjan was closed, and likewise that the oceanic—oceanic
subduction of the southern Neotethys Basin was terminated (Figs 6-9). The ophiolite
remnants obducted onto the Arabian Plate margin and Sanandaj—Sirjan, and the Inner
and Outer ophiolites were emplaced. By emplacement of these ophiolites, a foreland
basin was formed in front of the outer ophiolitic belt; ophiolite—radiolarite provided
the detritic materials supplying the Upper Maastrichtian—Paleocene Amiran flysch
deposit (Berberian and King 1981; Alavi 1994; Hooper et al. 1995; Homke et al.
2010). The Upper Maastrichtian—Paleocene Amiran flysch accumulated along a linear
trough in the High Zagros area.

The final closure of Neotethys and the collision between the Arabian and Central
Iran Plates took place in the Cenozoic. Agard et al. (2005) suggested the Late
Oligocene for collision between Iranian and Arabian margins, whereas Navabpour
et al. (2007) believe that collision occurred between 20 and 10 Ma age (Late to Middle
Miocene). Chiu et al. (2013), based on the termination of calc-alkaline magmatism in
the UDMB, showed that the collision age is Early to Late Miocene. This timing is
consistent with the geologic evidence of the final closure of the Neotethys Ocean
between Arabia and Eurasia at ~20 Ma in the Bitlis Suture Zone, to the NW of the
Zagros (Okay et al. 2010).

Conclusions

The purpose of this contribution is to present a comprehensive reconstruction
model for the evolutionary history of the Zagros Orogen that justifies most petrologic,
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tectonomagmatic, and stratigraphic characteristics. The formation of the Neotethyan
triple junction began during the Late Silurian to Early Carboniferous. One of the three
arms of the triple junction subsided, and began spreading, which resulted in a shallow-
water basin during the Late Carboniferous—Early Permian. Subsiding and spreading
continued from the Late Carboniferous to the Late Triassic. In the Late Triassic, the
Neotethys Basin reached its maximum extension. From the Late Permian to the Late
Triassic, the force of the Neotethys mid-ocean ridge spreading was consumed by
subduction of the Paleotethys oceanic lithosphere. After the closure of the Paleotethys
Ocean during the Late Triassic, tectonic forces caused epeirogeny in the Neotethys
Basin that eventually led to the simultaneous initiation of two northeastward sub-
ductions during Upper Late Triassic. Oceanic—oceanic subduction continued until the
Late Cretaceous and was terminated at this time, but oceanic—continental subduction
continued to the Middle-Late Miocene.
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