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Abstract—Antiangiogenic inhibitors offer a promising new
treatment modality in oncology. However, the optimal admin-
istration regime is often not well-established, despite the fact
that it might have substantial impact on the outcome. The
aim of the present study was to investigate this issue. Eight
weeks old male C57Bl/6 mice were implanted with C38 colon
adenocarcinoma, and were given either daily (n = 9) or single
(n = 5) dose of bevacizumab; both receiving the same dose the
only difference being the administration pattern. Outcome was
measured by tracking tumor volume; both caliper and magnetic
resonance imaging was employed. Longitudinal growth curves
were modelled with mixed-effects models (with correction for
autocorrelation and heteroscedasticity, where necessary) to infer
on population-level. Several different growth models (exponential,
logistic, Gompertz) were applied and compared. Results show
that the estimation of the exponential model is very reliable, but it
prevents extrapolation in time. Nevertheless, it clearly established
the advantage of the continuous regime.

I. INTRODUCTION

In the clinical practice, there are general protocols for cancer
therapies (like chemotherapy, radiotherapy); however, these
treatments have a lot of side effects and tumor cells can
become resistant to chemotherapy drugs, which makes the
usage of new drugs necessary and from the other side increases
the treatment cost. Using control engineering methodologies
(model identification and controller design), the protocols
could become model-based. Model-based design allows to find
more effective solutions in healing and individual treatment for
the patient.

Tumor growth dynamics can be modeled without therapy
and under a certain cancer treatment as well. A promising
targeted molecular therapy [1] arose in the last decade is
antiangiogenic therapy [2], which aims to stop tumor an-
giogenesis (i.e. forming new blood vessels), as without a
blood supply, tumors cannot grow. A clinically validated tumor
growth model under angiogenic inhibition was developed at
Harvard University in 1999 by Hahnfeldt et al. [3]. The
model describes that reduction of tumor volume based on
endothelial reduction. The Hahnfeldt model and its simpli-
fied form have been used by most researchers working in
the field of antiangiogenic control to design controller and

perform simulations. Nevertheless, the Hahnfeldt model has
some limitations according to the newest medical research
in the field of angiogenic tumor growth [4]. We carried out
specific animal experiments to investigate tumor growth under
angiogenic inhibition.

In particular, the aim of our study was to determine whether
the continuous administration of an antiangiogenic inhibitor
offers advantages over the more conservative (higher dose –
less frequent administration) approach.

II. MATERIAL AND METHODS

A. Experimental Settings

1) Mouse and cancer type: 16 eight weeks old male
C57Bl/6 mice were implanted with C38 colon adenocarci-
noma. A piece of tumor was transplanted subcutaneously in
the recipient animal on the 1st day of the experiment.

2) Treatment: The treatment was carried out with beva-
cizumab which is an exogenous angiogenic drug inhibiting the
biological activity of human VEGF [5]. Mice were divided into
two groups. Control group (5 mice) received bevacizumab in
one dose for an 18-day treatment according to the protocol
(200 µ g bevacizumab with 455 µl 0.9% NaCl solution)
intraperitoneally on the -1st day and on the 17th day. Treat-
ment group (9 mice) received one-tenth dose of control dose
intraperitoneally spread over 18 days (1.11 µg bevacizumab
with 45 µl 0.9% NaCl solution) every day from the -1st day
of the experiment. The treatment period was 20 days.

3) Tumor volume measurement: Tumor volume was mea-
sured with digital caliper and small animal MRI as well.
Using digital caliper, two tumor diameters (width, length)
can be measured. It can be carried out in vivo during the
experiment due to the subcutaneous localization of the tumor.
Tumor volume (and the third diameter) has to be approxi-
mated, assuming a certain shape for the tumor; due to this,
we obtained three different volume measurements based on
the caliper measurements, differing according to the applied
model. Measurements with caliper were done on the 0th, 2nd,
4th, 6th, 8th, 10th, 12th, 14th, 16th, 18th and 19th days of the
experiment.
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Fig. 1. Measured tumor volumes (with all measurement methods).

Small animal MRI provieds more precise volume measure-
ment. Measurements with small animal MRI were done on the
0th, 4th, 7th, 11th, 14th and 19th days of the experiment.

The measured tumor volumes (with all measurement meth-
ods) are shown on Figure 1.

4) Sacrificing mice: All surgery and sacrifice were per-
formed under sodium pentobarbital anaesthesia (Nembutal,
70 mg/kg), and all efforts were made to minimize suffering.
Mice were monitored daily. Mice were euthanized by CO2

inhalation if tumors contributed to a gain of >20% in body
weight compared to controls at the same time point. Mice were
humanely sacrificed using cervical dislocation.

B. Tumor growth models

While the growth of tumors involves many complicated bi-
ological mechanisms, their overall nature (in terms of weight,
size or volume) often follows surprisingly simple patterns.
This was recognized decades ago – in particular after the
seminal paper of Laird in 1964 [6] – and has been utilized
since then both to understand the biological foundations and
to provide modelling, for instance in preclinical studies of drug
candidates using xenograft tumors implanted in test animals
(even though it is known to have certain limitations).

These models might be purely empirical, like the Gom-
pertzian growth discussed by Laird, or they might in-
volve considerations about the underlying biological mech-
anisms (mechanistic and semi-mechanistic models), like the
exponential-linear model by Simeoni [7].

In the present study, empirical models will be applied. While
some model (e.g. [8]) directly incorporates the effect of drugs

(making them at least semi-mechanistic), the present study
will assume that the same – empirical – growth model applies
in both the control and the treated group; the drug exerts
its effects by modifying the parameters of the curve (see
Subsection II-C for details).

1) Exponential growth (inital phase, no plateau): One of
the earliest observations about tumor growth modeling was
that in many case, the growth – both in vivo and in vitro –
exhibits exponential nature in its earliest period. Biologically,
it correspends to the phase where the resource-limitation is
not apparent, and in that sense the tumor can ”freely” grow,
limited only by its own size which defines the pool of cells
that can divide.

Due to this, the growth is governed by the following
ordinary differential equation:

dV (t)

dt
= aV (t); (1)

the solution of which is the well-known exponential growth
formula:

V (t) = V0e
at, (2)

where V (t) tumor volume (in this case, but can be any size
generally), with V0 = V (0).

Clearly, this model is only appropriate in the early phase
of tumor growth. In particular, it always leads to an infinite
growth, the reason being that the effect of the appearence of
growth-limiting factors is not accounted for.

As our measurements were made in that early period, even
the exponential growth provides adequate fit at first glance.
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Nevertheless, these models are still problematic, even in this
case, simply because they offer no possibility to extrapolate
in time. Even if the plateau is not yet apparent, we might try
to model it using the pre-plateau information – this can not
be achieved with exponential model.

Thus, the exponential model will only be used as a reference
later on.

2) Sigmoid growth (plateau accounted for): To solve
the abovementioned problems, typically sigmoid-like growth
curves are assumed. These are able to capture the asymptotical
phase, and thus the plateau can be estimated; theoretically even
before it starts to appear (albeit with limited reliability for

Two popular from them will be used now, for a review of
other possibilities, see [9]–[11].

Note that many such model is a special case of the dif-
ferential equation (often called the generalized two-parameter
model)

dV (t)

dt
= aV (t)α − bV (t)β , (3)

with appropriate choice of the a, α, b, β parameters. (Actually
even the exponential model is a special case with a = 1,
α = 1, b = 0.)

a) Gompertz growth: One of the earliest – and perhaps
the most widely used – of the sigmoid models was the
Gompertz growth, introduced in 1964 by Laird [6]. It obeys
the following differential equation:

dV (t)

dt
= aV (t)− bV (t) lnV (t), (4)

giving rise to the Gompertz growth curve:

V (t) = e
a
b −( a

b −lnV0)e
−bt

. (5)

(This is also a limiting case of Equation 3 with appropriate
definitions [12].)

One well-known property of Gompertz growth is that initial
rising period has a higher derivative than the period before
reaching the asymptote, i.e. it is not symmetric in the two
transitions.

b) Logictic growth: The logistic growth is another well-
known model; in contrast to the Gompertz curve, it is sym-
metric in both transitions.

It follows the following differential equation:

dV (t)

dt
= aV (t)− bV (t)2 (6)

giving rise to the logistic growth curve:

V (t) =
a/b

1− (1− a
bV0

)e−at
. (7)

(This is a special case of Equation 3 with α = 1 and β = 2.)

C. Statistical tools

First, individual curves were fitted for each test animal
(using each measurement method) with all three models.
Fitting was performed with nonlinear least squares (NLS)
approach using the Gauss-Newton algorithm [13], [14].

This provides the best fit as it estimates individual pa-
rameters for all subject and measurement method, but this is
also the very reason that prevents generalization: all fits are
isolated, therefore it is not possible to infer on a higher level
(i.e. the population of parameters). As we are now primarily
interested not in these particular subjects, but rather on the
population from which they are coming, a model will be used
which explicitly incorporates this aspect: the mixed effects
model [15], [16].

These models assume that parameters are not fixed values,
but rather realizations of a random variable, most typically
normal random variable, characterized by mean and variance
(and possible covariance). Thus the estimation focuses in these
parameters.

To formalize: denoting the tumor volume of the ith subject
at measurement number j with Vij we have

Vij = f(φij , tij) + εij , εij ∼ N (0, σ2), (8)

where f represent the nonlinear functional form – exponential,
Gompertz or logistic in this case – of time (tij being the
time when the jthe measurement was made on the ith subject)
determined the parameters φij .

Now we assume that these parameters depend on whether
the test animal belongs to the treated or to the control group
and on the measurement method, that is

φij = (β0 + bi) + βGroupGroupi + βMeasMethMeasMethi,
(9)

where bi ∼ N (0,ψ). (In this case φij only depends on i, in
other words, we had no time-varying covariates.) We assumed
that ψ is diagonal, i.e. the random effects are uncorrelated.

In other words, we assume that these covariates act by
altering the parameters of the – same – functional form. In
particular, this means that the effect of drug is incorporated
by assuming that the tumor growth obeys the same law under
treatment, but with different parameters.

This model assumes that
• the variance of the error terms is a constant (i.e. no

heteroscedasticity present),
• the error terms are uncorrelated (i.e. no autocorrelation

present).
These assumptions were checked by plotting the standard-

ized residuals versus the fitted values (Figure 2a), and the
autocorrelation function of the residuals (Figure 2b), respec-
tively. In case of violation, appropriate weighting functions and
within-subject autocorrelation functions were included in the
models (power variance and continuous time AR(1) correlation
in the shown example of exponential growth) [15].

Effects are considered significant if p < 0.05.

D. Programs used
R statistical program package [17] (version 3.2.5) was used

with the nlme library [18] (version 3.1-127) to carry out the
calculations using a custom script developed for this purpose
that is available at the corresponding author on request. Vi-
sualizations were created with the lattice library [19] (version
0.20-33).
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Fig. 2. Testing the model assumptions for the exponential growth model.

III. RESULTS

A. Individual fitting

Results, displayed as points estimates for the parameters
with 95% confidence intervals are shown on Figure 3 for each
subject and measurement method; with each model.

B. Population-level mixed model

1) Exponential growth: The estimated parameter of the
AR(1) correlation was 0.944, the estimated power in the
variance function was 0.952. With these, the standard deviation
of the random effect for the V0 was 0.00136, for the a it was
3.944 · 10−7. The residual standard deviation was 0.972, the
AIC was 6007.

In this model, the intercept of V0 is 11.9 with MRI mea-
surement having significantly higher values than caliper mea-
surements (+97.1 compared to Caliper-1). The intercept of a
is 0.268, but now MRI measurements are having significantly
lower a (−00.561 compared to Caliper-1).

The treatment’s effect is very interesting: it does not signif-
icantly alter V0 (p = 0.0983), but it does have a statistically
significant effect on a, being associated with −0.0434 change
(p = 0.0003). I.e. the treatment decreases the rate of growth,
but not the initial

2) Sigmoid growth: The results of the mixed models are
shown (Figure 4) as – population-level – predicted tumor
volumes for Days 0 to 150 (for each measurement type and for
the treated/control groups). Note that the original data spanned
from Days 0 to 19, so this exemplifies the extrapolation with
the models.

The residual deviation was 86.6 for the logistic fit (AIC =
6600), and 660 for the Gompertz fit (AIC = 8670).

The effect of treatment was significant for the mid-point
parameter of the logistic growth (p = 0.0228), but it was not
significant for any parameter of the Gompertz growth.

IV. DISCUSSION

It was possible to reliably estimate all parameters of the
exponential growth model, indicated by the consistent and
rather narrow confidence intervals in the individual fits and the
acceptable residual standard deviation in the mixed model. The
results show the effect of the treatment; already demonstrated
in an earlier research [20].

In contrast, the estimates for the sigmoid-growth models
were exceedingly variable, individual fit was not even pos-
sible for some of the cases. The population level model
exhibited extremely poor fit, with enormously high residual
deviations. In short, it was not possible to reliable estimate
these models, the reason being the rather short observation
period that was available, showing only the very early period
of tumor growth. Nevertheless, results point out the possibility
to estimate the plateu phase, which is a very interesting and
promosing parameter – in additional to the initial rate of
growth, already captured by the exponential model –, but
trusthworthy estimation of this requires more observation.

Results also point out the differences between the mea-
surement devices, clearly showing that measurements made
with MRI are systematically higher than any of the caliper
measurements, no matter which model we used.

One strength of our approach was that it integrates all
factors (treatment and measurement device) into one single
model, allowing us to investigate both the effect of the
treatment and the effect of the applied measuring method at the
same time. Also, the mixed effects approach allows a smooth
and elegant usage of the individual measurements to create
a population-level model. In addition to that, we have the
possibility to test several potentional functional forms; with
some of them, we are also able to extrapolate in time, and
capture clinically relevant parameters.
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(a) Exponential growth
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(c) Logistic growth. Parameters pertain to the following parametrization of the growth
function: V (t) = Asym/(1 + e(xmid−t)/scal).

Fig. 3. Results of the individual curve fitting (for each animal using each measurement method); with every model. Axis limits were adjusted to show the
most important data; extreme values might be cut. Missing estimates indicate cases were NLS was unable to converge.
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(a) Gompertz growth
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(b) Logistic growth

Fig. 4. Predicted growth (on population-level) of the tumor volume for Days 0 to 150. Different colors indicate different measurement methods (see legend),
solid line indicates control group, while dashed line indicates treated group.

The most important limitation was the rather small number
of test subjects, and the too short observation period to
estimates some of the models.

V. CONCLUSION

The exponential model could be estimated in a robust
manner, both individually, and in the population-level with
the mixed effects model. Results confirm the effect of the
treatment, and make it possible to quantify this.

In contrast, the sigmoid-like growth curves were almost
impossible to estimate, revealing the limitations of our data.
Nevertheless, the possibility to estimate such models – making
extrapolation possible – mean a promising opportunity.
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