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Abstract  
Neutron- and high-energy synchrotron X-ray diffraction experiments have been performed on the (75-

x)SiO2-xB2O3-25Na2O x=5, 10, 15 and 20 mol% glasses. The structure factor has been measured over 

a broad momentum transfer range, between 0.4-22 Å-1. For data analyses and modeling the Fourier 

transformation and the RMC simulation techniques have been applied. The partial atomic pair 

correlation functions, the nearest neighbour distances, coordination number distributions and average 

coordination number values and three-particle bond angle distributions have been revealed. The Si-O 

network proved to be highly stable consisting of SiO4 tetrahedral units with characteristic distances at 

rSi-O=1.60 Å and rSi-Si=3.0(5) Å. The behaviour of network forming boron atoms proved to be more 

complex. The first neighbour B-O distances show two distinct values at 1.30 Å and a characteristic 

peak at 1.5(5) Å and, both trigonal BO3 and tetrahedral BO4 units are present. The relative abundance 

of BO4 and BO3 units depend on the boron content, and with increasing boron content the number of 

BO4 is decreasing, while BO3 is increasing. 
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1. Introduction 

Recently, several experiments have been reported on the study of structure and properties of sodium 

borosilicate glasses from fundamental and industrial point of view, due to the potential applicability 

for immobilizing of high-level radioactive wastes, like U-, Pu-, Th-oxides [1-7 and therein].  It has 

been found that the modifier effect of Na ions influences the ratio of nature of glass network formers 

Si, B and it is possible to archive a mixed glass network former effect. This effect is believed to have a 

structural origin, yet a precise understanding of it is still lacking because of the structural complexity 

of the sodium borosilicate glasses. The structure of borate glasses with alkali oxides has been 

extensively studied. A nuclear magnetic resonance (NMR) spectroscopy measurements show that the 

fraction of boron atoms tetrahedral coordinated to the total number of boron atoms varied with the 

modifier compositions [8-10]. By Raman spectroscopy, typical borate groups, such as boroxol, 

trigonal and tetrahedral units were found to exist in several borate compounds [11,12]. 

Recently, we have started to examined the atomic structure of a newly prepared three-component 

sodium-borosilicate system, using a combination of neutron diffraction (ND), high-energy X-ray 

diffraction (XRD) and reverse Monte Carlo (RMC) modelling that are capable of building three-

dimensional structure models and so yield a more detailed description of the atomic-scale glass 

structure. In our previous works we studied the binary sodium silicate glasses (70SiO2-30Na2O) [13], 

the binary sodium borate glasses (75B2O3-25Na2O) [14] and a five-component sodium borosilicate 

glass (55SiO2-25Na2O-10B2O3-5BaO-5ZrO2) [15]. Here, we apply the same approach to a ternary 
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system (75-x)SiO2-xB2O3-25Na2O with x=5-20 mol%. We studied these simplified glasses containing 

only three main oxides which will be the main components - simultaneously changing the boron and 

sodium concentration - of our matrix-glasses doped with special actinides and lanthanides. The special 

interest of this system lies in the different glass forming mechanism of SiO2 and B2O3. One of the main 

questions is the structural changes of the boron-oxygen network and the coordination around B atom 

induced by increasing B2O3 glass forming oxide. Nuclear Magnetic Resonance (NMR) spectroscopy 

was also applied to get complementary information on the boron environment. 

 

2. Experimental details 

 

2.1. Sample preparation 

Samples in a glass phase were prepared with composition (75-x)SiO2-xB2O3-25Na2O, where x= 5, 10, 

15, 20 mol% (hereafter referred as SiB5NaO, SiB10NaO, SiB15NaO and SiB20NaO, respectively) by 

conventional melt-quench technique using a high temperature electrical furnace with a platinum 

crucible under atmospheric conditions. The raw materials used were all of p.a. grade, SiO2, Na2O 

supplied by VWR International Co. and B2O3 by Sigma-Aldrich Co.. B2O3 was isotopically enriched 

in 11B (99.6%, determined by Inductively Coupled Plasma Mass Spectroscopy technique [16]) in order 

to reduce the influence of the high neutron absorption of 10B present in natural boron. The specimens 

were homogenized, and they are heated in a LAC high-temperature furnace at 1250ºC for 40 min, and 

then melted in a range 1400-1450ºC, for about 1.5h.  The melt was stirred every half hour for proper 

mixing.  The melt was cooled to 1250 ºC pouring temperature, and kept there for 30 min. The melt 

was quickly poured on a stainless steel plate. The glasses thus obtained were found to be transparent. 

Powder samples were prepared by using an agate mortar. The samples proved to be fully amorphous, 

no visible inhomogeneities or crystalline phase was detected. For borosilicate glasses often it is a 

problem that the glass is hydrolytic, and with time it becomes humid. As far as ND and PGAA 

methods are sensitive experimental tools for hydrogen detection, we have regularly checked the 

amorphous and the hydrolytic state of the glasses. The glasses possess good chemical and hydrolytic 

stability. The elemental composition was verified by Prompt Gamma Activation Analysis [17, 18], the 

nominal and the measured values are the same within ~1%.  

 

2.2. Nuclear Magnetic Resonance experiments and results 

Nuclear Magnetic Resonance (NMR) experiments were recorded on the 600 MHz Varian NMR 

System equipped with the 3.2 MAS probe installed in the Slovenian NMR Centre in Ljubljana, 

Slovenia [19]. Spectra were acquired with single pulse sequence using non-selective 0.6 μs pulse and 

XiX decoupling during acquisition. Relaxation delay was 10 s and the sample rotation frequency was 

20 kHz. 200 scans were accumulated during each measurement. 

Figure 1 displays the measured 11B NMR spectra. Two characteristic contributions have been detected: 

peak positioned around 0 ppm and a broader quadrupolar line between 5 and 20 ppm. Based on the 

literature ([20] and [21]) we assigned these two contributions to [4]B(BO4) and [3]B(BO3) structural 

units, as indicated in Figure 1. The peak intensities clearly show concentration dependence. The 

intensity of the [3]B peak increases with increasing boron content while the [4]B peak decreases. The 

maximum increase/decrease of the either peak’s area was about 15% as determined by integration of 

the area under the two contributions. Detailed analysis of the NMR experiment is underway, and will 

be published elsewhere. 

 

 



 
Figure 1. 11B NMR spectra of glasses: SiB5NaO (black circle), SiB10NaO (red triangle), 

SiB15NaO (green square) and SiB20NaO (blue crosses). 

 

2.3. Neutron and X-ray diffraction experiments 

Diffraction experiments are a powerful approach claiming to yield unambiguous information about the 

local atomic structure in disordered materials.  

Neutron diffraction measurements were performed in a relatively broad momentum transfer range, Q, 

combining the data measured by the 2-axis 'PSD' monochromatic neutron diffractometer (0=1.068 Å; 

Q=0.45-9.8 Å-1) [22] at the 10 MW Budapest research reactor and by the ‘7C2’ diffractometer at the 

LLB-CEA-Saclay (0=0.726 Å) [23]. The powder specimens of about 3-6 g/each were filled in thin 

walled cylindrical vanadium sample holder of 8 and 6 mm diameter for the two neutron experiments, 

respectively. Data were corrected for detector efficiency, background scattering and absorption effects.  

The structure factors, S(Q)s were evaluated from the raw experimental data, using the programme 

packages available at the two facilities. As far as, the statistics of the data is better for the PSD at low-

Q values (below ~4 Å-1), while the statistics of 7C2 data is better above 8 Å-1, therefore the S(Q) data 

were combined by normalizing the PSD data to the 7C2 in the 4-8  Å-1 interval by least square method. 

The agreement of the corresponding S(Q) values was within 1% in the overlapping Q-range. The 

average values of the two spectra were used for further data treatment. For Q<4 Å-1 the PSD data, 

only, and for Q>8 Å-1 the 7C2 data were used. The S(Q) data were obtained with a good signal-to-

noise ratio up to  

Qmax=16 Å-1. Diffraction experiments for high-Q values are necessary to obtain fine r-space resolution 

of the atomic distribution function analyses.  

Figure 2a shows the ND experimental S(Q) data for the investigated samples together with the results 

of RMC simulation (details of the RMC modelling will be discussed in the next section). The overall 

run of the ND experimental curves is very similar for the investigated samples, only slight differences 

may be observed, especially at low-Q values for the intensive first peak at 1.6 Å-1. The next intensive 

peaks are at 3.05 Å-1 and at 5.5 Å-1 for all compositions. Oscillations were measured up to high-Q 

values, which is a fingerprint for well-defined short-range order.  

X-ray diffraction studies were performed at the beam line BW5 at Hasylab, Desy [24]. The fine 

powdered samples were filled into special quartz capillary tubes of 2 mm in diameter (wall thickness 

of ~0.02 mm) and measured at room temperature. The energy of the radiation was 109.5 keV 

(λ0=0.113 Å). The high-energy synchrotron X-ray radiation makes it possible to reach diffraction data 

up to high-Q values.  In this study the XRD structure factors were obtained up to 20-22 Å-1, for higher 

Q-values the experimental data proved to be noisy. Figure 2b shows the S(Q) data obtained from XRD 

experiments for the investigated samples together with the results of RMC simulation. It is obvious, 

that the XRD spectra are very different from the ND ones. The main difference is that the first 

intensive peak is at 2.1 Å-1, a small peak at 3.1 Å-1, a broad peak at 5 Å-1 and at 8.6 Å-1.  



  

Figure 2. a) Neutron diffraction and b) X-ray diffraction total structure factors for (75-

x)SiO2-xB2O3-25Na2O glasses: x=5 (black circle), x=10 (red triangle), x=15 (green 

square), x=10 (blue cross) glasses and RMC fits (solid line).  (The curves are shifted 

vertically by 0.6 for clarity) 

The differences in the overall run of the ND and XRD spectra are the consequence of the different 

values of the weighting factors, wij, of the partial structure factors, Sij(Q), defined as: 
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where ci, bi and fi are the molar fraction, coherent neutron scattering length and the atomic scattering 

factor for atoms of type i, respectively. The dependency of fi on the scattering vector Q and the X-ray 

energy leads to a convolution in real space between the Fourier transforms of the weighting factors 

and partial pair correlation functions. The neutron scattering amplitude of an element is constant in the 

entire Q-range [25], while the X-ray scattering amplitude is Q-dependent [26]. Tables 1 and 2 shows 

the corresponding weighting factors, wij for the two radiations, ND

ijw  and )(QwXRD

ij
 at Q=0.87 Å-1.  

 

Table 1. Neutron diffraction weighting factors of the partial interatomic correlations in sodium 

borosilicate glasses.  

Atom 

pairs 

ND weighting factor (%) 

SiB5NaO SiB10NaO SiB15NaO SiB20NaO 

Si-O 22.09 18.63 15.56 13.46 

B-O 8.02 13.77 18.94 22.53 

O-O 42.30 40.59 39.10 38.10 

Na-O 15.36 13.83 12.35 11.25 

Si-Si 2.88 2.13 1.55 1.18 

Si-Na 4.01 3.17 2.45 1.98 

Si-B 2.09 3.16 3.77 3.98 

B-B 0.38 1.16 2.29 3.33 

B-Na 1.45 2.34 2.99 3.32 

Na-Na 1.39 1.17 0.97 0.83 

 

 

 



Table 2. X-ray diffraction weighting factors (at Q=0.87 Å-1) of the partial interatomic correlations in 

sodium borosilicate glasses.  

Atom 

pairs 

XRD weighting factor (%)  

SiB5NaO SiB10NaO SiB15NaO SiB20NaO 

Si-O 29.27 27.30 25.23 23.53 

B-O 2.30 4.36 6.62 8.51 

O-O 23.52 24.99 26.60 27.96 

Na-O 18.39 18.34 18.10 17.79 

Si-Si 9.10 7.46 5.98 4.95 

Si-Na 11.44 10.02 8.58 7.49 

Si-B 1.43 2.38 3.14 3.58 

B-B 0.06 0.19 0.41 0.65 

B-Na 0.90 1.60 2.25 2.71 

Na-Na 3.59 3.36 3.08 2.83 

 

It can be seen that for the Si-O weights we get significant values for both radiations. The weights of B-

centred partials are more significant in neutron experiment. While the Na-O weights are higher in X-

ray data than in neutron data. The O-O contribution has a dominant weight in the neutron experiment, 

in contrast to the X-ray case. Taking into consideration all these characteristics, we can conclude that 

the two radiations give complementary information and, both type of measurements are needed to 

obtain a real structure for the investigated samples.  

 

3. Reverse Monte Carlo modelling and results 

Reverse Monte Carlo (RMC) method was used to improve the analysis of the neutron and X-ray 

experimental spectra’s [27]. RMC simulations are routinely used in to extract 3-dimensional atomic 

models in the literature quantitative agreement with the experimental data. The RMC algorithm 

represents a non-linear fit of the pair distribution function of a model structure to the experimental 

data, which unavoidably contain statistical and even in some cases leftover systematic errors. 

Therefore, the range of the possible structural models, created by the RMC simulation, will depend on 

the information content of the experimental data. During RMC process, the partial structure factors, 

Sij(Q) is calculated from the pair distribution functions gij(r) via a Fourier transform,  
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where rmax is the half edge-length of the simulation box of the RMC calculation. The actual computer 

configuration is modified by moving the atoms randomly until the calculated S(Q) (see eqs.(1)-(3)) 

agrees with the experimental data within the experimental error. Moves are only accepted if they are in 

accordance with certain constraints (see below those ones which were applied in this work).  

The parameters of the RMC calculations were as follows. For the starting configuration we used the 

results obtained for binary SiO2-Na2O [13] and B2O3-Na2O [14] glasses. The simulation box contained 

10,000 atoms with density 0.079, 0.078, 0.077 and 0.075 atoms·Å-3 and half-box length rmax=25.10, 

25.21, 25.32 and 25.54 Å for the SiB5NaO, SiB10NaO, SiB15NaO and SiB20NaO glasses, 

respectively. Two types of constraints were used, the minimum interatomic (cut-off) distances and 

coordination constraints. We applied two types of constrains, a positive and a negative coordination 

constrains. The Si atoms were constrained to be coordinated by 4 O atoms as a positive constrain, and 

a negative constrains that not coordinated 1 and/or 2 O atoms. While B atoms were constrained to be 

not coordinated both by 1 and 2 O atoms. The RMC technique minimizes the squared difference 

between the experimental S(Q) and the calculated one by moving the atoms randomly. In the present 

study both neutron and X-ray diffraction data were used simultaneously in the RMC calculations. The 

converged calculation gave an excellent fit of the experimental structure factors, as it is shown in 

Figure 2. The final set of the cut-off distances are tabulated in Table 3. 

 

 

 



Table 3. Cut-off distances (Å) for atom pairs used in the final RMC run 

Atom pairs Cut-off distance (Å) 

SiB5NaO SiB10NaO SiB15NaO SiB20NaO 

Si-O 1.55 1.55 1.55 1.55 

B-O 1.2 1.3 1.3 1.3 

Na-O 2.22 2.22 2.2 2.2 

O-O 2.33 2.33 2.33 2.34 

Si-Si 2.93 2.93 2.94 2.93 

Si-Na 2.8 2.8 2.8 2.8 

Si-B 2.6 2.6 2.6 2.6 

Na-B 2.4 2.4 2.4 2.4 

B-B 2.54 2.54 2.56 2.53 

Na-Na 2.8 2.8 2.8 2.8 

 

Information about the local atomic structure in glassy materials allows calculations of all the partial 

structure factors and partial pair distribution functions. The partial structure factors Si-O(Q) of glasses 

determined by applying the RMC simulation technique are displayed in Fig. 3.  

  

  
Figure 3: Partial structure factors for the SiB5NaO (black circle), SiB10NaO (red triangle), 

SiB15NaO (green square), SiB20NaO (blue crosses) glasses obtained by RMC modelling: a) Si-O; 

b) B-O; c) Na-O and d) O-O atom pairs. 

 

The results for several partial atomic pair correlations, gij(r) obtained from the RMC simulation are 

displayed in Fig. 4, while the interatomic distances are gathered in Table 4. The gij(r) functions reflects 

the changes in the dependence of B2O3 concentration remarkably well.  

 



  

  

  
Figure 4: Partial atom pair correlation functions for the SiB5NaO (black circle), SiB10NaO 

(red triangle), SiB15NaO (green square), SiB20NaO (blue crosses) glasses obtained by RMC 

modelling: a) Si-O; b) B-O; c) Na-O; d) Si-Si, e) B-B and f) O-O atom pairs. The curves are 

shifted vertically by 1.0 and 1.9 for clarity. 

Next we present our results for those atomic pair correlation functions, which have relatively high 

weighting factor. 

 

Table 4. Interatomic distances, rij (Å) in sodium borosilicate glasses obtained from RMC simulation. 

The error bars are estimated from the reproducibility of various RMC runs. 

Atom 

pairs 

Interatomic distances, rij (Å) 

SiB5NaO SiB10NaO SiB15NaO SiB20NaO 

Si-O 1.60±0.01 1.60±0.01 1.60±0.01 1.60±0.01 

B-O 1.30/1.55±0.05 1.30/1.55±0.05 1.30/1.50±0.05 1.30/1.50±0.05 

Na-O 2.25/2.65±0.05 2.25/2.65±0.05 2.25/2.65±0.05 2.25/2.65±0.05 

O-O 2.45/2.65±0.05 2.40/2.60±0.05 2.40/2.60±0.05 2.40/2.60±0.05 

Si-Si 3.0±0.05 3.0±0.05 3.05±0.05 3.05±0.05 

B-B 2.75±0.1 2.65±0.1 2.65±0.1 2.6±0.1 

 

The first peak of gSi-O(r) is a narrow and symmetric one, centred at 1.60 Å, and for all investigated 

samples they are rather similar. Similarly, in to the gSi-Si(r) we obtained peak at position 3.0 (and 3.05) 

Å for all compositions. This means that the Si-O network is highly stable, and its main characteristic 

features don’t change with the increasing amount of B2O3 content.  



The first peak of gB-O(r) splits into two sub-peaks, with peak positions at 1.30 Å and 1.5(5) Å.  The 

relative intensities of the sub-peaks depend on the boron concentration. With increasing B2O3 

concentration the intensity of the first sub-peak increases, while the second peak decreases. The 

position of the sub-peaks is constant within limit of error. The gB-B(r) shows a characteristic 

distribution, with a first peak centred at 2.65 and 2.75 Å. 

The gNa-O(r) pair correlation function shows a double peak at 2.25 Å and 2.65 Å. It can be seen that the 

sub-peak intensity changes with changing boron concentration, for the low boron containing sample, 

the peaks have the same intensity while the contribution of the sub-peak at higher Q-value slightly 

decreases as the B2O3 concentration is increased. This is so even that the concentration of Na2O is the 

same for all samples.  

The gO-O(r) pair correlation functions show very similar run for all samples. A broad distribution 

appears with two sub-peaks at 2.4 Å and 2.65 Å. The intensity ratio of the two peaks depends on the 

SiO2/B2O3 content, the intensity of the first peak increases, while the second decreases with increasing 

boron content.  

It is a great feature of the RMC method that the coordination number CNij
 can be obtained from the 

configurations. From the partial pair distribution functions we calculated the number of nearest 

neighbours for Si, B, Na and O atoms using the corresponding bond cut-off distances for Si-O, B-O, 

Na-O and O-O. It is necessary to specify a range in r over which atoms are counted as neighbours. 

This can be understanding of as defining coordination shells. Introducing r1 and r2, where r1 and r2 are 

the positions of minimum values on the lower and upper side of the corresponding peak. In Table 5, 

we present the average coordination numbers, and these results are summarized in Fig. 5.  

 

  

  
Figure 5. Coordination number distributions for SiB5NaO (black), SiB10NaO (red), SiB15NaO 

(green), SiB20NaO (blue) glasses from RMC modelling: a) Si-O; b) B-O; c) Na-O and d) O-O atom 

pairs. 

 

 

 

 

 

 

 

 



Table 5. Average coordination numbers, CNij calculated from RMC simulation. In brackets the 

interval is indicated, where the actual coordination number was calculated. The error is ~5% for Si-O 

and B-O and ~10% for Na-O and O-O (except of SiB5NaO, where the error is ~10% for Si-O and B-O 

and ~10% for O-O). Relative abundance (in %) were calculated from RMC configuration. 

 

Atom pairs Coordination number, CNij (atom) 

 

SiB5NaO SiB10NaO SiB15NaO SiB20NaO 

Si-O 3.6 (r1:1.5-r2:1.9) 3.95(r1:1.5- r2:1.95) 3.9 (r1:1.5- r2:1.8) 3.9 (r1:1.5- r2:2.0) 

2-fold O coordination 8 0.5 2.6 2 

3-fold O coordination 20.3 1.7 2.3 2.6 

4-fold O coordination 71.7 97.8 95.1 95.4 

B-O 3.45 (r1:1.3- r2:1.8) 3.5 (r1:1.25- r2:1.85) 3.35 (r1:1.25- r2:1.85) 3.1 (r1:1.25- r2:1.8) 

2-fold O coordination 1.7 0.2 1.5 1.8 

3-fold O coordination 44.6 54.8 62.3 85.1 

4-fold O coordination 52.7 42.1 36.2 13.1 

5-fold O coordination 1 2.9 - - 

Na-O 5.3 (r1:2.15- r2:2.85) 4.3 (r1:2.15- r2:2.9) 4.0 (r1:2.15- r2:2.85) 3.85 (r1:2.15- r2:2.85) 

2-fold O coordination 0.5 6.6 11.9 14.8 

3-fold O coordination 4.6 18.5 23.5 24.5 

4-fold O coordination 18.1 30.3 31.8 30.5 

5-fold O coordination 32.6 28.2 20.9 21.4 

6-fold O coordination 30.2 12.7 10.4 7.2 

7-fold O coordination 12.3 3.1 1.1 1.3 

8-fold O coordination 1.7 0.6 0.4 0.3 

O-O 5.55 (r1:2.3- r2:3.0) 5.85 (r1:2.35- r2:3.1) 5.65 (r1:2.3- r2:3.0) 5.5 (r1:2.3- r2:3.0) 

2-fold O coordination 0.3 0.6 0.5 0.9 

3-fold O coordination 3.2 3.1 3.7 5.6 

4-fold O coordination 12.9 10.4 12.2 14.9 

5-fold O coordination 29.5 20.6 25.4 27.4 

6-fold O coordination 34.7 36.1 34.5 30.5 

7-fold O coordination 16.1 22.3 18.5 15.9 

8-fold O coordination 3.3 7.8 5.2 4.8 

 

It can be seen that the average oxygen coordination number around Si atoms is very close to 4 atoms, 

as proposed by the formation of tetrahedral units in the network, however, with increasing boron 

content the Si-O coordination number, CNSi-O slightly decreases from 3.95 to 3.9 atoms (except of 

SiB5NaO) indicating a little bit distorted but close of ideal tetrahedral surrounding. This may be 

caused by the formation of mixed Si-O-B chains, where boron atoms are coordinated by both 3 and 4 

oxygen atoms (see Fig. 5/b). The average CNB-O coordination number decreases from 3.5 to 3.1 

(except of SiB5NaO) with increasing boron content. This suggests that the glassy network consists of 

trigonal and tetrahedral boron units. The Na-O coordination number continuously decreases with 

increasing B2O3 concentration, from 5.3 to 3.85. The O-O average coordination number is 5.6 atoms, 

and slightly decreases with increasing boron concentration.  

We have calculated the three-particle bond-angle distributions using the final atomic configuration of 

the RMC algorithm, plotted both as the function of cos(Θ) (scale below) and Θ (upper scale), where Θ 

represents the actual bond angle. Figure 6 shows the distributions for the network former atoms: Si-O-

Si, O-Si-O, B-O-Si, B-O-B, O-B-O and O-O-O.  

 



  

  

  

 

Figure 6. Three-particle bond-angle distributions obtained from RMC simulation for SiB5NaO 

(black circle), SiB10NaO (red triangle), SiB15NaO (green square), SiB20NaO (blue cross): a) Si-

O-Si; b) O-Si-O; c) B-O-Si; d) B-O-B; e) O-B-O; f) O-O-O. 

 

For the Si-O-Si and O-Si-O the peak positions are at 147±3° and 107±5°, respectively, which are very 

close values to the ideal tetrahedral configuration. Vitreous B2O3 forms glass which contains only BO3 

networks made up from boroxol groups and BO3 triangles. The addition of a modifier initially 

converts BO3 triangles into BO4 tetrahedra, increasing coordination number and strengthens the 

network. A boron atom with coordination number 4 in the network allows the possibility to establish a 

different kind of superstructural units to the boroxol group. This superstructural unit contains BO4, 

beside BO3 as it is typical found in glasses. The broad distribution of B-O-B bonding angles are quite 

asymmetric show distribution, the average angles being 121±5° and 149±5°. This broad distribution 

suggest that both 3-fold B atoms and 4-fold B atom are present. This is a sign of possible formation of 

new superstructural units. The O-B-O bond angles distribution shows a peak at 106±5°, similarly 

characteristic and close to the O-Si-O distribution, however, a shifting can be observed with the 

increase of boron concentration up to the 117±5°, implying considerable distortion in BO3 planar 

geometry. The B-O-Si distribution show a peak at 96±7° at lower boron concentration, this disappear 

at SiB15NaO and SiB20NaO samples, and they shows a characteristic distribution at 124±7°. The O-

O-O bond angle distribution show peaks centred at 60±1°, as it is illustrated in Fig.6/f. 



 

4. Discussion 

The network structure of binary SiO2-Na2O [13 and references therein] and B2O3-Na2O [14 and 

therein] glasses is very different, therefore the structural characterization of the ternary SiO2-B2O3-

Na2O glass is a big challenge. We performed RMC modeling on neutron and X-ray data. The partial 

and total structure factors together with the experimental data and the partial-pair correlation 

functions, coordination number distributions and three particle bond angle distributions were obtained. 

Figures 3 and 4 compares the partial structure factors and the partial pair correlation functions for the 

four glasses. Obviously, the main features are very similar to each other, however, the concentration 

dependence may be observed. 

In our present study, we were found that the Si atoms are 4-fold oxygen coordinated forming SiO4 

tetrahedral units, similarly to the basic network structure of binary SiO2-Na2O glass [13]. The Si-O 

distribution shows characteristic peak at 1.60 Å for all four samples (see Fig. 4/a and Table 4), which 

is slightly shorter than the first neighbour distance at 1.615 Å in v-SiO2 [28], or 1.62 Å in SiO2-Na2O 

[13], however, agrees well with the distance 1.60 Å obtained for the multi-component sodium 

borosilicate glasses [15]. The tetrahedral Si environment is substantiated by the straight Si-O-Si bond 

angle at 147º and the O-Si-O with a stable 107º peak for all four samples, similarly as in almost all 

silicate materials [29, 30, 31]. 

The neighbourhood of boron atoms proved to be rather complex. We have revealed both 3-fold (BO3) 

and 4-fold (BO4) oxygen coordination (see Fig. 5/b) from RMC modelling, and two distinct first 

neighbour distance at 1.30 Å and 1.5(5) Å (see Table 4). The relative abundance of BO3 and BO4 units 

compared to the total number of B-O neighbours depend on the B2O3 content. With increasing boron 

content the fraction of 4-coordinated boron decreases with simultaneously increasing of 3-coordinated 

fraction. Finally, for the sample with x=20 mol% most of the boron atoms, 85% are 3-fold 

coordinated. These results are in agreement with NMR investigations, as well [20, 32]. With 

increasing B2O3 content (x=5, 10, 15 and 20 mol%) the number of BO4 units decreases (52.7, 42.1, 

36.2 and 13.1 %), while the number of BO3 increases (44.6, 54.8, 62.3 and 85.1 %), and consequently 

the average CNB-O decreases, i.e. 3.4, 3.5, 3.35 and 3.1 atoms, respectively. With increasing boron 

content, -parallel with the increasing of the number of BO3 units-, the intensity of the gB-O(r) 

correlation function centred at 1.30 Å also increases. Consequently, the first neighbour distance at 1.30 

Å can mainly be attributed to the 3-fold oxygen coordinated boron atoms, however, the 4-fold oxygen 

coordinated boron atoms also contribute to the formation of this gB-O(r) first sub-peak as well, in fairly 

good agreement with the result obtained from model calculations for a similar composition 55.3SiO2-

14.71B2O3-29.99Na2O (dB-O=1.44 Å) in ref. [33] and binary samples Na2O-B2O3 [34] see Table 4. 

Regarding the B environment, the first asymmetrical peak suggests that well-defined BO3 and BO4 

units are present in the glass structure, whereas the second symmetrical peak suggests the presence of 

the intermediate units between BO3 and BO4 [35]. At high boron concentration we find that the O-B-O 

angle is distributed around 117° near 120°, which indicates a distorted BO3 planar geometry, in fairly 

good agreement with MD simulation results obtained for boron trioxide [36, 34]. Based on the above, 

the following conclusions can be drawn: i) the Si-O and B-O correlations are close to each other, ii) 

the Si-O (close to 4) and B-O ( 3 and 4) coordination number overlap with each other, iii) the bond 

angle distribution connected to B and Si distribution correlates with the characteristic trigonal and 

tetrahedral unit formations. This together here indicates that the [4]Si-O-[4]B and [4]Si-O-[3]B mixed 

linkages are formed, similarly, as we have found for multi-component sodium borosilicate glasses 

loaded with BaO and ZrO [15].  

Based on our previous works [14,15] and the results presented here we can conclude that these 

alkaline borosilicate glasses contain relatively regular triangle BO3 and tetrahedral BO4 units. The 

presence of such regular SiO4, BO3 and BO4 units implies a similarity between the short-range 

structures in these glasses.  

Na2O act as a network modifier, promote the conversation of some BO3 units to BO4 units. 

Unfortunately gNa-O(r) and gO-O(r) overlap with each other, thus, the results have to be handled with 

care. The sodium coordination number for the simulated glasses decreases with x (Table 6). The 

relatively high coordination number and atomic distances connected to Na-O are in agreement with 

results obtained for similar compositions of Na-B-X-O structures [37,38]. Sodium atoms are network 

modifiers only and do not form real bond to other atoms in the glass network mixed linkages. 



 

6. Conclusions 

Neutron- and high-energy synchrotron X-ray diffraction experiments were performed on the  

(75-x)SiO2-xB2O3-25Na2O x=5, 10, 15 and 20 mol% glasses. The structure factor has been measured 

over a broad momentum transfer range, between 0.4-22 Å-1, which made fine r-space resolution 

possible for real space analysis. For data analyses and modeling the Fourier transformation and the 

RMC simulation techniques were applied. The partial atomic pair correlation functions, the nearest 

neighbour distances, coordination number distributions and average coordination number values and 

three-particle bond angle distributions have been revealed. The Si-O network proved to be highly 

stable consisting of SiO4 tetrahedral units with characteristic distances at rSi-O=1.60 Å and rSi-

Si=3.0(5) Å independently from the SiO2/B2O3 content with constant Na2O content. The behaviour of 

network forming boron atoms proved to be more complex. The first neighbour B-O distances show 

two distinct values at 1.3 Å and 1.5(5) Å and, both trigonal BO3 and tetrahedral BO4 units are present. 

The relative abundance of BO4 and BO3 units depend on the boron content, in such a way that with 

increasing boron content the number of BO4 is decreasing, while BO3 is increasing. From the analyses 

of the obtained structural parameters we have concluded that the glassy network is formed by trigonal 

BO3 and tetrahedral BO4, SiO4 groups, forming mixed [4]Si-O-[3],[4]B bond-linkages. Na2O proved to be 

a network modifier as it is often reported in the literature for similar systems. 

These results help to understand the basic network structure of the newly prepared and studied SiO2-

B2O3-Na2O-BaO-ZrO2-UO3-CeO2-Nd2O3 glasses. 
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