
Convex Polytopic Modeling of Diabetes Mellitus: A
Tensor Product based approach
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Abstract—Tensor Product (TP) transformation based

modeling and control can be useful in biomedical en-

gineering, since complex nonlinear control tasks can be

handled easier with it. Moreover, the modeling approach

can handle the Linear Parameter Varying (LPV) models

and produces a tensor based system description, which

can be used during Linear Matrix Inequality (LMI) based

controller design. The TP property makes the usability of

the method beneficial as LMI connected techniques allows

using the Lyapunov theorems. The aim of the current work

is to demonstrate the usability of TP models in biomedical

applications, i.e. diabetes modeling. The core model, the

minimal model is investigated and simulation results are

presented under Matlab.

Index terms—TP modeling, Tensor Product transforma-

tion, LPV modeling, modeling of diabetes mellitus, T1DM

model, T2DM model

I. INTRODUCTION

Mathematical modeling and in-silico simulation has great

importance in case of physiological modeling. If the models

describe internal relationships, their investigation increases the

complexity of the problem as they represent living organisms

with continuously changing parameters [1]. In the recent years,

several advanced modeling techniques appeared in the biomed-

ical engineering topic regarding modern control engineering

methodologies. Through these methods, not only the “pure”

dynamics of the given processes can be taken into account, but

also uncertainties coming from subject (patient) variability [2].

A good example of that is the modeling of diabetes mellitus

(DM) [3].

From modeling and controller design point of view, the

process of DM is highly unfavorable: a nonlinear process,

which suffers from time-to-time inter- and intra-patient vari-

abilities, periodical signals (feed and insulin intakes, internal

insulin secretion) and time-delays; moreover, several internal

processes cannot be directly observed in real life. DM models

try to reflect these nonlinear properties taking into account the

time-lags as well. However, inter-and intra-patient variabilities

are hard to handle as they could occur in the parameters of the

variables [3]. On the other way, from control design point of

view, complex models would be beneficial, but their clinical

applicability will be questionable [4].

Therefore, in the last two decades several possibilities have

been investigated to handle the above described problems.

From control modeling point of view Linear Paramter Varying

(LPV) methodology proved to be a suitable choice transform-

ing the original nonlinear model into a linear one approxima-

tion (linearization) [5], [6]. Recently, TP-based modeling [7]–

[9] gives another tool of transforming the nonlinear model

in a linear form without approximation. The aim of TP-

modeling is to realize TP-model objects. These are beneficial

because the linear controller design theorems can be adapted

to them during the controller design. The resulting model and

controller is the convex combination of the TP-model and

controller objects. Different uncertainties can be included to

the TP-models, moreover, these models are optimized for LMI

based controller design as well [9], [10].

In this paper, we analyze a special form of a reference DM

model used for both Type 1 and Type 2 DM (T1DM and

T2DM) [11], by applying the TP methodology. The paper is

structured, as follows: first, we introduce the TP modeling

approach, then we present the DM model and the control

optimized derivation of it. Section V investigates robustness

improvement of the given model, followed by the validation

of the model. Finally, conclusions are presented together with

future work possibilities.

II. THE TP MODEL TRANSFORMATION

With the TP model transformation it is possible to transform

given functions into TP model functions [7], [12]. The occur-

ring TP model function is based on a multidimensional tensor

product, where a high-order core tensor structure is multiplied

by different weighting functions with appropriate dimensions.

Since, the quasi-LPV (qLPV) models can be described with

qLPV functions, the TP model form of given qLPV models can

be calculated [9], [13]. The realized TP model approximates

the original model with eligible accuracy. In this way the

TP transformation can be combined with LMI-based control

design techniques as it provides appropriate way for convex

hull manipulation of polytopic structures.

A possible general parameter-dependent qLPV model (with

k states, m inputs and l outputs) can be described as follows:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t)
y(t) = C(p(t))x(t) + D(p(t))u(t)

(1a)
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S(p(t)) =

(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)

, (1b)

where A(p(t)) ∈ R
k×k represents the state matrix, B(p(t)) ∈

R
k×m the input matrix, C(p(t)) ∈ R

l×k the output matrix and

D(p(t)) ∈ R
l×m the forward matrix. u(t) ∈ R

m represents the

input vector, y(t) ∈ R
l the output vector and x(t) ∈ R

k states

for the state vector. S(p(t)) ∈ R
(k+l)×(k+m) is the parameter

dependent system matrix, which equivocally determines the

qLPV system itself.

p(t) ∈ Ω ∈ R
N represents the time dependent parameter

vector, where Ω = [p1,min, p1,max]× [p2,min, p2,max] × ... ×
[pN,min, pN,max] ∈ R

N realizes a closed hypercube in an N -

dimensional hyperspace determined by the extremes of the

elements of the parameter vector [9], [14]. Hence, the finite

element polytopic model describes the qLPV model inside the

closed hypercube as follows:

S(p(t)) =

R
∑

r=1

wr(p(t))Sr . (2)

In this configuration, the S(p(t)) can be calculated as

a convex combination of the LTI vertex system for each

p(t) ∈ Ω. From here, the TP based polytopic finite element

model is determined through a “sampling” on the parameter

space [9], [15]:

S(p(t)) =

I1
∑

i1=1

I2
∑

i2=1

...

IN
∑

iN=1

N
∏

n=1

wn,in(pn(t))Si1,i2,...,iN ,

(3)

which can be described in compact form, as follows:

S(p(t)) = S
N

⊠
n=1

wn(pn(t)) , (4)

where the S ∈ R
I1×I2×...×IN×(k+l)×(k+m) coefficient ten-

sor is created from the LTI vertex systems Si1,i2,...,iN and

wn(pn(t)) vector consist of wn,in(pn(t)) (in = 1...IN )
continuous weighting functions. Hence, the convexity criteria

for a given TP model is satisfied if the following statements

are true for the weighting functions:

∀n, i, pn(t) : wn,in(pn(t)) ∈ [0, 1]

∀n, pn(t) :

In
∑

i=1

wn,in(pn(t)) = 1
. (5)

In this study, we use the Minimal Volume Simplex (MVS)

type convex hull for the TP type polytopic qLPV model [9],

[10]:

S(p) = S
N

⊠
n=1

w(n)(pn) . (6)

Here, the core tensor S ∈ S
J1×...×JN is realized from

the Sj1,...,jN matrices. In this way, the (S)jn=j n-mode sub-

tensors evolve a minimal volume bounding simplex for the

S ×n w
(n)
jn (pn) trajectory over n = 1..N . More detailed

explanation can be found in [9], [10], [16], [17].

In the current study, we utilized the TP Toolbox R©, which

is a MATLAB extension and provides convenient solution for

using TP-based approaches. The TP toolbox is available at

[18].

III. INVESTIGATED MINIMAL MODEL

We used a modified version of the Minimal Model in

this study, which is appropriate to describe the T1DM and

T2DM cases, respectively [11]. The model equations are the

following:

Ġ(t) = −(p1 +X(t))G(t) + p1GB + d(t) (7a)

Ẋ(t) = −p2X(t)) + p3(I(t)− IB) (7b)

İT2DM (t) =



















γ(G(t)− h)t− n(I(t)− IB) + u(t)

for G(t)− h > 0

−n(I(t)− IB) + u(t)

for G(t)− h ≤ 0

(7c)

İT1DM (t) = −n(I(t)− IB) + u(t) (7d)

The model has three states: G(t) [mg/dL] the blood glucose

concentration, which represents at the same time the output of

the model; X(t) [1/min] the insulin-excitable tissue glucose

uptake activity, and I(t) [µU/mL] the blood insulin concen-

tration. The model has two inputs: the external insulin intake

u(t) [µU/mL/min] and the glucose intake d(t) [mg/dL/min].

The T2DM state is described by (7c), where the internal

insulin production is only possible when the G(t) is higher

than a threshold h. The simplified T1DM case is represented

by (7d), where is no internal insulin production.

In this study we used the following parameter set: Gb = 110
mg/dL, Ib = 1.5 µU/mL, p1 = 0.028 1/min, p2 = 0.025
1/min, p3 = 0.00013 min−2/(µU/mL), n = 0.23 1/min,

h = 130 mg/dL, γ = 0.01 (µU/mL)/(mg/dL)/min. These

parameters belong to a real patient based on [11]. As the goal

is to demonstrate the applicability of TP-model approach we

did not distinguish the different cases on the parameter level;

hence, to prove that the method works regardless from the

used parameter sets.

IV. POSSIBLE DEVIATION-BASED QLPV AND TP MODELS

A popular modeling approach is the control oriented de-

viation based modeling [2], [16]. In this case the models

describe the dynamics of the process and the deviation from

a possible equilibrium; further, the control goal is to avoid or

eliminate the deviation from this equilibrium. The TP-based

techniques using Linear Matrix Inequalities (LMI) can provide

good performance beside such kind of models [10].

First, we investigated the steady-state conditions in a possi-

ble equilibrium. We selected Gd = 90 and ud = 0 as steady-

state values (the blood glucose concentration is 90 mg/dL and

there is no external insulin intake). Moreover, we considered

that Gd 6= GB . From here, the other necessary steady-state
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values can be calculated by rearranging (7a)-(7d). It should

be noted that h > Gd, so (7c) and (7d) has the same Id:

Id =
nIb + ud

n
. (8)

Xd =
p3

p2
Id . (9)

dd = (p1 +Xd)Gd − p1GB . (10)

With the calculated steady-state values, the deviation based

model can be derived from the model equations, as follows.

First, the ∆G(t) has been determined. Note that since the G(t)
is measurable in real life, we tried to realize a form where only

G(t) appears in the state matrix of the deviation based model:

∆Ġ(t) = Ġ(t)− 0 =
−(p1 +X(t))G(t) + p1GB + d(t)−

[

− (p1 +Xd)Gd + p1GB + dd
]

=
−p1(G(t) −Gd) + (d(t) − dd)−X(t)G(t) +XdGd =
−p1∆G(t) + ∆d(t)−

X(t)G(t) +XdGd +XdG(t)−XdG(t) |

∆Ġ(t) = −(p1 +Xd)∆G(t) + ∆d(t)−G(t)∆X(t)

.

(11)

Due to lack of space, we did not detail the derivations of

further deviation based forms or state variables. However, we

used the same tools as in case of (11) resulting for ∆X as

follows:

∆Ẋ(t) = −p2∆X(t) + p3∆I(t) . (12)

In case of ∆I we had to differentiate the deviation based

forms for T1DM (IT1DM ) and T2DM (IT2DM ):

∆İT1DM (t) = −n∆I(t) + ∆u(t) (13)

and

∆İT2DM (t) =



























γ
(G(t)− h)

∆G(t)
∆G(t)− n∆I(t) + ∆u(t)

for G(t) > h

−n∆I(t) + ∆u(t)

for G(t) ≤ h

.

(14)

A convenient solution results if we use the derived de-

viation based model in state-space form. In this case, the

states should be ∆x(t) = [∆G(t),∆X(t),∆I(t)]T . Thus,

the investigated qLPV models become as described in (15)-

(16). Applying the TP model transformation on these (having

only one parameter), the general TP model structure becomes

S(G(t)) = S × w(G(t)).
As a result, the variation of the obtained MVS type weight-

ing functions can be presented on Fig. 1. In case of T1DM,

the weighting function is linear, however, in T2DM case the

weighting function is nonlinear because of the fraction in (14).
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Figure 1. Weighting functions of the TP polytopic model; simple model case

It should be noted, that, ∆G(t) cannot be zero until the Gd

is lower than h.

V. ROBUSTNESS OF THE MODELS

In order to increase the robustness of the model (and

the realizable controller based on the TP models) the most

determinant model parameters should be investigated from the

model output point of view. The TP transformation based mod-

eling and control property is that the modeling and controller

design can be coupled directly to LMI-based controller design

methods. This coupling provides a unique way to increase

the robustness through the elements of the parameter vector

increasing the control performance. If, the parameter vector

contains several parameters and the borders of them are given

than the controller will be prepared for the varying of these

parameters between the given borders.

The output of the model is the blood glucose level G(t),
the only measurable variable in real life circumstances. Thus,

it is reasonable to investigate how model parameter variation

affects G(t). We applied simple perturbation analysis based

investigation in order to identify the most determining model

parameter. We used the non-normalized Root Mean Square

Error (RMSE) to evaluate the results.

∆ẋT1DM (t) =





−(p1 +Xd) −G(t) 0
0 −p2 p3
0 0 −n



∆x(t) +





0
0
1



∆u(t) +





1
0
0



∆d(t) . (15)

∆ẋT2DM (t) =









−(p1 +Xd) −G(t) 0
0 −p2 p3

γ
(G(t) − h)

∆G(t)
t 0 −n









∆x(t) +





0
0
1



∆u(t) +





1
0
0



∆d(t) . (16)
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The same investigation process was used both for T1DM

and T2DM cases:

• Compare the output of the nominal model Gorig(ti) to the

output of the perturbed model Gpert(ti), RMSEparam =
T
∑

ti=0

√

Gorig(ti)−Gpert(ti).

• Use a ±35% perturbation in case of each parameter.

• Apply impulse input signals both for CHO and insulin

inputs (Parameters: CHO: d(t) = 10 mg/dL over 6

minutes; insulin: u(t) = 20 uU/mL over 6 minutes ;

injection time: beginning of simulation (minute 0)). The

simulation length was selected T = 100 min.

Table I summarizes the results:

Table I
RESULTS OF THE RMSE-BASED INVESTIGATIONS.

Type

Parameter Perturbation RMSET1DM RMSET2DM

p1
−35% 8.2385 9.2256
+35% 5.5199 6.0665

p2
−35% 11.0671 11.3595
+35% 7.5582 7.842

p3
−35% 7.6965 7.5272
+35% 6.0048 5.8129

n
−35% 9.832 9.8148
+35% 5.832 5.834

h
−35% - 3.0358
+35% - 1.4574

γ
−35% - 0.5817
+35% - 0.5605
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Figure 2. Weighting functions of the TP polytopic model; robust model case

Through this investigation it turned out that the most

determining parameters to G(t) are the p1, p2 and n. As

the model is quite simple, each parameter variation may

induce high perturbations that should be handled separately

(our goal was finding a method appropriately providing the

most important parameters). Hence, we have selected p1, p2
and n as time varying parameters (beside G(t)) resulting

a 4D parameter space determined by the parameter vector

p4(t) = [G(t), p1(t), p2(t), n(t)]
T . The new elements are

slowly changing in time, which allows handling them as

constants. Naturally, the accurate values of them have to be

updated after the identifications (done automatically).

The biggest advantage of this scenario relies in increasing

the robustness of the controller in a special way. The S core

tensor provided by the TP model transformation can be used

directly in LMI-based controller design. If the model parame-

ters are handled as scheduling parameters, the controller will

be prepared for the changing of these. In other words, as the

core tensor is used during controller design and the core tensor

contains the parameter dependencies, the controller could be

even a simple state feedback one being handled inside the

complex polytope.

Naturally, the TP model form is different in this case (having

four scheduling parameters):

S(G(t), p1, p2, n) = S
4

⊠
n=1

wn(pn(t)) =

S ×1 w1(G(t)) ×2 w2(p1)×3 w3(p2)×4 w4(n)
. (17)

The MVS type weighting functions of the robustified TP

models can be seen on Fig. 2.

VI. VALIDATION

During the validation, we investigated the discrepancy be-

tween the original nonlinear models and their TP versions

via the changing of their state variable over time during

simulations. For evaluation we have used again the RMSE-

based method.

We have applied symmetric impulse functions during the

simulations both for the CHO and insulin inputs using the

following protocol:

• CHO (d) 4g over 5min at every 50min with Vg =
11.2dL distribution volume, Ag = 0.8 utilization and

molar weight Mw = 180.12g/mol (CHO=d ∗ Ag ∗
1000/Mw/Vg; here: 28.2326mg/dL over 5min at every

50min);

• insulin (u) 0.5U over 2min at every 50min with Vi =
8.4dL distribution volume (insulin=u ∗ 1000/Vi; here

59.5238µU/mL over 2min at every 50min).

Corresponding to the reality, the input functions have impulse

nature. However, they are unfavorable because of the higher

amplitude and shorter time period occurred through real input

signals. This is the reason why the above mentioned protocol

was used ensuring that the TP model works under all circum-

stances.

Table II shows the results of the RMSE-based comparison

between the state variables of the original nonlinear model

and the realized TP models in simple model case, where only

the G(t) was the scheduling parameter. The first row describes
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the comparison between the original T1DM model and the TP

version of it, while the second row presents the comparison

between the original T2DM model and the TP version of the

given model. We used high sampling density in the parameter

domain. The borders of the domain were 70− 300 mg/dL (as

it can see on the horizontal axis of Fig. 1.

In both cases, beside the given inputs and initial values the

TP models “mimic” the original nonlinear models with high

precision (only numerical errors occured, i.e. magnitude lower

than 10−8). Fig. 3 illustrates the obtained results. Negligible

difference can be observed between the original model and the

TP ones.

Table III represents the results of the RMSE-based com-

parison between the state variables of the original nonlinear

model and the realized TP models in robust model case (the

parameter vector contains four scheduling variables p(t) =
[G(t), p1, p2, n]

T ). We applied again a high sampling density

in the parameter domain (301 for G and 11 for p1, p2 and n).

The borders of the domains were set again 70 − 300 mg/dL

for G, and ±25% of the nominal p1,p2 and n values (Fig. 2).

Similar to the previously presented case the same inputs have

been used for initial values.

With simple randomization, we investigated several param-

eter configurations for p1, p2 and n inside the parameter

ranges. Three specific cases (where we have found the highest

errors) are highlighted founding. The given p1, p2 and n
parameters and the belonging data can be found in Table III.

The comparisons have similar meanings as previously: the first

row describes the RMSE between the original nonlinear T1DM

model and the TP models, while the second row represents the

RMSE between the original nonlinear T2DM model and the

TP models. The highest errors in each case occur in the G state

as a natural consequence of the nonlinear attitude of the given

weighting function (see the second column in the first row

on Fig. 2). However, we found that the error can be tolerated

being lower than 1 over the 300min long simulation. Table

III results are connected to the simulations of Fig. 4. One can

see that the small deviation occured did not cause significant

error in the dynamics of the models. The upper row describes

the state variable of the T1DM models (original nonlinear

and TP version) with the occurring error in time. The lower

row presents the same comparison, however, for the T2DM

models. It can be seen that the error has a “saturation” and

the dynamics follow the dynamics of the state variables.

Table II
RESULTS OF THE RMSE-BASED INVESTIGATIONS; SIMPLE MODEL CASE.
INITIAL VALUES: G0 = 100, X0 = 0, I0 = 11.5; SIMULATION LENGTH:

150min; SAMPLING DENSITY IN THE PARAMETER DOMAIN: 301.

Original model
G X I

TPT1DM 2.984e-13 7.372e-17 2.22e-16
TPT2DM 1.477e-8 8.566e-12 3.329e-12

Table III
RESULTS OF THE RMSE-BASED INVESTIGATIONS; ROBUST MODEL CASE.
INITIAL VALUES: G0 = 100, X0 = 0, I0 = 11.5; SIMULATION LENGTH:
300min; SAMPLING DENSITY IN THE PARAMETER DOMAIN: G− 301,

p1 − 11,p2 − 11 AND p3 − 11.

Original model
p1 = 0.0266, p2 = 0.0258, n = 0.2231

G X I

TPT1DM 0.877 5.898e-16 0
TPT2DM 0.877 1.9646e-16 2.442e-15

p1 = 0.0280, p2 = 0.025, n = 0.23
G X I

TPT1DM 1.165e-12 5.8417e-16 0
TPT2DM 7.1e-13 2.688e-16 2.44e-15

p1 = 0.0293, p2 = 0.0248, n = 0.2266
G X I

TPT1DM 0.728 6.059e-16 0
TPT2DM 0.728 2.923e-16 1.776e-15

VII. CONCLUSIONS

The paper examined the utilization of the TP model transfor-

mation in case of T1DM and T2DM models. We demonstrated

that TP models can perfectly mimic the original nonlinear

systems behavior over time beside given initial values and in-

puts. Moreover, we investigated the robustness of the realized

TP models from parameter variation point of view. Since the

TP model transformation can be easily used for LMI-based

controller design, this property can be useful in guaranteeing

the controller’s robustness by the created robust TP model.

Our further work will focus investigating how can we use in

practice the realized TP models from controller design point

of view.
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Figure 3. Comparison of the original nonlinear models and the TP versions of them; simple model case. Upper row: T1DM models; Lower row: T2DM
models.
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Figure 4. Comparison of the original nonlinear models and the TP versions of them; robust model case. Upper row: T1DM models; Lower row: T2DM
models. Parameters: p1 = 0.0266, p2 = 0.0258, n = 0.2231
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