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Abstract. The asymptotic behavior of solutions of the system of difference equations
with continuous time and lag function between two known real functions is studied.
The cases when the lag function is between two linear delay functions, between two
power delay functions and between two constant delay functions are observed and
illustrated by examples. The asymptotic estimates of solutions of the considered system
are obtained.
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1 Introduction

Let R be the set of real numbers and R+ the set of positive real numbers. Assume that t0 > 0
is a given real number, n is a positive integer and A, B : [t0, ∞) → Rn×n are given n× n real
matrix valued functions. Let σ : [t0, ∞) → R be given such that σ(t) < t holds for all t ≥ t0,
and limt→∞ σ(t) = ∞.

This paper discusses the asymptotic behavior of solutions of the system of difference equa-
tions

x(t) = A(t)x(t− 1) + B(t)x(σ(t)), t ≥ t0 (1.1)

with the initial condition

xφ(t) = φ(t) for t−1 ≤ t < t0, t−1 = min {inf{σ(s) : s ≥ t0}, t0 − 1} , (1.2)

where φ : [t−1, t0)→ Rn, φ(t) = (φ1(t), φ2(t), . . . , φn(t)) is a given function.
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Definition 1.1. By a solution of the system (1.1) we mean a vector function xφ : [t−1, ∞)→ Rn

which satisfies initial condition (1.2) for t−1 ≤ t < t0 and satisfies the system (1.1) for t ≥ t0.

The asymptotic behavior of equation (1.1) in the scalar case has been investigated by Med-
ina and Pituk [8], Péics [14], Philos and Purnaras [15], Zhou and Yu [17]. For the system case
with discrete arguments see Čermak and Jánský [2], Gilyazev and Kipnis [3], Kaslik [4], Mat-
sunaga [7], and the references therein. Papers by Blizorukov [1], Pelyukh [10,11], Korenevskii
and Kaizer [5, 6], Shaiket [16] generalise some fundamental results for solutions of difference
equations with continuous arguments. Results given here generalize results in [12] and [13]
in the sense of their application for some new type of lag functions.

For given positive integer m, t ∈ R+ and a function f : R → R we use the standard
notation

t−1

∏
`=t

f (`) = 1,
t

∏
`=t−m

f (`) = f (t−m) f (t−m + 1) · · · f (t)

and
t−1

∑
τ=t

f (τ) = 0,
t

∑
τ=t−m

f (τ) = f (t−m) + f (t−m + 1) + · · ·+ f (t).

We shall say that the infinite product ∏∞
k=1 ak converges if only a finite number of the factors ak

are zero and if n is an integer with the property that am 6= 0 for all m ≥ n, then the sequence
an, anan+1, anan+1an+2, . . . converges to a limit distinct from zero. If an infinite product does
not converge we shall say it diverges.

If ∏∞
n=1 an represents a convergent infinite product, then it is convenient to write it in the

form ∏∞
n=1 (1 + bn), where an = 1 + bn and limn→∞ bn = 0. If the product ∏∞

n=1 (1 + |bn|)
converges, we shall say that the product of ∏∞

n=1 (1 + bn) converges absolutely.
We can find the following theorem in [9], as Theorem 3 on page 45.

Theorem A. A necessary and sufficient condition that the infinite product ∏∞
n=1 (1 + bn) converges

absolutely is that the infinite series ∑∞
n=1 bn converges absolutely.

The difference operator ∆ is defined by

∆ f (t) = f (t + 1)− f (t).

For a function g : R+ ×R+ → R, the difference operator ∆t is given by

∆tg(t, a) = g(t + 1, a)− g(t, a).

For a given function σ : [t0, ∞)→ R with σ(t) < t and limt→∞ σ(t) = ∞, set

tm = inf{s : σ(s) > tm−1} for all m = 1, 2, . . .

In Figure 1.1 we can see the special case of creating the points {tm} when the delay function
is σ(t) = t

2 .
For a given sequence of points {tm}, fix a point t ≥ t0, and define natural numbers km(t)

such that km(t) := [t− tm], m = 0, 1, 2 . . . For some t ∈ R, [t] denotes the integer part of t.
Set

Tm(t) := {t− km(t), t− km(t) + 1, . . . , t− 1, t}, m = 0, 1, 2, . . .
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Figure 1.1: The {tm} points for the σ(t) =
t
2

delay function.

For the given functions gi : [t−1, ∞) → (0, ∞) and ai : [t0, ∞) → (0, 1), i = 1, 2, . . . , n, and for
the given non-negative integer m we define the numbers

Rim := sup
tm≤t<tm+1

{
gi(t)

t

∑
τ=t−km(t)

∆τgi(τ − 1)
gi(τ)gi(τ − 1)

t

∏
`=τ+1

ai(`)

}
. (1.3)

For the given functions gi : [t−1, ∞) → (0, ∞) and the given initial functions φi, i = 1, 2, . . . , n,
we set

Mi0 = sup
t−1≤t<t0

gi(t)|φi(t)| for i = 1, 2, . . . , n and M0 = max{M10, M20, . . . , Mn0}. (1.4)

We discuss the case when matrix A is diagonal and its components are between 0 and 1.
Consider the following hypotheses.

(H1) For every t ≥ t0, A(t) = diag(a1(t), . . . , an(t)) is an n × n diagonal matrix with real
entries satisfying 0 < ai(t) < 1, for all t ≥ t0, i = 1, 2, . . . , n.

(H2) B(t) = (bij(t)) is an n× n matrix with real entries for all t ≥ t0.

(H3) There exists a diagonal n× n matrix G(t) = diag(g1(t), . . . , gn(t)) for all t ≥ t−1 so that
the diagonal entries gi : [t−1, ∞) → (0, ∞) are bounded on the initial interval [t−1, t0),
i = 1, 2, . . . , n, and such that

n

∑
j=1

|bij(t)|
gj(σ(t))

≤ (1− ai(t))
gi(t)

for t ≥ t0, i = 1, 2, . . . , n.

(H4) There are real numbers Ri, i = 1, 2, . . . , n, such that

j

∏
m=1

(1 + Rim) ≤ Ri, for all positive integers j and i = 1, 2, . . . , n,

where the numbers Rim are defined by (1.3).

(H5) σ : [t0, ∞) → R is a given function with the property that σ(t) < t for every t ≥ t0 and
limt→∞ σ(t) = ∞.
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The next theorem, which was proven in [13], gives asymptotic estimates for the rate of con-
vergence of the components of solutions of equation (1.1).

Theorem B. Suppose that conditions (H1), (H2), (H3) (H4) and (H5) hold. Let xφ be the solution of
the initial value problem (1.1) and (1.2) with bounded components φi, i = 1, 2, . . . , n, in (1.2). Then∣∣∣xφ

i (t)
∣∣∣ ≤ M0Ri

gi(t)
for all t ≥ t0 and i = 1, 2, . . . , n,

where M0 is defined by (1.4).

Remark 1.2. In Theorem B, let the functions gi, i = 1, 2, . . . , n, defined by (H3), be monotone
increasing. Then the sequences {Rim}m, i = 1, 2, . . . , n, defined by (1.3), have only positive
members and the assumption

∞

∏
m=1

(1 + Rim) < ∞ for all i = 1, 2, . . . , n,

implies the existence of real numbers R1, R2, . . . Rn, which satisfies condition (H4).
If the functions gi, i = 1, 2, . . . , n, are monotone decreasing, then condition (H4) is satisfied

with R1 = R2 = · · · = Rn = 1.

2 Main results

In [13] it is illustrated how the rate of convergence of the components of the solutions can
be estimated by a power function in the particular case when the lag function is σ(t) = ct,
0 < c < 1, t > 0. In this paper we generalize these results to the case when the lag function
is squeezed between two linear functions, i.e. we show how the rate of convergence of the
components of the solutions can be estimated by a power function when the lag function σ

has the property
ct ≤ σ(t) ≤ Ct, c, C ∈ R, 0 < c ≤ C < 1, t > 0.

Moreover, we present how the rate of convergence of the components of the solutions can
be estimated by a power of logarithmic function and by an exponential function, for the lag
function with the property

tc ≤ σ(t) ≤ tC, c, C ∈ R, 0 < c ≤ C < 1, t ≥ 1

and

σ(t) = t− δ(t), 1 ≤ c ≤ δ(t) ≤ C, c, C ∈ R, c ≤ C, t > 0, where δ(t) 6≡ 1,

respectively.
In Figure 2.1 we can see the special case of the delay function, when

ct ≤ σ(t) ≤ Ct, t > 0,

for real numbers c and C such that 0 < c ≤ C < 1.
We shall need the following hypothesis.
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Figure 2.1: The delay function such that ct ≤ σ(t) ≤ Ct, t > 0, for 0 < c ≤ C < 1.

(H6) There exist real numbers Q and αi, i = 1, 2, . . . , n, such that 0 < Q ≤ 1, 0 < αi < 1 and

n

∑
j=1
|bij(t)| ≤ Q(1− ai(t)), αi ≤ 1− ai(t)

for t ≥ t0, where the functions ai and bij, i, j = 1, 2, . . . , n, are given in (H1) and (H2).

Theorem 2.1. Suppose that conditions (H1), (H2) and (H6) hold. Let σ : [t0, ∞) → R be a real
function such that ct ≤ σ(t) ≤ Ct for all t ≥ t0 > 1, for real numbers c and C such that 0 < c ≤
C < 1 and C1+K < Q, where K = logc Q. Let x = xφ be a solution of the initial value problem (1.1)
and (1.2) with bounded components φi, i = 1, 2, . . . , n. Then

|xi(t)| ≤
M0Ri

tK for all t ≥ t0, i = 1, 2, . . . , n,

where, for i = 1, 2, . . . , n,

M0 = max
1≤i≤n

{
sup

t−1≤t<t0

{
tK|φi(t)|

}}
, Ri =

∞

∏
m=1

(
1 +

KtK
0

αicK(t0 − Cm)K+1

(
CK+1

cK

)m)
.

Proof. Let t0 > 1 be a real number. The relations σ(tm+1) = tm and ct ≤ σ(t) ≤ Ct imply that

t0

Cm ≤ tm ≤
t0

cm for m = 1, 2, . . .

Set
t−1 = min{t0 − 1, ct0} and gi(t) = tK, i = 1, 2, . . . , n.

Since Q = cK, it follows that

n

∑
j=1

|bij(t)|
gj(σ(t))

=
∑n

j=1 |bij(t)|
σ(t)K ≤ Q(1− ai(t))

cKtK =
1− ai(t)

gi(t)
for i = 1, 2, . . .



6 H. Péics, A. Rožnjik, V. Pinter Krekić and M. Takács

Therefore, condition (H3) of Theorem B is valid. Moreover,

Rim ≤ sup
tm≤t<tm+1

{
tK

t

∑
τ=t−km(t)

τK − (τ − 1)K

τK(τ − 1)K (1− αi)
t−τ

}

≤ sup
tm≤t<tm+1

{
tK(1− αi)

t
t

∑
τ=t−km(t)

K

(τ − 1)K+1

(
1

1− αi

)τ
}

≤ sup
tm≤t<tm+1

{
tK(1− αi)

tK
(t− km(t)− 1)K+1

1− αi

αi

(
1

1− αi

)t+1
}

≤ sup
tm≤t<tm+1

{
KtK

αi(t− km(t)− 1)K+1

}
≤ KtK

0
αicK(t0 − Cm)K+1

(
CK+1

cK

)m

for all m = 1, 2, . . . , i = 1, 2, . . . , n. Applying d’Alembert’s ratio test for the series ∑∞
m=1 am,

where

am =
KtK

0
αicK(t0 − Cm)K+1

(
CK+1

cK

)m

,

we obtain that

L = lim
m→∞

am+1

am
=

CK+1

cK <
Q
cK = 1.

The relation L < 1 means that the series ∑∞
m=1 am is convergent. Since 0 < Rim ≤ am for all

m = 1, 2, . . . , i = 1, 2, . . . , n, hence the series ∑∞
m=1 Rim is also convergent for i = 1, 2, . . . , n.

Applying Theorem A, it follows that the infinite product ∏∞
m=1 (1 + Rim) is convergent for i =

1, 2, . . . , n, and the numbers R1, R2, . . . , Rn exist. Then, Theorem B implies the assertion.

In Figure 2.2 we can see the special case of the delay function, when

tc ≤ σ(t) ≤ tC

for real numbers c and C such that 0 < c ≤ C < 1.

Σ=t

Σ=tC

Σ=tc
Σ=ΣHtL

1
t

Σ

Figure 2.2: The delay function such that tc ≤ σ(t) ≤ tC, 0 < c ≤ C < 1.

Theorem 2.2. Suppose that conditions (H1), (H2) and (H6) hold. Let σ : [t0, ∞) → R be a real
function such that tc ≤ σ(t) ≤ tC for all t ≥ t0 > 1 for real numbers c and C such that 0 < c ≤ C < 1.
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Let x = xφ be a solution of the initial value problem (1.1) and (1.2) with bounded components φi,
i = 1, 2, . . . , n. Then

|xi(t)| ≤
M0Ri

lnK t
for all t ≥ t0, i = 1, 2, . . . , n,

where K = logc Q, and for i = 1, 2, . . . , n, we set

M0 = max
1≤i≤n

{
sup

t−1≤t<t0

{
lnK t|φi(t)|

}}
,

Ri =
∞

∏
m=1

1 +
K
(
c−K)m+1 lnK t0

αi

(
t(1/C)m

0 − 1
)

lnK+1
(

t(1/C)m

0 − 1
)
 .

Proof. Let t0 > 1 be a real number. The relations

σ(tm+1) = tm and tc ≤ σ(t) ≤ tC

imply that

t(
1
C )

m

0 ≤ tm ≤ t(
1
c )

m

0 for m = 0, 1, 2, . . .

Let gi(t) = lnK t, i = 1, 2, . . . , n. Since Q = cK, it follows that

n

∑
j=1

|bij(t)|
gj(σ(t))

=
∑n

j=1 |bij(t)|
lnK σ(t)

≤ Q(1− ai(t))
lnK tc

=
Q(1− ai(t))

cK lnK t
=

1− ai(t)
gi(t)

.

Therefore, condition (H3) of Theorem B is valid. Moreover,

Rim ≤ sup
tm≤t<tm+1

{
lnK t

t

∑
τ=t−km(t)

lnK τ − lnK(τ − 1)
lnK τ lnK(τ − 1)

(1− αi)
t−τ

}

≤ sup
tm≤t<tm+1

{
lnK t(1− αi)

t
t

∑
τ=t−km(t)

K
(τ − 1) lnK+1(τ − 1)

(
1

1− αi

)τ
}

≤ sup
tm≤t<tm+1

{
lnK t(1− αi)

tK
(t− km(t)− 1) lnK+1(t− km(t)− 1)

1− αi

αi

(
1

1− αi

)t+1
}

≤ sup
tm≤t<tm+1

{
K lnK t

αi(t− km(t)− 1) lnK+1(t− km(t)− 1)

}

≤
K
(( 1

c

)K
)m+1

lnK t0

αi

(
t(1/C)m

0 − 1
)

lnK+1
(

t(1/C)m

0 − 1
) ∼ Cm(K+1)

cK(m+1)t(1/C)m

0

for m = 1, 2, . . . , i = 1, 2, . . . , n. Now, apply d’Alembert’s ratio test for the series ∑∞
m=1 am,

where

am =
Cm(K+1)

cK(m+1)t(1/C)m

0

.

After some transformation we get that

L = lim
m→∞

am+1

am
= lim

m→∞

CK+1

cKt
(1/C)m( 1

C−1)
0

= 0 < 1.
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The relation L < 1 means, as in the proof of Theorem 2.1, that the infinite product
∏∞

m=1 (1 + Rim) is convergent for i = 1, 2, . . . , n, and the numbers R1, R2, . . . , Rn exist.
Then, Theorem B implies the assertion.

In Figure 2.3 we can see the special case of the delay function σ(t) = t − δ(t), where
c ≤ δ(t) ≤ C for real numbers c and C such that 1 ≤ c ≤ C and δ(t) 6≡ 1 for t > 0.

Σ=t
Σ=t-c

c

Σ=t-C

C

Σ=ΣHtL

1
t

Σ

Figure 2.3: The delay function σ(t) = t− δ(t) such that c ≤ δ(t) ≤ C, 1 ≤ c ≤ C.

Theorem 2.3. Let σ(t) = t− δ(t) be a real function such that c ≤ δ(t) ≤ C for real numbers c and
C, where 1 ≤ c ≤ C for all t ≥ t0 > C, and δ(t) 6≡ 1 for t ≥ t0. Suppose that conditions (H1) and
(H2) hold and there exists a real number λ > 1 such that

n

∑
j=1
|bij(t)| ≤

1− λai(t)
λC for all t ≥ t0, i = 1, 2, . . . , n.

Let x = xφ be a solution of the initial value problem (1.1) and (1.2) with bounded components φi,
i = 1, 2, . . . , n. Then

|xi(t)| ≤
M0

λt for all t ≥ t0, i = 1, 2, . . . , n,

where we set

M0 = max
1≤i≤n

{
sup

t−1≤t<t0

{
λt|φi(t)|

}}
, i = 1, 2, . . . , n.

Proof. Let t0 ≥ C be a real number. The relations

tm+1 − δ(tm+1) = tm and t− C ≤ t− δ(t) ≤ t− c

imply that
t0 + mc ≤ tm ≤ t0 + mC for m = 1, 2, . . .

Introduce the transformation yi(t) = xi(t)λt, i = 1, 2, . . . , n. Let t ∈ [tm, tm+1) and τ ∈ Tm(t).
Then, system (1.1) is equivalent to

∆τ

(
yi(τ − 1)

τ−1

∏
`=t−km(t)

1
λai(`)

)
=

n

∑
j=1

bij(τ)λ
δ(τ)yj(τ − δ(τ))

τ

∏
`=t−km(t)

1
λai(`)

,

for i = 1, 2, . . . , n. Summing up both sides of these equation from t− km(t) to t gives that, for
i = 1, 2, . . . , n,

yi(t) = yi(t− km(t)− 1)
t

∏
`=t−km(t)

λai(`) +
t

∑
τ=t−km(t)

n

∑
j=1

bij(τ)λ
δ(τ)yj(τ − δ(τ))

t

∏
`=τ+1

λai(`).
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Define

µim := sup
tm−1≤t<tm

|yi(t)|, Mim := max{µi0, µi1, . . . , µim} for m = 0, 1, 2, . . . , i = 1, 2, . . . , n

and let
Mm = max

1≤i≤n
{Mim} for m = 0, 1, 2, . . .

Since |yi(p(τ))| ≤ Mm, for i = 1, 2, . . . , n, τ ∈ Tm(t) and tm ≤ t < tm+1, from the hypotheses
of the theorem it follows that

|yi(t)| ≤ Mm

(
t

∏
`=t−km(t)

λai(`) +
t

∑
τ=t−km(t)

(1− λai(τ))
t

∏
`=τ+1

λai(`)

)

= Mm

(
t

∏
`=t−km(t)

λai(`) +
t

∑
τ=t−km(t)

∆τ

(
t

∏
`=τ

λai(`)

))
= Mm

for i = 1, 2, . . . , n. The above inequality implies that

Mm+1 ≤ Mm for m = 0, 1, 2, . . . , and |yi(t)| ≤ M0 for i = 1, 2, . . . , n.

Therefore,

|xi(t)| ≤
M0

λt for t ≥ t0 and i = 1, 2, . . . , n

and the proof is complete.

3 Examples and remarks

In this section we give some examples with the characteristic cases of the delay functions to
illustrate the main results. The following three examples illustrate Theorems 2.1, 2.2, 2.3 in
the case when the lag function is between two linear delay functions, or between two power
delay functions, or between two constant delay functions. Let be

A(t) =

[ 1
(1+t)2 0

0 1
(1+t)2

]
, B(t) =

[ 1
3 −

1
3(1+t)2 − 1

2
1
3

1
2 −

1
2(1+t)2

]
, (3.1)

t0 = 4, φ1(t) = φ2(t) = 1.5 sin 6t. (3.2)

It is obvious that the hypotheses (H1) and (H2) are fulfilled. The hypothesis (H6) is satisfied
with

Q =
41
48

, α1 = α2 =
24
25

, (3.3)

since

|b11(t)|+ |b12(t)| =
1
3

(
1− 1

(1 + t)2

)
+

1
2

=

(
1− 1

(1 + t)2

)(
1
3
+

1
2

(
1− 1

(1 + t)2

)−1
)

≤
(

1− 1
(1 + t)2

)(
1
3
+

1
2

(
1− 1

(1 + t0)2

)−1
)

=
41
48

(
1− 1

(1 + t)2

)
= Q(1− a1(t)) and similarly,
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|b21(t)|+ |b22(t)| =
1
3
+

1
2

(
1− 1

(1 + t)2

)
=

(
1− 1

(1 + t)2

)(
1
3

(
1− 1

(1 + t)2

)−1

+
1
2

)

≤
(

1− 1
(1 + t)2

)(
1
3

(
1− 1

(1 + t0)2

)−1

+
1
2

)

=
61
72

(
1− 1

(1 + t)2

)
≤ Q(1− a2(t)),

1− ai(t) = 1− 1
(1 + t)2 ≥ 1− 1

(1 + t0)2 =
24
25

= αi > 0, i = 1, 2. (3.4)

Example 3.1. Let

σ(t) =
1
3
(sin t + t)

be the lag function. Let the matrix functions A and B be defined by (3.1), the initial point t0

and the initial functions be defined by (3.2). Now, it is

ct ≤ σ(t) ≤ Ct for c =
1
4

and C =
3
4

,

so the lag function is between two linear functions. Set

t−1 =
1
3
(4 + sin 4) ≈ 1.08107,

so the initial interval is [
1
3
(4 + sin 4), 4

)
.

Since (
3
4

)1+log4
48
41

≈ 0.725864 <
41
48
≈ 0.85417, for K = log4

48
41
≈ 0.11371,

the condition C1+K < Q is satisfied. So, the conditions of Theorem 2.1 are satisfied for values
Q, α1, α2 defined by (3.3). Therefore, with values

M0 = M10 = M20 = sup
1
3 (4+sin 4)≤t<4

{
1.5tK| sin 6t|

}
≈ 1.75244, R1 = R2 ≈ 1.23841,

for the solution of the system (1.1) it follows that

|x1(t)| ≤ M0
R1

tK and |x2(t)| ≤ M0
R2

tK for all t ≥ 4.

That means the function
γi(t) = M0

Ri

tK

is a cover function of the component xi of the solution, i = 1, 2. The graphs of the functions
x1 (blue curve), γ1 and −γ1 (black curves) are shown in left picture of Figure 3.1. Red curve
in right picture of Figure 3.1 is the graph of the component x2 and the black curves are the
graphs of the cover functions γ2 and −γ2.
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Figure 3.1: Graphs of the components of the solution and their cover functions for system
with the lag function between two linear functions.

Remark 3.2. In this example the lag function is between two linear functions, and we got
that the rate of convergence of the components of the solutions can be estimated by a power
function. The components of solution are decaying functions because their cover functions are
decaying functions. Since the initial functions are continuous functions on the initial interval
[t−1, t0], therefore the components of solution are piecewise continuous, i.e. the components
of solution are continuous on the appropriate intervals (tm, tm+1), m = 0, 1, 2, . . .

Example 3.3. Let

σ(t) =
(

1
6

cos t + 1
)√

t

be the lag function. Let the matrix functions A and B be defined by (3.1), and the initial point
t0 and the initial functions be defined by (3.2). Now, it is

tc ≤ σ(t) ≤ tC for c =
1
3

and C =
2
3

,

so the lag function is between two power functions. Set

t−1 =

(
1
6

cos t0 + 1
)√

t0 ≈ 1.78212,

so the initial interval is [
2
(

1
6

cos 4 + 1
)

, 4
)

.

The conditions of Theorem 2.2 are satisfied for the values Q, α1, α2 defined by (3.3), so with
the values

K = log3
48
41
≈ 0.14348, M0 = M10 = M20 ≈ 1.56897, R1 = R2 ≈ 1.01811,

for the solution of the system (1.1) it follows that

|x1(t)| ≤ M0
R1

lnK t
and |x2(t)| ≤ M0

R2

lnK t
for all t ≥ 4.

Therefore the function
γi(t) = M0

Ri

lnK t
is cover function of the xi, i = 1, 2. The graphs of the functions x1 (blue curve), γ1 and −γ1

(black curves) are shown in left picture of Figure 3.2, and the functions x2 (red curve), γ2 and
−γ2 (black curves) are presented in right picture of Figure 3.2.
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Figure 3.2: Graphs of the components of the solution and their cover functions for system
with the lag function between two power functions.

Remark 3.4. In the above example the lag function is between two power functions, and we got
that the rate of convergence of the components of the solutions can be estimated by a power of
logarithmic function. Now, the components of solution are decaying functions because their
cover functions are decaying functions. Since the initial functions are continuous on the initial
interval, hence the components of solution are piecewise continuous functions for t ≥ t0. We
can observe that, in this case, the convergence to zero is much slower than the convergence in
the case when the cover function is only a power function.

Example 3.5. Let
σ(t) = t− sin 2t− 2

be the lag function. Let the matrix functions A and B be defined by (3.1), the initial point t0

and the initial functions be defined by (3.2). Now, for c = 1 and C = 3, t− C ≤ σ(t) ≤ t− c
is satisfied, so the lag function is between two constant delay functions. Notice that function
δ(t) = sin 2t + 2 has value 1 for infinitely many points, but δ(t) 6≡ 1. Set t−1 = 2− sin 4 ≈
1.01064, hence the initial interval is [2− sin 4, 4). The conditions of Theorem 2.3 are satisfied
with the values

λ ≈ 1.03914, M0 = M10 = M20 ≈ 1.74412.

Hence, for the solution of the system (1.1) it follows that

|x1(t)| ≤
M0

λt and |x2(t)| ≤
M0

λt for all t ≥ 4,

so the components of the solution have the same cover function

γ(t) =
M0

λt .

The graphs of the components x1 and x2 (blue and red curves) with functions γ and −γ (black
curves) are presented in Figure 3.3.

Remark 3.6. In this example the lag function is between two constant delay functions, and
we got that the rate of convergence of the components of the solutions can be estimated by
an exponential function. In view of the fact that the cover functions are decaying functions,
components of solution are also decaying functions. According to the continuity of initial
functions on the initial interval, the components of solution are piecewise continuous func-
tions for t ≥ t0. For this example, we can observe that the convergence to zero is much faster
than the convergence in the case when the cover function is only a power function.
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Figure 3.3: Graphs of the components of the solution and their cover functions for system
with the lag function between two constant delay functions.

The following example presents the case when Theorem 2.1 gives only boundary condi-
tion.

Example 3.7. Let be

A(t) =

[ 1
(1+t)2 0

0 1
(1+t)2

]
and B(t) =

[ 1
2 −

1
2(1+t)2

1
2 −

1
2(1+t)2

1
3 −

1
3(1+t)2

1
3 −

1
3(1+t)2

]

and let σ(t) = t
2 be the linear delay function. Now, c = C = 1

2 . For the initial point t0 = 4 we
get t−1 = 2 and the initial interval [2, 4). For the initial functions we choose

φ1(t) = φ2(t) = 1.5 sin 6t.

Due to (3.4),

|b11(t)|+ |b12(t)| = 1− 1
(1 + t)2 = 1 · (1− a1(t)) and

|b21(t)|+ |b22(t)| =
2
3

(
1− 1

(1 + t)2

)
≤ 1 ·

(
1− 1

(1 + t)2

)
= 1 · (1− a2(t)),

the hypothesis (H6) is satisfied for the values Q = 1, α1 = α2 = 24
25 , and it follows that K = 0.

Hence, for the values

M0 = M10 = M20 = 1.5, R1 = R2 =
∞

∏
m=1

(
1 +

KtK
0

α1(t0 − cm)K+1 cm−K
)
= 1

the conditions of Theorem 2.1 are fulfilled. Now, for the solution of the system (1.1) it follows
that

|x1(t)| ≤ M10R1 and |x2(t)| ≤ M20R2 for all t ≥ 4.

In this case the cover function γi(t) = M10Ri of component xi, i = 1, 2, is a constant function.
The graphs of first component (blue curve) and functions γ1 and −γ1 (black curves) are
plotted in left picture of Figure 3.4. The graphs of second component and its cover functions
are shown in right picture of Figure 3.4.

Remark 3.8. In the previous example the value K = 0 means that Theorem 2.1 gives us
only the boundedness of the solution of the considered system of difference equation. That
is, the components of solution does not necessary decay. We can get a similar example for
Theorem 2.2, too.
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Figure 3.4: Graphs of the components of the solution and their non-decaying cover functions
for system with linear lag function.

We created examples that show how the rate of convergence of the components of solu-
tions can be estimated by properly selected auxiliary functions. In the following example we
consider the components of solutions of the system of difference equations for the case n = 2,
c = C, with the same coefficients, the same initial points, the same initial intervals, the same
initial functions and different types of lag functions.

Example 3.9. Let

A(t) =

[ 1
(1+t)2 0

0 1
2(1+t)2

]
and B(t) =

 1
2

(
1− 1

(1+t)2

)
1
3

(
1− 1

(1+t)2

)
1
2

(
1− 1

2(1+t)2

)
1
3

(
1− 1

2(1+t)2

)
 .

We compare the components of solutions of the system of difference equations given for the
linear delay function σ(t) = t

2 , for the power delay function σ(t) =
√

t and for the constant
delay function σ(t) = t− 2, with the initial point t0 = 4, t−1 = 2 and the initial interval [2, 4),
and with the initial functions

φ1(t) = 1.5
(
t2 − 2

)
, φ2(t) = 1.5

√
t.

In the cases of the linear delay function and the power delay function it is c = C = 1
2 . Since

2

∑
j=1
|b1j(t)| =

1
2

(
1− 1

(1 + t)2

)
+

1
3

(
1− 1

(1 + t)2

)
=

5
6

(
1− 1

(1 + t)2

)
=

5
6
(1− a1(t)),

2

∑
j=1
|b2j(t)| =

1
2

(
1− 1

2(1 + t)2

)
+

1
3

(
1− 1

2(1 + t)2

)
=

5
6

(
1− 1

2(1 + t)2

)
=

5
6
(1− a2(t)),

1− a1(t) = 1− 1
(1 + t)2 ≥ 1− 1

(1 + t0)2 =
24
25

and

1− a2(t) = 1− 1
2(1 + t)2 ≥ 1− 1

2(1 + t0)2 =
49
50

,

hence the hypothesis (H6) is satisfied with Q =
5
6

, α1 =
24
25

and α2 =
49
50

.
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For the values

K = log2
6
5
≈ 0.263034, R1 ≈ 1.09481, R2 ≈ 1.09282,

M10 ≈ 30.24, M20 ≈ 4.32, M0 = max{M10, M20}

and for the lag function σ(t) = t
2 , the conditions of Theorem 2.1 are satisfied and it follows

that

|x1(t)| ≤ M0
R1

tK and |x2(t)| ≤ M0
R2

tK for all t ≥ 4.

The graphs of the component xi of solution, cover functions γi and −γi, where γi(t) = M0
Ri
tK ,

are plotted by blue color in Figure 3.5 (left picture for i = 1 and right picture for i = 2).
For the values

K = log2
6
5
≈ 0.263034, R1 ≈ 1.00838, R2 ≈ 1.00821,

M10 ≈ 22.88401, M20 ≈ 3.26914, M0 = max{M10, M20}

and for the lag function σ(t) =
√

t, the conditions of Theorem 2.2 are also satisfied and it
follows that

|x1(t)| ≤ M0
R1

lnK t
, and |x2(t)| ≤ M0

R2

lnK t
for all t ≥ 4.

Red curves in Figure 3.5 are the graphs of the component xi of solution, cover functions γi
and −γi,

γi(t) = M0
Ri

lnK t
, for i = 1 and i = 2

respectively.
For the constant delay function σ(t) = t− 2 the conditions of Theorem 2.3 are satisfied for

the values

λ =
13
√

111− 3
125

≈ 1.07171, M10 ≈ 27.70290, M20 ≈ 3.95756, M0 = max{M10, M20}

and it follows that

|x1(t)| ≤
M0

λt and |x2(t)| ≤
M0

λt for all t ≥ 4.

The graphs of the components of solution, cover functions γ and −γ, γ(t) = M0
λt , are shown

by green curves in Figure 3.5.

Remark 3.10. The example presented above shows that the components of solutions of the
system of difference equations with the linear delay lag function are power-low decaying,
those with the power delay lag function are logarithmic decaying and those with the constant
delay lag function are exponentially decaying. The components of the solution tend to zero
for all observed lag functions. The convergence is the fastest in the case of constant delay lag
function and it is the slowest in the case of power delay lag function.

Remark 3.11. In the above examples all the values M10, M20, R1 and R2 were determined
using the software Mathematica.
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Figure 3.5: Comparison of the solutions of the system of difference equations with the linear
delay, the power delay and the constant delay lag functions.

4 Conclusions

The system of delay difference equations with continuous time (1.1) with the initial condition
(1.2) is an initial value problem. Using the step by step method, the unique solution of the
initial value problem (1.1), (1.2) exists for t ≥ t0. Furthermore, the solution of the initial
value problem (1.1), (1.2) is continuous if and only if the initial function defined by (1.2) is a
continuous function and satisfies the condition

φ(t0) = A(t)φ(t0 − 1) + B(t0)φ(σ(t0)). (4.1)

If condition (4.1) is violated, then we can only speak about the existence of a piecewise con-
tinuous solution, as in the case of the examples in the previous section.

We have shown that the solutions of the initial value problem (1.1), (1.2) with lag functions
squeezed between two linear functions or two power functions or two constant delay functions
can be estimated by functions which tend to zero. Therefore, those solutions converge to zero.

The definition of asymptotic stability of solutions of system (1.1) can be introduced by anal-
ogy with definitions given for difference equations with continuous time and can be found,
for example, in [6], pp. 193–194, [16], pp. 985–986.

Definition 4.1. The trivial solution xi(t) ≡ 0, i = 1, 2, . . . , n, of system (1.1) is called stable if
for any ε > 0 and t0 > 0 there exists a δ = δ(ε, t0) > 0 such that if

n
sup
i=1
|φi(t)| < δ(ε, t0), for t−1 ≤ t < t0,

then the solution xφ(t) = (x1(t), x2(t), . . . , xn(t)) of the initial value problem (1.1), (1.2) satis-
fies the inequality

n
sup
i=1
|xi(t)| < ε for t ≥ t0.

Definition 4.2. The trivial solution xi(t) ≡ 0, i = 1, 2, . . . , n, of system (1.1) is said to be
asymptotically stable if it is stable in the sense of Definition 4.1 and

lim
t→∞
|xi(t)| = 0 for i = 1, 2, . . . , n.

According to the properties of the received cover functions and in a sense of the above
definitions we can conclude that the conditions of Theorems 2.1 and 2.2 with K 6= 0 and
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Theorem 2.3 lead to the existence of the asymptotically stable solutions of the considered
equation. These results can be motivation to further investigations for getting new conditions
for existence of asymptotically stable solutions of difference equations with continuous time.
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