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Abstract
Most studies on prosodic entrainment focus on coarse paramet-
ric variables as f0 mean and standard deviation. Only recently
first attempts were made to measure entrainment also for cat-
egorical intonation representations namely pitch accent types
[1]. We propose further metrics for this purpose adopted from
text similarity measurement and alignment. These metrics were
applied to quantify the similarity of automatically derived into-
nation contour class sequences in cooperative and competitive
dialogs. In line with previously reported results for parametric
variables we found also for the categorical representation higher
similarities and thus more entrainment in the cooperative di-
alogs than in the competitive ones. The introduced metrics can
be of use for any entrainment research on categorical data as
e.g. for ToBI label sequences.
Index Terms: entrainment, intonation stylization, string simi-
larity, local alignment

1. Introduction
In conversation speakers accommodate more and more to each
other. This phenomenon is called entrainment and can be ob-
served on various phonetic and linguistic levels. On the linguis-
tic level entrainment affects amongst others the choice of words
[2] and syntactic constructions [3, 4]. On the phonetic level
entrainment was revealed in dialog data and shadowing experi-
ments for speaking rate [5, 6], intensity [5, 6], voice quality [6],
and pitch [7, 8, 5, 9]. Entrainment turned out to be stronger in
case of mutual positive attitude of the interlocutors, than in case
of negative attitude [10]. Furthermore, entrainment has been
shown to increase the success of conversation in terms of low
inter-turn latencies and a reduced number of interruptions [6, 2].
Consequently, more entrainment has been reported in coopera-
tive than in competitive dialogs e.g. with respect to intonation
contour shapes [11]. These findings are in line with theoreti-
cal models such as the Communication Accommodation The-
ory [12] stating that entrainment enhances social approval and
communication efficiency.

For intonation entrainment research is so far mostly re-
stricted to parametric variables, most of them coarse as for ex-
ample f0 mean and standard deviation over utterance stretches.
Only few attempts have so far been made to measure entrain-
ment for a higher-level categorical intonation representation.
[1] measured global entrainment over entire dialogs in terms
of perplexity and Kullback-Leibler divergence on ToBI [13]
pitch accent and boundary tone trigrams. Furthermore, they ad-
dressed local entrainment in temporally closely related speech
chunks using the Levenshtein distance between tone sequences.

This study aims to contribute to these new entrainment anal-
yses of categorical intonation representations in the following
way:

• It will be shown, how such a representation can be gen-
erated in a bottom-up way (section 3).

• We will introduce similarity measures for this represen-
tation, that capture local entrainment within neighboring
speech chunk pairs.

• These measures provide a better account to sub-sequence
and crossing alignments of tone sequences than does a
Levenshtein distance based approach (section 4).

The employed similarity metrics are: Jaccard index, Cosine
index, Szymkiewicz-Simpson coefficient, as well as a similarity
measure derived from local alignment.

We applied these metrics to cooperative and competitive di-
alog data (section 2) to see whether the found similarity val-
ues are in line with the findings on parametric data mentioned
above. Concretely, we hypothesize to find more entrainment
in cooperative than in competitive dialogs expressed by higher
values of all proposed similarity metrics.

2. Data
We used parts of the Illinois Game Corpus [14] that contains
Tangram game dialogs by American English speakers in coop-
erative and competitive settings. The tangram is a puzzle con-
sisting of seven pieces that can be combined to various shapes.
Both dialog partners were separately presented with Tangram
silhouettes that were reciprocally hidden from the view of the
other partner. The task was to decide whether the silhouettes
are the same or different by verbally describing them to each
other. In the cooperative setting the partners solved this com-
mon goal in a joint effort. In the competitive setting, the part-
ners were required to solve this task competitively, and the one
solving it first was declared to be the winner. For more details
about the recording setting please consult [15]. For the current
study a subset of ten dialogs by five interlocutor pairs was used,
of which three were Female-Female pairs and two were Male-
Female pairs. Each interlocutor pair took part in a coopera-
tive and a competitive condition, thus our data comprises paired
samples of five cooperative and competitive dialogs. Mean dia-
log duration amounts to 6.5 minutes.

The dialogs were manually text-transcribed and chunk-
segmented, and partly manually dialog-act annotated using the
tag set of [16]. The data was signal-text aligned by the WEB-
MAUS webservice [17, 18] and was part of speech tagged using
the Balloon toolkit [19]. Both alignment and part of speech la-
bels serve to automatically locate prosodic events, i.e. phrase
boundaries and potential pitch accent locations as described in
[20].

F0 was extracted by autocorrelation (PRAAT 5.3.16 [21],
sample rate 100 Hz). Voiceless utterance parts and F0 out-
liers were bridged by linear interpolation. The contour was then
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smoothed by Savitzky-Golay filtering using third order polyno-
mials in 5 sample windows and transformed to semitones rel-
ative to a base value [22]. This base value was set to the F0
median below the 5th percentile of an utterance and serves to
normalize F0 with respect to its overall level.

3. Categorical intonation representation
For intonation stylization we adopt the parametric CoPaSul ap-
proach of [20], which is illustrated in Figure 1. Within this
framework intonation is stylized as a superposition of linear
global contours, and third order polynomial local contours. The
domain of global contours approximately related to intonation
phrases is determined automatically by placing prosodic bound-
aries at speech pauses and punctuation in the aligned transcript.
The domain of local contours is determined by placing bound-
aries behind each content word so that the resulting segments
generally contain at most one pitch accent.

The global linear component is given by the F0 baseline
fitted through f0 values at the bottom of the time varying f0
range as explained in [23]. The baseline is then subtracted from
the F0 contour, and a third order polynomial is fitted to the F0
residual within each local segment. Time is normalized to the
range from −1 to 1 so that time 0 is placed in the mid of the
content word’s syllable bearing the lexical stress.

Figure 1: CoPaSul: Contour-based parametrical superposi-
tional F0 stylization.

In order to derive a categorical representation from this
parametric stylization, the slopes of the global contours as well
as the polynomial coefficients of the local contours are clus-
tered by Kmeans. Following [20] the optimal number of con-
tour classes was initialized by subtractive clustering [24]. The
resulting three global and four local contour classes are shown
in Figure 2.

4. Entrainment measurements
As one can see in Figure 3, the contour class distributions, uni-
grams as well as bigrams, are highly determined by the dialog
act of the speech chunk. This is reflected by significantly higher
information radii (two-sided Welch tests, p < 0.001) of these
distributions when comparing them between different dialog act
chunks as opposed to same dialog act chunks. These findings
are in line with [25] who discuss dialog-related differences in
intonation parameters in the context of Ohala’s Frequency Code

Figure 2: Global (gi) and local (cj) contour classes resulting
from polynomial coefficient clustering.

framework [26]. In order to disentangle entrainment and dialog
act dependencies, we applied the similarity measures only on
speech chunks of the same dialog act.

Figure 3: Information radii of contour class unigram and bi-
gram probability models within and across dialog act types.

4.1. Similarity of contour class inventories

The similarity of the contour class inventories X and Y of
speech chunk pair was quantified by three standard string-based
similarity metrics [27]: the Cosine similarity, the Jaccard index
[28] and the overlap ratio (Szymkiewicz-Simpson coefficient
[29]), which are defined as follows:

Cosine C(X,Y ) =
|X ∩ Y |√
|X||Y |

,

Jaccard J(X,Y ) =
|X ∩ Y |
|X ∪ Y | ,

Overlap O(X,Y ) =
|X ∩ Y |

min(|X|, |Y |) .

|S| refers to the cardinality of a set S, i.e. in our case the
number of different contour class types. All indices range from
0 (no similarity) to 1 (total similarity).

4.2. Similarity of contour class sequences

We adopted the idea of [1] to measure similarity of contour class
sequences by means of alignment. Since sequences usually dif-
fer in length, and since these length differences add up to the



overall distance, it is advisable to normalize the distance with
respect to length. [1] propose the following transformation of
the Levenshtein distance d(x, y) between the sequences x and
y to a similarity score sr(x, y) ranging between 0 and 1 partly
normalized with respect to length:

sr(x, y) =
m− d(x, y)

m
,

where m = max[length(x), length(y)], i.e. the length of
the longer sequence and thus the upper limit of the number of
edit operations. Note that x and y here do not refer to sets as
the capital letters in the previous section, but to contour class
sequences. As one can see in Figure 4, this similarity measure
has two shortcomings: first, it does punish sequences of dif-
ferent length even if one sequence is entirely contained within
the other. Thus two possible domains of entrainment, utter-
ance duration and intonation, are merged to a single metrics.
Second, it does punish sequences with cross matching subse-
quences. Thus, it cannot account for cases where interlocutors
choose the same intonation contours but at different positions
within their utterances. To disentangle duration and intonation
and to capture cross matches we propose an alternative measure
based on local alignment:

sl(x, y) =
length(localigned(z))

length(z)
,

where z = argminz∈{x,y}[length(z)]. The similarity
sl(x, y) of an intonation class sequence pair is thus the pro-
portion of the locally aligned parts of the shorter sequence in
that pair. As sr also sl similarity scores range from 0 to 1, Fig-
ure 4 gives an example. Since all but one member of the shorter
sequence y are (with cross matches) contained in the longer se-
quence x, sl(x, y) = 5

6
= 0.83. In contrast, the Levenshtein

distance between x and y amounts 7 which yields a similarity
sr(x, y) = 7−7

7
= 0, and thus a quite different result, that

underestimates the fact, that y is almost entirely contained in x.

x a b c d e f g
y (glob) e f g+h+a+b
y (loc) e f g h a b

Figure 4: Global (glob) and local (loc) alignment of two se-
quences x and y. y is with cross correspondences almost en-
tirely contained in x. Levenshtein-derived similarity sr(x, y) =
0; local alignment derived similarity sl(x, y) = 0.83.

The proposed local alignment is implemented by an adap-
tation of the dynamic programming Smith-Waterman algorithm
[30]. The alignment score matrix H spanned by the sequences
x and y with length m and n, respectively (cf. left half of Figure
5) is filled as follows:

H[i, 0] = 0, 0 ≤ i ≤ m

H[0, j] = 0, 0 ≤ j ≤ n

H[i, j] = max


0 : Lower bound

H[i − 1, j − 1] + s(xi, yj) : Match/Mismatch
maxk>0[H(i − k, j) + Wk] : Deletion
maxl>0[H(i, j − l) + Wl] : Insertion

 ,

1 ≤ i ≤ m, 1 ≤ j ≤ n

s(a, b) is a similarity function and Wi a gap scoring scheme
[31]. Both allow for a high flexibility in the alignment process.
For our purpose we restrict it to align only matching subse-
quences. Thus everything but zero-substitutions should result
in a cell value below or equal 0 so that this operation will not
contribute to the alignment. This is realized by defining Wi as
well as s(a, b) for a 6= b as zero-reset of the cell in question.
Only zero-substitutions (a == b) are rewarded by s(a, b) = 1.

All matching subsequences are then retrieved from this ma-
trix by the following iteration:

while max(H) ≥ t

– trace back from the cell containing this maximum the
path leading to it until a zero-cell is reached
– add the subsequence collected on this way to the set of
aligned sequences
– set all traversed cells to 0

This iteration is illustrated in Figure 5. The threshold t de-
fines the required minimum length of aligned subsequences. It
is set to 2 in this study. t = 1 would result in a complete align-
ment of any pair of permutations of x. The traversed cells need
to be set to 0 after each iteration step to prevent that one subse-
quence would be related to more than one alignment pair.

This approach allows for two more restrictions: to prevent
cross alignment not just the traversed cells [i, j] but for each
of these cells its entire row i and column j needs to be set to
0. Second, if only the longest common substring is of interest,
then the iteration is trivially to be stopped after the first step.

a b c d e f g
0 0 0 0 0 0 0 0

e 0 0 0 0 0 1 0 0
f 0 0 0 0 0 0 2 0
g 0 0 0 0 0 0 0 3
h 0 0 0 0 0 0 0 0
a 0 1 0 0 0 0 0 0
b 0 0 2 0 0 0 0 0

a b c d e f g
0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0
a 0 1 0 0 0 0 0 0
b 0 0 2 0 0 0 0 0

Figure 5: Iterative longest common subsequence (LCS) detec-
tion in local alignment. While the matrix maximum is above a
threshold, start at this maximum and trace back until a 0 cell is
reached and set all traversed cells to 0. This yields in the first
iteration step (left) the alignment of e f g, and in the second step
(right) the alignment of a b.

5. Results
In line with mentioned findings of previous studies and with
our hypothesis all similarity measures yield higher values in the
cooperative than in the competitive dialogs (two-sided Welch
tests, p < 0.001). This is shown in Figure 6.

6. Discussion
We introduced several similarity metrics from natural language
processing to measure entrainment in categorical intonation
data. The results indicate higher entrainment for both intona-
tion inventory as well as tone sequencing which is well in line
with finding on the parametric level. This we take as an in-
dication that the proposed metrics are of value in prosodic en-
trainment research. We argue that local alignment based sim-
ilarity is better suited for entrainment measurements than the
transformed standard Levenshtein distance since it cancels out



Figure 6: Similarities of global (g∗) and local (l∗) contour
class inventories in competitive (COMP, red) and cooperative
(COOP, green) dialogs. jac – Jaccard index, cos – cosine simi-
larity, ovl – overlap ratio, ali – local alignment.

sequence length differences and can cope with cross correspon-
dences. It is highly flexible due to several tuning parameters
given by the similarity function, the gap penalty scoring, the
score thresholding, and the procedure how to trace back the
alignment score matrix, so that it can be customized to the re-
spective research needs.

In this study the categorical intonation representation was
derived in a bottom-up way. Nevertheless, the measures can be
applied to any categorical data including expert-driven intona-
tion representations as ToBI annotations.
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