
Electronic Journal of Qualitative Theory of Differential Equations
2016, No. 39, 1–13; doi: 10.14232/ejqtde.2016.1.39 http://www.math.u-szeged.hu/ejqtde/

Linearized asymptotic stability
for fractional differential equations

Nguyen Dinh Cong1, Thai Son Doan1, Stefan SiegmundB 2 and
Hoang The Tuan1

1Institute of Mathematics, Vietnam Academy of Science and Technology,
18 Hoang Quoc Viet, 10307 Ha Noi, Viet Nam

2Center for Dynamics, Department of Mathematics, Technische Universität Dresden,
Zellescher Weg 12–14, 01069 Dresden, Germany

Received 17 December 2015, appeared 14 June 2016

Communicated by Paul Eloe

Abstract. We prove the theorem of linearized asymptotic stability for fractional differ-
ential equations. More precisely, we show that an equilibrium of a nonlinear Caputo
fractional differential equation is asymptotically stable if its linearization at the equi-
librium is asymptotically stable. As a consequence we extend Lyapunov’s first method
to fractional differential equations by proving that if the spectrum of the linearization
is contained in the sector {λ ∈ C : |arg(λ)| > απ

2 } where α > 0 denotes the order
of the fractional differential equation, then the equilibrium of the nonlinear fractional
differential equation is asymptotically stable.
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1 Introduction

In recent years, fractional differential equations have attracted increasing interest due to the
fact that many mathematical problems in science and engineering can be modeled by frac-
tional differential equations, see e.g., [5, 6, 12].

One of the most fundamental problems in the qualitative theory of fractional differen-
tial equations is stability theory. Following Lyapunov’s seminal 1892 thesis [10], these two
methods are expected to also work for fractional differential equations:
• Lyapunov’s First Method: the method of linearization of the nonlinear equation along an

orbit, the study of the resulting linear variational equation by means of Lyapunov exponents
(exponential growth rates of solutions), and the transfer of asymptotic stability from the linear
to the nonlinear equation (the so-called theorem of linearized asymptotic stability).
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• Lyapunov’s Second Method: the method of Lyapunov functions, i.e., of scalar functions
on the state space which decrease along orbits.

There have been many publications on Lypunov’s second method for fractional differential
equations and we refer the reader to [7] or [9] for a survey.

In this paper we develop Lyapunov’s first method for the trivial solution of a fractional
differential equation of order α ∈ (0, 1)

CDα
0+x(t) = Ax(t) + f (x(t)), (1.1)

where A ∈ Rd×d and f : Rd → Rd is a continuously differentiable function satisfying that
f (0) = 0 and D f (0) = 0 (in fact, we only require a slightly weaker assumption on f ). The
asymptotic stability of (the trivial solution of) its linerization

CDα
0+x(t) = Ax(t) (1.2)

is known to be equivalent to its spectrum lying in the sector {λ ∈ C : |arg(λ)| > απ
2 }, see

[5, Theorem. 7.20]. What remains to be shown is that the asymptotic stability of (1.2) implies
the asymptotic stability of the trivial solution of (1.1) which is our main result Theorem 3.1 on
linearized asymptotic stability for fractional differential equations.

The linearization method is a useful tool in the investigation of stability of equilibria of
nonlinear systems: it reduces the problem to a much simpler problem of stability of au-
tonomous linear systems which can be solved explicitly, hence it gives us a criterion for sta-
bility of the equilibrium of the nonlinear system. Our theorem does the same service to the
investigation of stability of nonlinear fractional differential equations as its classical counter-
part does for the investigation of stability of nonlinear ordinary differential equations.

Note that there are several people dealing with the stability of fractional differential equa-
tions similar to our problem: in [1] our Theorem 3.1 is stated but without a complete proof;
the main literature we are aware of are four papers [2, 13, 15, 16] where the authors formu-
lated a theorem on linearized stability under various assumptions but all these four papers
contain serious flaws in the proofs of the theorem which make the proofs incorrect, a detailed
discussion can be found in Remark 3.7.

The structure of this paper is as follows: in Section 2, we recall some background on frac-
tional calculus and fractional differential equations. Section 3 is devoted to the main theorem
about linear asymptotic stability for fractional differential equations. Section 4 contains an
application of our main result (Theorem 3.1) and discusses a stabilization by linear feedback
of a fractional Lotka–Volterra system. We conclude this introductory section by introducing
some notation which is used throughout the paper.

For a nonzero complex number λ, we define its argument to be in the interval −π <

arg(λ) ≤ π. Let Rd be endowed with the max norm, i.e.,

‖x‖ = max(|x1|, . . . , |xd|) for all x = (x1, . . . , xd)
T ∈ Rd.

We denote by R≥0 the set of all nonnegative real numbers and by
(
C∞(R≥0, Rd), ‖ · ‖∞

)
the

space of all continuous functions ξ : R≥0 → Rd such that

‖ξ‖∞ := sup
t∈R≥0

‖ξ(t)‖ < ∞.

It is well known that
(
C∞(R≥0, Rd), ‖ · ‖∞

)
is a Banach space.
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2 Preliminaries

We start this section by briefly recalling a framework of fractional calculus and fractional
differential equations. We refer the reader to the books [5, 6] for more details.

Let α > 0 and [a, b] ⊂ R. Let x : [a, b] → R be a measurable function such that x ∈
L1([a, b]), i.e.,

∫ b
a |x(τ)| dτ < ∞. Then, the Riemann–Liouville integral operator of order α is

defined by

Iα
a+x(t) :=

1
Γ(α)

∫ t

a
(t− τ)α−1x(τ) dτ for t ∈ [a, b),

where the Euler Gamma function Γ : (0, ∞)→ R is defined as

Γ(α) :=
∫ ∞

0
τα−1 exp(−τ) dτ,

see e.g., [5]. The Caputo fractional derivative CDα
a+x of a function x ∈ Cm([a, b]), m := dαe is the

smallest integer larger or equal α, which was introduced by Caputo (see e.g., [5]), is defined
by

CDα
a+x(t) := (Im−α

a+ Dmx)(t), for t ∈ [a, b),

where D = d
dx is the usual derivative. The Caputo fractional derivative of a d-dimensional

vector-valued function x(t) = (x1(t), . . . , xd(t))T is defined component-wise as

CDα
0+x(t) = (CDα

0+x1(t), . . . ,C Dα
0+xd(t))T.

Since f is Lipschitz continuous, [5, Theorem 6.5] implies unique existence of solutions of
initial value problems (1.1), x(0) = x0 for x0 ∈ Rn. Let φ : I ×Rd → Rd, t 7→ φ(t, x0), denote
the solution of (1.1), x(0) = x0, on its maximal interval of existence I = [0, tmax(x0)) with
0 < tmax(x0) ≤ ∞. We now recall the notions of stability and asymptotic stability of the trivial
solution of (1.1), cf. [5, Definition 7.2, p. 157].

Definition 2.1. The trivial solution of (1.1) is called:

• stable if for any ε > 0 there exists δ = δ(ε) > 0 such that for every ‖x0‖ < δ we have
tmax(x0) = ∞ and

‖φ(t, x0)‖ ≤ ε for t ≥ 0;

• unstable if it is not stable;

• attractive if there exists δ̂ > 0 such that limt→∞ φ(t, x0) = 0 whenever ‖x0‖ < δ̂.

The trivial solution is called asymptotically stable if it is both stable and attractive.

For f = 0, system (1.1) reduces to a linear time-invariant fractional differential equation

CDα
0+x(t) = Ax(t). (2.1)

As shown in [5], Eα(tα A)x solves (2.1) with the initial condition x(0) = x, where the Mittag-
Leffler matrix function Eα,β(A), for β ∈ R and a matrix A ∈ Rd×d is defined as

Eα,β(A) :=
∞

∑
k=0

Ak

Γ(αk + β)
, Eα(A) := Eα,1(A).

In the following theorem, we recall a spectral characterization on asymptotic stability of the
trivial solution of (2.1).
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Theorem 2.2. The trivial solution of (2.1) is asymptotically stable if and only if

|arg(λ)| > απ

2
for λ ∈ σ(A),

where σ(A) is the spectrum of A.

Proof. See e.g. [5, Theorem 7.20].

In the remaining part of this section, we establish some estimates involving the Mittag-
Leffler functions. These estimates will be used to prove the contraction property of the
Lyapunov–Perron operator introduced in the next section. For this purpose, let γ(ε, θ), ε >

0, θ ∈ (0, π] denote the contour consisting of the following three parts:

(i) arg(z) = −θ, |z| ≥ ε,

(ii) −θ ≤ arg(z) ≤ θ, |z| = ε,

(iii) arg(z) = θ, |z| ≥ ε.

The contour γ(ε, θ) divides the complex plane (z) into two domains, which we denote by
G−(ε, θ) and G+(ε, θ). These domains lie correspondingly on the left and on the right side of
the contour γ(ε, θ).

Lemma 2.3. Let α ∈ (0, 1) and β be an arbitrary complex number. Then for an arbitrary ε > 0 and
θ ∈ ( απ

2 , απ), we have

Eα,β(z) =
1

2απi

∫
γ(ε,θ)

exp (ζ
1
α )ζ

1−β
α

ζ − z
dζ for all z ∈ G−(ε, θ).

Proof. See [12, Theorem 1.3, p. 30]

Proposition 2.4. Let λ be an arbitrary complex number with απ
2 < |arg(λ)| ≤ π. Then, the following

statements hold:

(i) There exists a positive constant M(α, λ) and a positive number t0 such that

|tα−1Eα,α(λtα)| < M(α, λ)

tα+1 for any t > t0.

(ii) There exists a positive constant C(α, λ) such that

sup
t≥0

∫ t

0
|(t− s)α−1Eα,α(λ(t− s)α)| ds < C(α, λ).

Proof. (i) Note that απ
2 < |arg(λ)| ≤ π. Hence, there exist θ ∈ ( απ

2 , |arg(λ)|) and θ0 ∈ (0, πα
2 )

such that |arg(λ)| − θ > θ0. Since απ
2 < |arg(λ)| ≤ π, it follows that λtα ∈ G−(1, θ + θ0) for all

t > 0. Thus, according to Lemma 2.3 we obtain that

Eα,α(λtα) =
1

2απi

∫
γ(1,θ)

exp (ζ
1
α )ζ

1−α
α

ζ − λtα
dζ for all t > 0.

Using the identity 1
ζ−z = − 1

z +
ζ

z(ζ−z) leads to

Eα,α(λtα) =
1

2απi

∫
γ(1,θ)

exp (ζ
1
α )ζ

1
α

λtα(ζ − λtα)
dζ for all t > 0. (2.2)
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Let

t0 :=
1

|λ| 1α (1− sin θ0)
1
α

.

Then, for all t ≥ t0 we have |λtα| ≥ 1
1−sin θ0

. Thus,

|ζ − λtα| ≥ |λtα| sin θ0 for all ζ ∈ γ(1, θ),

which together with (2.2) implies that

|Eα,α(λtα)| ≤
∫

γ(1,θ) | exp (ζ
1
α )ζ

1
α |dζ

2απ|λ|2 sin θ0

1
t2α

for all t ≥ t0.

Consequently, for all t ≥ t0

|tα−1Eα,α(λtα)| ≤ M(α, λ)

tα+1 where M(α, λ) :=

∫
γ(1,θ) | exp (ζ

1
α )ζ

1
α |dζ

2απ|λ|2 sin θ0
.

(ii) In what follows, we treat separately the two cases t ≤ t0 and t > t0, where t0 is defined as
in the statement (i).
Case 1: t ≤ t0: Note that ∫ t

0
sα−1Eα,α(λsα) ds = tαEα,α+1(λtα),

see, e.g., [12, pp. 24]. Therefore, we get that

∫ t

0

∣∣∣(t− s)α−1Eα,α(λ(t− s)α)
∣∣∣ ds ≤

∫ t

0
(t− s)α−1Eα,α(|λ|(t− s)α) ds

= tαEα,α+1(|λ|tα)

≤ tα
0 Eα,α+1(|λ|tα

0).

Case 2: t > t0: From (i), we see that

∫ t−t0

0

∣∣∣(t− s)α−1Eα,α(λ(t− s)α)
∣∣∣ ds ≤

∫ t−t0

0

M(α, λ)

(t− s)α+1 ds

≤ M(α, λ)

αtα
0

. (2.3)

Using a similar statement as in Case 1, we obtain that

∫ t

t−t0

∣∣∣(t− s)α−1Eα,α(λ(t− s)α)
∣∣∣ ds ≤ tα

0 Eα,α+1(|λ|tα
0),

which together with (2.3) implies that

∫ t

0

∣∣∣(t− s)α−1Eα,α(λ(t− s)α)
∣∣∣ ds ≤ C(α, λ),

where C(α, λ) := M(α,λ)
αtα

0
+ tα

0 Eα,α+1(|λ|tα
0). The proof is complete.
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3 Linearized asymptotic stability for fractional differential equa-
tions

We now state the main result of this paper and use the abbreviation ` f (r) to denote the
Lipschitz constant

` f (r) := sup
x,y∈B

Rd (0,r)
x 6=y

‖ f (x)− f (y)‖
‖x− y‖

of a locally Lipschitz continuous function f on the ball BRd(0, r) := {x ∈ Rd : ‖x‖ ≤ r}.

Theorem 3.1 (Linearized asymptotic stability for fractional differential equations). Consider the
nonlinear fractional differential equation (1.1). Let λ̂1, . . . , λ̂m denote the eigenvalues of A and assume
that

|arg(λ̂i)| >
απ

2
, i = 1, . . . , m.

Suppose that the nonlinear term f : Rd → Rd is a locally Lipschitz continuous function satisfying that

f (0) = 0, lim
r→0

` f (r) = 0. (3.1)

Then, the trivial solution of (1.1) is asymptotically stable.

Before going to the proof of this theorem, we need two preparatory steps:

• Transformation of the linear part: the aim of this step is to transform the linear part of
(1.1) to a matrix which is “very close” to a diagonal matrix. This technical step reduces
the difficulty in the estimation of the operators constructed in the next step.

• Construction of an appropriate Lyapunov–Perron operator: In this step, our aim is to
present a family of operators with the property that any solution of the nonlinear system
(1.1) can be interpreted as a fixed point of these operators. Furthermore, we show that
these operators are contractive and hence the fixed points of these operators can be
estimated and can be shown to tend to zero when time goes to infinity.

We are now presenting the details of these preparatory steps.

3.1 Transformation of the linear part

Using [14, Theorem 6.37, p. 146], there exists a nonsingular matrix T ∈ Cd×d transforming A
into the Jordan normal form, i.e.,

T−1AT = diag(A1, . . . , An),

where for i = 1, . . . , n the block Ai is of the following form

Ai = λi iddi×di + ηi Ndi×di ,

where ηi ∈ {0, 1}, λi ∈ {λ̂1, . . . , λ̂m}, and the nilpotent matrix Ndi×di is given by

Ndi×di :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
0 0 · · · 0 0


di×di

.
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Let us notice that by this transformation we go from the field of real numbers to the field of
complex numbers, and we may remain in the field of real numbers only if all eigenvalues of
A are real. For a general real-valued matrix A we may simply embed R into C, consider A
as a complex-valued matrix and thus get the above Jordan form for A. Alternatively, we may
use a more cumbersome real-valued Jordan form (for discussion of a similar issue for FDE
see also Diethelm [5, pp. 152–153]). For simplicity we use the embedding method and omit
the discussion on how to return back to the field of real numbers. Note also that this kind of
technique is well known in the theory of ordinary differential equations.

Let δ be an arbitrary but fixed positive number. Using the transformation

Pi := diag(1, δ, . . . , δdi−1),

we obtain that
P−1

i AiPi = λi iddi×di + δi Ndi×di ,

δi ∈ {0, δ}. Hence, under the transformation y := (TP)−1x system (1.1) becomes

CDα
0+y(t) = diag(J1, . . . , Jn)y(t) + h(y(t)), (3.2)

where Ji := λiiddi×di for i = 1, . . . , n and the function h is given by

h(y) := diag(δ1Nd1×d1 , . . . , δnNdn×dn)y + (TP)−1 f (TPy). (3.3)

Remark 3.2. Note that the map x 7→ diag(δ1Nd1×d1 , . . . , δnNdn×dn)x is a Lipschitz continuous
function with Lipschitz constant δ. Thus, by (3.1) we have

h(0) = 0, lim
r→0

`h(r) =

δ if there exists δi = δ,

0 otherwise.

Remark 3.3. The type of stability of the trivial solution of equations (1.1) and (3.2) are the
same, i.e., they are both stable, attractive or unstable.

3.2 Construction of an appropriate Lyapunov–Perron operator

In this subsection, we concentrate only on equation (3.2). We are now introducing a Lyapunov–
Perron operator associated with (3.2). Before doing this, we discuss some conventions which
are used in the remaining part of this section: the space Rd can be written as Rd = Rd1 × · · · ×
Rdn . A vector x ∈ Rd can be written component-wise as x = (x1, . . . , xn)T.

For any x = (x1, . . . , xn)T ∈ Rd = Rd1 × · · · × Rdn , the operator Tx : C∞(R≥0, Rd) →
C∞(R≥0, Rd) is defined by

(Txξ)(t) = ((Txξ)1(t), . . . , (Txξ)n(t))T for t ∈ R≥0,

where for i = 1, . . . , n

(Txξ)i(t) = Eα(tα Ji)xi +
∫ t

0
(t− τ)α−1Eα,α((t− τ)α Ji)hi(ξ(τ)) dτ,

is called the Lyapunov–Perron operator associated with (3.2). The role of this operator is stated in
the following theorem.
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Theorem 3.4. Let x ∈ Rd be arbitrary and ξ : R≥0 → Rd be a continuous function satisfying that
ξ(0) = x. Then, the following statements are equivalent:

(i) ξ is a solution of (3.2) satisfying the initial condition x(0) = x;

(ii) ξ is a fixed point of the operator Tx.

Proof. The assertion follows from the variation of constants formula for fractional differential
equations, see e.g., [6].

Next, we provide some estimates on the operator Tx. The main ingredient to obtain these
estimates is the preparatory work in Proposition 2.4.

Proposition 3.5. Consider system (3.2) and suppose that

|arg(λi)| >
απ

2
, i = 1, . . . , n.

Then, there exists a constant C(α, λ̄) depending on α and λ̄ := (λ1, . . . , λn) such that for all x, x̂ ∈ Rd

and ξ, ξ̂ ∈ C∞(R≥0, Rd) the following inequality holds

‖Txξ − Tx̂ ξ̂‖∞ ≤ max
1≤i≤n

sup
t≥0
|Eα(λitα)|‖x− x̂‖

+ C(α, λ̄) `h(max(‖ξ‖∞, ‖ξ̂‖∞))‖ξ − ξ̂‖∞. (3.4)

Consequently, Tx is well-defined and

‖Txξ − Tx ξ̂‖∞ ≤ C(α, λ̄) `h(max(‖ξ‖∞, ‖ξ̂‖∞))‖ξ − ξ̂‖∞. (3.5)

Proof. For i = 1, . . . , n, we get

|(Txξ)i(t)− (Tx̂ ξ̂)i(t)| ≤ ‖x− x̂‖|Eα(λitα)|

+ `h(max{‖ξ‖∞, ‖ξ̂‖∞})‖ξ − ξ̂‖∞

∫ t

0
|(t− τ)α−1Eα,α(λi(t− τ)α)| dτ.

According to Proposition 2.4 (ii), we have

‖(Txξ)i − (Tx̂ ξ̂)i‖∞ ≤ ‖x− x̂‖ sup
t≥0
|Eα(λitα)|

+ `h(max{‖ξ‖∞, ‖ξ̂‖∞})C(α, λi)‖ξ − ξ̂‖∞.

Letting C(α, λ̄) = max{C(α, λ1), . . . , C(α, λn)}, we obtain the estimate

‖Txξ − Tx̂ ξ̂‖∞ ≤ max
1≤i≤n

sup
t≥0
|Eα(λitα)|‖x− x̂‖

+ C(α, λ̄) `h(max(‖ξ‖∞, ‖ξ̂‖∞))‖ξ − ξ̂‖∞,

which leads to

‖Txξ − Tx ξ̂‖∞ ≤ C(α, λ̄) `h(max(‖ξ‖∞, ‖ξ̂‖∞))‖ξ − ξ̂‖∞.

Note that from the definition of the Lyapunov–Perron operator Tx, T0(0) = 0. The proof is
complete.
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So far, we have proved that the Lyapunov–Perron operator is well-defined and Lipschitz
continuous. Note that the Lipschitz constant C(α, λ̄) is independent of the constant δ which
is hidden in the coefficients of system (3.2). From now on, we choose and fix the constant δ

as follows δ := 1
2C(α,λ̄) . The remaining difficult question is now to choose a ball with small

radius in C∞(R≥0, Rd) such that the restriction of the Lyapunov–Perron operator to this ball
is strictly contractive. A positive answer to this question is given in the following technical
lemma.

Lemma 3.6. The following statements hold.

(i) There exists r > 0 such that
q := C(α, λ̄) `h(r) < 1. (3.6)

(ii) Choose and fix r > 0 satisfying (3.6). Define

r∗ :=
r(1− q)

max1≤i≤n supt≥0 |Eα(λitα)| . (3.7)

Let BC∞(0, r) := {ξ ∈ C∞(R≥0, Rd) : ‖ξ‖∞ ≤ r}. Then, for any x ∈ BRd(0, r∗) we have
Tx(BC∞(0, r)) ⊂ BC∞(0, r) and

‖Txξ − Tx ξ̂‖∞ ≤ q‖ξ − ξ̂‖∞ for all ξ, ξ̂ ∈ BC∞(0, r).

Proof. (i) By Remark 3.2, limr→0 `h(r) ≤ δ. Since δC(α, λ) = 1
2 , the assertion (i) is proved.

(ii) Let x ∈ Rd be arbitrary with ‖x‖ ≤ r∗. Let ξ ∈ BC∞(0, r) be arbitrary. According to
(3.4) in Proposition 3.5, we obtain that

‖Txξ‖∞ ≤ max
1≤i≤n

sup
t≥0
|Eα(λitα)|‖x‖+ C(α, λ) `h(r)‖ξ‖∞

≤(1− q)r + qr,

which proves that Tx(BC∞(0, r)) ⊂ BC∞(0, r). Furthermore, by Proposition 2.4 and part (i) for
all x ∈ BRd(0, r∗) and ξ, ξ̂ ∈ BC∞(0, r) we have

‖Txξ − Tx ξ̂‖∞ ≤ C(α, λ̄)`h(r) ‖ξ − ξ̂‖∞

≤ q‖ξ − ξ̂‖∞,

which concludes the proof.

Proof of Theorem 3.1. Due to Remark 3.3, it is sufficient to prove the asymptotic stability for the
trivial solution of system (3.2). For this purpose, let r∗ be defined as in (3.7). Let x ∈ BRd(0, r∗)
be arbitrary. Using Lemma 3.6 and the Contraction Mapping Principle, there exists a unique
fixed point ξ ∈ BC∞(0, r) of Tx. This point is also a solution of (3.2) with the initial condition
ξ(0) = x. Since the initial value problem for Equation (3.2) has a unique solution, this shows
that the trivial solution 0 is stable. To complete the proof of the theorem, we have to show that
the trivial solution 0 is attractive. Suppose that ξ(t) = ((ξ)1(t), . . . , (ξ)n(t))T is the solution of
(3.2) which satisfies ξ(0) = x for an arbitrary x = (x1, . . . , xn)T ∈ BRd(0, r∗). From Lemma 3.6,
we see that ‖ξ‖∞ ≤ r. Put a := lim supt→∞ ‖ξ(t)‖, then a ∈ [0, r]. Let ε be an arbitrary positive
number. Then, there exists T(ε) > 0 such that

‖ξ(t)‖ ≤ (a + ε) for any t ≥ T(ε).
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For each i = 1, . . . , n, we will estimate lim supt→∞ |(ξ)i(t)|. According to Proposition 2.4 (i),
we obtain

lim sup
t→∞

∣∣∣∣∫ T(ε)

0
(t− τ)α−1Eα,α(λi(t− τ)α)hi(ξ(τ))dτ

∣∣∣∣
≤ max

t∈[0,T(ε)]
|hi(ξ(t))| lim sup

t→∞

∫ T(ε)

0

M(α, λi)

(t− τ)α+1 dτ = 0.

Therefore, from the fact that (ξ)i(t) = (Txξ)i(t) and limt→∞ Eα(λitα) = 0 we have

lim sup
t→∞

|(ξ)i(t)| = lim sup
t→∞

∣∣∣∣∫ t

T(ε)
(t− τ)α−1Eα,α(λi(t− τ)α)hi(ξ(τ))dτ

∣∣∣∣
≤ `h(r)C(α, λi)(a + ε),

where we use the estimate∣∣∣∣∫ t

T(ε)
(t− τ)α−1Eα,α(λi(t− τ)α)dτ

∣∣∣∣ = ∣∣∣∣∫ t−T(ε)

0
uα−1Eα,α(λiuα)du

∣∣∣∣
≤ C(α, λi),

see Proposition 2.4 (ii), to obtain the inequality above. Thus,

a ≤ max
{

lim sup
t→∞

|(ξ)1(t)|, . . . , lim sup
t→∞

|(ξ)n(t)|
}

≤ `h(r)C(α, λ)(a + ε).

Letting ε→ 0, we have
a ≤ `h(r)C(α, λ)a.

Due to the assumption `h(r)C(α, λ) < 1, we get that a = 0 and the proof is complete.

Remark 3.7 (Discussion about some related papers). As mentioned at the beginning of this
paper there are some papers dealing with the problem of linearized stability of fractional
differential equations [2, 13, 15, 16] where the authors formulated a theorem on linearized
stability under various assumptions. Here we show that these papers [2, 13, 15, 16] contain
serious flaws in the proofs of the linearized stability theorem which make the proofs incorrect.
Namely, there are two common flaws in those papers.

• Incorrect application of the Gronwall lemma: the authors apply the Gronwall lemma to get
an estimate of a solution of the fractional differential equation under consideration (see
[2, l. 1, p. 604], [13, l. -8, p. 869], [15, l. 6, column 2, p. 1180] and [16, l. -6, column 2,
p. 103]), but the multiplier function in the inequality they want to apply the Gronwall
lemma to does depend on the variable t besides the variable τ of the integration. This
circumstance makes their application of the Gronwall lemma invalid.

• Invalid assumption of smallness of the solution: the authors of [2,15,16] need the assumption
of smallness of the solution x(t) of the nonlinear system for all t (see [2, formulas (13)
and (14), p. 603], [15, formulas (23) and (26), p. 1180] and [16, l. -9, column 2, p. 103]).
Note that the smallness of x(t) for all t is a claim that must be proved in this case and the
authors did not prove it at all. Moreover, this claim, in some sense, is almost equivalent
to the conclusion about stability of the nonlinear system which they wanted to prove.
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For the paper [13] (dealing with the Riemann–Liouville fractional derivative), since they first
treated the case of linear perturbation [13, Theorem 4.1], they did not encounter the second
flaw above, but with the first flaw they did arrive at wrong assertions in their theorems both
in the linear case [13, Theorem 4.1 (a,b)] as well as the nonlinear case [13, Theorem 4.2 (a,b)].
An easy counterexample for the linear case [13, Theorem 4.1 (a,b)] is B = I − A with I being
the identity matrix.

4 Applications

In this section, we revisit the problem of stabilization by linear feedback of the following
fractional Lotka–Volterra system:{

CDα
0+x1(t) = x1(t)(h + ax1(t) + bx2(t)),

CDα
0+x2(t) = x2(t)(−r + cx1(t)),

(4.1)

where the parameters h, r are positive, see e.g., [1,15]. This system can be rewritten as follows

CDα
0+x(t) = Ax(t) + f (x(t)),

where

A =

[
h 0
0 −r

]
, f (x) =

[
ax2

1 + bx1x2

cx1x2

]
.

In the following lemma, we first prove instability of the trivial solution for system (4.1). Finally,
we show that by using a suitable state-feedback controller, the controlled system becomes
stable.

Lemma 4.1. The following statements hold.

(i) The trivial solution of (4.1) is unstable.

(ii) Letting B = (1, 1)T and K = (−2h, 0). Then, the trivial solution of the following closed-loop
system

CDα
0+x(t) = Ax(t) + f (x(t)) + Bu(t),

u(t) = Kx(t),

is stable.

Proof. (i) Choose and fix an arbitrary positive number ε such that ε|a| < h
2 . Suppose to the

contrary that the trivial solution of (4.1) is stable. Then, there exists δ ∈ (0, ε) such that for
any solution (x1(t), x2(t))T of (4.1) with the initial value satisfying |x1(0)|+ |x2(0)| < δ, then
|x1(t)| + |x2(t)| < ε for every t ≥ 0. We now consider the solution (x1(t), x2(t))T of (4.1)
satisfying that x1(0) = δ

2 and x2(0) = 0. From (4.1) and x2(0) = 0, we have x2(t) = 0 for all
t ≥ 0. Let [0, Tmax] denote the maximal interval on which the solution x1(t) is nonnegative.
Since ε|a| < h

2 , it follows that

CDα
+0x1(t) ≥

h
2

x1(t) for all t ∈ [0, Tmax].
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By [8, Lemma 6.1], we have

x1(t) ≥ Eα

(
h
2

tα

)
x1(0) for all t ∈ [0, Tmax].

Using continuity of the map t 7→ x1(t), we obtain that Tmax = ∞ and therefore x1(t) ≥
Eα(

h
2 tα)x1(0) for all t ≥ 0. This contradicts the fact that limt→∞ Eα(

h
2 tα) = ∞. The proof of this

part is complete.
(ii) The linear part of the closed-loop system is

A + BK =

[
−h 0
−2h −r

]
,

which implies that the eigenvalues of A + BK are −h and −r. According to Theorem 3.1, the
zero solution of the closed-loop system is asymptotically stable for any order α ∈ (0, 1).
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