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Abstract—In-silico modeling is an important part of

biomedical engineering. Advanced controllers providing

high quality control can be validated through it checking if

the available mathematical model of the given biomedical

process produces the desired output. However, due to high

patient variability the advanced linear control methods

applied on linearized models could produce several distor-

tions compared to the original nonlinear models; hence,

these errors should be reduced. Hierarchical control strate-

gies could be a possibility or from modeling point of view

using different control-oriented modeling methodologies.

Linear Parameter Varying (LPV) approaches with Linear

Matrix Inequality (LMI) based modeling and controller

design represent one choice. In this paper, we investigate

their generalized extension, the Tensor Product (TP) model

transformation demonstrated on diabetes modeling. In

concrete, the type 1 diabetes modeling on Intensive Care

Units (ICU) is envisaged. The achieved results will be used

for TP transformation based controller design in our later

work.

Index terms—Tensor Product model transformation,

Modeling of diabetes, ICU model, LPV methods

I. INTRODUCTION

The research of potentially beneficial modeling and control

methodologies in case of physiological processes has high

importance. This is definitely true in case of Diabetes Mellitus

(DM), where the aim is to keep the blood sugar level in

a narrow range. However, the nonlinear, patient vary and

time-delay processes require advanced modeling and control

techniques in order to reach high quality control with good

performance [1], [2]. Over the last decades the Artificial

Pancreas (AP) and Intensive Care Unit (ICU) oriented mod-

eling has been evolved [3]. In AP modeling the focus is on

outpatient care, while in case of ICU modeling the goal is

to improve the performance of the inpatient care reaching a

tight glycaemic control. As patients are under frequent nursing

care surveillance, it is enough to describe their metabolic

state with roughly approximate, low-order models and not

necessary to consider several possible circumstances which

can be occurred in outpatient care. However, studies show that

the good metabolic state can be critical from recovery point

of view [4], [5].

Recently, highly developed approaches appeared regarding

to modeling of diabetes. Linear Parameter Varying (LPV)

techniques [6], Linear Matrix Inequality (LMI)-based method-

ologies [7] and the combination of these [8] correspond to

the new trends of control engineering. Tensor Product (TP)

model transformation can provide a unique, LPV-based way

for modeling and it is well combined with LMI methods for

controller design [9]. In this paper, we investigated the model-

ing possibility of an ICU model via TP model transformation.

The paper is structured as follows: first, we introduce the TP

model transformation and the used ICU model. Second, we

show the possible quasi-LPV (qLPV) configurations of the

applied model and the realized TP function form the models.

Third, we present and discuss the results of the validations of

the realized models. Finally, we overview the achievements of

this study.

II. THE TP MODEL TRANSFORMATION

The TP model transformation based approaches originates

from the parameter dependent fuzzy system techniques [10].

The TP method originally was demonstrated in [11], [12].

The approach was summarized in [9] in case of qLPV based

systems and controller design. Concisely summarized, the TP

transformation transforms a given function into a determined

TP function form regardless from the type of the original

function, if the exact transformation is possible; otherwise,

the TP model transformation provides a TP function form

approximation with given accuracy.

The TP form complexity can be settled by sampling fre-

quency on the given parameter domain which allows to

determine the approximation accuracy of the original function

by the TP function. Since most of the qLPV models can be

described by qLPV functions, TP model based transformation

can be used on them. Through this process a TP transformation

based TP model can be created which can approximate the

original qLPV model. TP transformation is an effective way

for convex hull manipulation of polytopic structures and well

combined with LMI-based techniques. These properties allow
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to reach less conservative, more optimal LMI-based controller

design possibilities than the usual LMI-methods [9].

A general, parameter dependent qLPV model (with k states,

m inputs and l outputs) can be given by its state space

representation in the following way:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t)
y(t) = C(p(t))x(t)+D(p(t))u(t)

(1a)

S(p(t)) =

(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)

, (1b)

where u(t) ∈ R
m represents the input vector, y(t) ∈ R

l the

output vector and x(t) ∈ R
k the state vector; A(p(t)) ∈ R

k×k,

B(p(t)) ∈R
k×m, C(p(t)) ∈R

l×k and D(p(t)) ∈R
l×m matrices

are the parameter dependent state, input, output and forward

matrices, respectively.

(1a) can be written in the (1b) compact form, where

S(p(t)) ∈ R
(k+l)×(k+m) represents the parameter dependent

system matrix. The parameter vector p(t) ∈ Ω ∈ R
N may

vary in time. Ω = [p1,min, p1,max] × [p2,min, p2,max] × ... ×
[pN,min, pN,max] ∈ R

N forms a closed hypercube in the N-

dimensional parameter space determined by the minimum and

maximum values of the elements of the parameter vector.

Hence, a parameter dependent qLPV model is well represented

by its system matrix S(p(t)). In the parameter space inside the

closed hypercube, the qLPV model can be described by its

polytopic representation. Thus, the S(p(t)) can be described:

S(p(t)) =
R

∑
r=1

wr(p(t))Sr , (2)

where S(p(t)) is given for any p(t) ∈ Ω as the convex

combinations of LTI system matrices (also known as LTI

vertex systems) Sr ∈R
(k+l)×(k+m). The finite element TP type

polytopic model can be constructed via ”sampling” of p(t)
over Ω:

S(p(t)) =
I1

∑
i1=1

I2

∑
i2=1

...
IN

∑
iN=1

N

∏
n=1

wn,in(pn(t))Si1,i2,...,iN , (3)

written in the following compact form [9]:

S(p(t)) = S
N

⊠
n=1

wn(pn(t)) , (4)

where the S ∈ R
I1×I2×...×IN×(k+l)×(k+m) coefficient tensor is

created from the LTI vertex systems Si1,i2,...,iN , while the

wn(pn(t)) vector consists from the wn,in(pn(t)) (in = 1...IN)
continuous weighting functions. The TP model will be convex

if the weighting functions satisfies:

∀n, i, pn(t) : wn,in(pn(t)) ∈ [0,1] (5a)

∀n, pn(t) :
In

∑
i=1

wn,in(pn(t)) = 1 . (5b)

More than one convex hull type can be used for TP

type polytopic qLPV models. We used the Minimal Volume

Simplex (MVS) type hull [13]:

S(p) = S
N

⊠
n=1

w(n)(pn) (6)

where the S ∈ S
J1×...×JN core tensor is created from the

S j1,..., jN matrices so that the (S) jn= j n-mode subtensors evolve

a minimal volume bounding simplex for the S ×n w
(n)
jn (pn)

trajectory over n = 1..N.

Further details of TP transformation and applicable convex

hull types can be found in [9], [13]–[15]. In order to realize

TP transformation-based approaches, the TP Toolbox R© for

MATLAB is the most convenient solution [16].

III. THE INVESTIGATED MODEL T1DM ICU MODEL

ICU models can cover Type-1 DM (T1DM), Type-2 DM

(T2DM) and other mixed cases [5]. In this study we inves-

tigated the T1DM-type ICU model which was developed by

Wong et al [4]. The model has three states: the plasma glucose

concentration G(t) [mmol/L], the plasma insulin concentration

I(t) [mU/L], in which the glucose and insulin originates

from external sources and the Q(t) [mU/L], representing the

concentration of insulin bounded to interstitial sites. Further,

the model’s inputs are the Carbohydrate (CHO) intake p(t)
[mmol/L/min] and the external insulin uex(t) [mU/min] input:

Ġ(t) =−pGG(t)− SI(G(t)+GE)
Q(t)

1+αGQ(t)
+ p(t) (7a)

Q̇(t) =−kQ(t)+ kI(t) (7b)

İ(t) =−
nI(t)

1+αII(t)
+

uex(t)

V
. (7c)

The descriptions of the parameters can be found in [4], [17].

The model contains unfavorable nonlinearities from mathe-

matical point of view. Beside the product of states in (7a),

two Michaelis-Menten (MM) type saturation can be found

in (7a) and (7c) according to the insulin kinetics and insulin

dependent glucose uptake by the given cells. The saturations

are connected to the Q and I states.

IV. DERIVATION OF THE LPV AND TP MODELS

A. Steady state analysis

The steady state of the model can be calculated in different

ways. One of these is when the steady Gd state and pd input

are given. Qd , Id and uex,d can be calculated by using the

(7a)-(7c) equations. An important question is the relation of

Gd to GE . The qLPV model should approximate the system

dynamics around the equilibrium points; hence, Gd can be a

”desired” equilibria and can be different from GE . The equality

of Gd and GE becomes important during a TP based controller

design, because the Gd will that desired blood glucose level,

what the controller has to provide.
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In the first case, we considered that Gd = GE . As a result,

the dynamics of the plasma glucose concentration at the

equilibrium point becomes:

Ġ(t) = 0 =−pGGd− SI2Gd

Qd

1+αGQd

+ pd . (8)

With reformulation of (8), Qd can be calculated, as follows:

Qd =
− pGGd+ pd

SI2Gd

(1+αGQd) = A(1+αGQd) (9a)

Qd =
A

1−αGA
. (9b)

Id appears by using the rearranged (10a) equation, if Q(t)
state is at the equilibrium point:

Q̇(t) = 0 =−kQd + kId (10a)

Id = Qd . (10b)

As a result, the dynamics of I(t) at the equilibria can be

described, as follows:

İ(t) = 0 =−
nId

1+αIId

+
uex,d

V
, (11)

from which the necessary uex,d can be calculated to hold the

equilibrium of the states beside the predefined Gd and pd :

uex,d =
nId

1+αIId

V . (12)

The other investigated case is when Gd 6= GE . Here, only

the (8), (9a) and (9b) equations will be different. Naturally, the

numerical values of Id , Qd and uex,d will change accordingly:

Ġ(t) = 0 =−pGGd − SI(Gd +GE)
Qd

1+αGQd

+ pd . (13)

By rearranging (8), Qd can be calculated as follows:

Qd =
− pGGd+ pd

SI(Gd +GE)
(1+αGQd) = B(1+αGQd) (14a)

Qd =
B

1−αGB
. (14b)

B. Investigated qLPV models

In this study we investigated different approaches as more

than one realizable qLPV form can be derived.

We consider the two above-mentioned cases: Gd = GE and

Gd 6= GE . Many options can be selected as aim of TP-based

control. One of them is when the aim of the controller is to

prevent the system’s diversion from the selected equilibrium

point; or if the diversion becomes to provide fast action leading

the system back to the equilibrium. A natural way to describe

this evasive error dynamics is if we take the difference of the

actual states and the steady states.

First, we consider the Gd = GE case. The error dynamics

becomes as follows (subtracting SIG(t)
Qd

1+αGQd

from the last

two parts of (15):

∆Ġ(t) = Ġ(t)− 0 =

−pGG(t)− SI(G(t)+Gd)
Q(t)

1+αGQ(t)
+ p(t)

−

[

− pGGd − SI2Gd

Qd

1+αGQd

+ pd

]

=

−pGG(t)+ pGGd + p(t)− pd−

SIG(t)
Q(t)

1+αGQ(t)
− SIGd

Q(t)

1+αGQ(t)
+

SIGd

Qd

1+αGQd

+ SIGd

Qd

1+αGQd

=

−pG(G(t)−Gd)+ (p(t)− pd)−

SIGd

(

Q(t)

1+αGQ(t)
−

Qd

1+αGQd)

)

−

SIG(t)
Q(t)

1+αGQ(t)
+ SIGd

Qd

1+αGQd

=

−pG∆G(t)+∆p(t)−

SIGd

1

(1+αGQ(t))(1+αGQd)
∆Q(t)−

SIG(t)
Q(t)

1+αGQ(t)
+ SIGd

Qd

1+αGQd

, (15)

−SIG(t)
Q(t)

1+αGQ(t)
+ SIGd

Qd

1+αGQd

+

SIG(t)
Qd

1+αGQd

− SIG(t)
Qd

1+αGQd

=

−SIG(t)

(

Q(t)

1+αGQ(t)
−

Qd

1+αGQd)

)

−

−SI

Qd

1+αGQd

(G(t)−Gd) =

−SIG(t)
1

(1+αGQ(t))(1+αGQd)
∆Q(t)−

−SI

Qd

1+αGQd

∆G(t)

(16)

From here, the error dynamics of G state at the equilibrium

point can be described as:

∆Ġ(t) =−(pG + SI

Qd

1+αGQd

)∆G(t)−

SI(G(t)+Gd)
1

(1+αGQ(t))(1+αGQd)
∆Q(t)+∆p(t)

(17)
The second case is when Gd 6= GE . In this case, the error

dynamics ∆G(t) becomes as follows:

∆Ġ(t) =−(pG + SI

Qd

1+αGQd

)∆G(t)−

SI(G(t)+GE)
1

(1+αGQ(t))(1+αGQd)
∆Q(t)+∆p(t)

(18)
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As a result, the error dynamics of the Q(t) and I(t) can be

easily derived as in (17):

∆Q̇(t) = Q̇(t)− 0

−kQ(t)+ kI(t)− [−kQd + kId] =
−k(Q(t)−Qd)+ k(I(t)− Id) =
∆Q̇(t) =−k∆Q(t)+ k∆I(t)

(19)

∆İ(t) = İ(t)− 0 =

−n
I(t)

1+αII(t)
+

uex

V
−

[

− n
Id

1+αIId

+
uex,d

V

]

=

−n

(

I(t)

1+αII(t)
−

Id

1+αIId)

)

+
1

V
(uex − uex,d) =

∆İ(t) =−n
1

(1+αII(t))(1+αIId)
∆I(t)+

1

V
∆uex(t)

(20)

A convenient way is the idea if the error dynamics-based

qLPV models are represented with their state-space form. In

this way the inputs can be separated: the control input becomes

the external insulin intake uex(t), while the disturbance is

the p(t) external CHO intake. We switched the order of

the inputs in sake of clarity, namely, the first input in the

state-space representation is the insulin intake uex(t), while

the second is the CHO disturbance p(t). As the goal is

to describe the error dynamics, the difference between the

actual input and steady inputs should be considered. In this

way, the inputs are: ∆u(t) = [∆uex(t),∆p(t)]T . The states of

the qLPV models are based on the error dynamics, namely

∆x(t) = [∆G(t),∆Q(t),∆I(t)]T . From these considerations and

the (17)-(20) equations, the state-space representations of the

derived qLPV models are represented by (22) considering

Gd = GE and (23) considering Gd 6= GE .

C. TP models

The TP model transformation can be applied on the

qLPV system matrices S{(G(t),Q(t), I(t))|Gd=GE
} of (22)

and S{(G(t),Q(t), I(t))|Gd 6=GE
} of (23). The transformation

provides the following TP model structure:

S{(G(t),Q(t), I(t))|Gd=GE
}= S

3

⊠
n=1

wn(pn(t)) =

S×1 w1(G(t))×2 w2(Q(t))×3 w3(I(t))
(21a)

S{(G(t),Q(t), I(t))|Gd 6=GE
}= S

3

⊠
n=1

wn(pn(t)) =

S×1 w1(G(t))×2 w2(Q(t))×3 w3(I(t))
. (21b)

Figure 1 shows the MVS-type weighting functions with

dense sampling (left column belongs to (21a) and the right

column belongs to (21b)). There are no evaluable difference

between the given weighting functions; however, small numer-

ical differences appeared.
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Figure 1. Weighting functions of the TP polytopic model. Left column:
wn(p(t))Gd=GE

, right column: wn(p(t))Gd 6=GE

V. VALIDATION AND DISCUSSION

In order to validate the generated models, we built up a

validation environment in MATLAB which is able to make

the comparisons between the original and realized qLPV and

TP models automatically.

∆ẋ(t) =













−(pG +
SIQd

1+αGQd

)
− SI(G(t)+Gd)

(1+αGQ(t))(1+αGQd)
0

0 −k k

0 0
− n

(1+αII(t))(1+αIId)













∆x(t)+









0 1

0 0

1

V
0









∆u(t) (22)

∆ẋ(t) =













−(pG +
SIQd

1+αGQd

)
− SI(G(t)+GE)

(1+αGQ(t))(1+αGQd)
0

0 −k k

0 0
− n

(1+αII(t))(1+αIId)













∆x(t)+









0 1

0 0

1

V
0









∆u(t) (23)
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The main considerations during the validation were the

following:

1) Investigated parameter domain: G = 3.5..25, Q = 0..100

and I = 0..100;

2) Comparison was done between every state of every

model;

3) Dense (considered number of samples (NoS): NoSG =
31, NoSQ = 101, NoSI = 101) and less dense (NoSG =
17, NoSQ = 81, NoSI = 81) parameter sampling in the

parameter domain;

4) Comparison only in case of initial state decay and in

case of given inputs;

5) Use of Root-Mean Square Error (RMSE) as basis of

comparison.

The results of the validation are summarized in Table I.

In every subtable the upper triangular partition belongs to

the dense sampling, namely, the number of samples (NoS)

were higher on the investigated parameter domain. The model

notation is the following:

• original nonlinear model: Original (7);

• qLPV model of (22): qLPV1;

• qLPV model of (23): qLPV2;

• TP model of (21a): TP1;

• TP model of (21b): T P2.

In case of Table Ia, a less than 100 minutes decay was

investigated for the initial values of the state variables. The

difference between dense and less dense sampling is negligi-

ble. However, both TP models had small RMSE at the given

circumstances, but the TP1 model where Gd =GE had the best

performance.

Table Ib shows a scenario, where external CHO and insulin

inputs were impulse functions (similar to reality), as follows:

• CHO intake: Height: 4 g, Width: 5 min, Period: 50 min

• Insulin intake: Height: 1 U, Width: 2 min, Period: 50 min

We transformed the inputs from g to mmol/L (CHO) and U

to mU/L (insulin) based on the model parameters in Table I.

The density of sampling did not cause evaluable difference in

the resulting RMSE of the states based on the data. In this case,

T P2 model produced the smallest RMSE under 300 minutes.

Figure 2 shows the results of the second investigation (as in

Table Ib) in case of dense sampling. It can be considered, that

the variation of Q(t) and I(t) are almost the same. However,

the T P2 model proved to be much more accurate than the T P1

in the G(t) state, as the GOrig(t) and GTP2
(t) states overlap

each other.

On Figure 2 the error of the states were highlighted in such

a way, that the state variation of the realized TP models were

subtracted from the original states. The results confirmed the

numerical RMSE-based evaluation in Table Ib and one can see

that T P1 is more suitable to substitute the original nonlinear

model.

Table I
RESULTS OF THE RMSE-BASED INVESTIGATIONS. USED PARAMETER

SET: GE = 10.5 MMOL/L, pG = 0.01 1/MIN, SI = 0.001 L/MU/MIN, V = 12
L, k = 0.0198 1/MIN, n = 0.16 1/MIN, αI = 0.0017 L/MU AND αG = 0.0154

L/MU.

Investigation 1: RMSE-based comparison of the states of the realized models
on the given parameter domain under 100 minutes. Initial conditions: G0 = 15,
Q0 = 3 and I0 = 5

G [mmol/L]

NoS=31

Original qLPV1 qLPV2 T P1 TP2

N
o
S

=
1
7

Original 1.4295 0.0982 0.0469 0.1273
qLPV1 1.4295 1.3278 1.3826 1.5568
qLPV2 0.0982 1.5278 0.1452 0.0290
T P1 0.0469 1.3826 0.1452 0.1743
T P2 0.1273 1.5569 0.0291 0.1742

Q [mU/L]
NoS=101

Original qLPV1 qLPV2 T P1 TP2

N
o
S

=
8
1

Original 0.0051 0.0051 0.0022 0.0051
qLPV1 0.0051 0 0.0073 0
qLPV2 0.0051 0 0.0073 0
T P1 0.0022 0.0073 0.0073 0.0073
T P2 0.0051 0 0 0.0073

I [mU/L]

NoS=101

Original qLPV1 qLPV2 T P1 TP2

N
o
S

=
8
1

Original 0.0031 0.0031 0.0052 0.0030
qLPV1 0.0031 0 0.0083 0
qLPV2 0.0031 0 0.0083 0
T P1 0.0052 0.0083 0.0083 0.0083
T P2 0.0030 0 0 0.0083

Table Ia.

Investigation 2: RMSE-based comparison of the states of the realized models
on the given parameter domain under 300 minutes beside given impulse-kind
inputs. Initial conditions: G0 = 15, Q0 = 3 and I0 = 5

G [mmol/L]

NoS=31

Original qLPV1 qLPV2 T P1 TP2

N
o
S

=
1
7

Original 2.3666 0.0339 1.3614 0.0244
qLPV1 2.3666 2.4005 1.0052 2.391
qLPV2 0.0339 2.4005 1.3953 0.0095
T P1 1.3611 1.0055 1.3950 1.3858
T P2 0.0246 1.0055 0.0093 1.3857

Q [mU/L]

NoS=101
Original qLPV1 qLPV2 T P1 TP2

N
o
S

=
8
1

Original 0.0127 0.0127 0.0254 0.0125
qLPV1 0.0127 0 0.0127 0.0002
qLPV2 0.0127 0 0.0127 0.0002
T P1 0.0254 0.0127 0.0127 0.0129
T P2 0.0125 0.0002 0.0002 0.0129

I [mU/L]

NoS=101

Original qLPV1 qLPV2 T P1 TP2

N
o
S

=
8
1

Original 0.0088 0.0088 0.0005 0.0089
qLPV1 0.0088 0 0.0083 0.0001
qLPV2 0.0088 0 0.0083 0.0001
T P1 0.0005 0.0083 0.0083 0.0084
T P2 0.0089 0.0001 0.001 0.0084

Table Ib.
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Figure 2. 300 minutes long simulation in case of realistic inputs.
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Figure 3. State error evolution over 300 minutes long simulation in case of
realistic inputs.

VI. CONCLUSION

In this paper we investigated the applicability of TP model

transformation in case of a well-known ICU diabetes model

in order to realize different TP models. We examined two

cases: the TP model, when the ”operating equilibrium of

glycemia (Gd)” of the model was considered equal to the

model equilibrium of glycemia (GE ) and were it was not. We

found based on numerical validation that in case of realistic

simulations we can reach better performance, namely, smaller

difference between the realized TP model and the original

model, when the operating equilibrium is not equal to the

model equilibrium. Further work will focus control design

of the realized TP model via the LMI-based TP controller

design method. This advanced tool let to embed several criteria

and constraints to the control structure and results reliable

and robust controller for the given TP model. TP model can

be robust itself, if more parameters are included into the

parameter vector. We will investigate this possibility also.
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