

provided by Repository of the Academy's Library

Electronic Journal of Qualitative Theory of Differential Equations 2016, No. **97**, 1–10; doi: 10.14232/ejqtde.2016.1.97 <http://www.math.u-szeged.hu/ejqtde/>

Positive solutions of second-order three-point boundary value problems with sign-changing coefficients

Ye Xue and Guowei Zhang[⊠]

Department of Mathematics, Northeastern University, Shenyang 110819, China

Received 17 July 2016, appeared 22 October 2016 Communicated by Jeff R. L. Webb

Abstract. In this article, we investigate the boundary-value problem

 $\int x''(t) + h(t)f(x(t)) = 0, \quad t \in [0,1],$ $x(0) = \beta x'(0), \quad x(1) = x(\eta),$

where $\beta \geq 0$, $\eta \in (0,1)$, $f \in C([0,\infty), [0,\infty))$ is nondecreasing, and importantly *h* changes sign on [0,1]. By the Guo–Krasnosel'skiı̆ fixed-point theorem in a cone, the existence of positive solutions is obtained via a special cone in terms of superlinear or sublinear behavior of *f* .

Keywords: positive solution, fixed point theorem, cone, sign-changing coefficient.

2010 Mathematics Subject Classification: 34B18, 34B10, 34B15.

1 Introduction

For the first time Liu [\[7\]](#page-9-0) considered the existence of positive solutions to the following secondorder three-point boundary value problems

$$
\begin{cases}\n x''(t) + \lambda h(t)f(x(t)) = 0, & t \in [0,1], \\
 x(0) = 0, & x(1) = \delta x(\eta),\n\end{cases}
$$
\n(1.1)

where λ is a positive parameter, $\eta \in (0,1)$, $f \in C([0,\infty),[0,\infty))$ is nondecreasing, $\delta \in (0,1)$ and $h(t)$ is continuous and especially changes sign on [0, 1] which is different from the nonnegative assumption in most of these studies.

Karaca [\[4\]](#page-9-1) studied the problems with more general boundary conditions

$$
\begin{cases}\n x''(t) + h(t)f(x(t)) = 0, & t \in [0,1], \\
 \alpha x(0) = \beta x'(0), & x(1) = \delta x(\eta),\n\end{cases}
$$
\n(1.2)

 $B \cong$ Corresponding author. Email: gwzhang@mail.neu.edu.cn, gwzhangneum@sina.com

where $\alpha \geq 0$, $\beta \geq 0$, $\alpha + \beta > 0$ with $0 < \delta < 1$, *f*, *h* as in [\(1.1\)](#page-0-1).

The authors of $[4, 7]$ $[4, 7]$ $[4, 7]$ showed the existence of at least one positive solution by applying the fixed-point theorem in a cone. Similar methods for a different problem are in [\[9\]](#page-9-2). Let *E* be a Banach space, the nonempty subset *P* is called a cone in *E* if it is a closed convex set and satisfies the properties that $\lambda x \in P$ for any $\lambda > 0$, $x \in P$ and that $\pm x \in P$ implies $x = 0$ (the zero element in *E*) (see [\[3\]](#page-9-3)).

In [\[4\]](#page-9-1) the author denoted

$$
C_0^+[0,1] = \left\{ x \in C[0,1] : \min_{t \in [0,1]} x(t) \ge 0, \text{ and } \alpha x(0) = \beta x'(0), x(1) = \delta x(\eta) \right\}
$$

and defined

$$
\mathcal{P} = \left\{ x \in C_0^+[0,1] : x(t) \text{ is concave on } [0,\eta] \text{ and convex on } [\eta,1] \right\}.
$$

In fact, P is not a cone since it is not a closed set in $C[0, 1]$. For example, for $n > 3$ let

$$
x_n(t) = \begin{cases} t+1, & 0 \le t \le \frac{1}{n}, \\ \frac{1}{n}+1, & \frac{1}{n} < t \le \frac{1}{3}, \\ 6(\frac{1}{2}+\frac{1}{n})(\frac{1}{2}-t) + \frac{1}{2}, & \frac{1}{3} < t \le \frac{1}{2}, \\ \frac{3}{4}-\frac{t}{2}, & \frac{1}{2} < t \le 1, \\ 3(\frac{1}{2}-t) + \frac{1}{2}, & \frac{1}{3} < t \le \frac{1}{2}, \\ \frac{3}{4}-\frac{t}{2}, & \frac{1}{2} < t \le 1. \end{cases}
$$

Obviously, $x_n \in \mathcal{P}$ for $\alpha = \beta = 1$, $\delta = 1/2$ and $x_n \to x_0$ in C[0, 1] since $\{x_n(t)\}$ uniformly converges to $x_0(t)$ on [0, 1]. But $x_0 \notin \mathcal{P}$ because $x_0(0) = 1 \neq 0 = x'_0(0)$. However the conclusions in [\[4\]](#page-9-1) are actually true only if $\alpha x(0) = \beta x'(0)$ is removed in C_0^+ $\int_0^+[0,1]$ which is not needed in the proof of [\[4,](#page-9-1) Lemma 2.2] by using of the concavity.

A question is whether one can have boundary condition $x(1) = \delta x(\eta)$ with δ < $(\beta + 1)/(\beta + \eta)$ in problem [\(1.2\)](#page-0-2) with $\alpha = 1$, which is the necessary condition when $f \ge 0$. We only consider one (less complicated) special case $\delta = 1$. If $\alpha = 0$, the corresponding linear problem for $g \in C[0, 1]$ will be

$$
\begin{cases}\n x''(t) + g(t) = 0, & t \in [0, 1], \\
 x'(0) = 0, & x(1) = x(\eta),\n\end{cases}
$$
\n(1.3)

which is a resonance problem. So it is acceptable that $\alpha > 0$ and may be supposed to be $\alpha = 1$. For that reason, we investigate the existence of positive solutions to the three-point boundary-value problem

$$
\begin{cases}\n x''(t) + h(t)f(x(t)) = 0, & t \in [0,1], \\
 x(0) = \beta x'(0), & x(1) = x(\eta),\n\end{cases}
$$
\n(1.4)

where $\beta \geq 0$, $\eta \in (0,1)$, $f \in C([0,\infty),[0,\infty))$, $h(t)$ is continuous and is sign changing on $[0, 1]$. The existence of positive solutions is obtained via a special cone (see (2.5)) in terms of superlinear or sublinear behavior of *f* by the Guo–Krasnosel'ski˘ı fixed-point theorem in a cone. The ideas here are similar to the papers [\[4,](#page-9-1) [7\]](#page-9-0) and [\[9\]](#page-9-2), but note that the signs on *h* are opposite to those in [\[4,](#page-9-1)[7\]](#page-9-0). Other relevant research can be seen in $[1, 2, 5, 8, 10]$ $[1, 2, 5, 8, 10]$ $[1, 2, 5, 8, 10]$ $[1, 2, 5, 8, 10]$ $[1, 2, 5, 8, 10]$ $[1, 2, 5, 8, 10]$ $[1, 2, 5, 8, 10]$ $[1, 2, 5, 8, 10]$ $[1, 2, 5, 8, 10]$.

2 Preliminaries

We will use the following assumptions.

- (H_1) $h : [0,1] \rightarrow \mathbb{R}$ is continuous and such that $h(t) \leq 0$, $t \in [0,\eta]$; $h(t) \geq 0$, $t \in [\eta,1]$. Moreover, $h(t)$ does not vanish identically on any subinterval of $[0, 1]$.
- (H₂) $f \in C([0,\infty), [0,\infty))$ is continuous and nondecreasing.
- (H₃) There exists a constant $\tau \in (\frac{1+\eta}{2}, 1)$ such that $A\rho h(\tau \rho t) + h(t) \geq 0$ for $t \in [0, \eta]$ and $\rho = \frac{\tau - \eta}{n}$ $\frac{-\eta}{\eta}$, where

$$
A = \begin{cases} \frac{\beta(1-\tau)(1-\eta)}{2+\beta-\eta}, & \beta \neq 0, \\ \frac{(1-\tau)\eta^2}{1+\eta}, & \beta = 0. \end{cases}
$$
 (2.1)

Remark 2.1. The following example indicates that (H_3) is reasonable. If we take $\eta = 1/5$, $\tau = 4/5 \in (3/5, 1), \rho = 3$ and

$$
h(t) = \begin{cases} t - 1/5, & t \in [0, 1/5], \\ (125/2)(t - 1/5), & t \in (1/5, 1], \end{cases}
$$

then

$$
A = \begin{cases} 2/125, & \beta = 1/5, \\ 1/150, & \beta = 0. \end{cases}
$$

It is easy to see for $t \in [0, 1/5]$ that $A \rho h(\tau - \rho t) + h(t) = 8(1/5 - t) \ge 0$ when $\beta = 1/5$ and $A \rho h(\tau - \rho t) + h(t) = (11/4)(1/5 - t) \ge 0$ when $\beta = 0$.

Lemma 2.2. *For* $g \in C[0, 1]$ *,*

$$
\begin{cases}\nx''(t) + g(t) = 0, & t \in [0, 1], \\
x(0) = \beta x'(0), & x(1) = x(\eta)\n\end{cases}
$$
\n(2.2)

has the unique solution

$$
x(t) = \int_0^1 G_1(t,s)g(s)ds + \frac{\beta}{1-\eta}\int_0^1 G_2(\eta,s)g(s)ds + \frac{t}{1-\eta}\int_0^1 G_1(\eta,s)g(s)ds,
$$

where

$$
G_1(t,s) = \begin{cases} (1-t)s, & 0 \le s \le t \le 1, \\ (1-s)t, & 0 \le t < s \le 1, \end{cases} \qquad G_2(\eta,s) = \begin{cases} 1-\eta, & 0 \le s \le \eta, \\ 1-s, & \eta < s \le 1. \end{cases}
$$

Proof. By Taylor expansion we have

$$
x(t) = a_0 + a_1t + \int_0^t (t - s)x''(s)ds = a_0 + a_1t - \int_0^t (t - s)g(s)ds
$$
 (2.3)

and

$$
x(0) = a_0, x(1) = a_0 + a_1 - \int_0^1 (1 - s)g(s)ds,
$$

$$
x(\eta) = a_0 + a_1\eta - \int_0^{\eta} (\eta - s)g(s)ds, x'(0) = a_1.
$$

The boundary conditions imply that $a_0 = \beta a_1$ and

$$
a_0 + a_1 - \int_0^1 (1 - s)g(s)ds = a_0 + a_1\eta - \int_0^{\eta} (\eta - s)g(s)ds,
$$

thus

$$
a_1 = \frac{1}{1-\eta} \int_0^1 (1-s)g(s)ds - \frac{1}{1-\eta} \int_0^{\eta} (\eta-s)g(s)ds,
$$

$$
a_0 = \frac{\beta}{1-\eta} \int_0^1 (1-s)g(s)ds - \frac{\beta}{1-\eta} \int_0^{\eta} (\eta-s)g(s)ds.
$$

It follows from [\(2.3\)](#page-2-0) that

$$
x(t) = \frac{\beta+t}{1-\eta} \int_0^1 (1-s)g(s)ds - \frac{\beta+t}{1-\eta} \int_0^{\eta} (\eta-s)g(s)ds - \int_0^t (t-s)g(s)ds
$$

\n
$$
= \left(t + \frac{\beta+\eta t}{1-\eta}\right) \int_0^1 (1-s)g(s)ds + (\beta+st) \int_0^{\eta} g(s)ds - \frac{\beta+\eta t}{1-\eta} \int_0^{\eta} (1-s)g(s)ds
$$

\n
$$
+ \int_0^t (1-t)sg(s)ds - \int_0^t (1-s)tg(s)ds
$$

\n
$$
= \int_t^1 (1-s)tg(s)ds + \int_0^1 \frac{\beta+\eta t}{1-\eta} (1-s)g(s)ds
$$

\n
$$
+ \int_0^{\eta} (\beta+st)g(s)ds + \int_0^t (1-t)sg(s)ds
$$

\n
$$
= \int_0^1 G_1(t,s)g(s)ds + \frac{\beta}{1-\eta} \left(\int_0^{\eta} (1-\eta)g(s)ds + \int_{\eta}^1 (1-s)g(s)ds \right)
$$

\n
$$
+ \frac{t}{1-\eta} \left(\int_0^{\eta} (1-\eta)sg(s)ds + \int_{\eta}^1 (1-s)\eta g(s)ds \right)
$$

\n
$$
= \int_0^1 G_1(t,s)g(s)ds + \frac{\beta}{1-\eta} \int_0^1 G_2(\eta,s)g(s)ds + \frac{t}{1-\eta} \int_0^1 G_1(\eta,s)g(s)ds,
$$

and hence the proof is complete.

 \Box

For $t, s \in [0, 1]$ let

$$
G(t,s) = G_1(t,s) + \frac{\beta}{1-\eta}G_2(\eta,s) + \frac{t}{1-\eta}G_1(\eta,s).
$$
 (2.4)

Lemma 2.3. *If* $s_1 \in [0, \eta]$ *and* $s_2 \in [\eta, \tau]$ *, then*

$$
G_1(\eta, s_2) \geq AG_1(\eta, s_1), G(t, s_2) \geq AG(t, s_1), \qquad \forall t \in [0, 1],
$$

where τ *and* A *are as in* (H_3).

Proof. In the case whether $\beta = 0$ or $\beta \neq 0$,

$$
\frac{G_1(\eta,s_2)}{G_1(\eta,s_1)} = \frac{(1-s_2)\eta}{(1-\eta)s_1} \ge \frac{(1-\tau)\eta}{(1-\eta)\eta} = \frac{1-\tau}{1-\eta} \ge A.
$$

When $\beta \neq 0$,

$$
\frac{G(t,s_2)}{G(t,s_1)} = \frac{G_1(t,s_2) + \frac{\beta}{1-\eta}G_2(\eta,s_2) + \frac{t}{1-\eta}G_1(\eta,s_2)}{G_1(t,s_1) + \frac{\beta}{1-\eta}G_2(\eta,s_1) + \frac{t}{1-\eta}G_1(\eta,s_1)}
$$
\n
$$
\geq \frac{\frac{\beta}{1-\eta}G_2(\eta,s_2)}{G_1(t,s_1) + \frac{\beta}{1-\eta}G_2(\eta,s_1) + \frac{t}{1-\eta}G_1(\eta,s_1)}
$$
\n
$$
\geq \frac{\frac{\beta}{1-\eta}(1-s_2)(1-\eta)}{(1-s_1) + \frac{\beta}{1-\eta}(1-s_1) + \frac{1}{1-\eta}(1-s_1)}
$$
\n
$$
= \frac{\beta(1-s_2)}{(1 + \frac{\beta}{1-\eta})(1-s_1)} \geq \frac{\beta(1-\tau)}{1 + \frac{\beta+1}{1-\eta}} = \frac{\beta(1-\tau)(1-\eta)}{2+\beta-\eta};
$$

when $\beta = 0$,

$$
\frac{G(t,s_2)}{G(t,s_1)} = \frac{G_1(t,s_2) + \frac{t}{1-\eta}G_1(\eta,s_2)}{G_1(t,s_1) + \frac{t}{1-\eta}G_1(\eta,s_1)} \ge \frac{\frac{t}{1-\eta}G_1(\eta,s_2)}{G_1(t,s_1) + \frac{t}{1-\eta}G_1(\eta,s_1)}
$$
\n
$$
\ge \frac{\frac{t}{1-\eta}G_1(\eta,s_2)}{(1-s_1)t + \frac{t}{1-\eta}G_1(\eta,s_1)} = \frac{\frac{1}{1-\eta}G_1(\eta,s_2)}{(1-s_1) + \frac{1}{1-\eta}G_1(\eta,s_1)}
$$
\n
$$
\ge \frac{\frac{1}{1-\eta}s_2\eta(1-\eta)(1-s_2)}{1 + \frac{1}{1-\eta}s_1(1-\eta)} \ge \frac{(1-\tau)\eta^2}{1+\eta}.
$$

Thus the proof is finished.

In *C*[0, 1] with the norm $||x|| = \max_{t \in [01]} |x(t)|$ for $x \in C[0, 1]$, denote

$$
X = \left\{ x \in C[0,1] : \min_{t \in [0,1]} x(t) \ge 0, \text{ and } x(0) \le x(\eta), x(1) = x(\eta) \right\},\
$$

$$
P = \left\{ x \in X : x(t) \text{ is convex on } [0,\eta] \text{ and is concave on } [\eta,1] \right\}. \tag{2.5}
$$

Obviously, *P* is a cone in *C*[0, 1].

Lemma 2.4. *If* $x \in P$ *, then* $x(t) \leq x(\eta) = \min_{t \in [\eta,1]} x(t)$ for $t \in [0,\eta]$. **Lemma 2.5.** *If* $x \in P$ *, then*

$$
x(t) \geq \frac{1-\tau}{2(1-\eta)} \|x\| \quad \text{for } t \in \left[\tau, \frac{1+\tau}{2}\right],
$$

where τ *is as in (H₃)*.

Proof. By Lemma [2.4](#page-4-1) we have $||x|| = max_{t \in [\eta,1]} x(t)$ and denote

$$
\mu = \sup \{ \xi \in [\eta, 1] : x(\xi) = ||x|| \}.
$$

Notice that *x*(*t*) is concave on [η , 1]. For $t \in [\eta, \mu)$,

$$
\frac{x(\mu) - x(\eta)}{\mu - \eta} \ge \frac{x(\mu) - x(t)}{\mu - t}
$$

 \Box

and

$$
x(t) \geq \frac{(t-\eta)x(\mu) + (\mu - t)x(\eta)}{\mu - \eta} \geq \frac{t-\eta}{\mu - \eta} ||x|| \geq \frac{t-\eta}{1-\eta} ||x||;
$$

for $t \in (\mu, 1]$,

$$
\frac{x(t) - x(\mu)}{t - \mu} \ge \frac{x(1) - x(\mu)}{1 - \mu}
$$

and

$$
x(t) \ge \frac{(t-\mu)x(1) + (1-t)x(\mu)}{1-\mu} \ge \frac{1-t}{1-\eta} ||x|| = \left(1 - \frac{t-\eta}{1-\eta}\right) ||x||.
$$

Therefore,

$$
x(t) \ge \min\left\{\frac{t-\eta}{1-\eta}, 1-\frac{t-\eta}{1-\eta}\right\} ||x||, \quad \forall t \in [\eta, 1]
$$

and hence

$$
x(t) \ge \min\left\{\frac{\tau - \eta}{1 - \eta}, \frac{1 - \tau}{2(1 - \eta)}\right\} ||x|| = \frac{1 - \tau}{2(1 - \eta)} ||x||, \quad \forall t \in \left[\tau, \frac{1 + \tau}{2}\right]
$$

since $[\tau, \frac{1+\tau}{2}] \subset [\eta, 1].$

Lemma 2.6. *Suppose that* (H_1) – (H_3) *are satisfied.* If $x \in P$ *, then*

$$
\int_0^{\tau} G(t,s)h(s)f(x(s))ds \ge 0 \qquad (\forall t \in [0,1]) \quad \text{and} \quad \int_0^{\tau} G_1(\eta,s)h(s)f(x(s))ds \ge 0,
$$

where τ *is as in (H₃)*.

Proof. For $s \in [\eta, \tau]$ let $s = \tau - \rho z$, here $\rho = (\tau - \eta)/\eta$, then $z \in [0, \eta]$. By Lemma [2.3,](#page-3-0) Lemma [2.4,](#page-4-1) (H_1) and (H_3) , we have

$$
\int_{\eta}^{\tau} G(t,s)h(s)f(x(s))ds = \rho \int_{0}^{\eta} G(t,\tau-\rho z)h(\tau-\rho z)f(x(\tau-\rho z))dz
$$

\n
$$
\geq A\rho \int_{0}^{\eta} G(t,z)h(\tau-\rho z)f(x(\tau-\rho z))dz
$$

\n
$$
\geq A\rho \int_{0}^{\eta} G(t,z)h(\tau-\rho z)f(x(z))dz
$$

\n
$$
\geq -\int_{0}^{\eta} G(t,z)h(z)f(x(z))dz = -\int_{0}^{\eta} G(t,s)h(s)f(x(s))ds
$$

and hence

$$
\int_0^{\tau} G(t,s)h(s)f(x(s))ds \geq 0.
$$

By the same way, the other inequality holds.

3 Main results

For $x \in P$ define the operator *T* as the following:

$$
(Tx)(t) = \int_0^1 G(t,s)h(s)f(x(s))ds,
$$
\n(3.1)

where $G(t, s)$ is in [\(2.4\)](#page-3-1).

 \Box

 \Box

Lemma 3.1. *If* (H_1) – (H_3) are satisfied, then $T : P \to P$ is completely continuous, where P is the cone *defined by* [\(2.5\)](#page-4-0) *in C*[0, 1]*.*

Proof. If $x \in P$, it is clear that $(Tx)(t)$ is continuous on [0, 1] and for $t \in [0, 1]$,

$$
(Tx)(t) = \int_0^{\tau} G(t,s)h(s)f(x(s))ds + \int_{\tau}^1 G(t,s)h(s)f(x(s))ds \ge 0
$$

by Lemma [2.6.](#page-5-0) Moreover, direct calculations by virtue of [\(2.4\)](#page-3-1), [\(3.1\)](#page-5-1) and Lemma [2.6](#page-5-0) yield

$$
(Tx)(\eta) = \frac{1}{1-\eta} \int_0^1 G_1(\eta, s) h(s) f(x(s)) ds + \frac{\beta}{1-\eta} \int_0^1 G_2(\eta, s) g(s) f(x(s)) ds = (Tx)(1),
$$

$$
(Tx)(\eta) - (Tx)(0) = \frac{1}{1-\eta} \int_0^1 G_1(\eta, s)h(s)f(x(s))ds
$$

=
$$
\frac{1}{1-\eta} \Big(\int_0^{\tau} G_1(\eta, s)h(s)f(x(s))ds + \int_{\tau}^1 G_1(\eta, s)g(s)f(x(s))ds \Big) \ge 0.
$$

Meanwhile $(Tx)''(t) = -h(t)f(x(t)) ≥ 0$ for $t ∈ [0, η]$ and $(Tx)''(t) ≤ 0$ for $t ∈ [η, 1]$, i.e., $(Tx)(t)$ is convex on $[0, \eta]$ and is concave on $[\eta, 1]$ respectively. These mean that $T : P \to P$. At last, we know that *T* is completely continuous from the Arzelà–Ascoli theorem. \Box

It follows from Lemma [2.2](#page-2-1) that there exists a positive solution to [\(1.4\)](#page-1-0) if and only if *T* has a fixed point in *P*. In order to prove the existence of positive solution we need the following Guo-Krasnosel'skiı̆ fixed point theorem in the cone [\[3,](#page-9-3)[6\]](#page-9-9).

Lemma 3.2. Let E be a Banach space and P be a cone in E. Suppose that Ω_1 and Ω_2 are bounded open *sets in E* with $0 \in \Omega_1$ *and* $\overline{\Omega}_1 \subset \Omega_2$. If $T : P \cap (\overline{\Omega}_2 \setminus \Omega_1) \to P$ is a completely continuous operator *and satisfies either*

- *(i)* $||Tx|| \le ||x||$ *for* $x \in P \cap \partial \Omega_1$ *and* $||Tx|| \ge ||x||$ *for* $x \in P \cap \partial \Omega_2$ *; or*
- *(ii)* $||Tx|| \ge ||x||$ *for* $x \in P \cap \partial \Omega_1$ *and* $||Tx|| \le ||x||$ *for* $x \in P \cap \partial \Omega_2$ *,*

then T has a fixed point in $P \cap (\overline{\Omega}_2 \backslash \Omega_1)$ *.*

Theorem 3.3. *Suppose that (H*1*)–(H*3*) are satisfied. If*

$$
\lim_{u \to 0^+} f(u)/u = 0,
$$
\n(3.2)

$$
\lim_{u \to \infty} f(u)/u = \infty,
$$
\n(3.3)

then [\(1.4\)](#page-1-0) *has at least one positive solution.*

Proof. Let *P* and *T* be respectively as (2.5) and (3.1) .

By [\(3.2\)](#page-6-0) there exists $r_1 > 0$ such that $f(u) \leq \varepsilon_1 u$ for $u \in [0, r_1]$, where $\varepsilon_1 > 0$ satisfies

$$
\varepsilon_1 \max_{t \in [0,1]} \int_{\eta}^{1} G(t,s)h(s)ds \le 1.
$$
 (3.4)

Denote $\Omega_1 = \{x \in C[0,1] : ||x|| < r_1\}$ and hence from (H_1) and (3.4) we have that $\forall x$ ∈ *P* ∩ ∂Ω₁,

$$
(Tx)(t) = \int_0^{\eta} G(t,s)h(s)f(x(s)) + \int_{\eta}^1 G(t,s)h(s)f(x(s))ds
$$

\n
$$
\leq \int_{\eta}^1 G(t,s)h(s)f(x(s))ds \leq \varepsilon_1 \int_{\eta}^1 G(t,s)h(s)x(s)ds
$$

\n
$$
\leq \varepsilon_1 ||x|| \int_{\eta}^1 G(t,s)h(s)ds \leq r_1, t \in [0,1],
$$

that is, $||Tx|| \leq ||x||$.

By [\(3.3\)](#page-6-2) there exists $\widetilde{R}_1 > 0$ such that $f(u) \ge \Lambda_1 u$ for $u \ge \widetilde{R}_1$, where $\Lambda_1 > 0$ satisfies

$$
\Lambda_1 \frac{1-\tau}{2(1-\eta)} \max_{t \in [0,1]} \int_{\tau}^{(1+\tau)/2} G(t,s)h(s)ds \ge 1.
$$
 (3.5)

Denote $Ω₂ = {x ∈ C[0, 1]: ||x|| < R₁}, where$

$$
R_1 = \max\left\{2r_1, \tilde{R}_1 \frac{2(1-\eta)}{1-\tau}\right\},
$$
\n(3.6)

and hence by Lemma [2.5](#page-4-2) and [\(3.6\)](#page-7-0) we have that $\forall x \in P \cap \partial \Omega_2$,

$$
x(t) \ge \frac{1-\tau}{2(1-\eta)} \|x\| = \frac{1-\tau}{2(1-\eta)} R_1 \ge \widetilde{R}_1 \quad \text{for } t \in \left[\tau, \frac{1+\tau}{2}\right]. \tag{3.7}
$$

Consequently, it follows from Lemma [2.6,](#page-5-0) [\(3.7\)](#page-7-1) and [\(3.5\)](#page-7-2) that $\forall x \in P \cap \partial \Omega_2$,

$$
||Tx|| = \max_{t \in [0,1]} \left(\int_0^{\tau} G(t,s)h(s)f(x(s)) + \int_{\tau}^1 G(t,s)h(s)f(x(s))ds \right)
$$

\n
$$
\geq \max_{t \in [0,1]} \int_{\tau}^1 G(t,s)h(s)f(x(s))ds \geq \max_{t \in [0,1]} \int_{\tau}^{(1+\tau)/2} G(t,s)h(s)f(x(s))ds
$$

\n
$$
\geq \max_{t \in [0,1]} \int_{\tau}^{(1+\tau)/2} G(t,s)h(s)\Lambda_1 x(s)ds
$$

\n
$$
\geq \Lambda_1 \frac{1-\tau}{2(1-\eta)} ||x|| \max_{t \in [0,1]} \int_{\tau}^{(1+\tau)/2} G(t,s)h(s)ds \geq ||x||.
$$

By Lemma [3.1](#page-6-3) and Lemma [3.2](#page-6-4) *T* has at least one fixed point in $P \cap (\overline{\Omega}_2 \setminus \Omega_1)$ which is the positive solution to [\(1.4\)](#page-1-0). \Box

Theorem 3.4. *Suppose that (H*1*)–(H*3*) are satisfied. If*

$$
\lim_{u \to 0^+} f(u)/u = \infty,
$$
\n(3.8)

$$
\lim_{u \to \infty} f(u)/u = 0,\tag{3.9}
$$

then [\(1.4\)](#page-1-0) *has at least one positive solution.*

Proof. Let *P* and *T* be respectively as [\(2.5\)](#page-4-0) and [\(3.1\)](#page-5-1).

By [\(3.8\)](#page-7-3) there exists $r_2 > 0$ such that $f(u) \ge \Lambda_2 u$ for $u \in [0, r_2]$, where $\Lambda_2 > 0$ satisfies

$$
\Lambda_2 \frac{1-\tau}{2(1-\eta)} \max_{t \in [0,1]} \int_{\tau}^{(1+\tau)/2} G(t,s)h(s)ds \ge 1.
$$
 (3.10)

Denote $\Omega_1 = \{x \in C[0,1]: ||x|| < r_2\}$ and hence from Lemma [2.6](#page-5-0) and Lemma [2.5](#page-4-2) we have that $\forall x \in P \cap \partial \Omega_1$,

$$
||Tx|| = \max_{t \in [0,1]} \left(\int_0^{\tau} G(t,s)h(s)f(x(s)) + \int_{\tau}^1 G(t,s)h(s)f(x(s))ds \right)
$$

\n
$$
\geq \max_{t \in [0,1]} \int_{\tau}^1 G(t,s)h(s)f(x(s))ds \geq \max_{t \in [0,1]} \int_{\tau}^{(1+\tau)/2} G(t,s)h(s)f(x(s))ds
$$

\n
$$
\geq \max_{t \in [0,1]} \int_{\tau}^{(1+\tau)/2} G(t,s)h(s)\Lambda_2 x(s)ds
$$

\n
$$
\geq \Lambda_2 \frac{1-\tau}{2(1-\eta)} ||x|| \max_{t \in [0,1]} \int_{\tau}^{(1+\tau)/2} G(t,s)h(s)ds \geq ||x||.
$$

By [\(3.9\)](#page-7-4) there exists $\widetilde{R}_2 > 0$ such that $f(u) \leq \varepsilon_2 u$ for $u \geq \widetilde{R}_2$, where $\varepsilon_2 > 0$ satisfies

$$
\varepsilon_2 \max_{t \in [0,1]} \int_{\eta}^{1} G(t,s)h(s)ds \le 1.
$$
 (3.11)

If *f* is bounded, then there exists a constant $M > 0$ such that $f(u) \leq M$ for $u \geq 0$ and denote $\Omega_2 = \{x \in C[0,1] : ||x|| < R_2\}$ in this case, where

$$
R_2 = \max\left\{2r_2, M \max_{t \in [0,1]} \int_{\eta}^{1} G(t,s)h(s)ds\right\},\tag{3.12}
$$

and hence from (H₁) and [\(3.12\)](#page-8-0) we have that $\forall x \in P \cap \partial \Omega_2$,

$$
(Tx)(t) = \int_0^{\eta} G(t,s)h(s)f(x(s)) + \int_{\eta}^1 G(t,s)h(s)f(x(s))ds
$$

\$\leq \int_{\eta}^1 G(t,s)h(s)f(x(s))ds \leq M \max_{t \in [0,1]} \int_{\eta}^1 G(t,s)h(s)ds \leq R_2, \quad t \in [0,1],

that is, $||Tx|| \le ||x||$.

For the case when *f* is unbounded, take $R_2 = \max\{2r_2, \widetilde{R}_2\}$ and thus $f(u) \le f(R_2)$ for *u* ∈ [0, *R*₂] by the monotonicity of *f*. Therefore from (H₁) and [\(3.11\)](#page-8-1) we have that ∀*x* ∈ *P* ∩∂Ω₂,

$$
(Tx)(t) = \int_0^{\eta} G(t,s)h(s)f(x(s)) + \int_{\eta}^1 G(t,s)h(s)f(x(s))ds
$$

\n
$$
\leq \int_{\eta}^1 G(t,s)h(s)f(x(s))ds \leq f(R_2) \max_{t \in [0,1]} \int_{\eta}^1 G(t,s)h(s)ds
$$

\n
$$
\leq \varepsilon_2 R_2 \max_{t \in [0,1]} \int_{\eta}^1 G(t,s)h(s)ds \leq R_2, \qquad t \in [0,1],
$$

which implies $||Tx|| \le ||x||$ also.

By Lemma [3.1](#page-6-3) and Lemma [3.2](#page-6-4) *T* has at least one fixed point in $P \cap (\overline{\Omega}_2 \setminus \Omega_1)$ which is the positive solution to [\(1.4\)](#page-1-0). \Box

Acknowledgments

The authors express their gratitude to the referees for their valuable comments and suggestions. The authors are supported by National Natural Science Foundation of China (Grant number 61473065).

References

- [1] C. BAI, D. XIE, Y. LIU, C. L. WANG, Positive solutions for second-order four-point boundary value problems with alternating coefficient, *Nonlinear Anal.* **70**(2009), 2014–2023. [MR2492138;](http://www.ams.org/mathscinet-getitem?mr=2492138) [url](https://doi.org/10.1016/j.na.2008.02.099)
- [2] Y. Guo, W. Ge, S. Dong, Two positive solutions for second order three point boundary problems with sign changing nonlinearities, *Acta Math. Appl. Sin.* **27**(2004), 522–529. [MR2125526](http://www.ams.org/mathscinet-getitem?mr=2125526)
- [3] D. Guo, V. Lakshmikantham, *Nonlinear problems in abstract cones*, Academic Press, Boston, 1988. [MR0959889](http://www.ams.org/mathscinet-getitem?mr=0959889)
- [4] I. Y. KARACA, On the existence of positive solutions for three-point boundary value problems with alternating coefficients, *Math. Comput. Modelling* **47**(2008) 1019–1034. [MR2413732;](http://www.ams.org/mathscinet-getitem?mr=2413732) [url](https://doi.org/10.1016/j.mcm.2007.06.017)
- [5] I. Y. Karaca, Nonlinear triple-point problems with change of sign, *Comput. Math. Appl.* **55**(2008) 691–703. [MR2387616;](http://www.ams.org/mathscinet-getitem?mr=2387616) [url](https://doi.org/10.1016/j.camwa.2007.04.032)
- [6] M. A. Krasnosel'ski˘i, *Positive solutions of operator equations* (English translation), P. Noordhoff Ltd. Groningen, 1964. [MR0181881](http://www.ams.org/mathscinet-getitem?mr=0181881)
- [7] B. Liu, Positive solutions of second-order three-point boundary value problems with change of sign, *Comput. Math. Appl.* **47**(2004) 1351–1361. [MR2070989;](http://www.ams.org/mathscinet-getitem?mr=2070989) [url](https://doi.org/10.1016/S0898-1221(04)90128-9)
- [8] B. Liu, Positive solutions of second-order three-point boundary value problems with change of sign in Banach spaces, *Nonlinear Anal.* **64**(2006) 1336–1355. [MR2200496;](http://www.ams.org/mathscinet-getitem?mr=2200496) [url](https://doi.org/10.1016/j.na.2005.06.039)
- [9] Y. Wu, Z. ZHAO, Positive solutions for third-order boundary value problems with change of signs, *Appl. Math. Comput.* **218**(2011) 2744–2749. [MR2838180;](http://www.ams.org/mathscinet-getitem?mr=2838180) [url](https://doi.org/10.1016/j.amc.2011.08.015)
- [10] D. XIE, Y. LIU, C. BAI, Triple positive solutions for second-order four-point boundary value problem with sign changing nonlinearities, *Electron. J. Qual. Theory Differ. Equ.* **2009**, No. 35, 1–14. [MR2511288;](http://www.ams.org/mathscinet-getitem?mr=2511288) [url](https://doi.org/10.14232/ejqtde.2009.1.35)